X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FTarget%2FX86%2FX86InstrFPStack.td;h=737c74539c51c8cb93d6440c3b24f00fa997c111;hb=0488db9b99fcfca407e859ef5cccf40dea23de16;hp=11aeb072c775895d26df00a988cfcb20fd008803;hpb=afdc7fda65953c0444671dd3e3ce98f5097c1a20;p=oota-llvm.git diff --git a/lib/Target/X86/X86InstrFPStack.td b/lib/Target/X86/X86InstrFPStack.td index 11aeb072c77..737c74539c5 100644 --- a/lib/Target/X86/X86InstrFPStack.td +++ b/lib/Target/X86/X86InstrFPStack.td @@ -2,7 +2,7 @@ // // The LLVM Compiler Infrastructure // -// This file was developed by the Evan Cheng and is distributed under +// This file was developed by Evan Cheng and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// @@ -71,47 +71,59 @@ def fpimmneg1 : PatLeaf<(fpimm), [{ // Some 'special' instructions let usesCustomDAGSchedInserter = 1 in { // Expanded by the scheduler. def FP32_TO_INT16_IN_MEM : I<0, Pseudo, - (ops i16mem:$dst, RFP32:$src), + (outs), (ins i16mem:$dst, RFP32:$src), "#FP32_TO_INT16_IN_MEM PSEUDO!", [(X86fp_to_i16mem RFP32:$src, addr:$dst)]>; def FP32_TO_INT32_IN_MEM : I<0, Pseudo, - (ops i32mem:$dst, RFP32:$src), + (outs), (ins i32mem:$dst, RFP32:$src), "#FP32_TO_INT32_IN_MEM PSEUDO!", [(X86fp_to_i32mem RFP32:$src, addr:$dst)]>; def FP32_TO_INT64_IN_MEM : I<0, Pseudo, - (ops i64mem:$dst, RFP32:$src), + (outs), (ins i64mem:$dst, RFP32:$src), "#FP32_TO_INT64_IN_MEM PSEUDO!", [(X86fp_to_i64mem RFP32:$src, addr:$dst)]>; def FP64_TO_INT16_IN_MEM : I<0, Pseudo, - (ops i16mem:$dst, RFP64:$src), + (outs), (ins i16mem:$dst, RFP64:$src), "#FP64_TO_INT16_IN_MEM PSEUDO!", [(X86fp_to_i16mem RFP64:$src, addr:$dst)]>; def FP64_TO_INT32_IN_MEM : I<0, Pseudo, - (ops i32mem:$dst, RFP64:$src), + (outs), (ins i32mem:$dst, RFP64:$src), "#FP64_TO_INT32_IN_MEM PSEUDO!", [(X86fp_to_i32mem RFP64:$src, addr:$dst)]>; def FP64_TO_INT64_IN_MEM : I<0, Pseudo, - (ops i64mem:$dst, RFP64:$src), + (outs), (ins i64mem:$dst, RFP64:$src), "#FP64_TO_INT64_IN_MEM PSEUDO!", [(X86fp_to_i64mem RFP64:$src, addr:$dst)]>; + def FP80_TO_INT16_IN_MEM : I<0, Pseudo, + (outs), (ins i16mem:$dst, RFP80:$src), + "#FP80_TO_INT16_IN_MEM PSEUDO!", + [(X86fp_to_i16mem RFP80:$src, addr:$dst)]>; + def FP80_TO_INT32_IN_MEM : I<0, Pseudo, + (outs), (ins i32mem:$dst, RFP80:$src), + "#FP80_TO_INT32_IN_MEM PSEUDO!", + [(X86fp_to_i32mem RFP80:$src, addr:$dst)]>; + def FP80_TO_INT64_IN_MEM : I<0, Pseudo, + (outs), (ins i64mem:$dst, RFP80:$src), + "#FP80_TO_INT64_IN_MEM PSEUDO!", + [(X86fp_to_i64mem RFP80:$src, addr:$dst)]>; } let isTerminator = 1 in let Defs = [FP0, FP1, FP2, FP3, FP4, FP5, FP6] in - def FP_REG_KILL : I<0, Pseudo, (ops), "#FP_REG_KILL", []>; - -// All FP Stack operations are represented with three instructions here. The -// first two instructions, generated by the instruction selector, uses "RFP32" -// or "RFP64" registers: traditional register files to reference 32-bit or -// 64-bit floating point values. These sizes apply to the values, not the -// registers, which are always 64 bits; RFP32 and RFP64 can be copied to -// each other without losing information. These instructions are all psuedo -// instructions and use the "_Fp" suffix. -// In some cases there are additional variants with a mixture of 32-bit and -// 64-bit registers. + def FP_REG_KILL : I<0, Pseudo, (outs), (ins), "#FP_REG_KILL", []>; + +// All FP Stack operations are represented with four instructions here. The +// first three instructions, generated by the instruction selector, use "RFP32" +// "RFP64" or "RFP80" registers: traditional register files to reference 32-bit, +// 64-bit or 80-bit floating point values. These sizes apply to the values, +// not the registers, which are always 80 bits; RFP32, RFP64 and RFP80 can be +// copied to each other without losing information. These instructions are all +// pseudo instructions and use the "_Fp" suffix. +// In some cases there are additional variants with a mixture of different +// register sizes. // The second instruction is defined with FPI, which is the actual instruction // emitted by the assembler. These use "RST" registers, although frequently -// the actual register(s) used are implicit. These are always 64-bits. +// the actual register(s) used are implicit. These are always 80 bits. // The FP stackifier pass converts one