X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FLinker%2FLinkModules.cpp;h=fe406986fd6e5d4fd52ab9a272ef59d4ca00ccbe;hb=c55f4fb8055591bee9ed577794299c0dd3ff791e;hp=403a1ff90c598c6c1a37066e3b42a14268f2d782;hpb=c35c39b73c0afb658aebdde6edcbc98b924c8ef1;p=oota-llvm.git diff --git a/lib/Linker/LinkModules.cpp b/lib/Linker/LinkModules.cpp index 403a1ff90c5..88b8e443c48 100644 --- a/lib/Linker/LinkModules.cpp +++ b/lib/Linker/LinkModules.cpp @@ -13,114 +13,116 @@ #include "llvm/Linker/Linker.h" #include "llvm-c/Linker.h" -#include "llvm/ADT/Optional.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallString.h" +#include "llvm/ADT/Triple.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/DiagnosticPrinter.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/TypeFinder.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/Cloning.h" -#include -#include using namespace llvm; - //===----------------------------------------------------------------------===// // TypeMap implementation. //===----------------------------------------------------------------------===// namespace { -typedef SmallPtrSet TypeSet; - class TypeMapTy : public ValueMapTypeRemapper { /// This is a mapping from a source type to a destination type to use. - DenseMap MappedTypes; + DenseMap MappedTypes; /// When checking to see if two subgraphs are isomorphic, we speculatively /// add types to MappedTypes, but keep track of them here in case we need to /// roll back. - SmallVector SpeculativeTypes; + SmallVector SpeculativeTypes; + + SmallVector SpeculativeDstOpaqueTypes; /// This is a list of non-opaque structs in the source module that are mapped /// to an opaque struct in the destination module. - SmallVector SrcDefinitionsToResolve; + SmallVector SrcDefinitionsToResolve; /// This is the set of opaque types in the destination modules who are /// getting a body from the source module. - SmallPtrSet DstResolvedOpaqueTypes; + SmallPtrSet DstResolvedOpaqueTypes; public: - TypeMapTy(TypeSet &Set) : DstStructTypesSet(Set) {} + TypeMapTy(Linker::IdentifiedStructTypeSet &DstStructTypesSet) + : DstStructTypesSet(DstStructTypesSet) {} - TypeSet &DstStructTypesSet; + Linker::IdentifiedStructTypeSet &DstStructTypesSet; /// Indicate that the specified type in the destination module is conceptually /// equivalent to the specified type in the source module. void addTypeMapping(Type *DstTy, Type *SrcTy); - /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest - /// module from a type definition in the source module. + /// Produce a body for an opaque type in the dest module from a type + /// definition in the source module. void linkDefinedTypeBodies(); /// Return the mapped type to use for the specified input type from the /// source module. Type *get(Type *SrcTy); + Type *get(Type *SrcTy, SmallPtrSet &Visited); - FunctionType *get(FunctionType *T) {return cast(get((Type*)T));} + void finishType(StructType *DTy, StructType *STy, ArrayRef ETypes); + + FunctionType *get(FunctionType *T) { + return cast(get((Type *)T)); + } /// Dump out the type map for debugging purposes. void dump() const { - for (DenseMap::const_iterator - I = MappedTypes.begin(), E = MappedTypes.end(); I != E; ++I) { + for (auto &Pair : MappedTypes) { dbgs() << "TypeMap: "; - I->first->print(dbgs()); + Pair.first->print(dbgs()); dbgs() << " => "; - I->second->print(dbgs()); + Pair.second->print(dbgs()); dbgs() << '\n'; } } private: - Type *getImpl(Type *T); - /// Implement the ValueMapTypeRemapper interface. - Type *remapType(Type *SrcTy) override { - return get(SrcTy); - } + Type *remapType(Type *SrcTy) override { return get(SrcTy); } bool areTypesIsomorphic(Type *DstTy, Type *SrcTy); }; } void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) { - Type *&Entry = MappedTypes[SrcTy]; - if (Entry) return; - - if (DstTy == SrcTy) { - Entry = DstTy; - return; - } + assert(SpeculativeTypes.empty()); + assert(SpeculativeDstOpaqueTypes.empty()); // Check to see if these types are recursively isomorphic and establish a // mapping between them if so. if (!areTypesIsomorphic(DstTy, SrcTy)) { // Oops, they aren't isomorphic. Just discard this request by rolling out // any speculative mappings we've established. - for (unsigned i = 0, e = SpeculativeTypes.size(); i != e; ++i) - MappedTypes.erase(SpeculativeTypes[i]); + for (Type *Ty : SpeculativeTypes) + MappedTypes.erase(Ty); + + SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() - + SpeculativeDstOpaqueTypes.size()); + for (StructType *Ty : SpeculativeDstOpaqueTypes) + DstResolvedOpaqueTypes.erase(Ty); + } else { + for (Type *Ty : SpeculativeTypes) + if (auto *STy = dyn_cast(Ty)) + if (STy->hasName()) + STy->setName(""); } SpeculativeTypes.clear(); + SpeculativeDstOpaqueTypes.clear(); } /// Recursively walk this pair of types, returning true if they are isomorphic, /// false if they are not. bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) { // Two types with differing kinds are clearly not isomorphic. - if (DstTy->getTypeID() != SrcTy->getTypeID()) return false; + if (DstTy->getTypeID() != SrcTy->getTypeID()) + return false; // If we have an entry in the MappedTypes table, then we have our answer. Type *&Entry = MappedTypes[SrcTy]; @@ -147,14 +149,15 @@ bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) { // Mapping a non-opaque source type to an opaque dest. If this is the first // type that we're mapping onto this destination type then we succeed. Keep - // the dest, but fill it in later. This doesn't need to be speculative. If - // this is the second (different) type that we're trying to map onto the - // same opaque type then we fail. + // the dest, but fill it in later. If this is the second (different) type + // that we're trying to map onto the same opaque type then we fail. if (cast(DstTy)->isOpaque()) { // We can only map one source type onto the opaque destination type. - if (!DstResolvedOpaqueTypes.insert(cast(DstTy))) + if (!DstResolvedOpaqueTypes.insert(cast(DstTy)).second) return false; SrcDefinitionsToResolve.push_back(SSTy); + SpeculativeTypes.push_back(SrcTy); + SpeculativeDstOpaqueTypes.push_back(cast(DstTy)); Entry = DstTy; return true; } @@ -166,7 +169,7 @@ bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) { // Fail if any of the extra properties (e.g. array size) of the type disagree. if (isa(DstTy)) - return false; // bitwidth disagrees. + return false; // bitwidth disagrees. if (PointerType *PT = dyn_cast(DstTy)) { if (PT->getAddressSpace() != cast(SrcTy)->getAddressSpace()) return false; @@ -192,162 +195,154 @@ bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) { Entry = DstTy; SpeculativeTypes.push_back(SrcTy); - for (unsigned i = 0, e = SrcTy->getNumContainedTypes(); i != e; ++i) - if (!areTypesIsomorphic(DstTy->getContainedType(i), - SrcTy->getContainedType(i))) + for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I) + if (!areTypesIsomorphic(DstTy->getContainedType(I), + SrcTy->getContainedType(I))) return false; // If everything seems to have lined up, then everything is great. return true; } -/// Produce a body for an opaque type in the dest module from a type definition -/// in the source module. void TypeMapTy::linkDefinedTypeBodies() { - SmallVector Elements; - SmallString<16> TmpName; - - // Note that processing entries in this loop (calling 'get') can add new - // entries to the SrcDefinitionsToResolve vector. - while (!SrcDefinitionsToResolve.empty()) { - StructType *SrcSTy = SrcDefinitionsToResolve.pop_back_val(); + SmallVector Elements; + for (StructType *SrcSTy : SrcDefinitionsToResolve) { StructType *DstSTy = cast(MappedTypes[SrcSTy]); - - // TypeMap is a many-to-one mapping, if there were multiple types that - // provide a body for DstSTy then previous iterations of this loop may have - // already handled it. Just ignore this case. - if (!DstSTy->isOpaque()) continue; - assert(!SrcSTy->isOpaque() && "Not resolving a definition?"); + assert(DstSTy->isOpaque()); // Map the body of the source type over to a new body for the dest type. Elements.resize(SrcSTy->getNumElements()); - for (unsigned i = 0, e = Elements.size(); i != e; ++i) - Elements[i] = getImpl(SrcSTy->getElementType(i)); + for (unsigned I = 0, E = Elements.size(); I != E; ++I) + Elements[I] = get(SrcSTy->getElementType(I)); DstSTy->setBody(Elements, SrcSTy->isPacked()); + DstStructTypesSet.switchToNonOpaque(DstSTy); + } + SrcDefinitionsToResolve.clear(); + DstResolvedOpaqueTypes.clear(); +} - // If DstSTy has no name or has a longer name than STy, then viciously steal - // STy's name. - if (!SrcSTy->hasName()) continue; - StringRef SrcName = SrcSTy->getName(); +void TypeMapTy::finishType(StructType *DTy, StructType *STy, + ArrayRef ETypes) { + DTy->setBody(ETypes, STy->isPacked()); - if (!DstSTy->hasName() || DstSTy->getName().size() > SrcName.size()) { - TmpName.insert(TmpName.end(), SrcName.begin(), SrcName.end()); - SrcSTy->setName(""); - DstSTy->setName(TmpName.str()); - TmpName.clear(); - } + // Steal STy's name. + if (STy->hasName()) { + SmallString<16> TmpName = STy->getName(); + STy->setName(""); + DTy->setName(TmpName); } - DstResolvedOpaqueTypes.clear(); + DstStructTypesSet.addNonOpaque(DTy); } Type *TypeMapTy::get(Type *Ty) { - Type *Result = getImpl(Ty); - - // If this caused a reference to any struct type, resolve it before returning. - if (!SrcDefinitionsToResolve.empty()) - linkDefinedTypeBodies(); - return Result; + SmallPtrSet Visited; + return get(Ty, Visited); } -/// This is the recursive version of get(). -Type *TypeMapTy::getImpl(Type *Ty) { +Type *TypeMapTy::get(Type *Ty, SmallPtrSet &Visited) { // If we already have an entry for this type, return it. Type **Entry = &MappedTypes[Ty]; - if (*Entry) return *Entry; + if (*Entry) + return *Entry; - // If this is not a named struct type, then just map all of the elements and - // then rebuild the type from inside out. - if (!isa(Ty) || cast(Ty)->isLiteral()) { - // If there are no element types to map, then the type is itself. This is - // true for the anonymous {} struct, things like 'float', integers, etc. - if (Ty->getNumContainedTypes() == 0) - return *Entry = Ty; + // These are types that LLVM itself will unique. + bool IsUniqued = !isa(Ty) || cast(Ty)->isLiteral(); - // Remap all of the elements, keeping track of whether any of them change. - bool AnyChange = false; - SmallVector ElementTypes; - ElementTypes.resize(Ty->getNumContainedTypes()); - for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) { - ElementTypes[i] = getImpl(Ty->getContainedType(i)); - AnyChange |= ElementTypes[i] != Ty->getContainedType(i); +#ifndef NDEBUG + if (!IsUniqued) { + for (auto &Pair : MappedTypes) { + assert(!(Pair.first != Ty && Pair.second == Ty) && + "mapping to a source type"); } + } +#endif - // If we found our type while recursively processing stuff, just use it. - Entry = &MappedTypes[Ty]; - if (*Entry) return *Entry; + if (!IsUniqued && !Visited.insert(cast(Ty)).second) { + StructType *DTy = StructType::create(Ty->getContext()); + return *Entry = DTy; + } - // If all of the element types mapped directly over, then the type is usable - // as-is. - if (!AnyChange) - return *Entry = Ty; + // If this is not a recursive type, then just map all of the elements and + // then rebuild the type from inside out. + SmallVector ElementTypes; + + // If there are no element types to map, then the type is itself. This is + // true for the anonymous {} struct, things like 'float', integers, etc. + if (Ty->getNumContainedTypes() == 0 && IsUniqued) + return *Entry = Ty; + + // Remap all of the elements, keeping track of whether any of them change. + bool AnyChange = false; + ElementTypes.resize(Ty->getNumContainedTypes()); + for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) { + ElementTypes[I] = get(Ty->getContainedType(I), Visited); + AnyChange |= ElementTypes[I] != Ty->getContainedType(I); + } - // Otherwise, rebuild a modified type. - switch (Ty->getTypeID()) { - default: llvm_unreachable("unknown derived type to remap"); - case Type::ArrayTyID: - return *Entry = ArrayType::get(ElementTypes[0], - cast(Ty)->getNumElements()); - case Type::VectorTyID: - return *Entry = VectorType::get(ElementTypes[0], - cast(Ty)->getNumElements()); - case Type::PointerTyID: - return *Entry = PointerType::get(ElementTypes[0], - cast(Ty)->getAddressSpace()); - case Type::FunctionTyID: - return *Entry = FunctionType::get(ElementTypes[0], - makeArrayRef(ElementTypes).slice(1), - cast(Ty)->isVarArg()); - case Type::StructTyID: - // Note that this is only reached for anonymous structs. - return *Entry = StructType::get(Ty->getContext(), ElementTypes, - cast(Ty)->isPacked()); + // If we found our type while recursively processing stuff, just use it. + Entry = &MappedTypes[Ty]; + if (*Entry) { + if (auto *DTy = dyn_cast(*Entry)) { + if (DTy->isOpaque()) { + auto *STy = cast(Ty); + finishType(DTy, STy, ElementTypes); + } } + return *Entry; } - // Otherwise, this is an unmapped named struct. If the struct can be directly - // mapped over, just use it as-is. This happens in a case when the linked-in - // module has something like: - // %T = type {%T*, i32} - // @GV = global %T* null - // where T does not exist at all in the destination module. - // - // The other case we watch for is when the type is not in the destination - // module, but that it has to be rebuilt because it refers to something that - // is already mapped. For example, if the destination module has: - // %A = type { i32 } - // and the source module has something like - // %A' = type { i32 } - // %B = type { %A'* } - // @GV = global %B* null - // then we want to create a new type: "%B = type { %A*}" and have it take the - // pristine "%B" name from the source module. - // - // To determine which case this is, we have to recursively walk the type graph - // speculating that we'll be able to reuse it unmodified. Only if this is - // safe would we map the entire thing over. Because this is an optimization, - // and is not required for the prettiness of the linked module, we just