X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FTarget%2FX86%2FX86InstrFPStack.td;h=b0b0409ad2a5cf9ab549de7be26f9b11d424c68e;hb=533297b58da8c74bec65551e1aface9801fc2259;hp=9349b27e9ec0aeb0decd571767e894dd28c5b093;hpb=6a30811d5c3484883cbcbbda1140f2ac36f7c09c;p=oota-llvm.git diff --git a/lib/Target/X86/X86InstrFPStack.td b/lib/Target/X86/X86InstrFPStack.td index 9349b27e9ec..b0b0409ad2a 100644 --- a/lib/Target/X86/X86InstrFPStack.td +++ b/lib/Target/X86/X86InstrFPStack.td @@ -1,9 +1,9 @@ -//==- X86InstrFPStack.td - Describe the X86 Instruction Set -------*- C++ -*-=// +//==- X86InstrFPStack.td - Describe the X86 Instruction Set --*- tablegen -*-=// // // The LLVM Compiler Infrastructure // -// This file was developed by the Evan Cheng and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // @@ -17,8 +17,8 @@ // FPStack specific DAG Nodes. //===----------------------------------------------------------------------===// -def SDTX86FpGet : SDTypeProfile<1, 0, [SDTCisFP<0>]>; -def SDTX86FpSet : SDTypeProfile<0, 1, [SDTCisFP<0>]>; +def SDTX86FpGet2 : SDTypeProfile<2, 0, [SDTCisVT<0, f80>, + SDTCisVT<1, f80>]>; def SDTX86Fld : SDTypeProfile<1, 2, [SDTCisFP<0>, SDTCisPtrTy<1>, SDTCisVT<2, OtherVT>]>; @@ -29,28 +29,24 @@ def SDTX86Fild : SDTypeProfile<1, 2, [SDTCisFP<0>, SDTCisPtrTy<1>, SDTCisVT<2, OtherVT>]>; def SDTX86FpToIMem : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisPtrTy<1>]>; -def X86fpget : SDNode<"X86ISD::FP_GET_RESULT", SDTX86FpGet, - [SDNPHasChain, SDNPInFlag, SDNPOutFlag]>; -def X86fpset : SDNode<"X86ISD::FP_SET_RESULT", SDTX86FpSet, - [SDNPHasChain, SDNPOutFlag]>; -def X86fld : SDNode<"X86ISD::FLD", SDTX86Fld, - [SDNPHasChain]>; -def X86fst : SDNode<"X86ISD::FST", SDTX86Fst, - [SDNPHasChain, SDNPInFlag]>; -def X86fild : SDNode<"X86ISD::FILD", SDTX86Fild, - [SDNPHasChain]>; -def X86fildflag : SDNode<"X86ISD::FILD_FLAG",SDTX86Fild, - [SDNPHasChain, SDNPOutFlag]>; +def SDTX86CwdStore : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>; + +def X86fld : SDNode<"X86ISD::FLD", SDTX86Fld, + [SDNPHasChain, SDNPMayLoad]>; +def X86fst : SDNode<"X86ISD::FST", SDTX86Fst, + [SDNPHasChain, SDNPInFlag, SDNPMayStore]>; +def X86fild : SDNode<"X86ISD::FILD", SDTX86Fild, + [SDNPHasChain, SDNPMayLoad]>; +def X86fildflag : SDNode<"X86ISD::FILD_FLAG", SDTX86Fild, + [SDNPHasChain, SDNPOutFlag, SDNPMayLoad]>; def X86fp_to_i16mem : SDNode<"X86ISD::FP_TO_INT16_IN_MEM", SDTX86FpToIMem, - [SDNPHasChain]>; + [SDNPHasChain, SDNPMayStore]>; def X86fp_to_i32mem : SDNode<"X86ISD::FP_TO_INT32_IN_MEM", SDTX86FpToIMem, - [SDNPHasChain]>; + [SDNPHasChain, SDNPMayStore]>; def X86fp_to_i64mem : SDNode<"X86ISD::FP_TO_INT64_IN_MEM", SDTX86FpToIMem, - [SDNPHasChain]>; - -def extloadf80f32 : PatFrag<(ops node:$ptr), (f80 (extloadf32 node:$ptr))>; -def extloadf80f64 : PatFrag<(ops node:$ptr), (f80 (extloadf64 node:$ptr))>; -def extloadf64f32 : PatFrag<(ops node:$ptr), (f64 (extloadf32 node:$ptr))>; + [SDNPHasChain, SDNPMayStore]>; +def X86fp_cwd_get16 : SDNode<"X86ISD::FNSTCW16m", SDTX86CwdStore, + [SDNPHasChain, SDNPMayStore, SDNPSideEffect]>; //===----------------------------------------------------------------------===// // FPStack pattern fragments @@ -73,49 +69,61 @@ def fpimmneg1 : PatLeaf<(fpimm), [{ }]>; // Some 'special' instructions -let usesCustomDAGSchedInserter = 1 in { // Expanded by the scheduler. +let usesCustomInserter = 1 in { // Expanded after instruction selection. def FP32_TO_INT16_IN_MEM : I<0, Pseudo, (outs), (ins i16mem:$dst, RFP32:$src), - "#FP32_TO_INT16_IN_MEM PSEUDO!", + "##FP32_TO_INT16_IN_MEM PSEUDO!", [(X86fp_to_i16mem RFP32:$src, addr:$dst)]>; def FP32_TO_INT32_IN_MEM : I<0, Pseudo, (outs), (ins i32mem:$dst, RFP32:$src), - "#FP32_TO_INT32_IN_MEM PSEUDO!", + "##FP32_TO_INT32_IN_MEM PSEUDO!", [(X86fp_to_i32mem RFP32:$src, addr:$dst)]>; def FP32_TO_INT64_IN_MEM : I<0, Pseudo, (outs), (ins i64mem:$dst, RFP32:$src), - "#FP32_TO_INT64_IN_MEM PSEUDO!", + "##FP32_TO_INT64_IN_MEM PSEUDO!", [(X86fp_to_i64mem RFP32:$src, addr:$dst)]>; def FP64_TO_INT16_IN_MEM : I<0, Pseudo, (outs), (ins i16mem:$dst, RFP64:$src), - "#FP64_TO_INT16_IN_MEM PSEUDO!", + "##FP64_TO_INT16_IN_MEM PSEUDO!", [(X86fp_to_i16mem RFP64:$src, addr:$dst)]>; def FP64_TO_INT32_IN_MEM : I<0, Pseudo, (outs), (ins i32mem:$dst, RFP64:$src), - "#FP64_TO_INT32_IN_MEM PSEUDO!", + "##FP64_TO_INT32_IN_MEM PSEUDO!", [(X86fp_to_i32mem RFP64:$src, addr:$dst)]>; def FP64_TO_INT64_IN_MEM : I<0, Pseudo, (outs), (ins