X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FTarget%2FTargetData.cpp;h=b2d76d841807ce48b46e6b4e720b0e9daada67d4;hb=7b73a5d6dead3fa765cdde8316a19ac8930cc60d;hp=ec27d9e028e794dde213a20595fd5c5341db1d20;hpb=aa31ad016a5f0cb63bae2361770dfe303f45f729;p=oota-llvm.git diff --git a/lib/Target/TargetData.cpp b/lib/Target/TargetData.cpp index ec27d9e028e..b2d76d84180 100644 --- a/lib/Target/TargetData.cpp +++ b/lib/Target/TargetData.cpp @@ -1,8 +1,14 @@ //===-- TargetData.cpp - Data size & alignment routines --------------------==// // +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// // This file defines target properties related to datatype size/offset/alignment -// information. It uses lazy annotations to cache information about how -// structure types are laid out and used. +// information. // // This structure should be created once, filled in if the defaults are not // correct and then passed around by const&. None of the members functions @@ -11,192 +17,609 @@ //===----------------------------------------------------------------------===// #include "llvm/Target/TargetData.h" +#include "llvm/Module.h" #include "llvm/DerivedTypes.h" #include "llvm/Constants.h" +#include "llvm/Support/GetElementPtrTypeIterator.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/ManagedStatic.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/StringExtras.h" +#include +#include +#include +using namespace llvm; -// Handle the Pass registration stuff neccesary to use TargetData's. +// Handle the Pass registration stuff necessary to use TargetData's. namespace { // Register the default SparcV9 implementation... RegisterPass X("targetdata", "Target Data Layout"); } - - -static inline void getTypeInfo(const Type *Ty, const TargetData *TD, - uint64_t &Size, unsigned char &Alignment); +char TargetData::ID = 0; //===----------------------------------------------------------------------===// -// Support for StructLayout Annotation +// Support for StructLayout //===----------------------------------------------------------------------===// -StructLayout::StructLayout(const StructType *ST, const TargetData &TD) - : Annotation(TD.getStructLayoutAID()) { +StructLayout::StructLayout(const StructType *ST, const TargetData &TD) { StructAlignment = 0; StructSize = 0; + NumElements = ST->getNumElements(); // Loop over each of the elements, placing them in memory... - for (StructType::ElementTypes::const_iterator - TI = ST->getElementTypes().begin(), - TE = ST->getElementTypes().end(); TI != TE; ++TI) { - const Type *Ty = *TI; - unsigned char A; + for (unsigned i = 0, e = NumElements; i != e; ++i) { + const Type *Ty = ST->getElementType(i); unsigned TyAlign; uint64_t TySize; - getTypeInfo(Ty, &TD, TySize, A); - TyAlign = A; + TyAlign = (ST->isPacked() ? 1 : TD.getABITypeAlignment(Ty)); + TySize = TD.getTypeSize(Ty); - // Add padding if neccesary to make the data element aligned properly... + // Add padding if necessary to make the data element aligned properly... if (StructSize % TyAlign != 0) StructSize = (StructSize/TyAlign + 1) * TyAlign; // Add padding... // Keep track of maximum alignment constraint StructAlignment = std::max(TyAlign, StructAlignment); - MemberOffsets.push_back(StructSize); + MemberOffsets[i] = StructSize; StructSize += TySize; // Consume space for this data item } + // Empty structures have alignment of 1 byte. + if (StructAlignment == 0) StructAlignment = 1; + // Add padding to the end of the struct so that it could be put in an array // and all array elements would be aligned correctly. if (StructSize % StructAlignment != 0) StructSize = (StructSize/StructAlignment + 1) * StructAlignment; +} - if (StructSize == 