skip - // it and always rebuild a type here. - StructType *STy = cast(Ty); - - // If the type is opaque, we can just use it directly. - if (STy->isOpaque()) { - // A named structure type from src module is used. Add it to the Set of - // identified structs in the destination module. - DstStructTypesSet.insert(STy); - return *Entry = STy; - } - - // Otherwise we create a new type and resolve its body later. This will be - // resolved by the top level of get(). - SrcDefinitionsToResolve.push_back(STy); - StructType *DTy = StructType::create(STy->getContext()); - // A new identified structure type was created. Add it to the set of - // identified structs in the destination module. - DstStructTypesSet.insert(DTy); - DstResolvedOpaqueTypes.insert(DTy); - return *Entry = DTy; + // If all of the element types mapped directly over and the type is not + // a nomed struct, then the type is usable as-is. + if (!AnyChange && IsUniqued) + return *Entry = Ty; + + // Otherwise, rebuild a modified type. + switch (Ty->getTypeID()) { + default: + llvm_unreachable("unknown derived type to remap"); + case Type::ArrayTyID: + return *Entry = ArrayType::get(ElementTypes[0], + cast(Ty)->getNumElements()); + case Type::VectorTyID: + return *Entry = VectorType::get(ElementTypes[0], + cast(Ty)->getNumElements()); + case Type::PointerTyID: + return *Entry = PointerType::get(ElementTypes[0], + cast(Ty)->getAddressSpace()); + case Type::FunctionTyID: + return *Entry = FunctionType::get(ElementTypes[0], + makeArrayRef(ElementTypes).slice(1), + cast(Ty)->isVarArg()); + case Type::StructTyID: { + auto *STy = cast(Ty); + bool IsPacked = STy->isPacked(); + if (IsUniqued) + return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked); + + // If the type is opaque, we can just use it directly. + if (STy->isOpaque()) { + DstStructTypesSet.addOpaque(STy); + return *Entry = Ty; + } + + if (StructType *OldT = + DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) { + STy->setName(""); + return *Entry = OldT; + } + + if (!AnyChange) { + DstStructTypesSet.addNonOpaque(STy); + return *Entry = Ty; + } + + StructType *DTy = StructType::create(Ty->getContext()); + finishType(DTy, STy, ElementTypes); + return *Entry = DTy; + } + } } //===----------------------------------------------------------------------===// @@ -355,149 +350,217 @@ Type *TypeMapTy::getImpl(Type *Ty) { //===----------------------------------------------------------------------===// namespace { - class ModuleLinker; - - /// Creates prototypes for functions that are lazily linked on the fly. This - /// speeds up linking for modules with many/ lazily linked functions of which - /// few get used. - class ValueMaterializerTy : public ValueMaterializer { - TypeMapTy &TypeMap; - Module *DstM; - std::vector &LazilyLinkFunctions; - public: - ValueMaterializerTy(TypeMapTy &TypeMap, Module *DstM, - std::vector &LazilyLinkFunctions) : - ValueMaterializer(), TypeMap(TypeMap), DstM(DstM), - LazilyLinkFunctions(LazilyLinkFunctions) { - } +class ModuleLinker; - Value *materializeValueFor(Value *V) override; - }; - - namespace { - class LinkDiagnosticInfo : public DiagnosticInfo { - const Twine &Msg; - - public: - LinkDiagnosticInfo(DiagnosticSeverity Severity, const Twine &Msg); - void print(DiagnosticPrinter &DP) const override; - }; - LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity, - const Twine &Msg) - : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {} - void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } - } - - /// This is an implementation class for the LinkModules function, which is the - /// entrypoint for this file. - class ModuleLinker { - Module *DstM, *SrcM; - - TypeMapTy TypeMap; - ValueMaterializerTy ValMaterializer; - - /// Mapping of values from what they used to be in Src, to what they are now - /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead - /// due to the use of Value handles which the Linker doesn't actually need, - /// but this allows us to reuse the ValueMapper code. - ValueToValueMapTy ValueMap; - - struct AppendingVarInfo { - GlobalVariable *NewGV; // New aggregate global in dest module. - Constant *DstInit; // Old initializer from dest module. - Constant *SrcInit; // Old initializer from src module. - }; +/// Creates prototypes for functions that are lazily linked on the fly. This +/// speeds up linking for modules with many/ lazily linked functions of which +/// few get used. +class ValueMaterializerTy final : public ValueMaterializer { + ModuleLinker *ModLinker; - std::vector AppendingVars; +public: + ValueMaterializerTy(ModuleLinker *ModLinker) : ModLinker(ModLinker) {} - // Set of items not to link in from source. - SmallPtrSet