to the other after register allocation // occurs. // @@ -119,83 +131,105 @@ let isTerminator = 1 in // a pattern) and the FPI instruction should have emission info (e.g. opcode // encoding and asm printing info). -// FPI - Floating Point Instruction template. -class FPI o, Format F, dag ops, string asm> : I {} - -// FpI_ - Floating Point Psuedo Instruction template. Not Predicated. -class FpI_ pattern> - : X86Inst<0, Pseudo, NoImm, ops, ""> { - let FPForm = fp; let FPFormBits = FPForm.Value; - let Pattern = pattern; -} - -// Random Pseudo Instructions. -def FpGETRESULT32 : FpI_<(ops RFP32:$dst), SpecialFP, +// Pseudo Instructions for FP stack return values. +def FpGETRESULT32 : FpI_<(outs RFP32:$dst), (ins), SpecialFP, [(set RFP32:$dst, X86fpget)]>; // FPR = ST(0) -def FpGETRESULT64 : FpI_<(ops RFP64:$dst), SpecialFP, +def FpGETRESULT64 : FpI_<(outs RFP64:$dst), (ins), SpecialFP, [(set RFP64:$dst, X86fpget)]>; // FPR = ST(0) -let noResults = 1 in { - def FpSETRESULT32 : FpI_<(ops RFP32:$src), SpecialFP, - [(X86fpset RFP32:$src)]>, Imp<[], [ST0]>;// ST(0) = FPR +def FpGETRESULT80 : FpI_<(outs RFP80:$dst), (ins), SpecialFP, + [(set RFP80:$dst, X86fpget)]>; // FPR = ST(0) + +let Defs = [ST0] in { +def FpSETRESULT32 : FpI_<(outs), (ins RFP32:$src), SpecialFP, + [(X86fpset RFP32:$src)]>;// ST(0) = FPR + +def FpSETRESULT64 : FpI_<(outs), (ins RFP64:$src), SpecialFP, + [(X86fpset RFP64:$src)]>;// ST(0) = FPR - def FpSETRESULT64 : FpI_<(ops RFP64:$src), SpecialFP, - [(X86fpset RFP64:$src)]>, Imp<[], [ST0]>;// ST(0) = FPR +def FpSETRESULT80 : FpI_<(outs), (ins RFP80:$src), SpecialFP, + [(X86fpset RFP80:$src)]>;// ST(0) = FPR } -// FpI - Floating Point Psuedo Instruction template. Predicated on FPStack. -class FpI pattern> : - FpI_, Requires<[FPStack]>; -// Register copies. Just copies, the 64->32 version does not truncate. -def MOV_Fp3232 : FpI<(ops RFP32:$dst, RFP32:$src), SpecialFP, []>; -def MOV_Fp3264 : FpI<(ops RFP64:$dst, RFP32:$src), SpecialFP, []>; -def MOV_Fp6432 : FpI<(ops RFP32:$dst, RFP64:$src), SpecialFP, []>; -def MOV_Fp6464 : FpI<(ops RFP64:$dst, RFP64:$src), SpecialFP, []>; +// FpIf32, FpIf64 - Floating Point Psuedo Instruction template. +// f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1. +// f64 instructions can use SSE2 and are predicated on FPStackf64 == !SSE2. +// f80 instructions cannot use SSE and use neither of these. +class FpIf32 pattern> : + FpI_, Requires<[FPStackf32]>; +class FpIf64 pattern> : + FpI_, Requires<[FPStackf64]>; + +// Register copies. Just copies, the shortening ones do not truncate. +def MOV_Fp3232 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), SpecialFP, []>; +def MOV_Fp3264 : FpIf32<(outs RFP64:$dst), (ins RFP32:$src), SpecialFP, []>; +def MOV_Fp6432 : FpIf32<(outs RFP32:$dst), (ins RFP64:$src), SpecialFP, []>; +def MOV_Fp6464 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), SpecialFP, []>; +def MOV_Fp8032 : FpIf32<(outs RFP32:$dst), (ins RFP80:$src), SpecialFP, []>; +def MOV_Fp3280 : FpIf32<(outs RFP80:$dst), (ins RFP32:$src), SpecialFP, []>; +def MOV_Fp8064 : FpIf64<(outs RFP64:$dst), (ins RFP80:$src), SpecialFP, []>; +def MOV_Fp6480 : FpIf64<(outs RFP80:$dst), (ins RFP64:$src), SpecialFP, []>; +def MOV_Fp8080 : FpI_<(outs RFP80:$dst), (ins RFP80:$src), SpecialFP, []>; // Factoring for arithmetic. multiclass FPBinary_rr { // Register op register -> register // These are separated out because they have no reversed form. -def _Fp32 : FpI<(ops RFP32:$dst, RFP32:$src1, RFP32:$src2), TwoArgFP, +def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP, [(set RFP32:$dst, (OpNode RFP32:$src1, RFP32:$src2))]>; -def _Fp64 : FpI<(ops RFP64:$dst, RFP64:$src1, RFP64:$src2), TwoArgFP, +def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP, [(set RFP64:$dst, (OpNode RFP64:$src1, RFP64:$src2))]>; +def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP, + [(set RFP80:$dst, (OpNode RFP80:$src1, RFP80:$src2))]>; } // The FopST0 series are not included here because of the irregularities // in where the 'r' goes in assembly output. +// These instructions cannot address 80-bit memory. multiclass FPBinary { // ST(0) = ST(0) + [mem] -def _Fp32m : FpI<(ops RFP32:$dst, RFP32:$src1, f32mem:$src2), OneArgFPRW, +def _Fp32m : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, f32mem:$src2), OneArgFPRW, [(set RFP32:$dst, (OpNode RFP32:$src1, (loadf32 addr:$src2)))]>; -def _Fp64m : FpI<(ops RFP64:$dst, RFP64:$src1, f64mem:$src2), OneArgFPRW, +def _Fp64m : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, f64mem:$src2), OneArgFPRW, [(set RFP64:$dst, (OpNode RFP64:$src1, (loadf64 addr:$src2)))]>; -def _Fp64m32: FpI<(ops RFP64:$dst, RFP64:$src1, f32mem:$src2), OneArgFPRW, +def _Fp64m32: FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, f32mem:$src2), OneArgFPRW, [(set RFP64:$dst, - (OpNode RFP64:$src1, (extloadf32 addr:$src2)))]>; -def _F32m : FPI<0xD8, fp, (ops f32mem:$src), - !strconcat("f", !strconcat(asmstring, "{s} $src"))>; -def _F64m : FPI<0xDC, fp, (ops f64mem:$src), - !strconcat("f", !strconcat(asmstring, "{l} $src"))>; + (OpNode RFP64:$src1, (f64 (extloadf32 addr:$src2))))]>; +def _Fp80m32: FpI_<(outs RFP80:$dst), (ins RFP80:$src1, f32mem:$src2), OneArgFPRW, + [(set RFP80:$dst, + (OpNode RFP80:$src1, (f80 (extloadf32 addr:$src2))))]>; +def _Fp80m64: FpI_<(outs RFP80:$dst), (ins RFP80:$src1, f64mem:$src2), OneArgFPRW, + [(set RFP80:$dst, + (OpNode RFP80:$src1, (f80 (extloadf64 addr:$src2))))]>; +def _F32m : FPI<0xD8, fp, (outs), (ins f32mem:$src), + !strconcat("f", !strconcat(asmstring, "{s}\t$src"))>; +def _F64m : FPI<0xDC, fp, (outs), (ins f64mem:$src), + !strconcat("f", !strconcat(asmstring, "{l}\t$src"))>; // ST(0) = ST(0) + [memint] -def _FpI16m32 : FpI<(ops RFP32:$dst, RFP32:$src1, i16mem:$src2), OneArgFPRW, +def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2), OneArgFPRW, [(set RFP32:$dst, (OpNode RFP32:$src1, (X86fild addr:$src2, i16)))]>; -def _FpI32m32 : FpI<(ops RFP32:$dst, RFP32:$src1, i32mem:$src2), OneArgFPRW, +def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2), OneArgFPRW, [(set RFP32:$dst, (OpNode RFP32:$src1, (X86fild addr:$src2, i32)))]>; -def _FpI16m64 : FpI<(ops RFP64:$dst, RFP64:$src1, i16mem:$src2), OneArgFPRW, +def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2), OneArgFPRW, [(set RFP64:$dst, (OpNode RFP64:$src1, (X86fild addr:$src2, i16)))]>; -def _FpI32m64 : FpI<(ops RFP64:$dst, RFP64:$src1, i32mem:$src2), OneArgFPRW, +def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2), OneArgFPRW, [(set RFP64:$dst, (OpNode RFP64:$src1, (X86fild addr:$src2, i32)))]>; -def _FI16m : FPI<0xDE, fp, (ops i16mem:$src), - !strconcat("fi", !strconcat(asmstring, "{s} $src"))>; -def _FI32m : FPI<0xDA, fp, (ops i32mem:$src), - !strconcat("fi", !strconcat(asmstring, "{l} $src"))>; +def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2), OneArgFPRW, + [(set RFP80:$dst, (OpNode RFP80:$src1, + (X86fild addr:$src2, i16)))]>; +def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2), OneArgFPRW, + [(set RFP80:$dst, (OpNode RFP80:$src1, + (X86fild addr:$src2, i32)))]>; +def _FI16m : FPI<0xDE, fp, (outs), (ins i16mem:$src), + !strconcat("fi", !strconcat(asmstring, "{s}\t$src"))>; +def _FI32m : FPI<0xDA, fp, (outs), (ins i32mem:$src), + !strconcat("fi", !strconcat(asmstring, "{l}\t$src"))>; } defm ADD : FPBinary_rr; @@ -210,41 +244,43 @@ defm DIV : FPBinary; defm DIVR: FPBinary; class FPST0rInst o, string asm> - : FPI, D8; + : FPI, D8; class FPrST0Inst o, string asm> - : FPI, DC; + : FPI, DC; class FPrST0PInst o, string asm> - : FPI, DE; + : FPI, DE; // NOTE: GAS and apparently all other AT&T style assemblers have a broken notion // of some of the 'reverse' forms of the fsub and fdiv instructions. As such, // we have to put some 'r's in and take them out of weird places. -def ADD_FST0r : FPST0rInst <0xC0, "fadd $op">; -def ADD_FrST0 : FPrST0Inst <0xC0, "fadd {%st(0), $op|$op, %ST(0)}">; -def ADD_FPrST0 : FPrST0PInst<0xC0, "faddp $op">; -def SUBR_FST0r : FPST0rInst <0xE8, "fsubr $op">; -def SUB_FrST0 : FPrST0Inst <0xE8, "fsub{r} {%st(0), $op|$op, %ST(0)}">; -def SUB_FPrST0 : FPrST0PInst<0xE8, "fsub{r}p $op">; -def SUB_FST0r : FPST0rInst <0xE0, "fsub $op">; -def SUBR_FrST0 : FPrST0Inst <0xE0, "fsub{|r} {%st(0), $op|$op, %ST(0)}">; -def SUBR_FPrST0 : FPrST0PInst<0xE0, "fsub{|r}p $op">; -def MUL_FST0r : FPST0rInst <0xC8, "fmul $op">; -def MUL_FrST0 : FPrST0Inst <0xC8, "fmul {%st(0), $op|$op, %ST(0)}">; -def MUL_FPrST0 : FPrST0PInst<0xC8, "fmulp $op">; -def DIVR_FST0r : FPST0rInst <0xF8, "fdivr $op">; -def DIV_FrST0 : FPrST0Inst <0xF8, "fdiv{r} {%st(0), $op|$op, %ST(0)}">; -def DIV_FPrST0 : FPrST0PInst<0xF8, "fdiv{r}p $op">; -def DIV_FST0r : FPST0rInst <0xF0, "fdiv $op">; -def DIVR_FrST0 : FPrST0Inst <0xF0, "fdiv{|r} {%st(0), $op|$op, %ST(0)}">; -def DIVR_FPrST0 : FPrST0PInst<0xF0, "fdiv{|r}p $op">; +def ADD_FST0r : FPST0rInst <0xC0, "fadd\t$op">; +def ADD_FrST0 : FPrST0Inst <0xC0, "fadd\t{%st(0), $op|$op, %ST(0)}">; +def ADD_FPrST0 : FPrST0PInst<0xC0, "faddp\t$op">; +def SUBR_FST0r : FPST0rInst <0xE8, "fsubr\t$op">; +def SUB_FrST0 : FPrST0Inst <0xE8, "fsub{r}\t{%st(0), $op|$op, %ST(0)}">; +def SUB_FPrST0 : FPrST0PInst<0xE8, "fsub{r}p\t$op">; +def SUB_FST0r : FPST0rInst <0xE0, "fsub\t$op">; +def SUBR_FrST0 : FPrST0Inst <0xE0, "fsub{|r}\t{%st(0), $op|$op, %ST(0)}">; +def SUBR_FPrST0 : FPrST0PInst<0xE0, "fsub{|r}p\t$op">; +def MUL_FST0r : FPST0rInst <0xC8, "fmul\t$op">; +def MUL_FrST0 : FPrST0Inst <0xC8, "fmul\t{%st(0), $op|$op, %ST(0)}">; +def MUL_FPrST0 : FPrST0PInst<0xC8, "fmulp\t$op">; +def DIVR_FST0r : FPST0rInst <0xF8, "fdivr\t$op">; +def DIV_FrST0 : FPrST0Inst <0xF8, "fdiv{r}\t{%st(0), $op|$op, %ST(0)}">; +def DIV_FPrST0 : FPrST0PInst<0xF8, "fdiv{r}p\t$op">; +def DIV_FST0r : FPST0rInst <0xF0, "fdiv\t$op">; +def DIVR_FrST0 : FPrST0Inst <0xF0, "fdiv{|r}\t{%st(0), $op|$op, %ST(0)}">; +def DIVR_FPrST0 : FPrST0PInst<0xF0, "fdiv{|r}p\t$op">; // Unary operations. multiclass FPUnary opcode, string asmstring> { -def _Fp32 : FpI<(ops RFP32:$dst, RFP32:$src), OneArgFPRW, +def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW, [(set RFP32:$dst, (OpNode RFP32:$src))]>; -def _Fp64 : FpI<(ops RFP64:$dst, RFP64:$src), OneArgFPRW, +def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW, [(set RFP64:$dst, (OpNode RFP64:$src))]>; -def _F : FPI, D9; +def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW, + [(set RFP80:$dst, (OpNode RFP80:$src))]>; +def _F : FPI, D9; } defm CHS : FPUnary; @@ -253,20 +289,25 @@ defm SQRT: FPUnary; defm SIN : FPUnary; defm COS : FPUnary; -def TST_Fp32 : FpI<(ops RFP32:$src), OneArgFP, +def TST_Fp32 : FpIf32<(outs), (ins RFP32:$src), OneArgFP, + []>; +def TST_Fp64 : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>; -def TST_Fp64 : FpI<(ops RFP64:$src), OneArgFP, +def TST_Fp80 : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>; -def TST_F : FPI<0xE4, RawFrm, (ops), "ftst">, D9; +def TST_F : FPI<0xE4, RawFrm, (outs), (ins), "ftst">, D9; // Floating point cmovs. multiclass FPCMov { - def _Fp32 : FpI<(ops RFP32:$dst, RFP32:$src1, RFP32:$src2), CondMovFP, + def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), CondMovFP, [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2, cc))]>; - def _Fp64 : FpI<(ops RFP64:$dst, RFP64:$src1, RFP64:$src2), CondMovFP, + def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), CondMovFP, [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2, cc))]>; + def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), CondMovFP, + [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2, + cc))]>; } let isTwoAddress = 1 in { defm CMOVB : FPCMov; @@ -279,178 +320,259 @@ defm CMOVNE : FPCMov; defm CMOVNP : FPCMov; } +multiclass NEW_FPCMov { + def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), + CondMovFP, + [(set RFP32:$dst, (X86cmov_new RFP32:$src1, RFP32:$src2, + cc, EFLAGS))]>; + def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), + CondMovFP, + [(set RFP64:$dst, (X86cmov_new RFP64:$src1, RFP64:$src2, + cc, EFLAGS))]>; + def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), + CondMovFP, + [(set RFP80:$dst, (X86cmov_new RFP80:$src1, RFP80:$src2, + cc, EFLAGS))]>; +} +let Uses = [EFLAGS], isTwoAddress = 1 in { +defm NEW_CMOVB : NEW_FPCMov; +defm NEW_CMOVBE : NEW_FPCMov; +defm NEW_CMOVE : NEW_FPCMov; +defm NEW_CMOVP : NEW_FPCMov; +defm NEW_CMOVNB : NEW_FPCMov; +defm NEW_CMOVNBE: NEW_FPCMov; +defm NEW_CMOVNE : NEW_FPCMov; +defm NEW_CMOVNP : NEW_FPCMov; +} + // These are not factored because there's no clean way to pass DA/DB. -def CMOVB_F : FPI<0xC0, AddRegFrm, (ops RST:$op), - "fcmovb {$op, %st(0)|%ST(0), $op}">, DA; -def CMOVBE_F : FPI<0xD0, AddRegFrm, (ops RST:$op), - "fcmovbe {$op, %st(0)|%ST(0), $op}">, DA; -def CMOVE_F : FPI<0xC8, AddRegFrm, (ops RST:$op), - "fcmove {$op, %st(0)|%ST(0), $op}">, DA; -def CMOVP_F : FPI<0xD8, AddRegFrm, (ops RST:$op), - "fcmovu {$op, %st(0)|%ST(0), $op}">, DA; -def CMOVNB_F : FPI<0xC0, AddRegFrm, (ops RST:$op), - "fcmovnb {$op, %st(0)|%ST(0), $op}">, DB; -def CMOVNBE_F: FPI<0xD0, AddRegFrm, (ops RST:$op), - "fcmovnbe {$op, %st(0)|%ST(0), $op}">, DB; -def CMOVNE_F : FPI<0xC8, AddRegFrm, (ops RST:$op), - "fcmovne {$op, %st(0)|%ST(0), $op}">, DB; -def CMOVNP_F : FPI<0xD8, AddRegFrm, (ops RST:$op), - "fcmovnu {$op, %st(0)|%ST(0), $op}">, DB; +def CMOVB_F : FPI<0xC0, AddRegFrm, (outs RST:$op), (ins), + "fcmovb\t{$op, %st(0)|%ST(0), $op}">, DA; +def CMOVBE_F : FPI<0xD0, AddRegFrm, (outs RST:$op), (ins), + "fcmovbe\t{$op, %st(0)|%ST(0), $op}">, DA; +def CMOVE_F : FPI<0xC8, AddRegFrm, (outs RST:$op), (ins), + "fcmove\t{$op, %st(0)|%ST(0), $op}">, DA; +def CMOVP_F : FPI<0xD8, AddRegFrm, (outs RST:$op), (ins), + "fcmovu\t {$op, %st(0)|%ST(0), $op}">, DA; +def CMOVNB_F : FPI<0xC0, AddRegFrm, (outs RST:$op), (ins), + "fcmovnb\t{$op, %st(0)|%ST(0), $op}">, DB; +def CMOVNBE_F: FPI<0xD0, AddRegFrm, (outs RST:$op), (ins), + "fcmovnbe\t{$op, %st(0)|%ST(0), $op}">, DB; +def CMOVNE_F : FPI<0xC8, AddRegFrm, (outs RST:$op), (ins), + "fcmovne\t{$op, %st(0)|%ST(0), $op}">, DB; +def CMOVNP_F : FPI<0xD8, AddRegFrm, (outs RST:$op), (ins), + "fcmovnu\t{$op, %st(0)|%ST(0), $op}">, DB; // Floating point loads & stores. -def LD_Fp32m : FpI<(ops RFP32:$dst, f32mem:$src), ZeroArgFP, +let isLoad = 1 in { +def LD_Fp32m : FpIf32<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP, [(set RFP32:$dst, (loadf32 addr:$src))]>; -def LD_Fp64m : FpI<(ops RFP64:$dst, f64mem:$src), ZeroArgFP, +def LD_Fp64m : FpIf64<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP, [(set RFP64:$dst, (loadf64 addr:$src))]>; -def ILD_Fp16m32: FpI<(ops RFP32:$dst, i16mem:$src), ZeroArgFP, +def LD_Fp80m : FpI_<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP, + [(set RFP80:$dst, (loadf80 addr:$src))]>; +} +def LD_Fp32m64 : FpIf64<(outs RFP64:$dst), (ins f32mem:$src), ZeroArgFP, + [(set RFP64:$dst, (f64 (extloadf32 addr:$src)))]>; +def LD_Fp64m80 : FpI_<(outs RFP80:$dst), (ins f64mem:$src), ZeroArgFP, + [(set RFP80:$dst, (f80 (extloadf64 addr:$src)))]>; +def LD_Fp32m80 : FpI_<(outs RFP80:$dst), (ins f32mem:$src), ZeroArgFP, + [(set RFP80:$dst, (f80 (extloadf32 addr:$src)))]>; +def ILD_Fp16m32: FpIf32<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP, [(set RFP32:$dst, (X86fild addr:$src, i16))]>; -def ILD_Fp32m32: FpI<(ops RFP32:$dst, i32mem:$src), ZeroArgFP, +def ILD_Fp32m32: FpIf32<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP, [(set RFP32:$dst, (X86fild addr:$src, i32))]>; -def ILD_Fp64m32: FpI<(ops RFP32:$dst, i64mem:$src), ZeroArgFP, +def ILD_Fp64m32: FpIf32<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP, [(set RFP32:$dst, (X86fild addr:$src, i64))]>; -def ILD_Fp16m64: FpI<(ops RFP64:$dst, i16mem:$src), ZeroArgFP, +def ILD_Fp16m64: FpIf64<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP, [(set RFP64:$dst, (X86fild addr:$src, i16))]>; -def ILD_Fp32m64: FpI<(ops RFP64:$dst, i32mem:$src), ZeroArgFP, +def ILD_Fp32m64: FpIf64<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP, [(set RFP64:$dst, (X86fild addr:$src, i32))]>; -def ILD_Fp64m64: FpI<(ops RFP64:$dst, i64mem:$src), ZeroArgFP, +def ILD_Fp64m64: FpIf64<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP, [(set RFP64:$dst, (X86fild addr:$src, i64))]>; - -def ST_Fp32m : FpI<(ops f32mem:$op, RFP32:$src), OneArgFP, +def ILD_Fp16m80: FpI_<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP, + [(set RFP80:$dst, (X86fild addr:$src, i16))]>; +def ILD_Fp32m80: FpI_<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP, + [(set RFP80:$dst, (X86fild addr:$src, i32))]>; +def ILD_Fp64m80: FpI_<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP, + [(set RFP80:$dst, (X86fild addr:$src, i64))]>; + +def ST_Fp32m : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, [(store RFP32:$src, addr:$op)]>; -def ST_Fp64m32 : FpI<(ops f32mem:$op, RFP64:$src), OneArgFP, +def ST_Fp64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, [(truncstoref32 RFP64:$src, addr:$op)]>; -def ST_Fp64m : FpI<(ops f64mem:$op, RFP64:$src), OneArgFP, +def ST_Fp64m : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, [(store RFP64:$src, addr:$op)]>; - -def ST_FpP32m : FpI<(ops