i64mem:$dst, RFP64:$src), - "#FP64_TO_INT64_IN_MEM PSEUDO!", + "##FP64_TO_INT64_IN_MEM PSEUDO!", [(X86fp_to_i64mem RFP64:$src, addr:$dst)]>; + def FP80_TO_INT16_IN_MEM : I<0, Pseudo, + (outs), (ins i16mem:$dst, RFP80:$src), + "##FP80_TO_INT16_IN_MEM PSEUDO!", + [(X86fp_to_i16mem RFP80:$src, addr:$dst)]>; + def FP80_TO_INT32_IN_MEM : I<0, Pseudo, + (outs), (ins i32mem:$dst, RFP80:$src), + "##FP80_TO_INT32_IN_MEM PSEUDO!", + [(X86fp_to_i32mem RFP80:$src, addr:$dst)]>; + def FP80_TO_INT64_IN_MEM : I<0, Pseudo, + (outs), (ins i64mem:$dst, RFP80:$src), + "##FP80_TO_INT64_IN_MEM PSEUDO!", + [(X86fp_to_i64mem RFP80:$src, addr:$dst)]>; } let isTerminator = 1 in let Defs = [FP0, FP1, FP2, FP3, FP4, FP5, FP6] in - def FP_REG_KILL : I<0, Pseudo, (outs), (ins), "#FP_REG_KILL", []>; - -// All FP Stack operations are represented with three instructions here. The -// first two instructions, generated by the instruction selector, uses "RFP32" -// or "RFP64" registers: traditional register files to reference 32-bit or -// 64-bit floating point values. These sizes apply to the values, not the -// registers, which are always 64 bits; RFP32 and RFP64 can be copied to -// each other without losing information. These instructions are all psuedo -// instructions and use the "_Fp" suffix. -// In some cases there are additional variants with a mixture of 32-bit and -// 64-bit registers. + def FP_REG_KILL : I<0, Pseudo, (outs), (ins), "##FP_REG_KILL", []>; + +// All FP Stack operations are represented with four instructions here. The +// first three instructions, generated by the instruction selector, use "RFP32" +// "RFP64" or "RFP80" registers: traditional register files to reference 32-bit, +// 64-bit or 80-bit floating point values. These sizes apply to the values, +// not the registers, which are always 80 bits; RFP32, RFP64 and RFP80 can be +// copied to each other without losing information. These instructions are all +// pseudo instructions and use the "_Fp" suffix. +// In some cases there are additional variants with a mixture of different +// register sizes. // The second instruction is defined with FPI, which is the actual instruction // emitted by the assembler. These use "RST" registers, although frequently -// the actual register(s) used are implicit. These are always 64-bits. +// the actual register(s) used are implicit. These are always 80 bits. // The FP stackifier pass converts one to the other after register allocation // occurs. // @@ -123,49 +131,63 @@ let isTerminator = 1 in // a pattern) and the FPI instruction should have emission info (e.g. opcode // encoding and asm printing info). -// Random Pseudo Instructions. -def FpGETRESULT32 : FpI_<(outs RFP32:$dst), (ins), SpecialFP, - [(set RFP32:$dst, X86fpget)]>; // FPR = ST(0) - -def FpGETRESULT64 : FpI_<(outs RFP64:$dst), (ins), SpecialFP, - [(set RFP64:$dst, X86fpget)]>; // FPR = ST(0) - -def FpGETRESULT80 : FpI_<(outs RFP80:$dst), (ins), SpecialFP, - [(set RFP80:$dst, X86fpget)]>; // FPR = ST(0) - -def FpSETRESULT32 : FpI_<(outs), (ins RFP32:$src), SpecialFP, - [(X86fpset RFP32:$src)]>, Imp<[], [ST0]>;// ST(0) = FPR - -def FpSETRESULT64 : FpI_<(outs), (ins RFP64:$src), SpecialFP, - [(X86fpset RFP64:$src)]>, Imp<[], [ST0]>;// ST(0) = FPR +// Pseudo Instructions for FP stack return values. +def FpGET_ST0_32 : FpI_<(outs RFP32:$dst), (ins), SpecialFP, []>; // FPR = ST(0) +def FpGET_ST0_64 : FpI_<(outs RFP64:$dst), (ins), SpecialFP, []>; // FPR = ST(0) +def FpGET_ST0_80 : FpI_<(outs RFP80:$dst), (ins), SpecialFP, []>; // FPR = ST(0) + +// FpGET_ST1* should only be issued *after* an FpGET_ST0* has been issued when +// there are two values live out on the stack from a call or inlineasm. This +// magic is handled by the stackifier. It is not valid to emit FpGET_ST1* and +// then FpGET_ST0*. In addition, it is invalid for any FP-using operations to +// occur between them. +def FpGET_ST1_32 : FpI_<(outs RFP32:$dst), (ins), SpecialFP, []>; // FPR = ST(1) +def FpGET_ST1_64 : FpI_<(outs RFP64:$dst), (ins), SpecialFP, []>; // FPR = ST(1) +def FpGET_ST1_80 : FpI_<(outs RFP80:$dst), (ins), SpecialFP, []>; // FPR = ST(1) + +let Defs = [ST0] in { +def FpSET_ST0_32 : FpI_<(outs), (ins RFP32:$src), SpecialFP, []>; // ST(0) = FPR +def FpSET_ST0_64 : FpI_<(outs), (ins RFP64:$src), SpecialFP, []>; // ST(0) = FPR +def FpSET_ST0_80 : FpI_<(outs), (ins RFP80:$src), SpecialFP, []>; // ST(0) = FPR +} -def FpSETRESULT80 : FpI_<(outs), (ins RFP80:$src), SpecialFP, - [(X86fpset