DoNotLinkFromSource; + Value *materializeDeclFor(Value *V) override; + void materializeInitFor(GlobalValue *New, GlobalValue *Old) override; +}; - // Vector of functions to lazily link in. - std::vector LazilyLinkFunctions; +class LinkDiagnosticInfo : public DiagnosticInfo { + const Twine &Msg; - Linker::DiagnosticHandlerFunction DiagnosticHandler; +public: + LinkDiagnosticInfo(DiagnosticSeverity Severity, const Twine &Msg); + void print(DiagnosticPrinter &DP) const override; +}; +LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity, + const Twine &Msg) + : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {} +void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } - public: - ModuleLinker(Module *dstM, TypeSet &Set, Module *srcM, - Linker::DiagnosticHandlerFunction DiagnosticHandler) - : DstM(dstM), SrcM(srcM), TypeMap(Set), - ValMaterializer(TypeMap, DstM, LazilyLinkFunctions), - DiagnosticHandler(DiagnosticHandler) {} +/// This is an implementation class for the LinkModules function, which is the +/// entrypoint for this file. +class ModuleLinker { + Module &DstM; + Module &SrcM; - bool run(); + TypeMapTy TypeMap; + ValueMaterializerTy ValMaterializer; - private: - bool shouldLinkFromSource(bool &LinkFromSrc, const GlobalValue &Dest, - const GlobalValue &Src); + /// Mapping of values from what they used to be in Src, to what they are now + /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead + /// due to the use of Value handles which the Linker doesn't actually need, + /// but this allows us to reuse the ValueMapper code. + ValueToValueMapTy ValueMap; - /// Helper method for setting a message and returning an error code. - bool emitError(const Twine &Message) { - DiagnosticHandler(LinkDiagnosticInfo(DS_Error, Message)); - return true; - } + SetVector ValuesToLink; - void emitWarning(const Twine &Message) { - DiagnosticHandler(LinkDiagnosticInfo(DS_Warning, Message)); - } + DiagnosticHandlerFunction DiagnosticHandler; - bool getComdatLeader(Module *M, StringRef ComdatName, - const GlobalVariable *&GVar); - bool computeResultingSelectionKind(StringRef ComdatName, - Comdat::SelectionKind Src, - Comdat::SelectionKind Dst, - Comdat::SelectionKind &Result, - bool &LinkFromSrc); - std::map> - ComdatsChosen; - bool getComdatResult(const Comdat *SrcC, Comdat::SelectionKind &SK, - bool &LinkFromSrc); - - /// This analyzes the two global values and determines what the result will - /// look like in the destination module. - bool getLinkageResult(GlobalValue *Dest, const GlobalValue *Src, - GlobalValue::LinkageTypes <, - GlobalValue::VisibilityTypes &Vis, - bool &LinkFromSrc); - - /// Given a global in the source module, return the global in the - /// destination module that is being linked to, if any. - GlobalValue *getLinkedToGlobal(GlobalValue *SrcGV) { - // If the source has no name it can't link. If it has local linkage, - // there is no name match-up going on. - if (!SrcGV->hasName() || SrcGV->hasLocalLinkage()) - return nullptr; - - // Otherwise see if we have a match in the destination module's symtab. - GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName()); - if (!DGV) return nullptr; - - // If we found a global with the same name in the dest module, but it has - // internal linkage, we are really not doing any linkage here. - if (DGV->hasLocalLinkage()) - return nullptr; - - // Otherwise, we do in fact link to the destination global. - return DGV; - } + /// For symbol clashes, prefer those from Src. + unsigned Flags; - void computeTypeMapping(); + /// Function index passed into ModuleLinker for using in function + /// importing/exporting handling. + const FunctionInfoIndex *ImportIndex; - void upgradeMismatchedGlobalArray(StringRef Name); - void upgradeMismatchedGlobals(); + /// Function to import from source module, all other functions are + /// imported as declarations instead of definitions. + DenseSet *ImportFunction; - bool linkAppendingVarProto(GlobalVariable *DstGV, GlobalVariable *SrcGV); - bool linkGlobalProto(GlobalVariable *SrcGV); - bool linkFunctionProto(Function *SrcF); - bool linkAliasProto(GlobalAlias *SrcA); - bool linkModuleFlagsMetadata(); + /// Set to true if the given FunctionInfoIndex contains any functions + /// from this source module, in which case we must conservatively assume + /// that any of its functions may be imported into another module + /// as part of a different backend compilation process. + bool HasExportedFunctions = false; - void linkAppendingVarInit(const AppendingVarInfo &AVI); - void linkGlobalInits(); - void linkFunctionBody(Function *Dst, Function *Src); - void linkAliasBodies(); - void linkNamedMDNodes(); - }; + /// Set