X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FTarget%2FTargetData.cpp;h=ff60e0b29c74d3c19dc89b9fdace0b3814acdff2;hb=2d76a7846200fcbe518e6f73291a6cbda8864ea0;hp=9f7cb003791900661560362ca2f412de74090678;hpb=588af2fb99bf255c350fcfc582e475cf4840c606;p=oota-llvm.git diff --git a/lib/Target/TargetData.cpp b/lib/Target/TargetData.cpp index 9f7cb003791..ff60e0b29c7 100644 --- a/lib/Target/TargetData.cpp +++ b/lib/Target/TargetData.cpp @@ -2,8 +2,8 @@ // // The LLVM Compiler Infrastructure // -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // @@ -17,52 +17,50 @@ //===----------------------------------------------------------------------===// #include "llvm/Target/TargetData.h" -#include "llvm/Module.h" -#include "llvm/DerivedTypes.h" #include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Module.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/ManagedStatic.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Support/Mutex.h" #include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/StringExtras.h" #include #include -#include using namespace llvm; // Handle the Pass registration stuff necessary to use TargetData's. -namespace { - // Register the default SparcV9 implementation... - RegisterPass X("targetdata", "Target Data Layout"); -} + +// Register the default SparcV9 implementation... +INITIALIZE_PASS(TargetData, "targetdata", "Target Data Layout", false, true) char TargetData::ID = 0; //===----------------------------------------------------------------------===// // Support for StructLayout //===----------------------------------------------------------------------===// -StructLayout::StructLayout(const StructType *ST, const TargetData &TD) { +StructLayout::StructLayout(StructType *ST, const TargetData &TD) { + assert(!ST->isOpaque() && "Cannot get layout of opaque structs"); StructAlignment = 0; StructSize = 0; NumElements = ST->getNumElements(); - // Loop over each of the elements, placing them in memory... + // Loop over each of the elements, placing them in memory. for (unsigned i = 0, e = NumElements; i != e; ++i) { - const Type *Ty = ST->getElementType(i); - unsigned TyAlign; - uint64_t TySize; - TyAlign = (ST->isPacked() ? 1 : TD.getABITypeAlignment(Ty)); - TySize = TD.getTypeSize(Ty); + Type *Ty = ST->getElementType(i); + unsigned TyAlign = ST->isPacked() ? 1 : TD.getABITypeAlignment(Ty); - // Add padding if necessary to make the data element aligned properly... - if (StructSize % TyAlign != 0) - StructSize = (StructSize/TyAlign + 1) * TyAlign; // Add padding... + // Add padding if necessary to align the data element properly. + if ((StructSize & (TyAlign-1)) != 0) + StructSize = TargetData::RoundUpAlignment(StructSize, TyAlign); - // Keep track of maximum alignment constraint + // Keep track of maximum alignment constraint. StructAlignment = std::max(TyAlign, StructAlignment); MemberOffsets[i] = StructSize; - StructSize += TySize; // Consume space for this data item + StructSize += TD.getTypeAllocSize(Ty); // Consume space for this data item } // Empty structures have alignment of 1 byte. @@ -70,8 +68,8 @@ StructLayout::StructLayout(const StructType *ST, const TargetData &TD) { // Add padding to the end of the struct so that it could be put in an array // and all array elements would be aligned correctly. - if (StructSize % StructAlignment != 0) - StructSize = (StructSize/StructAlignment + 1) * StructAlignment; + if ((StructSize & (StructAlignment-1)) != 0) + StructSize = TargetData::RoundUpAlignment(StructSize, StructAlignment); } @@ -83,9 +81,15 @@ unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const { assert(SI != &MemberOffsets[0] && "Offset not in structure type!"); --SI; assert(*SI <= Offset && "upper_bound didn't work"); - assert((SI == &MemberOffsets[0] || *(SI-1) < Offset) && + assert((SI == &MemberOffsets[0] || *(SI-1) <= Offset) && (SI+1 == &MemberOffsets[NumElements] || *(SI+1) > Offset) && "Upper bound didn't work!"); + + // Multiple fields can have the same offset if any of them are