0) { - StructSize = 1; // Empty struct is 1 byte - StructAlignment = 1; - } + +/// getElementContainingOffset - Given a valid offset into the structure, +/// return the structure index that contains it. +unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const { + const uint64_t *SI = + std::upper_bound(&MemberOffsets[0], &MemberOffsets[NumElements], Offset); + assert(SI != &MemberOffsets[0] && "Offset not in structure type!"); + --SI; + assert(*SI <= Offset && "upper_bound didn't work"); + assert((SI == &MemberOffsets[0] || *(SI-1) < Offset) && + (SI+1 == &MemberOffsets[NumElements] || *(SI+1) > Offset) && + "Upper bound didn't work!"); + return SI-&MemberOffsets[0]; } -Annotation *TargetData::TypeAnFactory(AnnotationID AID, const Annotable *T, - void *D) { - const TargetData &TD = *(const TargetData*)D; - assert(AID == TD.AID && "Target data annotation ID mismatch!"); - const Type *Ty = cast((const Value *)T); - assert(isa(Ty) && - "Can only create StructLayout annotation on structs!"); - return new StructLayout((const StructType *)Ty, TD); +//===----------------------------------------------------------------------===// +// TargetAlignElem, TargetAlign support +//===----------------------------------------------------------------------===// + +TargetAlignElem +TargetAlignElem::get(AlignTypeEnum align_type, unsigned char abi_align, + unsigned char pref_align, uint32_t bit_width) { + TargetAlignElem retval; + retval.AlignType = align_type; + retval.ABIAlign = abi_align; + retval.PrefAlign = pref_align; + retval.TypeBitWidth = bit_width; + return retval; } +bool +TargetAlignElem::operator==(const TargetAlignElem &rhs) const { + return (AlignType == rhs.AlignType + && ABIAlign == rhs.ABIAlign + && PrefAlign == rhs.PrefAlign + && TypeBitWidth == rhs.TypeBitWidth); +} + +std::ostream & +TargetAlignElem::dump(std::ostream &os) const { + return os << AlignType + << TypeBitWidth + << ":" << (int) (ABIAlign * 8) + << ":" << (int) (PrefAlign * 8); +} + +const TargetAlignElem TargetData::InvalidAlignmentElem = + TargetAlignElem::get((AlignTypeEnum) -1, 0, 0, 0); + //===----------------------------------------------------------------------===// // TargetData Class Implementation //===----------------------------------------------------------------------===// -TargetData::TargetData(const std::string &TargetName, - unsigned char IntRegSize, unsigned char PtrSize, - unsigned char PtrAl, unsigned char DoubleAl, - unsigned char FloatAl, unsigned char LongAl, - unsigned char IntAl, unsigned char ShortAl, - unsigned char ByteAl) - : AID(AnnotationManager::getID("TargetData::" + TargetName)) { - AnnotationManager::registerAnnotationFactory(AID, TypeAnFactory, this); - - IntegerRegSize = IntRegSize; - PointerSize = PtrSize; - PointerAlignment = PtrAl; - DoubleAlignment = DoubleAl; - FloatAlignment = FloatAl; - LongAlignment = LongAl; - IntAlignment = IntAl; - ShortAlignment = ShortAl; - ByteAlignment = ByteAl; +/*! + A TargetDescription string consists of a sequence of hyphen-delimited + specifiers for target endianness, pointer size and alignments, and various + primitive type sizes and alignments. A typical string looks something like: +

+ "E-p:32:32:32-i1:8:8-i8:8:8-i32:32:32-i64:32:64-f32:32:32-f64:32:64" +

+ (note: this string is not fully specified and is only an example.) + \p + Alignments come in two flavors: ABI and preferred. ABI alignment (abi_align, + below) dictates how a type will be aligned within an aggregate and when used + as an argument. Preferred alignment (pref_align, below) determines a type's + alignment when emitted as a global. + \p + Specifier string details: +