to true when all global value body linking is complete (including + /// lazy linking). Used to prevent metadata linking from creating new + /// references. + bool DoneLinkingBodies = false; + + bool HasError = false; + +public: + ModuleLinker(Module &DstM, Linker::IdentifiedStructTypeSet &Set, Module &SrcM, + DiagnosticHandlerFunction DiagnosticHandler, unsigned Flags, + const FunctionInfoIndex *Index = nullptr, + DenseSet *FunctionsToImport = nullptr) + : DstM(DstM), SrcM(SrcM), TypeMap(Set), ValMaterializer(this), + DiagnosticHandler(DiagnosticHandler), Flags(Flags), ImportIndex(Index), + ImportFunction(FunctionsToImport) { + assert((ImportIndex || !ImportFunction) && + "Expect a FunctionInfoIndex when importing"); + // If we have a FunctionInfoIndex but no function to import, + // then this is the primary module being compiled in a ThinLTO + // backend compilation, and we need to see if it has functions that + // may be exported to another backend compilation. + if (ImportIndex && !ImportFunction) + HasExportedFunctions = ImportIndex->hasExportedFunctions(SrcM); + } + + bool run(); + Value *materializeDeclFor(Value *V); + void materializeInitFor(GlobalValue *New, GlobalValue *Old); + +private: + bool shouldOverrideFromSrc() { return Flags & Linker::OverrideFromSrc; } + bool shouldLinkOnlyNeeded() { return Flags & Linker::LinkOnlyNeeded; } + bool shouldInternalizeLinkedSymbols() { + return Flags & Linker::InternalizeLinkedSymbols; + } + + /// Handles cloning of a global values from the source module into + /// the destination module, including setting the attributes and visibility. + GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, + const GlobalValue *DGV, bool ForDefinition); + + /// Check if we should promote the given local value to global scope. + bool doPromoteLocalToGlobal(const GlobalValue *SGV); + + bool shouldLinkFromSource(bool &LinkFromSrc, const GlobalValue &Dest, + const GlobalValue &Src); + + /// Helper method for setting a message and returning an error code. + bool emitError(const Twine &Message) { + DiagnosticHandler(LinkDiagnosticInfo(DS_Error, Message)); + HasError = true; + return true; + } + + void emitWarning(const Twine &Message) { + DiagnosticHandler(LinkDiagnosticInfo(DS_Warning, Message)); + } + + bool getComdatLeader(Module &M, StringRef ComdatName, + const GlobalVariable *&GVar); + bool computeResultingSelectionKind(StringRef ComdatName, + Comdat::SelectionKind Src, + Comdat::SelectionKind Dst, + Comdat::SelectionKind &Result, + bool &LinkFromSrc); + std::map> + ComdatsChosen; + bool getComdatResult(const Comdat *SrcC, Comdat::SelectionKind &SK, + bool &LinkFromSrc); + // Keep track of the global value members of each comdat in source. + DenseMap> ComdatMembers; + + /// Given a global in the source module, return the global in the + /// destination module that is being linked to, if any. + GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) { + // If the source has no name it can't link. If it has local linkage, + // there is no name match-up going on. + if (!SrcGV->hasName() || GlobalValue::isLocalLinkage(getLinkage(SrcGV))) + return nullptr; + + // Otherwise see if we have a match in the destination module's symtab. + GlobalValue *DGV = DstM.getNamedValue(getName(SrcGV)); + if (!DGV) + return nullptr; + + // If we found a global with the same name in the dest module, but it has + // internal linkage, we are really not doing any linkage here. + if (DGV->hasLocalLinkage()) + return nullptr; + + // Otherwise, we do in fact link to the destination global. + return DGV; + } + + void computeTypeMapping(); + + void upgradeMismatchedGlobalArray(StringRef Name); + void upgradeMismatchedGlobals(); + + bool linkIfNeeded(GlobalValue &GV); + Constant *linkAppendingVarProto(GlobalVariable *DstGV, + const GlobalVariable *SrcGV); + + Constant *linkGlobalValueProto(GlobalValue *GV); + bool linkModuleFlagsMetadata(); + + void linkGlobalInit(GlobalVariable &Dst, GlobalVariable &Src); + bool linkFunctionBody(Function &Dst, Function &Src); + void linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src); + bool linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src); + + /// Functions that take care of cloning a specific global value type + /// into the destination module. + GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar); + Function *copyFunctionProto(const Function *SF); + GlobalValue *copyGlobalAliasProto(const GlobalAlias *SGA); + + /// Helper methods to check if we are importing from or potentially + /// exporting from the current source module. + bool isPerformingImport() { return ImportFunction != nullptr; } + bool isModuleExporting() { return