zero sized. + // For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop + // at the i32 element, because it is the last element at that offset. This is + // the right one to return, because anything after it will have a higher + // offset, implying that this element is non-empty. return SI-&MemberOffsets[0]; } @@ -94,8 +98,9 @@ unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const { //===----------------------------------------------------------------------===// TargetAlignElem -TargetAlignElem::get(AlignTypeEnum align_type, unsigned char abi_align, - unsigned char pref_align, uint32_t bit_width) { +TargetAlignElem::get(AlignTypeEnum align_type, unsigned abi_align, + unsigned pref_align, uint32_t bit_width) { + assert(abi_align <= pref_align && "Preferred alignment worse than ABI!"); TargetAlignElem retval; retval.AlignType = align_type; retval.ABIAlign = abi_align; @@ -112,14 +117,6 @@ TargetAlignElem::operator==(const TargetAlignElem &rhs) const { && TypeBitWidth == rhs.TypeBitWidth); } -std::ostream & -TargetAlignElem::dump(std::ostream &os) const { - return os << AlignType - << TypeBitWidth - << ":" << (int) (ABIAlign * 8) - << ":" << (int) (PrefAlign * 8); -} - const TargetAlignElem TargetData::InvalidAlignmentElem = TargetAlignElem::get((AlignTypeEnum) -1, 0, 0, 0); @@ -127,116 +124,194 @@ const TargetAlignElem TargetData::InvalidAlignmentElem = // TargetData Class Implementation //===----------------------------------------------------------------------===// -/*! - A TargetDescription string consists of a sequence of hyphen-delimited - specifiers for target endianness, pointer size and alignments, and various - primitive type sizes and alignments. A typical string looks something like: -

- "E-p:32:32:32-i1:8:8-i8:8:8-i32:32:32-i64:32:64-f32:32:32-f64:32:64" -

- (note: this string is not fully specified and is only an example.) - \p - Alignments come in two flavors: ABI and preferred. ABI alignment (abi_align, - below) dictates how a type will be aligned within an aggregate and when used - as an argument. Preferred alignment (pref_align, below) determines a type's - alignment when emitted as a global. - \p - Specifier string details: -

- [E|e]: Endianness. "E" specifies a big-endian target data model, "e" - specifies a little-endian target data model. -

- p:@verbatim::@endverbatim: Pointer size, - ABI and preferred alignment. -

- @verbatim::@endverbatim: Numeric type alignment. Type is - one of i|f|v|a, corresponding to integer, floating point, vector (aka - packed) or aggregate. Size indicates the size, e.g., 32 or 64 bits. - \p - The default string, fully specified is: -

- "E-p:64:64:64-a0:0:0-f32:32:32-f64:0:64" - "-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:0:64" - "-v64:64:64-v128:128:128" -

- Note that in the case of aggregates, 0 is the default ABI and preferred - alignment. This is a special case, where the aggregate's computed worst-case - alignment will be used. - */ -void TargetData::init(const std::string &TargetDescription) { - std::string temp = TargetDescription; - +/// getInt - Get an integer ignoring errors. +static int getInt(StringRef R) { + int Result = 0; + R.getAsInteger(10, Result); + return Result; +} + +void TargetData::init() { + initializeTargetDataPass(*PassRegistry::getPassRegistry()); + + LayoutMap = 0; LittleEndian = false; PointerMemSize = 8; - PointerABIAlign = 8; + PointerABIAlign = 8; PointerPrefAlign = PointerABIAlign; + StackNaturalAlign = 0; // Default alignments - setAlignment(INTEGER_ALIGN, 1, 1, 1); // Bool - setAlignment(INTEGER_ALIGN, 1, 1, 8); // Byte - setAlignment(INTEGER_ALIGN, 2, 2, 16); // short - setAlignment(INTEGER_ALIGN, 4, 4, 32); // int - setAlignment(INTEGER_ALIGN, 4, 8, 64); // long + setAlignment(INTEGER_ALIGN, 1, 1, 1); // i1 + setAlignment(INTEGER_ALIGN, 1, 1, 8); // i8 + setAlignment(INTEGER_ALIGN, 2, 2, 16); // i16 + setAlignment(INTEGER_ALIGN, 4, 4, 32); // i32 + setAlignment(INTEGER_ALIGN, 4, 8, 64); // i64 setAlignment(FLOAT_ALIGN, 4, 4, 