RFP80:$src)]>, Imp<[], [ST0]>;// ST(0) = FPR +let Defs = [ST1] in { +def FpSET_ST1_32 : FpI_<(outs), (ins RFP32:$src), SpecialFP, []>; // ST(1) = FPR +def FpSET_ST1_64 : FpI_<(outs), (ins RFP64:$src), SpecialFP, []>; // ST(1) = FPR +def FpSET_ST1_80 : FpI_<(outs), (ins RFP80:$src), SpecialFP, []>; // ST(1) = FPR +} -// FpI - Floating Point Psuedo Instruction template. Predicated on FPStack. -class FpI pattern> : - FpI_, Requires<[FPStack]>; +// FpIf32, FpIf64 - Floating Point Psuedo Instruction template. +// f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1. +// f64 instructions can use SSE2 and are predicated on FPStackf64 == !SSE2. +// f80 instructions cannot use SSE and use neither of these. +class FpIf32 pattern> : + FpI_, Requires<[FPStackf32]>; +class FpIf64 pattern> : + FpI_, Requires<[FPStackf64]>; // Register copies. Just copies, the shortening ones do not truncate. -def MOV_Fp3232 : FpI<(outs RFP32:$dst), (ins RFP32:$src), SpecialFP, []>; -def MOV_Fp3264 : FpI<(outs RFP64:$dst), (ins RFP32:$src), SpecialFP, []>; -def MOV_Fp6432 : FpI<(outs RFP32:$dst), (ins RFP64:$src), SpecialFP, []>; -def MOV_Fp6464 : FpI<(outs RFP64:$dst), (ins RFP64:$src), SpecialFP, []>; -def MOV_Fp8032 : FpI<(outs RFP32:$dst), (ins RFP80:$src), SpecialFP, []>; -def MOV_Fp3280 : FpI<(outs RFP80:$dst), (ins RFP32:$src), SpecialFP, []>; -def MOV_Fp8064 : FpI<(outs RFP64:$dst), (ins RFP80:$src), SpecialFP, []>; -def MOV_Fp6480 : FpI<(outs RFP80:$dst), (ins RFP64:$src), SpecialFP, []>; -def MOV_Fp8080 : FpI<(outs RFP80:$dst), (ins RFP80:$src), SpecialFP, []>; +let neverHasSideEffects = 1 in { + def MOV_Fp3232 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), SpecialFP, []>; + def MOV_Fp3264 : FpIf32<(outs RFP64:$dst), (ins RFP32:$src), SpecialFP, []>; + def MOV_Fp6432 : FpIf32<(outs RFP32:$dst), (ins RFP64:$src), SpecialFP, []>; + def MOV_Fp6464 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), SpecialFP, []>; + def MOV_Fp8032 : FpIf32<(outs RFP32:$dst), (ins RFP80:$src), SpecialFP, []>; + def MOV_Fp3280 : FpIf32<(outs RFP80:$dst), (ins RFP32:$src), SpecialFP, []>; + def MOV_Fp8064 : FpIf64<(outs RFP64:$dst), (ins RFP80:$src), SpecialFP, []>; + def MOV_Fp6480 : FpIf64<(outs RFP80:$dst), (ins RFP64:$src), SpecialFP, []>; + def MOV_Fp8080 : FpI_ <(outs RFP80:$dst), (ins RFP80:$src), SpecialFP, []>; +} // Factoring for arithmetic. multiclass FPBinary_rr { // Register op register -> register // These are separated out because they have no reversed form. -def _Fp32 : FpI<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP, +def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP, [(set RFP32:$dst, (OpNode RFP32:$src1, RFP32:$src2))]>; -def _Fp64 : FpI<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP, +def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP, [(set RFP64:$dst, (OpNode RFP64:$src1, RFP64:$src2))]>; -def _Fp80 : FpI<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP, +def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP, [(set RFP80:$dst, (OpNode RFP80:$src1, RFP80:$src2))]>; } // The FopST0 series are not included here because of the irregularities @@ -173,48 +195,48 @@ def _Fp80 : FpI<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP, // These instructions cannot address 80-bit memory. multiclass FPBinary { // ST(0) = ST(0) + [mem] -def _Fp32m : FpI<(outs RFP32:$dst), (ins RFP32:$src1, f32mem:$src2), OneArgFPRW, +def _Fp32m : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, f32mem:$src2), OneArgFPRW, [(set RFP32:$dst, (OpNode RFP32:$src1, (loadf32 addr:$src2)))]>; -def _Fp64m : FpI<(outs RFP64:$dst), (ins RFP64:$src1, f64mem:$src2), OneArgFPRW, +def _Fp64m : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, f64mem:$src2), OneArgFPRW, [(set RFP64:$dst, (OpNode RFP64:$src1, (loadf64 addr:$src2)))]>; -def _Fp64m32: FpI<(outs RFP64:$dst), (ins RFP64:$src1, f32mem:$src2), OneArgFPRW, +def _Fp64m32: FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, f32mem:$src2), OneArgFPRW, [(set RFP64:$dst, - (OpNode RFP64:$src1, (extloadf64f32 addr:$src2)))]>; -def _Fp80m32: FpI<(outs RFP80:$dst), (ins RFP80:$src1, f32mem:$src2), OneArgFPRW, + (OpNode RFP64:$src1, (f64 (extloadf32 addr:$src2))))]>; +def _Fp80m32: FpI_<(outs RFP80:$dst), (ins RFP80:$src1, f32mem:$src2), OneArgFPRW, [(set RFP80:$dst, - (OpNode RFP80:$src1, (extloadf80f32 addr:$src2)))]>; -def _Fp80m64: FpI<(outs RFP80:$dst), (ins RFP80:$src1, f64mem:$src2), OneArgFPRW, + (OpNode