f32mem:$op, RFP32:$src), OneArgFP, []>; -def ST_FpP64m32 : FpI<(ops f32mem:$op, RFP64:$src), OneArgFP, []>; -def ST_FpP64m : FpI<(ops f64mem:$op, RFP64:$src), OneArgFP, []>; -def IST_Fp16m32 : FpI<(ops i16mem:$op, RFP32:$src), OneArgFP, []>; -def IST_Fp32m32 : FpI<(ops i32mem:$op, RFP32:$src), OneArgFP, []>; -def IST_Fp64m32 : FpI<(ops i64mem:$op, RFP32:$src), OneArgFP, []>; -def IST_Fp16m64 : FpI<(ops i16mem:$op, RFP64:$src), OneArgFP, []>; -def IST_Fp32m64 : FpI<(ops i32mem:$op, RFP64:$src), OneArgFP, []>; -def IST_Fp64m64 : FpI<(ops i64mem:$op, RFP64:$src), OneArgFP, []>; - -def LD_F32m : FPI<0xD9, MRM0m, (ops f32mem:$src), "fld{s} $src">; -def LD_F64m : FPI<0xDD, MRM0m, (ops f64mem:$src), "fld{l} $src">; -def ILD_F16m : FPI<0xDF, MRM0m, (ops i16mem:$src), "fild{s} $src">; -def ILD_F32m : FPI<0xDB, MRM0m, (ops i32mem:$src), "fild{l} $src">; -def ILD_F64m : FPI<0xDF, MRM5m, (ops i64mem:$src), "fild{ll} $src">; -def ST_F32m : FPI<0xD9, MRM2m, (ops f32mem:$dst), "fst{s} $dst">; -def ST_F64m : FPI<0xDD, MRM2m, (ops f64mem:$dst), "fst{l} $dst">; -def ST_FP32m : FPI<0xD9, MRM3m, (ops f32mem:$dst), "fstp{s} $dst">; -def ST_FP64m : FPI<0xDD, MRM3m, (ops f64mem:$dst), "fstp{l} $dst">; -def IST_F16m : FPI<0xDF, MRM2m, (ops i16mem:$dst), "fist{s} $dst">; -def IST_F32m : FPI<0xDB, MRM2m, (ops i32mem:$dst), "fist{l} $dst">; -def IST_FP16m : FPI<0xDF, MRM3m, (ops i16mem:$dst), "fistp{s} $dst">; -def IST_FP32m : FPI<0xDB, MRM3m, (ops i32mem:$dst), "fistp{l} $dst">; -def IST_FP64m : FPI<0xDF, MRM7m, (ops i64mem:$dst), "fistp{ll} $dst">; +def ST_Fp80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, + [(truncstoref32 RFP80:$src, addr:$op)]>; +def ST_Fp80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, + [(truncstoref64 RFP80:$src, addr:$op)]>; +// FST does not support 80-bit memory target; FSTP must be used. + +def ST_FpP32m : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>; +def ST_FpP64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>; +def ST_FpP64m : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>; +def ST_FpP80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>; +def ST_FpP80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>; +def ST_FpP80m : FpI_<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP, + [(store RFP80:$src, addr:$op)]>; +def IST_Fp16m32 : FpIf32<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>; +def IST_Fp32m32 : FpIf32<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, []>; +def IST_Fp64m32 : FpIf32<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, []>; +def IST_Fp16m64 : FpIf64<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>; +def IST_Fp32m64 : FpIf64<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, []>; +def IST_Fp64m64 : FpIf64<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, []>; +def IST_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>; +def IST_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, []>; +def IST_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, []>; + +def LD_F32m : FPI<0xD9, MRM0m, (outs), (ins f32mem:$src), "fld{s}\t$src">; +def LD_F64m : FPI<0xDD, MRM0m, (outs), (ins f64mem:$src), "fld{l}\t$src">; +def LD_F80m : FPI<0xDB, MRM5m, (outs), (ins f80mem:$src), "fld{t}\t$src">; +def ILD_F16m : FPI<0xDF, MRM0m, (outs), (ins i16mem:$src), "fild{s}\t$src">; +def ILD_F32m : FPI<0xDB, MRM0m, (outs), (ins i32mem:$src), "fild{l}\t$src">; +def ILD_F64m : FPI<0xDF, MRM5m, (outs), (ins i64mem:$src), "fild{ll}\t$src">; +def ST_F32m : FPI<0xD9, MRM2m, (outs), (ins f32mem:$dst), "fst{s}\t$dst">; +def ST_F64m : FPI<0xDD, MRM2m, (outs), (ins f64mem:$dst), "fst{l}\t$dst">; +def ST_FP32m : FPI<0xD9, MRM3m, (outs), (ins f32mem:$dst), "fstp{s}\t$dst">; +def ST_FP64m : FPI<0xDD, MRM3m, (outs), (ins f64mem:$dst), "fstp{l}\t$dst">; +def ST_FP80m : FPI<0xDB, MRM7m, (outs), (ins f80mem:$dst), "fstp{t}\t$dst">; +def IST_F16m : FPI<0xDF, MRM2m, (outs), (ins i16mem:$dst), "fist{s}\t$dst">; +def IST_F32m : FPI<0xDB, MRM2m, (outs), (ins i32mem:$dst), "fist{l}\t$dst">; +def IST_FP16m : FPI<0xDF, MRM3m, (outs), (ins i16mem:$dst), "fistp{s}\t$dst">; +def IST_FP32m : FPI<0xDB, MRM3m, (outs), (ins i32mem:$dst), "fistp{l}\t$dst">; +def IST_FP64m : FPI<0xDF, MRM7m, (outs), (ins i64mem:$dst), "fistp{ll}\t$dst">; // FISTTP requires SSE3 