+ [E|e]: Endianness. "E" specifies a big-endian target data model, "e" + specifies a little-endian target data model. +

+ p:@verbatim::@endverbatim: Pointer size, + ABI and preferred alignment. +

+ @verbatim::@endverbatim: Numeric type alignment. Type is + one of i|f|v|a, corresponding to integer, floating point, vector (aka + packed) or aggregate. Size indicates the size, e.g., 32 or 64 bits. + \p + The default string, fully specified is: +

+ "E-p:64:64:64-a0:0:0-f32:32:32-f64:0:64" + "-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:0:64" + "-v64:64:64-v128:128:128" +

+ Note that in the case of aggregates, 0 is the default ABI and preferred + alignment. This is a special case, where the aggregate's computed worst-case + alignment will be used. + */ +void TargetData::init(const std::string &TargetDescription) { + std::string temp = TargetDescription; + + LittleEndian = false; + PointerMemSize = 8; + PointerABIAlign = 8; + PointerPrefAlign = PointerABIAlign; + + // Default alignments + setAlignment(INTEGER_ALIGN, 1, 1, 1); // Bool + setAlignment(INTEGER_ALIGN, 1, 1, 8); // Byte + setAlignment(INTEGER_ALIGN, 2, 2, 16); // short + setAlignment(INTEGER_ALIGN, 4, 4, 32); // int + setAlignment(INTEGER_ALIGN, 4, 8, 64); // long + setAlignment(FLOAT_ALIGN, 4, 4, 32); // float + setAlignment(FLOAT_ALIGN, 8, 8, 64); // double + setAlignment(VECTOR_ALIGN, 8, 8, 64); // v2i32 + setAlignment(VECTOR_ALIGN, 16, 16, 128); // v16i8, v8i16, v4i32, ... + setAlignment(AGGREGATE_ALIGN, 0, 8, 0); // struct, union, class, ... + + while (!temp.empty()) { + std::string token = getToken(temp, "-"); + std::string arg0 = getToken(token, ":"); + const char *p = arg0.c_str(); + switch(*p) { + case 'E': + LittleEndian = false; + break; + case 'e': + LittleEndian = true; + break; + case 'p': + PointerMemSize = atoi(getToken(token,":").c_str()) / 8; + PointerABIAlign = atoi(getToken(token,":").c_str()) / 8; + PointerPrefAlign = atoi(getToken(token,":").c_str()) / 8; + if (PointerPrefAlign == 0) + PointerPrefAlign = PointerABIAlign; + break; + case 'i': + case 'v': + case 'f': + case 'a': + case 's': { + AlignTypeEnum align_type; + switch(*p) { + case 'i': align_type = INTEGER_ALIGN; break; + case 'v': align_type = VECTOR_ALIGN; break; + case 'f': align_type = FLOAT_ALIGN; break; + case 'a': align_type = AGGREGATE_ALIGN; break; + case 's': align_type = STACK_ALIGN; break; + } + uint32_t size = (uint32_t) atoi(++p); + unsigned char abi_align = atoi(getToken(token, ":").c_str()) / 8; + unsigned char pref_align = atoi(getToken(token, ":").c_str()) / 8; + if (pref_align == 0) + pref_align = abi_align; + setAlignment(align_type, abi_align, pref_align, size); + break; + } + default: + break; + } + } +} + +TargetData::TargetData(const Module *M) + : ImmutablePass((intptr_t)&ID) { + init(M->getDataLayout()); +} + +void +TargetData::setAlignment(AlignTypeEnum align_type, unsigned char abi_align, + unsigned char pref_align, uint32_t bit_width) { + for (unsigned i = 0, e = Alignments.size(); i != e; ++i) { + if (Alignments[i].AlignType == align_type && + Alignments[i].TypeBitWidth == bit_width) { + // Update the abi, preferred alignments. + Alignments[i].ABIAlign = abi_align; + Alignments[i].PrefAlign = pref_align; + return; + } + } + + Alignments.push_back(TargetAlignElem::get(align_type, abi_align, + pref_align, bit_width)); +} + +/// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or +/// preferred if ABIInfo = false) the target wants for the specified datatype. +unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType, + uint32_t BitWidth, bool ABIInfo) const { + // Check to see if we have an exact match and remember the best match we see. + int BestMatchIdx = -1; + int LargestInt = -1; + for (unsigned i = 0, e = Alignments.size(); i != e; ++i) { + if (Alignments[i].AlignType == AlignType && + Alignments[i].TypeBitWidth == BitWidth) + return ABIInfo ? Alignments[i].ABIAlign : Alignments[i].PrefAlign; + + // The best match so far depends on what we're looking for. + if (AlignType == VECTOR_ALIGN) { + // If this is a specification for a smaller vector type, we will fall back + // to it. This happens because <128 x double> can be implemented in terms + // of 64 <2 x double>. + if (Alignments[i].AlignType == VECTOR_ALIGN && + Alignments[i].TypeBitWidth < BitWidth) { + // Verify that we pick the biggest of the fallbacks. + if (BestMatchIdx == -1 || + Alignments[BestMatchIdx].TypeBitWidth < BitWidth) + BestMatchIdx = i; + } + } else if (AlignType == INTEGER_ALIGN && + Alignments[i].AlignType == INTEGER_ALIGN) { + // The "best match" for integers is the smallest size that is larger than + // the BitWidth requested. + if (Alignments[i].TypeBitWidth > BitWidth && (BestMatchIdx == -1 || + Alignments[i].TypeBitWidth < Alignments[BestMatchIdx].TypeBitWidth)) + BestMatchIdx = i; + // However, if there isn't one that's larger, then we must use the + // largest one we have (see below) + if (LargestInt == -1 || + Alignments[i].TypeBitWidth > Alignments[LargestInt].TypeBitWidth) + LargestInt = i; + } + } + + // For integers, if we didn't find a best match, use the largest one found. + if (BestMatchIdx == -1) + BestMatchIdx = LargestInt; + + // Okay, we didn't find an exact solution. Fall back here depending on what + // is being looked for. + assert(BestMatchIdx != -1 && "Didn't find alignment info for this datatype!"); + + // Since we got a "best match" index, just return it. + return ABIInfo ? Alignments[BestMatchIdx].ABIAlign + : Alignments[BestMatchIdx].PrefAlign; } +/// LayoutInfo - The lazy cache of structure layout information maintained by +/// TargetData. Note that the struct types must have been free'd before +/// llvm_shutdown is called (and thus this is deallocated) because all the +/// targets with cached elements should have been destroyed. +/// +typedef std::pair LayoutKey; + +struct DenseMapLayoutKeyInfo { + static inline LayoutKey getEmptyKey() { return LayoutKey(0, 0); } + static inline LayoutKey getTombstoneKey() { + return LayoutKey((TargetData*)(intptr_t)-1, 0); + } + static unsigned getHashValue(const LayoutKey &Val) { + return DenseMapInfo::getHashValue(Val.first) ^ + DenseMapInfo::getHashValue(Val.second); + } + static bool isEqual(const LayoutKey &LHS, const LayoutKey &RHS) { + return LHS == RHS; + } + + static bool isPod() { return true; } +}; + +typedef DenseMap LayoutInfoTy; +static ManagedStatic LayoutInfo; + + TargetData::~TargetData() { - AnnotationManager::registerAnnotationFactory(AID, 0); // Deregister factory + if (LayoutInfo.isConstructed()) { + // Remove any layouts for this TD. + LayoutInfoTy &TheMap = *LayoutInfo; + for (LayoutInfoTy::iterator I = TheMap.begin(), E = TheMap.end(); + I != E; ) { + if (I->first.first == this) { + I->second->~StructLayout(); + free(I->second); + TheMap.erase(I++); + } else { + ++I; + } + } + } } -static inline void getTypeInfo(const Type *Ty, const TargetData *TD, - uint64_t &Size, unsigned char &Alignment) { +const StructLayout *TargetData::getStructLayout(const StructType *Ty) const { + LayoutInfoTy &TheMap = *LayoutInfo; + + StructLayout *&SL = TheMap[LayoutKey(this, Ty)]; + if (SL) return SL; + + // Otherwise, create the struct layout. Because it is variable length, we + // malloc it, then use placement new. + int NumElts = Ty->getNumElements(); + StructLayout *L = + (StructLayout *)malloc(sizeof(StructLayout)+(NumElts-1)*sizeof(uint64_t)); + + // Set