RFP80:$src1, (f80 (extloadf32 addr:$src2))))]>; +def _Fp80m64: FpI_<(outs RFP80:$dst), (ins RFP80:$src1, f64mem:$src2), OneArgFPRW, [(set RFP80:$dst, - (OpNode RFP80:$src1, (extloadf80f64 addr:$src2)))]>; + (OpNode RFP80:$src1, (f80 (extloadf64 addr:$src2))))]>; def _F32m : FPI<0xD8, fp, (outs), (ins f32mem:$src), - !strconcat("f", !strconcat(asmstring, "{s}\t$src"))>; + !strconcat("f", !strconcat(asmstring, "{s}\t$src"))> { let mayLoad = 1; } def _F64m : FPI<0xDC, fp, (outs), (ins f64mem:$src), - !strconcat("f", !strconcat(asmstring, "{l}\t$src"))>; + !strconcat("f", !strconcat(asmstring, "{l}\t$src"))> { let mayLoad = 1; } // ST(0) = ST(0) + [memint] -def _FpI16m32 : FpI<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2), OneArgFPRW, +def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2), OneArgFPRW, [(set RFP32:$dst, (OpNode RFP32:$src1, (X86fild addr:$src2, i16)))]>; -def _FpI32m32 : FpI<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2), OneArgFPRW, +def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2), OneArgFPRW, [(set RFP32:$dst, (OpNode RFP32:$src1, (X86fild addr:$src2, i32)))]>; -def _FpI16m64 : FpI<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2), OneArgFPRW, +def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2), OneArgFPRW, [(set RFP64:$dst, (OpNode RFP64:$src1, (X86fild addr:$src2, i16)))]>; -def _FpI32m64 : FpI<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2), OneArgFPRW, +def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2), OneArgFPRW, [(set RFP64:$dst, (OpNode RFP64:$src1, (X86fild addr:$src2, i32)))]>; -def _FpI16m80 : FpI<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2), OneArgFPRW, +def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2), OneArgFPRW, [(set RFP80:$dst, (OpNode RFP80:$src1, (X86fild addr:$src2, i16)))]>; -def _FpI32m80 : FpI<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2), OneArgFPRW, +def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2), OneArgFPRW, [(set RFP80:$dst, (OpNode RFP80:$src1, (X86fild addr:$src2, i32)))]>; def _FI16m : FPI<0xDE, fp, (outs), (ins i16mem:$src), - !strconcat("fi", !strconcat(asmstring, "{s}\t$src"))>; + !strconcat("fi", !strconcat(asmstring, "{s}\t$src"))> { let mayLoad = 1; } def _FI32m : FPI<0xDA, fp, (outs), (ins i32mem:$src), - !strconcat("fi", !strconcat(asmstring, "{l}\t$src"))>; + !strconcat("fi", !strconcat(asmstring, "{l}\t$src"))> { let mayLoad = 1; } } defm ADD : FPBinary_rr; @@ -259,11 +281,11 @@ def DIVR_FPrST0 : FPrST0PInst<0xF0, "fdiv{|r}p\t$op">; // Unary operations. multiclass FPUnary opcode, string asmstring> { -def _Fp32 : FpI<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW, +def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW, [(set RFP32:$dst, (OpNode RFP32:$src))]>; -def _Fp64 : FpI<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW, +def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW, [(set RFP64:$dst, (OpNode RFP64:$src))]>; -def _Fp80 : FpI<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW, +def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW, [(set RFP80:$dst, (OpNode RFP80:$src))]>; def _F : FPI, D9; } @@ -274,27 +296,54 @@ defm SQRT: FPUnary; defm SIN : FPUnary; defm COS : FPUnary; -def TST_Fp32 : FpI<(outs), (ins RFP32:$src), OneArgFP, - []>; -def TST_Fp64 : FpI<(outs), (ins RFP64:$src), OneArgFP, - []>; -def TST_Fp80 : FpI<(outs), (ins RFP80:$src), OneArgFP, - []>; +let neverHasSideEffects = 1 in { +def TST_Fp32 : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>; +def TST_Fp64 : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>; +def TST_Fp80 : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>; +} def TST_F : FPI<0xE4, RawFrm, (outs), (ins), "ftst">, D9; +// Versions of FP instructions that take a single memory operand. Added for the +// disassembler; remove as they are included with patterns elsewhere. +def FCOM32m : FPI<0xD8, MRM2m, (outs), (ins f32mem:$src), "fcom\t$src">; +def FCOMP32m : FPI<0xD8, MRM3m, (outs), (ins f32mem:$src), "fcomp\t$src">; + +def FLDENVm : FPI<0xD9, MRM4m, (outs), (ins f32mem:$src), "fldenv\t$src">; +def FSTENVm : FPI<0xD9, MRM6m, (outs f32mem:$dst), (ins), "fstenv\t$dst">; + +def FICOM32m : FPI<0xDA, MRM2m, (outs), (ins i32mem:$src), "ficom{l}\t$src">; +def FICOMP32m: FPI<0xDA, MRM3m, (outs), (ins i32mem:$src), "ficomp{l}\t$src">; + +def FCOM64m : FPI<0xDC, MRM2m, (outs), (ins f64mem:$src), "fcom\t$src">; +def FCOMP64m : FPI<0xDC, MRM3m, (outs), (ins