32); // float setAlignment(FLOAT_ALIGN, 8, 8, 64); // double - setAlignment(VECTOR_ALIGN, 8, 8, 64); // v2i32 + setAlignment(VECTOR_ALIGN, 8, 8, 64); // v2i32, v1i64, ... setAlignment(VECTOR_ALIGN, 16, 16, 128); // v16i8, v8i16, v4i32, ... - setAlignment(AGGREGATE_ALIGN, 0, 8, 0); // struct, union, class, ... - setAlignment(STACK_ALIGN, 0, 8, 0); // objects on the stack - - while (!temp.empty()) { - std::string token = getToken(temp, "-"); - std::string arg0 = getToken(token, ":"); - const char *p = arg0.c_str(); - switch(*p) { + setAlignment(AGGREGATE_ALIGN, 0, 8, 0); // struct +} + +std::string TargetData::parseSpecifier(StringRef Desc, TargetData *td) { + + if (td) + td->init(); + + while (!Desc.empty()) { + std::pair Split = Desc.split('-'); + StringRef Token = Split.first; + Desc = Split.second; + + if (Token.empty()) + continue; + + Split = Token.split(':'); + StringRef Specifier = Split.first; + Token = Split.second; + + assert(!Specifier.empty() && "Can't be empty here"); + + switch (Specifier[0]) { case 'E': - LittleEndian = false; + if (td) + td->LittleEndian = false; break; case 'e': - LittleEndian = true; + if (td) + td->LittleEndian = true; break; - case 'p': - PointerMemSize = atoi(getToken(token,":").c_str()) / 8; - PointerABIAlign = atoi(getToken(token,":").c_str()) / 8; - PointerPrefAlign = atoi(getToken(token,":").c_str()) / 8; - if (PointerPrefAlign == 0) - PointerPrefAlign = PointerABIAlign; + case 'p': { + // Pointer size. + Split = Token.split(':'); + int PointerMemSizeBits = getInt(Split.first); + if (PointerMemSizeBits < 0 || PointerMemSizeBits % 8 != 0) + return "invalid pointer size, must be a positive 8-bit multiple"; + if (td) + td->PointerMemSize = PointerMemSizeBits / 8; + + // Pointer ABI alignment. + Split = Split.second.split(':'); + int PointerABIAlignBits = getInt(Split.first); + if (PointerABIAlignBits < 0 || PointerABIAlignBits % 8 != 0) { + return "invalid pointer ABI alignment, " + "must be a positive 8-bit multiple"; + } + if (td) + td->PointerABIAlign = PointerABIAlignBits / 8; + + // Pointer preferred alignment. + Split = Split.second.split(':'); + int PointerPrefAlignBits = getInt(Split.first); + if (PointerPrefAlignBits < 0 || PointerPrefAlignBits % 8 != 0) { + return "invalid pointer preferred alignment, " + "must be a positive 8-bit multiple"; + } + if (td) { + td->PointerPrefAlign = PointerPrefAlignBits / 8; + if (td->PointerPrefAlign == 0) + td->PointerPrefAlign = td->PointerABIAlign; + } break; + } case 'i': case 'v': case 'f': case 'a': case 's': { - AlignTypeEnum align_type; - switch(*p) { - case 'i': align_type = INTEGER_ALIGN; break; - case 'v': align_type = VECTOR_ALIGN; break; - case 'f': align_type = FLOAT_ALIGN; break; - case 'a': align_type = AGGREGATE_ALIGN; break; - case 's': align_type = STACK_ALIGN; break; + AlignTypeEnum AlignType; + char field = Specifier[0]; + switch (field) { + default: + case 'i': AlignType = INTEGER_ALIGN; break; + case 'v': AlignType = VECTOR_ALIGN; break; + case 'f': AlignType = FLOAT_ALIGN; break; + case 'a': AlignType = AGGREGATE_ALIGN; break; + case 's': AlignType = STACK_ALIGN; break; + } + int Size = getInt(Specifier.substr(1)); + if (Size < 0) { + return std::string("invalid ") + field + "-size field, " + "must be positive"; + } + + Split = Token.split(':'); + int ABIAlignBits = getInt(Split.first); + if (ABIAlignBits < 0 || ABIAlignBits % 8 != 0) { + return std::string("invalid ") + field +"-abi-alignment field, " + "must be a positive 8-bit multiple"; + } + unsigned ABIAlign = ABIAlignBits / 8; + + Split = Split.second.split(':'); + + int PrefAlignBits = getInt(Split.first); + if (PrefAlignBits < 0 || PrefAlignBits % 8 != 0) { + return std::string("invalid ") + field +"-preferred-alignment field, " + "must be a positive 8-bit multiple"; } - uint32_t size = (uint32_t) atoi(++p); - unsigned char abi_align = atoi(getToken(token, ":").c_str()) / 8; - unsigned char pref_align = atoi(getToken(token, ":").c_str()) / 8; - if (pref_align == 0) - pref_align = abi_align; - setAlignment(align_type, abi_align, pref_align, size); + unsigned PrefAlign = PrefAlignBits / 8; + if (PrefAlign == 0) + PrefAlign = ABIAlign; + + if (td) + td->setAlignment(AlignType, ABIAlign, PrefAlign, Size); + break; + } + case 'n': // Native integer types. + Specifier = Specifier.substr(1); + do { + int Width = getInt(Specifier); + if (Width <= 0) { + return std::string("invalid native integer size \'") + Specifier.str() + + "\', must be a positive integer."; + } + if (td && Width != 0) + td->LegalIntWidths.push_back(Width); + Split = Token.split(':'); + Specifier = Split.first; + Token = Split.second; + } while (!Specifier.empty() || !Token.empty()); + break; + case 'S': { // Stack natural alignment. + int StackNaturalAlignBits = getInt(Specifier.substr(1)); + if (StackNaturalAlignBits < 0 || StackNaturalAlignBits % 8 != 0) { + return "invalid natural stack alignment (S-field), " + "must be a positive 8-bit multiple"; + } + if (td) + td->StackNaturalAlign = StackNaturalAlignBits / 8; break; } default: break; } } + + return ""; +} + +/// Default ctor. +/// +/// @note This has to exist, because this is a pass, but it should never be +/// used. +TargetData::TargetData() : ImmutablePass(ID) { + report_fatal_error("Bad TargetData ctor used. " + "Tool did not specify a TargetData to use?"); } -TargetData::TargetData(const Module *M) - : ImmutablePass((intptr_t)&ID) { - init(M->getDataLayout()); +TargetData::TargetData(const Module *M) + : ImmutablePass(ID) { + std::string errMsg = parseSpecifier(M->getDataLayout(), this); + assert(errMsg == "" && "Module M has malformed target data layout string."); + (void)errMsg; } void -TargetData::setAlignment(AlignTypeEnum align_type, unsigned char abi_align, - unsigned char pref_align, uint32_t bit_width) { +TargetData::setAlignment(AlignTypeEnum align_type, unsigned abi_align, + unsigned pref_align, uint32_t bit_width) { + assert(abi_align <= pref_align && "Preferred alignment worse than ABI!"); for (unsigned i = 0, e = Alignments.size(); i != e; ++i) { if (Alignments[i].AlignType == align_type && Alignments[i].TypeBitWidth == bit_width) { @@ -246,15 +321,16 @@ TargetData::setAlignment(AlignTypeEnum align_type, unsigned char abi_align, return; } } - + Alignments.push_back(TargetAlignElem::get(align_type, abi_align, pref_align, bit_width)); } -/// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or +/// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or /// preferred if ABIInfo = false) the target wants for the specified datatype. -unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType, - uint32_t BitWidth, bool ABIInfo) const { +unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType, + uint32_t BitWidth, bool ABIInfo, + Type *Ty) const { // Check to see if we have an exact match and remember the best match we see. int BestMatchIdx = -1; int LargestInt = -1; @@ -262,213 +338,166 @@ unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType, if (Alignments[i].AlignType == AlignType && Alignments[i].TypeBitWidth == BitWidth) return ABIInfo ? Alignments[i].ABIAlign : Alignments[i].PrefAlign; - + // The best match so far depends on what we're looking for. - if (AlignType == VECTOR_ALIGN) { - // If this is a specification for a smaller vector type, we will fall back - // to it. This happens because <128 x double> can be implemented in terms - // of 64 <2 x double>. - if (Alignments[i].AlignType == VECTOR_ALIGN && - Alignments[i].TypeBitWidth < BitWidth) { - // Verify that we pick the biggest of the fallbacks. - if (BestMatchIdx == -1 || - Alignments[BestMatchIdx].TypeBitWidth < BitWidth) - BestMatchIdx = i; - } - } else if (AlignType == INTEGER_ALIGN && - Alignments[i].AlignType == INTEGER_ALIGN) { + if (AlignType == INTEGER_ALIGN && + Alignments[i].AlignType == INTEGER_ALIGN) { // The "best match" for integers is the smallest size that is larger than // the BitWidth requested. - if (Alignments[i].TypeBitWidth > BitWidth && (BestMatchIdx == -1 || + if (Alignments[i].TypeBitWidth > BitWidth && (BestMatchIdx == -1 || Alignments[i].TypeBitWidth < Alignments[BestMatchIdx].TypeBitWidth)) BestMatchIdx = i; // However, if there isn't one that's larger, then we must use the // largest one we have (see below) - if (LargestInt == -1 || + if (LargestInt == -1 || Alignments[i].TypeBitWidth > Alignments[LargestInt].TypeBitWidth) LargestInt = i; } } - // For integers, if we didn't find a best match, use the largest one found. - if (BestMatchIdx == -1) - BestMatchIdx = LargestInt; - // Okay, we didn't find an exact solution. Fall back here depending on what // is being looked for. - assert(BestMatchIdx != -1 && "Didn't find alignment info for this datatype!"); + if (BestMatchIdx == -1) { + // If we didn't find an integer alignment, fall back on most conservative. + if (AlignType == INTEGER_ALIGN) { + BestMatchIdx = LargestInt; + } else { + assert(AlignType == VECTOR_ALIGN && "Unknown alignment type!"); + + // By default, use natural alignment for vector types. This is consistent + // with what clang and llvm-gcc do. + unsigned Align = getTypeAllocSize(cast(Ty)->getElementType()); + Align *= cast(Ty)->getNumElements(); + // If the alignment is not a power of 2, round up to the next power of 2. + // This happens for non-power-of-2 length vectors. + if (Align & (Align-1)) + Align = llvm::NextPowerOf2(Align); + return Align; + } + } // Since we got a "best match" index, just return it. return ABIInfo ? Alignments[BestMatchIdx].ABIAlign : Alignments[BestMatchIdx].PrefAlign; } -/// LayoutInfo - The lazy cache of structure layout information maintained by -/// TargetData. Note that the struct types must have been free'd before -/// llvm_shutdown is called (and thus this is deallocated) because all the -/// targets with cached elements should have been destroyed. -/// -typedef std::pair LayoutKey; +namespace { -struct DenseMapLayoutKeyInfo { - static inline LayoutKey getEmptyKey() { return LayoutKey(0, 0); } - static inline LayoutKey getTombstoneKey() { - return LayoutKey((TargetData*)(intptr_t)-1, 0); +class StructLayoutMap { + typedef DenseMap LayoutInfoTy; + LayoutInfoTy LayoutInfo; + +public: + virtual ~StructLayoutMap() { + // Remove any layouts. + for (LayoutInfoTy::iterator I = LayoutInfo.begin(), E = LayoutInfo.end(); + I != E; ++I) { + StructLayout *Value = I->second; + Value->~StructLayout(); + free(Value); + } } - static unsigned getHashValue(const LayoutKey &Val) { - return DenseMapKeyInfo::getHashValue(Val.first) ^ - DenseMapKeyInfo::getHashValue(Val.second); + + StructLayout *&operator[](StructType *STy) { + return LayoutInfo[STy]; } - static bool isPod() { return true; } -}; -typedef DenseMap LayoutInfoTy; -static ManagedStatic LayoutInfo; + // for debugging... + virtual void dump() const {} +}; +} // end anonymous namespace TargetData::~TargetData() { - if (LayoutInfo.isConstructed()) { - // Remove any layouts for this TD. - LayoutInfoTy &TheMap = *LayoutInfo; - for (LayoutInfoTy::iterator I = TheMap.begin(), E = TheMap.end(); - I != E; ) { - if (I->first.first == this) { - I->second->~StructLayout(); - free(I->second); - TheMap.erase(I++); - } else { - ++I; - } - } - } + delete static_cast(LayoutMap); } -const StructLayout *TargetData::getStructLayout(const StructType *Ty) const { - LayoutInfoTy &TheMap = *LayoutInfo; - - StructLayout *&SL = TheMap[LayoutKey(this, Ty)]; +const StructLayout *TargetData::getStructLayout(StructType *Ty) const { + if (!LayoutMap) + LayoutMap = new StructLayoutMap(); + + StructLayoutMap *STM = static_cast(LayoutMap); + StructLayout *&SL = (*STM)[Ty]; if (SL) return SL; - // Otherwise, create the struct layout. Because it is variable length, we + // Otherwise, create the struct layout. Because it is variable length, we // malloc it, then use placement new. int NumElts = Ty->getNumElements(); StructLayout *L = - (StructLayout *)malloc(sizeof(StructLayout)+(NumElts-1)*sizeof(uint64_t)); - + (StructLayout *)malloc(sizeof(StructLayout)+(NumElts-1) * sizeof(uint64_t)); + // Set SL before calling