SL before calling StructLayout's ctor. The ctor could cause other + // entries to be added to TheMap, invalidating our reference. + SL = L; + + new (L) StructLayout(Ty, *this); + return L; +} + +/// InvalidateStructLayoutInfo - TargetData speculatively caches StructLayout +/// objects. If a TargetData object is alive when types are being refined and +/// removed, this method must be called whenever a StructType is removed to +/// avoid a dangling pointer in this cache. +void TargetData::InvalidateStructLayoutInfo(const StructType *Ty) const { + if (!LayoutInfo.isConstructed()) return; // No cache. + + LayoutInfoTy::iterator I = LayoutInfo->find(LayoutKey(this, Ty)); + if (I != LayoutInfo->end()) { + I->second->~StructLayout(); + free(I->second); + LayoutInfo->erase(I); + } +} + + +std::string TargetData::getStringRepresentation() const { + std::string repr; + repr.append(LittleEndian ? "e" : "E"); + repr.append("-p:").append(itostr((int64_t) (PointerMemSize * 8))). + append(":").append(itostr((int64_t) (PointerABIAlign * 8))). + append(":").append(itostr((int64_t) (PointerPrefAlign * 8))); + for (align_const_iterator I = Alignments.begin(); + I != Alignments.end(); + ++I) { + repr.append("-").append(1, (char) I->AlignType). + append(utostr((int64_t) I->TypeBitWidth)). + append(":").append(utostr((uint64_t) (I->ABIAlign * 8))). + append(":").append(utostr((uint64_t) (I->PrefAlign * 8))); + } + return repr; +} + + +uint64_t TargetData::getTypeSize(const Type *Ty) const { assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); - switch (Ty->getPrimitiveID()) { - case Type::VoidTyID: - case Type::BoolTyID: - case Type::UByteTyID: - case Type::SByteTyID: Size = 1; Alignment = TD->getByteAlignment(); return; - case Type::UShortTyID: - case Type::ShortTyID: Size = 2; Alignment = TD->getShortAlignment(); return; - case Type::UIntTyID: - case Type::IntTyID: Size = 4; Alignment = TD->getIntAlignment(); return; - case Type::ULongTyID: - case Type::LongTyID: Size = 8; Alignment = TD->getLongAlignment(); return; - case Type::FloatTyID: Size = 4; Alignment = TD->getFloatAlignment(); return; - case Type::DoubleTyID: Size = 8; Alignment = TD->getDoubleAlignment(); return; + switch (Ty->getTypeID()) { case Type::LabelTyID: case Type::PointerTyID: - Size = TD->getPointerSize(); Alignment = TD->getPointerAlignment(); - return; + return getPointerSize(); case Type::ArrayTyID: { - const ArrayType *ATy = (const ArrayType *)Ty; - getTypeInfo(ATy->getElementType(), TD, Size, Alignment); - Size *= ATy->getNumElements(); - return; + const ArrayType *ATy = cast(Ty); + uint64_t Size; + unsigned char Alignment; + Size = getTypeSize(ATy->getElementType()); + Alignment = getABITypeAlignment(ATy->getElementType()); + uint64_t AlignedSize = (Size + Alignment - 1)/Alignment*Alignment; + return AlignedSize*ATy->getNumElements(); } case Type::StructTyID: { // Get the layout annotation... which is lazily created on demand. - const StructLayout *Layout = TD->getStructLayout((const StructType*)Ty); - Size = Layout->StructSize; Alignment = Layout->StructAlignment; - return; + const StructLayout *Layout = getStructLayout(cast(Ty)); + return Layout->getSizeInBytes(); + } + case Type::IntegerTyID: { + unsigned BitWidth = cast(Ty)->getBitWidth(); + if (BitWidth <= 8) { + return 1; + } else if (BitWidth <= 16) { + return 2; + } else if (BitWidth <= 32) { + return 4; + } else if (BitWidth <= 64) { + return 8; + } else { + // The size of this > 64 bit type is chosen as a multiple of the + // preferred alignment of the largest "native" size the target supports. + // We first obtain the the alignment info for this type and then compute + // the