f64mem:$src), "fcomp\t$src">; + +def FISTTP32m: FPI<0xDD, MRM1m, (outs i32mem:$dst), (ins), "fisttp{l}\t$dst">; +def FRSTORm : FPI<0xDD, MRM4m, (outs f32mem:$dst), (ins), "frstor\t$dst">; +def FSAVEm : FPI<0xDD, MRM6m, (outs f32mem:$dst), (ins), "fsave\t$dst">; +def FSTSWm : FPI<0xDD, MRM7m, (outs f32mem:$dst), (ins), "fstsw\t$dst">; + +def FICOM16m : FPI<0xDE, MRM2m, (outs), (ins i16mem:$src), "ficom{w}\t$src">; +def FICOMP16m: FPI<0xDE, MRM3m, (outs), (ins i16mem:$src), "ficomp{w}\t$src">; + +def FBLDm : FPI<0xDF, MRM4m, (outs), (ins f32mem:$src), "fbld\t$src">; +def FBSTPm : FPI<0xDF, MRM6m, (outs f32mem:$dst), (ins), "fbstp\t$dst">; + // Floating point cmovs. multiclass FPCMov { - def _Fp32 : FpI<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), CondMovFP, + def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), + CondMovFP, [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2, - cc))]>; - def _Fp64 : FpI<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), CondMovFP, + cc, EFLAGS))]>; + def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), + CondMovFP, [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2, - cc))]>; - def _Fp80 : FpI<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), CondMovFP, + cc, EFLAGS))]>; + def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), + CondMovFP, [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2, - cc))]>; + cc, EFLAGS))]>; } -let isTwoAddress = 1 in { +let Uses = [EFLAGS], isTwoAddress = 1 in { defm CMOVB : FPCMov; defm CMOVBE : FPCMov; defm CMOVE : FPCMov; @@ -324,66 +373,82 @@ def CMOVNP_F : FPI<0xD8, AddRegFrm, (outs RST:$op), (ins), "fcmovnu\t{$op, %st(0)|%ST(0), $op}">, DB; // Floating point loads & stores. -def LD_Fp32m : FpI<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP, +let canFoldAsLoad = 1 in { +def LD_Fp32m : FpIf32<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP, [(set RFP32:$dst, (loadf32 addr:$src))]>; -def LD_Fp64m : FpI<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP, +let isReMaterializable = 1, mayHaveSideEffects = 1 in + def LD_Fp64m : FpIf64<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP, [(set RFP64:$dst, (loadf64 addr:$src))]>; -def LD_Fp80m : FpI<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP, +def LD_Fp80m : FpI_<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP, [(set RFP80:$dst, (loadf80 addr:$src))]>; -def ILD_Fp16m32: FpI<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP, +} +def LD_Fp32m64 : FpIf64<(outs RFP64:$dst), (ins f32mem:$src), ZeroArgFP, + [(set RFP64:$dst, (f64 (extloadf32 addr:$src)))]>; +def LD_Fp64m80 : FpI_<(outs RFP80:$dst), (ins f64mem:$src), ZeroArgFP, + [(set RFP80:$dst, (f80 (extloadf64 addr:$src)))]>; +def LD_Fp32m80 : FpI_<(outs RFP80:$dst), (ins f32mem:$src), ZeroArgFP, + [(set RFP80:$dst, (f80 (extloadf32 addr:$src)))]>; +def ILD_Fp16m32: FpIf32<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP, [(set RFP32:$dst, (X86fild addr:$src, i16))]>; -def ILD_Fp32m32: FpI<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP, +def ILD_Fp32m32: FpIf32<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP, [(set RFP32:$dst, (X86fild addr:$src, i32))]>; -def ILD_Fp64m32: FpI<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP, +def ILD_Fp64m32: FpIf32<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP, [(set RFP32:$dst, (X86fild addr:$src, i64))]>; -def ILD_Fp16m64: FpI<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP, +def ILD_Fp16m64: FpIf64<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP, [(set RFP64:$dst, (X86fild addr:$src, i16))]>; -def ILD_Fp32m64: FpI<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP, +def ILD_Fp32m64: FpIf64<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP, [(set RFP64:$dst, (X86fild addr:$src, i32))]>; -def ILD_Fp64m64: FpI<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP, +def ILD_Fp64m64: FpIf64<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP, [(set RFP64:$dst, (X86fild addr:$src, i64))]>; -def ILD_Fp16m80: FpI<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP, +def ILD_Fp16m80: FpI_<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP, [(set RFP80:$dst, (X86fild addr:$src, i16))]>; -def ILD_Fp32m80: FpI<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP, +def ILD_Fp32m80: FpI_<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP, [(set RFP80:$dst, (X86fild addr:$src, i32))]>; -def ILD_Fp64m80: FpI<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP, +def ILD_Fp64m80: FpI_<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP, [(set RFP80:$dst, (X86fild addr:$src, i64))]>; -def ST_Fp32m : FpI<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, +def ST_Fp32m : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, [(store RFP32:$src, addr:$op)]>; -def ST_Fp64m32 : FpI<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, +def ST_Fp64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, [(truncstoref32 RFP64:$src, addr:$op)]>; -def ST_Fp64m : FpI<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, +def ST_Fp64m : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, [(store RFP64:$src, addr:$op)]>; -def ST_Fp80m32 : FpI<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, +def ST_Fp80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, [(truncstoref32 RFP80:$src, addr:$op)]>; -def ST_Fp80m64 : FpI<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, +def ST_Fp80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, [(truncstoref64 RFP80:$src, addr:$op)]>; // FST does not support 80-bit memory target; FSTP must be used. -def ST_FpP32m : FpI<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>; -def ST_FpP64m32 : FpI<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>; -def ST_FpP64m : FpI<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>; -def ST_FpP80m32 : FpI<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>; -def ST_FpP80m64 : FpI<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>; -def ST_FpP80m : FpI<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP, +let mayStore = 1, neverHasSideEffects = 1 in { +def ST_FpP32m : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>; +def ST_FpP64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>; +def ST_FpP64m : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>; +def ST_FpP80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>; +def ST_FpP80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>; +} +def ST_FpP80m : FpI_<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP, [(store RFP80:$src, addr:$op)]>; -def IST_Fp16m32 : FpI<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>; -def IST_Fp32m32 : FpI<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, []>; -def IST_Fp64m32 : FpI<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, []>; -def IST_Fp16m64 : FpI<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>; -def IST_Fp32m64 : FpI<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, []>; -def IST_Fp64m64 : FpI<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, []>; -def IST_Fp16m80 : FpI<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>; -def IST_Fp32m80 : FpI<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, []>; -def IST_Fp64m80 : FpI<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, []>; +let mayStore = 1, neverHasSideEffects = 1 in { +def IST_Fp16m32 : FpIf32<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>; +def IST_Fp32m32 : FpIf32<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, []>; +def IST_Fp64m32 : FpIf32<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, []>; +def IST_Fp16m64 : FpIf64<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>; +def IST_Fp32m64 : FpIf64<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, []>; +def IST_Fp64m64 : FpIf64<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, []>; +def IST_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>; +def IST_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, []>; +def IST_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, []>; +} +let mayLoad = 1 in { def LD_F32m : FPI<0xD9, MRM0m, (outs), (ins f32mem:$src), "fld{s}\t$src">; def LD_F64m : FPI<0xDD, MRM0m, (outs), (ins f64mem:$src), "fld{l}\t$src">; def LD_F80m : FPI<0xDB, MRM5m, (outs), (ins f80mem:$src), "fld{t}\t$src">; def ILD_F16m : FPI<0xDF, MRM0m, (outs), (ins i16mem:$src), "fild{s}\t$src">; def ILD_F32m : FPI<0xDB, MRM0m, (outs), (ins i32mem:$src), "fild{l}\t$src">; def ILD_F64m : FPI<0xDF, MRM5m, (outs), (ins i64mem:$src), "fild{ll}\t$src">; +} +let mayStore = 1 in { def ST_F32m : FPI<0xD9, MRM2m, (outs), (ins f32mem:$dst), "fst{s}\t$dst">; def ST_F64m : FPI<0xDD, MRM2m, (outs), (ins f64mem:$dst), "fst{l}\t$dst">; def ST_FP32m : FPI<0xD9, MRM3m, (outs), (ins f32mem:$dst), "fstp{s}\t$dst">; @@ -394,6 +459,7 @@ def IST_F32m : FPI<0xDB, MRM2m, (outs), (ins i32mem:$dst), "fist{l}\t$dst">; def IST_FP16m : FPI<0xDF, MRM3m, (outs), (ins i16mem:$dst), "fistp{s}\t$dst">; def IST_FP32m : FPI<0xDB, MRM3m, (outs), (ins i32mem:$dst), "fistp{l}\t$dst">; def IST_FP64m : FPI<0xDF, MRM7m, (outs), (ins i64mem:$dst), "fistp{ll}\t$dst">; +} // FISTTP requires SSE3 even though it's a FPStack op. def ISTT_Fp16m32 : FpI_<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, @@ -414,10 +480,21 @@ def ISTT_Fp32m64 : FpI_<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, def ISTT_Fp64m64 : FpI_<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, [(X86fp_to_i64mem RFP64:$src, addr:$op)]>, Requires<[HasSSE3]>; +def ISTT_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, + [(X86fp_to_i16mem RFP80:$src, addr:$op)]>, + Requires<[HasSSE3]>; +def ISTT_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, + [(X86fp_to_i32mem RFP80:$src, addr:$op)]>, + Requires<[HasSSE3]>; +def ISTT_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, + [(X86fp_to_i64mem RFP80:$src, addr:$op)]>, + Requires<[HasSSE3]>; +let mayStore = 1 in { def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst">; def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst">; def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst), "fisttp{ll}\t$dst">; +} // FP Stack manipulation instructions. def LD_Frr : FPI<0xC0, AddRegFrm, (outs), (ins RST:$op), "fld\t$op">, D9; @@ -427,17 +504,17 @@ def XCH_F : FPI<0xC8, AddRegFrm, (outs), (ins RST:$op), "fxch\t$op">, D9; // Floating point constant loads. let isReMaterializable = 1 in { -def LD_Fp032 : FpI<(outs RFP32:$dst), (ins), ZeroArgFP, +def LD_Fp032 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP, [(set RFP32:$dst, fpimm0)]>; -def LD_Fp132 : FpI<(outs RFP32:$dst), (ins), ZeroArgFP, +def LD_Fp132 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP, [(set RFP32:$dst, fpimm1)]>; -def LD_Fp064 : FpI<(outs RFP64:$dst), (ins), ZeroArgFP, +def LD_Fp064 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP, [(set RFP64:$dst, fpimm0)]>; -def LD_Fp164 : FpI<(outs RFP64:$dst), (ins), ZeroArgFP, +def LD_Fp164 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP, [(set RFP64:$dst, fpimm1)]>; -def LD_Fp080 : FpI<(outs RFP80:$dst), (ins), ZeroArgFP, +def LD_Fp080 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP, [(set RFP80:$dst, fpimm0)]>; -def LD_Fp180 : FpI<(outs RFP80:$dst), (ins), ZeroArgFP, +def LD_Fp180 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP, [(set RFP80:$dst, fpimm1)]>; } @@ -446,42 +523,54 @@ def LD_F1 : FPI<0xE8, RawFrm, (outs), (ins), "fld1">, D9; // Floating point compares. -def UCOM_Fpr32 : FpI<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, - []>; // FPSW = cmp ST(0) with ST(i) -def UCOM_FpIr32: FpI<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, - [(X86cmp RFP32:$lhs, RFP32:$rhs)]>; // CC = ST(0) cmp ST(i) -def UCOM_Fpr64 : FpI<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, - []>; // FPSW = cmp ST(0) with ST(i) -def UCOM_FpIr64: FpI<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, - [(X86cmp RFP64:$lhs, RFP64:$rhs)]>; // CC = ST(0) cmp ST(i) -def UCOM_Fpr80 : FpI<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, - []>; // FPSW = cmp ST(0) with ST(i) -def UCOM_FpIr80: FpI<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, - [(X86cmp RFP80:$lhs, RFP80:$rhs)]>; // CC = ST(0) cmp ST(i) +let Defs = [EFLAGS] in { +def UCOM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, + []>; // FPSW = cmp ST(0) with ST(i) +def UCOM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, + []>; // FPSW = cmp ST(0) with ST(i) +def UCOM_Fpr80 : FpI_ <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, + []>; // FPSW = cmp ST(0) with ST(i) + +def UCOM_FpIr32: FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, + [(X86cmp RFP32:$lhs, RFP32:$rhs), + (implicit EFLAGS)]>; // CC = ST(0) cmp ST(i) +def UCOM_FpIr64: FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, + [(X86cmp RFP64:$lhs, RFP64:$rhs), + (implicit EFLAGS)]>; // CC = ST(0) cmp ST(i) +def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, + [(X86cmp RFP80:$lhs, RFP80:$rhs), + (implicit EFLAGS)]>; // CC = ST(0) cmp ST(i) +} +let Defs = [EFLAGS], Uses = [ST0] in { def UCOM_Fr : FPI<0xE0, AddRegFrm, // FPSW = cmp ST(0) with ST(i) (outs), (ins RST:$reg), - "fucom\t$reg">, DD, Imp<[ST0],[]>; + "fucom\t$reg">, DD; def UCOM_FPr : FPI<0xE8, AddRegFrm, // FPSW = cmp ST(0) with ST(i), pop (outs), (ins RST:$reg), - "fucomp\t$reg">, DD, Imp<[ST0],[]>; + "fucomp\t$reg">, DD; def