StructLayout's ctor. The ctor could cause other // entries to be added to TheMap, invalidating our reference. SL = L; - + new (L) StructLayout(Ty, *this); + return L; } -/// InvalidateStructLayoutInfo - TargetData speculatively caches StructLayout -/// objects. If a TargetData object is alive when types are being refined and -/// removed, this method must be called whenever a StructType is removed to -/// avoid a dangling pointer in this cache. -void TargetData::InvalidateStructLayoutInfo(const StructType *Ty) const { - if (!LayoutInfo.isConstructed()) return; // No cache. - - LayoutInfoTy::iterator I = LayoutInfo->find(LayoutKey(this, Ty)); - if (I != LayoutInfo->end()) { - I->second->~StructLayout(); - free(I->second); - LayoutInfo->erase(I); +std::string TargetData::getStringRepresentation() const { + std::string Result; + raw_string_ostream OS(Result); + + OS << (LittleEndian ? "e" : "E") + << "-p:" << PointerMemSize*8 << ':' << PointerABIAlign*8 + << ':' << PointerPrefAlign*8 + << "-S" << StackNaturalAlign*8; + + for (unsigned i = 0, e = Alignments.size(); i != e; ++i) { + const TargetAlignElem &AI = Alignments[i]; + OS << '-' << (char)AI.AlignType << AI.TypeBitWidth << ':' + << AI.ABIAlign*8 << ':' << AI.PrefAlign*8; } -} + if (!LegalIntWidths.empty()) { + OS << "-n" << (unsigned)LegalIntWidths[0]; -std::string TargetData::getStringRepresentation() const { - std::string repr; - repr.append(LittleEndian ? "e" : "E"); - repr.append("-p:").append(itostr((int64_t) (PointerMemSize * 8))). - append(":").append(itostr((int64_t) (PointerABIAlign * 8))). - append(":").append(itostr((int64_t) (PointerPrefAlign * 8))); - for (align_const_iterator I = Alignments.begin(); - I != Alignments.end(); - ++I) { - repr.append("-").append(1, (char) I->AlignType). - append(utostr((int64_t) I->TypeBitWidth)). - append(":").append(utostr((uint64_t) (I->ABIAlign * 8))). - append(":").append(utostr((uint64_t) (I->PrefAlign * 8))); + for (unsigned i = 1, e = LegalIntWidths.size(); i != e; ++i) + OS << ':' << (unsigned)LegalIntWidths[i]; } - return repr; + return OS.str(); } -uint64_t TargetData::getTypeSize(const Type *Ty) const { +uint64_t TargetData::getTypeSizeInBits(Type *Ty) const { assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); switch (Ty->getTypeID()) { case Type::LabelTyID: case Type::PointerTyID: - return getPointerSize(); + return getPointerSizeInBits(); case Type::ArrayTyID: { - const ArrayType *ATy = cast(Ty); - uint64_t Size; - unsigned char Alignment; - Size = getTypeSize(ATy->getElementType()); - Alignment = getABITypeAlignment(ATy->getElementType()); - uint64_t AlignedSize = (Size + Alignment - 1)/Alignment*Alignment; - return AlignedSize*ATy->getNumElements(); + ArrayType *ATy = cast(Ty); + return getTypeAllocSizeInBits(ATy->getElementType())*ATy->getNumElements(); } - case Type::StructTyID: { + case Type::StructTyID: // Get the layout annotation... which is lazily created on demand. - const StructLayout *Layout = getStructLayout(cast(Ty)); - return Layout->getSizeInBytes(); - } - case Type::IntegerTyID: { - unsigned BitWidth = cast(Ty)->getBitWidth(); - if (BitWidth <= 8) { - return 1; - } else if (BitWidth <= 16) { - return 2; - } else if (BitWidth <= 32) { - return 4; - } else if (BitWidth <= 64) { - return 8; - } else { - // The size of this > 64 bit type is chosen as a multiple of the - // preferred alignment of the largest "native" size the target supports. - // We first obtain the the alignment info for this type and then compute - // the next largest multiple of that size. - uint64_t size = getAlignmentInfo(INTEGER_ALIGN, BitWidth, false) * 8; - return (((BitWidth / (size)) + (BitWidth % size != 0)) * size) / 8; - } - break; - } + return getStructLayout(cast(Ty))->getSizeInBits(); + case Type::IntegerTyID: + return cast(Ty)->getBitWidth(); case Type::VoidTyID: - return 1; + return 8; case Type::FloatTyID: - return 4; + return 32; case Type::DoubleTyID: - return 8; + case Type::X86_MMXTyID: + return 64; case Type::PPC_FP128TyID: case Type::FP128TyID: - return 16; + return 128; // In memory objects this is always aligned to a higher boundary, but - // only 10 bytes contain information. + // only 80 bits contain information. case Type::X86_FP80TyID: - return 10; - case Type::VectorTyID: { - const VectorType *PTy = cast(Ty); - return PTy->getBitWidth() / 8; - } + return 80; + case Type::VectorTyID: + return cast(Ty)->getBitWidth(); default: - assert(0 && "TargetData::getTypeSize(): Unsupported type"); + llvm_unreachable("TargetData::getTypeSizeInBits(): Unsupported type"); break; } return 0; } -uint64_t TargetData::getTypeSizeInBits(const Type *Ty) const { - if (Ty->isInteger()) - return cast(Ty)->getBitWidth(); - else - return getTypeSize(Ty) * 8; -} - - /*! \param abi_or_pref Flag that determines which alignment is returned. true returns the ABI alignment, false returns the preferred alignment. @@ -477,12 +506,12 @@ uint64_t TargetData::getTypeSizeInBits(const Type *Ty) const { Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref == false) for the requested type \a Ty. */ -unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const { +unsigned TargetData::getAlignment(Type *Ty, bool abi_or_pref) const { int AlignType = -1; assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); switch (Ty->getTypeID()) { - /* Early escape for the non-numeric types */ + // Early escape for the non-numeric types. case Type::LabelTyID: case Type::PointerTyID: return (abi_or_pref @@ -490,16 +519,16 @@ unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const { : getPointerPrefAlignment()); case Type::ArrayTyID: return getAlignment(cast(Ty)->getElementType(), abi_or_pref); - + case Type::StructTyID: { // Packed structure types always have an ABI alignment of one. if (cast(Ty)->isPacked() && abi_or_pref) return 1; - + // Get the layout annotation... which is lazily created on demand. const StructLayout *Layout = getStructLayout(cast(Ty)); - unsigned Align = getAlignmentInfo(AGGREGATE_ALIGN, 0, abi_or_pref); - return std::max(Align, (unsigned)Layout->getAlignment()); + unsigned Align = getAlignmentInfo(AGGREGATE_ALIGN, 0, abi_or_pref, Ty); + return std::max(Align, Layout->getAlignment()); } case Type::IntegerTyID: case Type::VoidTyID: @@ -514,29 +543,31 @@ unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const { case Type::X86_FP80TyID: AlignType = FLOAT_ALIGN; break; - case Type::VectorTyID: { - const VectorType *VTy = cast(Ty); - // Degenerate vectors are assumed to be scalar-ized - if (VTy->getNumElements() == 1) - return getAlignment(VTy->getElementType(), abi_or_pref); - else - AlignType = VECTOR_ALIGN; + case Type::X86_MMXTyID: + case Type::VectorTyID: + AlignType = VECTOR_ALIGN; break; - } default: - assert(0 && "Bad type for getAlignment!!!"); + llvm_unreachable("Bad type for getAlignment!!!"); break; } - return getAlignmentInfo((AlignTypeEnum)AlignType, getTypeSize(Ty) * 8, - abi_or_pref); + return getAlignmentInfo((AlignTypeEnum)AlignType, getTypeSizeInBits(Ty), + abi_or_pref, Ty); } -unsigned char TargetData::getABITypeAlignment(const Type *Ty) const { +unsigned TargetData::getABITypeAlignment(Type *Ty) const { return getAlignment(Ty, true); } -unsigned char TargetData::getCallFrameTypeAlignment(const Type *Ty) const { +/// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for +/// an integer type of the specified bitwidth. +unsigned TargetData::getABIIntegerTypeAlignment(unsigned BitWidth) const { + return getAlignmentInfo(INTEGER_ALIGN, BitWidth, true, 0); +} + + +unsigned TargetData::getCallFrameTypeAlignment(Type *Ty) const { for (unsigned i = 0, e = Alignments.size(); i != e; ++i) if (Alignments[i].AlignType == STACK_ALIGN) return Alignments[i].ABIAlign; @@ -544,39 +575,36 @@ unsigned char TargetData::getCallFrameTypeAlignment(const Type *Ty) const { return getABITypeAlignment(Ty); } -unsigned char TargetData::getPrefTypeAlignment(const Type *Ty) const { +unsigned TargetData::getPrefTypeAlignment(Type *Ty) const { return getAlignment(Ty, false); } -unsigned char TargetData::getPreferredTypeAlignmentShift(const Type *Ty) const { - unsigned Align = (unsigned) getPrefTypeAlignment(Ty); +unsigned TargetData::getPreferredTypeAlignmentShift(Type *Ty) const { + unsigned Align = getPrefTypeAlignment(Ty); assert(!