next largest multiple of that size. + uint64_t size = getAlignmentInfo(INTEGER_ALIGN, BitWidth, false) * 8; + return (((BitWidth / (size)) + (BitWidth % size != 0)) * size) / 8; + } + break; + } + case Type::VoidTyID: + return 1; + case Type::FloatTyID: + return 4; + case Type::DoubleTyID: + return 8; + case Type::PPC_FP128TyID: + case Type::FP128TyID: + return 16; + // In memory objects this is always aligned to a higher boundary, but + // only 10 bytes contain information. + case Type::X86_FP80TyID: + return 10; + case Type::VectorTyID: { + const VectorType *PTy = cast(Ty); + return PTy->getBitWidth() / 8; } + default: + assert(0 && "TargetData::getTypeSize(): Unsupported type"); + break; + } + return 0; +} + +uint64_t TargetData::getTypeSizeInBits(const Type *Ty) const { + if (Ty->isInteger()) + return cast(Ty)->getBitWidth(); + else + return getTypeSize(Ty) * 8; +} + +uint64_t TargetData::getABITypeSizeInBits(const Type *Ty) const { + if (Ty->isInteger()) + return cast(Ty)->getBitWidth(); + else + return getABITypeSize(Ty) * 8; +} +/*! + \param abi_or_pref Flag that determines which alignment is returned. true + returns the ABI alignment, false returns the preferred alignment. + \param Ty The underlying type for which alignment is determined. + + Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref + == false) for the requested type \a Ty. + */ +unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const { + int AlignType = -1; + + assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); + switch (Ty->getTypeID()) { + /* Early escape for the non-numeric types */ + case Type::LabelTyID: + case Type::PointerTyID: + return (abi_or_pref + ? getPointerABIAlignment() + : getPointerPrefAlignment()); + case Type::ArrayTyID: + return getAlignment(cast(Ty)->getElementType(), abi_or_pref); + + case Type::StructTyID: { + // Packed structure types always have an ABI alignment of one. + if (cast(Ty)->isPacked() && abi_or_pref) + return 1; - case Type::TypeTyID: + // Get the layout annotation... which is lazily created on demand. + const StructLayout *Layout = getStructLayout(cast(Ty)); + unsigned Align = getAlignmentInfo(AGGREGATE_ALIGN, 0, abi_or_pref); + return std::max(Align, (unsigned)Layout->getAlignment()); + } + case Type::IntegerTyID: + case Type::VoidTyID: + AlignType = INTEGER_ALIGN; + break; + case Type::FloatTyID: + case Type::DoubleTyID: + // PPC_FP128TyID and FP128TyID have different data contents, but the + // same size and alignment, so they look the same here. + case Type::PPC_FP128TyID: + case Type::FP128TyID: + case Type::X86_FP80TyID: + AlignType = FLOAT_ALIGN; + break; + case Type::VectorTyID: { + const VectorType *VTy = cast(Ty); + // Degenerate vectors are assumed to be scalar-ized + if (VTy->getNumElements() == 1) + return getAlignment(VTy->getElementType(), abi_or_pref); + else + AlignType = VECTOR_ALIGN; + break; + } default: - assert(0 && "Bad type for getTypeInfo!!!"); - return; + assert(0 && "Bad type for getAlignment!!!"); + break; } + + return getAlignmentInfo((AlignTypeEnum)AlignType, getTypeSize(Ty) * 8, + abi_or_pref); } -uint64_t TargetData::getTypeSize(const Type *Ty) const { - uint64_t Size; - unsigned char Align; - getTypeInfo(Ty, this, Size, Align); - return Size; +unsigned char TargetData::getABITypeAlignment(const Type *Ty) const { + return getAlignment(Ty, true); +} + +unsigned char TargetData::getCallFrameTypeAlignment(const Type *Ty) const { + for (unsigned i = 0, e = Alignments.size(); i != e; ++i) + if (Alignments[i].AlignType == STACK_ALIGN) + return Alignments[i].ABIAlign; + + return getABITypeAlignment(Ty); } -unsigned char TargetData::getTypeAlignment(const Type *Ty) const { - uint64_t Size; - unsigned char Align; - getTypeInfo(Ty, this, Size, Align); - return Align; +unsigned char TargetData::getPrefTypeAlignment(const Type *Ty) const { + return getAlignment(Ty, false); } -uint64_t TargetData::getIndexedOffset(const Type *ptrTy, - const std::vector &Idx) const { +unsigned char TargetData::getPreferredTypeAlignmentShift(const Type *Ty) const { + unsigned Align = (unsigned) getPrefTypeAlignment(Ty); + assert(!