UCOM_FPPr : FPI<0xE9, RawFrm, // cmp ST(0) with ST(1), pop, pop (outs), (ins), - "fucompp">, DA, Imp<[ST0],[]>; + "fucompp">, DA; def UCOM_FIr : FPI<0xE8, AddRegFrm, // CC = cmp ST(0) with ST(i) (outs), (ins RST:$reg), - "fucomi\t{$reg, %st(0)|%ST(0), $reg}">, DB, Imp<[ST0],[]>; + "fucomi\t{$reg, %st(0)|%ST(0), $reg}">, DB; def UCOM_FIPr : FPI<0xE8, AddRegFrm, // CC = cmp ST(0) with ST(i), pop (outs), (ins RST:$reg), - "fucomip\t{$reg, %st(0)|%ST(0), $reg}">, DF, Imp<[ST0],[]>; + "fucomip\t{$reg, %st(0)|%ST(0), $reg}">, DF; +} // Floating point flag ops. +let Defs = [AX] in def FNSTSW8r : I<0xE0, RawFrm, // AX = fp flags - (outs), (ins), "fnstsw", []>, DF, Imp<[],[AX]>; + (outs), (ins), "fnstsw", []>, DF; def FNSTCW16m : I<0xD9, MRM7m, // [mem16] = X87 control world - (outs), (ins i16mem:$dst), "fnstcw\t$dst", []>; + (outs), (ins i16mem:$dst), "fnstcw\t$dst", + [(X86fp_cwd_get16 addr:$dst)]>; + +let mayLoad = 1 in def FLDCW16m : I<0xD9, MRM5m, // X87 control world = [mem16] (outs), (ins i16mem:$dst), "fldcw\t$dst", []>; @@ -489,34 +578,45 @@ def FLDCW16m : I<0xD9, MRM5m, // X87 control world = [mem16] // Non-Instruction Patterns //===----------------------------------------------------------------------===// -// Required for RET of f32 / f64 values. +// Required for RET of f32 / f64 / f80 values. def : Pat<(X86fld addr:$src, f32), (LD_Fp32m addr:$src)>; def : Pat<(X86fld addr:$src, f64), (LD_Fp64m addr:$src)>; def : Pat<(X86fld addr:$src, f80), (LD_Fp80m addr:$src)>; -// Required for CALL which return f32 / f64 values. +// Required for CALL which return f32 / f64 / f80 values. def : Pat<(X86fst RFP32:$src, addr:$op, f32), (ST_Fp32m addr:$op, RFP32:$src)>; def : Pat<(X86fst RFP64:$src, addr:$op, f32), (ST_Fp64m32 addr:$op, RFP64:$src)>; def : Pat<(X86fst RFP64:$src, addr:$op, f64), (ST_Fp64m addr:$op, RFP64:$src)>; +def : Pat<(X86fst RFP80:$src, addr:$op, f32), (ST_Fp80m32 addr:$op, RFP80:$src)>; +def : Pat<(X86fst RFP80:$src, addr:$op, f64), (ST_Fp80m64 addr:$op, RFP80:$src)>; +def : Pat<(X86fst RFP80:$src, addr:$op, f80), (ST_FpP80m addr:$op, RFP80:$src)>; // Floating point constant -0.0 and -1.0 -def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStack]>; -def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStack]>; -def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStack]>; -def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStack]>; -def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>, Requires<[FPStack]>; -def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>, Requires<[FPStack]>; +def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStackf32]>; +def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStackf32]>; +def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStackf64]>; +def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStackf64]>; +def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>; +def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>; // Used to conv. i64 to f64 since there isn't a SSE version. def : Pat<(X86fildflag addr:$src, i64), (ILD_Fp64m64 addr:$src)>; -def : Pat<(extloadf80f32 addr:$src), - (MOV_Fp3280 (LD_Fp32m addr:$src))>, Requires<[FPStack]>; -def : Pat<(extloadf80f64 addr:$src), - (MOV_Fp6480 (LD_Fp64m addr:$src))>, Requires<[FPStack]>; -def : Pat<(extloadf64f32 addr:$src), - (MOV_Fp3264 (LD_Fp32m addr:$src))>, Requires<[FPStack]>; - -def : Pat<(f64 (fextend RFP32:$src)), (MOV_Fp3264 RFP32:$src)>, Requires<[FPStack]>; -def : Pat<(f80 (fextend RFP32:$src)), (MOV_Fp3280 RFP32:$src)>, Requires<[FPStack]>; -def : Pat<(f80 (fextend RFP64:$src)), (MOV_Fp6480 RFP64:$src)>, Requires<[FPStack]>; +// FP extensions map onto simple pseudo-value conversions if they are to/from +// the FP stack. +def : Pat<(f64 (fextend RFP32:$src)), (MOV_Fp3264 RFP32:$src)>, + Requires<[FPStackf32]>; +def : Pat<(f80 (fextend RFP32:$src)), (MOV_Fp3280 RFP32:$src)>, + Requires<[FPStackf32]>; +def : Pat<(f80 (fextend RFP64:$src)), (MOV_Fp6480 RFP64:$src)>, + Requires<[FPStackf64]>; + +// FP truncations map onto simple pseudo-value conversions if they are to/from +// the FP stack. We have validated that only value-preserving truncations make +// it through isel. +def : Pat<(f32 (fround RFP64:$src)), (MOV_Fp6432 RFP64:$src)>, + Requires<[FPStackf32]>; +def : Pat<(f32 (fround RFP80:$src)), (MOV_Fp8032 RFP80:$src)>, + Requires<[FPStackf32]>; +def : Pat<(f64 (fround RFP80:$src)), (MOV_Fp8064 RFP80:$src)>, + Requires<[FPStackf64]>;