even though it's a FPStack op. -def ISTT_Fp16m32 : FpI_<(ops i16mem:$op, RFP32:$src), OneArgFP, +def ISTT_Fp16m32 : FpI_<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, [(X86fp_to_i16mem RFP32:$src, addr:$op)]>, Requires<[HasSSE3]>; -def ISTT_Fp32m32 : FpI_<(ops i32mem:$op, RFP32:$src), OneArgFP, +def ISTT_Fp32m32 : FpI_<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, [(X86fp_to_i32mem RFP32:$src, addr:$op)]>, Requires<[HasSSE3]>; -def ISTT_Fp64m32 : FpI_<(ops i64mem:$op, RFP32:$src), OneArgFP, +def ISTT_Fp64m32 : FpI_<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, [(X86fp_to_i64mem RFP32:$src, addr:$op)]>, Requires<[HasSSE3]>; -def ISTT_Fp16m64 : FpI_<(ops i16mem:$op, RFP64:$src), OneArgFP, +def ISTT_Fp16m64 : FpI_<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, [(X86fp_to_i16mem RFP64:$src, addr:$op)]>, Requires<[HasSSE3]>; -def ISTT_Fp32m64 : FpI_<(ops i32mem:$op, RFP64:$src), OneArgFP, +def ISTT_Fp32m64 : FpI_<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, [(X86fp_to_i32mem RFP64:$src, addr:$op)]>, Requires<[HasSSE3]>; -def ISTT_Fp64m64 : FpI_<(ops i64mem:$op, RFP64:$src), OneArgFP, +def ISTT_Fp64m64 : FpI_<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, [(X86fp_to_i64mem RFP64:$src, addr:$op)]>, Requires<[HasSSE3]>; +def ISTT_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, + [(X86fp_to_i16mem RFP80:$src, addr:$op)]>, + Requires<[HasSSE3]>; +def ISTT_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, + [(X86fp_to_i32mem RFP80:$src, addr:$op)]>, + Requires<[HasSSE3]>; +def ISTT_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, + [(X86fp_to_i64mem RFP80:$src, addr:$op)]>, + Requires<[HasSSE3]>; -def ISTT_FP16m : FPI<0xDF, MRM1m, (ops i16mem:$dst), "fisttp{s} $dst">; -def ISTT_FP32m : FPI<0xDB, MRM1m, (ops i32mem:$dst), "fisttp{l} $dst">; -def ISTT_FP64m : FPI<0xDD, MRM1m, (ops i64mem:$dst), "fisttp{ll} $dst">; +def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst">; +def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst">; +def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst), "fisttp{ll}\t$dst">; // FP Stack manipulation instructions. -def LD_Frr : FPI<0xC0, AddRegFrm, (ops RST:$op), "fld $op">, D9; -def ST_Frr : FPI<0xD0, AddRegFrm, (ops RST:$op), "fst $op">, DD; -def ST_FPrr : FPI<0xD8, AddRegFrm, (ops RST:$op), "fstp $op">, DD; -def XCH_F : FPI<0xC8, AddRegFrm, (ops RST:$op), "fxch $op">, D9; +def LD_Frr : FPI<0xC0, AddRegFrm, (outs), (ins RST:$op), "fld\t$op">, D9; +def ST_Frr : FPI<0xD0, AddRegFrm, (outs), (ins RST:$op), "fst\t$op">, DD; +def ST_FPrr : FPI<0xD8, AddRegFrm, (outs), (ins RST:$op), "fstp\t$op">, DD; +def XCH_F : FPI<0xC8, AddRegFrm, (outs), (ins RST:$op), "fxch\t$op">, D9; // Floating point constant loads. let isReMaterializable = 1 in { -def LD_Fp032 : FpI<(ops RFP32:$dst), ZeroArgFP, +def LD_Fp032 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP, [(set RFP32:$dst, fpimm0)]>; -def LD_Fp132 : FpI<(ops RFP32:$dst), ZeroArgFP, +def LD_Fp132 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP, [(set RFP32:$dst, fpimm1)]>; -def LD_Fp064 : FpI<(ops RFP64:$dst), ZeroArgFP, +def LD_Fp064 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP, [(set RFP64:$dst, fpimm0)]>; -def LD_Fp164 : FpI<(ops RFP64:$dst), ZeroArgFP, +def LD_Fp164 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP, [(set RFP64:$dst, fpimm1)]>; +def LD_Fp080 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP, + [(set RFP80:$dst, fpimm0)]>; +def LD_Fp180 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP, + [(set RFP80:$dst, fpimm1)]>; } -def LD_F0 : FPI<0xEE, RawFrm, (ops), "fldz">, D9; -def LD_F1 : FPI<0xE8, RawFrm, (ops), "fld1">, D9; +def LD_F0 : FPI<0xEE, RawFrm, (outs), (ins), "fldz">, D9; +def LD_F1 : FPI<0xE8, RawFrm, (outs), (ins), "fld1">, D9; // Floating point compares. -def UCOM_Fpr32 : FpI<(ops RFP32:$lhs, RFP32:$rhs), CompareFP, +def UCOM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, []>; // FPSW = cmp ST(0) with ST(i) -def UCOM_FpIr32: FpI<(ops RFP32:$lhs, RFP32:$rhs), CompareFP, +def UCOM_FpIr32: FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, [(X86cmp RFP32:$lhs, RFP32:$rhs)]>; // CC = ST(0) cmp ST(i) -def UCOM_Fpr64 : FpI<(ops RFP64:$lhs, RFP64:$rhs), CompareFP, +def