(Align & (Align-1)) && "Alignment is not a power of two!"); + return Log2_32(Align); +} + +/// getIntPtrType - Return an unsigned integer type that is the same size or +/// greater to the host pointer size. +const Type *TargetData::getIntPtrType() const { + return IntegerType::get(getPointerSizeInBits()); +} + + +uint64_t TargetData::getIndexedOffset(const Type *ptrTy, Value* const* Indices, + unsigned NumIndices) const { const Type *Ty = ptrTy; assert(isa(Ty) && "Illegal argument for getIndexedOffset()"); uint64_t Result = 0; - for (unsigned CurIDX = 0; CurIDX != Idx.size(); ++CurIDX) { - if (Idx[CurIDX]->getType() == Type::LongTy) { - // Update Ty to refer to current element - Ty = cast(Ty)->getElementType(); - - // Get the array index and the size of each array element. - // Both must be known constants, or this will fail. - // Also, the product needs to be sign-extended from 32 to 64 bits. - int64_t elementSize = (int64_t)getTypeSize(Ty); - int64_t arrayIdx = cast(Idx[CurIDX])->getValue(); - Result += (uint64_t)(arrayIdx * elementSize); - - } else if (const StructType *STy = dyn_cast(Ty)) { - assert(Idx[CurIDX]->getType() == Type::UByteTy && "Illegal struct idx"); - unsigned FieldNo = cast(Idx[CurIDX])->getValue(); + generic_gep_type_iterator + TI = gep_type_begin(ptrTy, Indices, Indices+NumIndices); + for (unsigned CurIDX = 0; CurIDX != NumIndices; ++CurIDX, ++TI) { + if (const StructType *STy = dyn_cast(*TI)) { + assert(Indices[CurIDX]->getType() == Type::Int32Ty && + "Illegal struct idx"); + unsigned FieldNo = cast(Indices[CurIDX])->getZExtValue(); // Get structure layout information... const StructLayout *Layout = getStructLayout(STy); // Add in the offset, as calculated by the structure layout info... - assert(FieldNo < Layout->MemberOffsets.size() &&"FieldNo out of range!"); - Result += Layout->MemberOffsets[FieldNo]; + Result += Layout->getElementOffset(FieldNo); // Update Ty to refer to current element - Ty = STy->getElementTypes()[FieldNo]; - - } else if (isa(Ty)) { - assert(0 && "Loading from arrays not implemented yet!"); + Ty = STy->getElementType(FieldNo); } else { - assert(0 && "Indexing type that is not struct or array?"); - return 0; // Load directly through ptr + // Update Ty to refer to current element + Ty = cast(Ty)->getElementType(); + + // Get the array index and the size of each array element. + int64_t arrayIdx = cast(Indices[CurIDX])->getSExtValue(); + Result += arrayIdx * (int64_t)getTypeSize(Ty); } } return Result; } + +/// getPreferredAlignmentLog - Return the preferred alignment of the +/// specified global, returned in log form. This includes an explicitly +/// requested alignment (if the global has one). +unsigned TargetData::getPreferredAlignmentLog(const GlobalVariable *GV) const { + const Type *ElemType = GV->getType()->getElementType(); + unsigned Alignment = getPreferredTypeAlignmentShift(ElemType); + if (GV->getAlignment() > (1U << Alignment)) + Alignment = Log2_32(GV->getAlignment()); + + if (GV->hasInitializer()) { + if (Alignment < 4) { + // If the global is not external, see if it is large. If so, give it a + // larger alignment. + if (getTypeSize(ElemType) > 128) + Alignment = 4; // 16-byte alignment. + } + } + return Alignment; +}