(Align & (Align-1)) && "Alignment is not a power of two!"); return Log2_32(Align); } /// getIntPtrType - Return an unsigned integer type that is the same size or /// greater to the host pointer size. -const Type *TargetData::getIntPtrType() const { - switch (getPointerSize()) { - default: assert(0 && "Unknown pointer size!"); - case 2: return Type::Int16Ty; - case 4: return Type::Int32Ty; - case 8: return Type::Int64Ty; - } +IntegerType *TargetData::getIntPtrType(LLVMContext &C) const { + return IntegerType::get(C, getPointerSizeInBits()); } -uint64_t TargetData::getIndexedOffset(const Type *ptrTy, Value* const* Indices, - unsigned NumIndices) const { - const Type *Ty = ptrTy; - assert(isa(Ty) && "Illegal argument for getIndexedOffset()"); +uint64_t TargetData::getIndexedOffset(Type *ptrTy, + ArrayRef Indices) const { + Type *Ty = ptrTy; + assert(Ty->isPointerTy() && "Illegal argument for getIndexedOffset()"); uint64_t Result = 0; generic_gep_type_iterator - TI = gep_type_begin(ptrTy, Indices, Indices+NumIndices); - for (unsigned CurIDX = 0; CurIDX != NumIndices; ++CurIDX, ++TI) { - if (const StructType *STy = dyn_cast(*TI)) { - assert(Indices[CurIDX]->getType() == Type::Int32Ty && + TI = gep_type_begin(ptrTy, Indices); + for (unsigned CurIDX = 0, EndIDX = Indices.size(); CurIDX != EndIDX; + ++CurIDX, ++TI) { + if (StructType *STy = dyn_cast(*TI)) { + assert(Indices[CurIDX]->getType() == + Type::getInt32Ty(ptrTy->getContext()) && "Illegal struct idx"); unsigned FieldNo = cast(Indices[CurIDX])->getZExtValue(); @@ -593,30 +621,41 @@ uint64_t TargetData::getIndexedOffset(const Type *ptrTy, Value* const* Indices, Ty = cast(Ty)->getElementType(); // Get the array index and the size of each array element. - int64_t arrayIdx = cast(Indices[CurIDX])->getSExtValue(); - Result += arrayIdx * (int64_t)getTypeSize(Ty); + if (int64_t arrayIdx = cast(Indices[CurIDX])->getSExtValue()) + Result += (uint64_t)arrayIdx * getTypeAllocSize(Ty); } } return Result; } -/// getPreferredAlignmentLog - Return the preferred alignment of the -/// specified global, returned in log form. This includes an explicitly -/// requested alignment (if the global has one). -unsigned TargetData::getPreferredAlignmentLog(const GlobalVariable *GV) const { - const Type *ElemType = GV->getType()->getElementType(); - unsigned Alignment = getPreferredTypeAlignmentShift(ElemType); - if (GV->getAlignment() > (1U << Alignment)) - Alignment = Log2_32(GV->getAlignment()); - - if (GV->hasInitializer()) { - if (Alignment < 4) { +/// getPreferredAlignment - Return the preferred alignment of the specified +/// global. This includes an explicitly requested alignment (if the global +/// has one). +unsigned TargetData::getPreferredAlignment(const GlobalVariable *GV) const { + Type *ElemType = GV->getType()->getElementType(); + unsigned Alignment = getPrefTypeAlignment(ElemType); + unsigned GVAlignment = GV->getAlignment(); + if (GVAlignment >= Alignment) { + Alignment = GVAlignment; + } else if (GVAlignment != 0) { + Alignment = std::max(GVAlignment, getABITypeAlignment(ElemType)); + } + + if (GV->hasInitializer() && GVAlignment == 0) { + if (Alignment < 16) { // If the global is not external, see if it is large. If so, give it a // larger alignment. - if (getTypeSize(ElemType) > 128) - Alignment = 4; // 16-byte alignment. + if (getTypeSizeInBits(ElemType) > 128) + Alignment = 16; // 16-byte alignment. } } return Alignment; } + +/// getPreferredAlignmentLog - Return the preferred alignment of the +/// specified global, returned in log form. This includes an explicitly +/// requested alignment (if the global has one). +unsigned TargetData::getPreferredAlignmentLog(const GlobalVariable *GV) const { + return Log2_32(getPreferredAlignment(GV)); +}