UCOM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, []>; // FPSW = cmp ST(0) with ST(i) -def UCOM_FpIr64: FpI<(ops RFP64:$lhs, RFP64:$rhs), CompareFP, +def UCOM_FpIr64: FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, [(X86cmp RFP64:$lhs, RFP64:$rhs)]>; // CC = ST(0) cmp ST(i) +def UCOM_Fpr80 : FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, + []>; // FPSW = cmp ST(0) with ST(i) +def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, + [(X86cmp RFP80:$lhs, RFP80:$rhs)]>; // CC = ST(0) cmp ST(i) +let Defs = [EFLAGS], Uses = [ST0] in { def UCOM_Fr : FPI<0xE0, AddRegFrm, // FPSW = cmp ST(0) with ST(i) - (ops RST:$reg), - "fucom $reg">, DD, Imp<[ST0],[]>; + (outs), (ins RST:$reg), + "fucom\t$reg">, DD; def UCOM_FPr : FPI<0xE8, AddRegFrm, // FPSW = cmp ST(0) with ST(i), pop - (ops RST:$reg), - "fucomp $reg">, DD, Imp<[ST0],[]>; + (outs), (ins RST:$reg), + "fucomp\t$reg">, DD; def UCOM_FPPr : FPI<0xE9, RawFrm, // cmp ST(0) with ST(1), pop, pop - (ops), - "fucompp">, DA, Imp<[ST0],[]>; + (outs), (ins), + "fucompp">, DA; def UCOM_FIr : FPI<0xE8, AddRegFrm, // CC = cmp ST(0) with ST(i) - (ops RST:$reg), - "fucomi {$reg, %st(0)|%ST(0), $reg}">, DB, Imp<[ST0],[]>; + (outs), (ins RST:$reg), + "fucomi\t{$reg, %st(0)|%ST(0), $reg}">, DB; def UCOM_FIPr : FPI<0xE8, AddRegFrm, // CC = cmp ST(0) with ST(i), pop - (ops RST:$reg), - "fucomip {$reg, %st(0)|%ST(0), $reg}">, DF, Imp<[ST0],[]>; + (outs), (ins RST:$reg), + "fucomip\t{$reg, %st(0)|%ST(0), $reg}">, DF; +} // Floating point flag ops. +let Defs = [AX] in def FNSTSW8r : I<0xE0, RawFrm, // AX = fp flags - (ops), "fnstsw", []>, DF, Imp<[],[AX]>; + (outs), (ins), "fnstsw", []>, DF; def FNSTCW16m : I<0xD9, MRM7m, // [mem16] = X87 control world - (ops i16mem:$dst), "fnstcw $dst", []>; + (outs), (ins i16mem:$dst), "fnstcw\t$dst", []>; def FLDCW16m : I<0xD9, MRM5m, // X87 control world = [mem16] - (ops i16mem:$dst), "fldcw $dst", []>; + (outs), (ins i16mem:$dst), "fldcw\t$dst", []>; //===----------------------------------------------------------------------===// // Non-Instruction Patterns //===----------------------------------------------------------------------===// -// Required for RET of f32 / f64 values. +// Required for RET of f32 / f64 / f80 values. def : Pat<(X86fld addr:$src, f32), (LD_Fp32m addr:$src)>; def : Pat<(X86fld addr:$src, f64), (LD_Fp64m addr:$src)>; +def : Pat<(X86fld addr:$src, f80), (LD_Fp80m addr:$src)>; -// Required for CALL which return f32 / f64 values. +// Required for CALL which return f32 / f64 / f80 values. def : Pat<(X86fst RFP32:$src, addr:$op, f32), (ST_Fp32m addr:$op, RFP32:$src)>; def : Pat<(X86fst RFP64:$src, addr:$op, f32), (ST_Fp64m32 addr:$op, RFP64:$src)>; def : Pat<(X86fst RFP64:$src, addr:$op, f64), (ST_Fp64m addr:$op, RFP64:$src)>; +def : Pat<(X86fst RFP80:$src, addr:$op, f32), (ST_Fp80m32 addr:$op, RFP80:$src)>; +def : Pat<(X86fst RFP80:$src, addr:$op, f64), (ST_Fp80m64 addr:$op, RFP80:$src)>; +def : Pat<(X86fst RFP80:$src, addr:$op, f80), (ST_FpP80m addr:$op, RFP80:$src)>; // Floating point constant -0.0 and -1.0 -def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStack]>; -def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStack]>; -def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStack]>; -def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStack]>; +def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStackf32]>; +def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStackf32]>; +def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStackf64]>; +def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStackf64]>; +def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>; +def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>; // Used to conv. i64 to f64 since there isn't a SSE version. def : Pat<(X86fildflag addr:$src, i64), (ILD_Fp64m64 addr:$src)>; -def : Pat<(extloadf32 addr:$src), - (MOV_Fp3264 (LD_Fp32m addr:$src))>, Requires<[FPStack]>; -def : Pat<(fextend RFP32:$src), (MOV_Fp3264 RFP32:$src)>, Requires<[FPStack]>; +def : Pat<(f64 (fextend RFP32:$src)), (MOV_Fp3264 RFP32:$src)>, Requires<[FPStackf32]>; +def : Pat<(f80 (fextend RFP32:$src)), (MOV_Fp3280 RFP32:$src)>, Requires<[FPStackf32]>; +def : Pat<(f80 (fextend RFP64:$src)), (MOV_Fp6480 RFP64:$src)>, Requires<[FPStackf64]>;