HasExportedFunctions; } + + /// If we are importing from the source module, checks if we should + /// import SGV as a definition, otherwise import as a declaration. + bool doImportAsDefinition(const GlobalValue *SGV); + + /// Get the name for SGV that should be used in the linked destination + /// module. Specifically, this handles the case where we need to rename + /// a local that is being promoted to global scope. + std::string getName(const GlobalValue *SGV); + + /// Get the new linkage for SGV that should be used in the linked destination + /// module. Specifically, for ThinLTO importing or exporting it may need + /// to be adjusted. + GlobalValue::LinkageTypes getLinkage(const GlobalValue *SGV); + + /// Copies the necessary global value attributes and name from the source + /// to the newly cloned global value. + void copyGVAttributes(GlobalValue *NewGV, const GlobalValue *SrcGV); + + /// Updates the visibility for the new global cloned from the source + /// and, if applicable, linked with an existing destination global. + /// Handles visibility change required for promoted locals. + void setVisibility(GlobalValue *NewGV, const GlobalValue *SGV, + const GlobalValue *DGV = nullptr); + + void linkNamedMDNodes(); +}; } /// The LLVM SymbolTable class autorenames globals that conflict in the symbol @@ -506,6 +569,9 @@ namespace { static void forceRenaming(GlobalValue *GV, StringRef Name) { // If the global doesn't force its name or if it already has the right name, // there is nothing for us to do. + // Note that any required local to global promotion should already be done, + // so promoted locals will not skip this handling as their linkage is no + // longer local. if (GV->hasLocalLinkage() || GV->getName() == Name) return; @@ -514,64 +580,325 @@ static void forceRenaming(GlobalValue *GV, StringRef Name) { // If there is a conflict, rename the conflict. if (GlobalValue *ConflictGV = M->getNamedValue(Name)) { GV->takeName(ConflictGV); - ConflictGV->setName(Name); // This will cause ConflictGV to get renamed + ConflictGV->setName(Name); // This will cause ConflictGV to get renamed assert(ConflictGV->getName() != Name && "forceRenaming didn't work"); } else { - GV->setName(Name); // Force the name back + GV->setName(Name); // Force the name back } } /// copy additional attributes (those not needed to construct a GlobalValue) /// from the SrcGV to the DestGV. -static void copyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) { - // Use the maximum alignment, rather than just copying the alignment of SrcGV. - auto *DestGO = dyn_cast(DestGV); - unsigned Alignment; - if (DestGO) - Alignment = std::max(DestGO->getAlignment(), SrcGV->getAlignment()); - - DestGV->copyAttributesFrom(SrcGV); - - if (DestGO) - DestGO->setAlignment(Alignment); - - forceRenaming(DestGV, SrcGV->getName()); +void ModuleLinker::copyGVAttributes(GlobalValue *NewGV, + const GlobalValue *SrcGV) { + NewGV->copyAttributesFrom(SrcGV); + forceRenaming(NewGV, getName(SrcGV)); } -static bool isLessConstraining(GlobalValue::VisibilityTypes a, - GlobalValue::VisibilityTypes b) { - if (a == GlobalValue::HiddenVisibility) +bool ModuleLinker::doImportAsDefinition(const GlobalValue *SGV) { + if (!isPerformingImport()) return false; - if (b == GlobalValue::HiddenVisibility) + auto *GA = dyn_cast(SGV); + if (GA) { + if (GA->hasWeakAnyLinkage()) + return false; + const GlobalObject *GO = GA->getBaseObject(); + if (!GO->hasLinkOnceODRLinkage()) + return false; + return doImportAsDefinition(GO); + } + // Always import GlobalVariable definitions, except for the special + // case of WeakAny which are imported as ExternalWeak declarations + // (see comments in ModuleLinker::getLinkage). The linkage changes + // described in ModuleLinker::getLinkage ensure the correct behavior (e.g. + // global variables with external linkage are transformed to + // available_externally definitions, which are ultimately turned into + // declarations after the EliminateAvailableExternally pass). + if (isa(SGV) && !SGV->isDeclaration() && + !SGV->hasWeakAnyLinkage()) return true; - if (a == GlobalValue::ProtectedVisibility) - return false; - if (b == GlobalValue::ProtectedVisibility) + // Only import the function requested for importing. + auto *SF = dyn_cast(SGV); + if (SF && ImportFunction->count(SF)) return true; + // Otherwise no. return false; } -Value *ValueMaterializerTy::materializeValueFor(Value *V) { - Function *SF = dyn_cast(V); - if (!SF) +bool ModuleLinker::doPromoteLocalToGlobal(const GlobalValue *SGV) { + assert(SGV->hasLocalLinkage()); + // Both the imported references and the original local variable must + // be promoted. + if (!isPerformingImport() && !isModuleExporting()) + return false; + + // Local const variables never need to be promoted unless they are address + // taken. The imported uses can simply use the clone created in this module. + // For now we are conservative in determining which variables are not + // address taken by checking the unnamed addr flag. To be more aggressive, + // the address taken information must be checked earlier during parsing + // of the module and recorded in the function index for use when importing + // from that module. + auto *GVar = dyn_cast(SGV); + if (GVar && GVar->isConstant() && GVar->hasUnnamedAddr()) + return false; + + // Eventually we only need to promote functions in the exporting module that + // are referenced by a potentially exported function (i.e. one that is in the + // function index). + return true; +} + +std::string ModuleLinker::getName(const GlobalValue *SGV) { + // For locals that must be promoted to global scope, ensure that + // the promoted name uniquely identifies the copy in the original module, + // using the ID assigned during combined index creation. When importing, + // we rename all locals (not just those that are promoted) in order to + // avoid naming conflicts between locals imported from different modules. + if (SGV->hasLocalLinkage() && + (doPromoteLocalToGlobal(SGV) || isPerformingImport())) + return FunctionInfoIndex::getGlobalNameForLocal( + SGV->getName(), + ImportIndex->getModuleId(SGV->getParent()->getModuleIdentifier())); + return SGV->getName(); +} + +GlobalValue::LinkageTypes ModuleLinker::getLinkage(const GlobalValue *SGV) { + // Any local variable that is referenced by an exported function needs + // to be promoted to global scope. Since we don't currently know which + // functions reference which local variables/functions, we must treat + // all as potentially exported if this module is exporting anything. + if (isModuleExporting()) { + if (SGV->hasLocalLinkage() && doPromoteLocalToGlobal(SGV)) + return GlobalValue::ExternalLinkage; + return SGV->getLinkage(); + } + + // Otherwise, if we aren't importing, no linkage change is needed. + if (!isPerformingImport()) + return SGV->getLinkage(); + + switch (SGV->getLinkage()) { + case GlobalValue::ExternalLinkage: + // External defnitions are converted to available_externally + // definitions upon import, so that they are available for inlining + // and/or optimization, but are turned into declarations later + // during the EliminateAvailableExternally pass. + if (doImportAsDefinition(SGV) && !dyn_cast(SGV)) + return GlobalValue::AvailableExternallyLinkage; + // An imported external declaration stays external. + return SGV->getLinkage(); + + case GlobalValue::AvailableExternallyLinkage: + // An imported available_externally definition converts + // to external if imported as a declaration. + if (!doImportAsDefinition(SGV)) + return GlobalValue::ExternalLinkage; + // An imported available_externally declaration stays that way. + return SGV->getLinkage(); + + case GlobalValue::LinkOnceAnyLinkage: + case GlobalValue::LinkOnceODRLinkage: + // These both stay the same when importing the definition. + // The ThinLTO pass will eventually force-import their definitions. + return SGV->getLinkage(); + + case GlobalValue::WeakAnyLinkage: + // Can't import weak_any definitions correctly, or we might change the + // program semantics, since the linker will pick the first weak_any + // definition and importing would change the order they are seen by the + // linker. The module linking caller needs to enforce this. + assert(!doImportAsDefinition(SGV)); + // If imported as a declaration, it becomes external_weak. + return GlobalValue::ExternalWeakLinkage; + + case GlobalValue::WeakODRLinkage: + // For weak_odr linkage, there is a guarantee that all copies will be + // equivalent, so the issue described above for weak_any does not exist, + // and the definition can be imported. It can be treated similarly + // to an imported externally visible global value. + if (doImportAsDefinition(SGV) && !dyn_cast(SGV)) + return GlobalValue::AvailableExternallyLinkage; + else + return GlobalValue::ExternalLinkage; + + case GlobalValue::AppendingLinkage: + // It would be incorrect to import an appending linkage variable, + // since it would cause global constructors/destructors to be + // executed multiple times. This should have already been handled + // by linkIfNeeded, and we will assert in shouldLinkFromSource + // if we try to import, so we simply return AppendingLinkage here + // as this helper is called more widely in getLinkedToGlobal. + return GlobalValue::AppendingLinkage; + + case GlobalValue::InternalLinkage: + case GlobalValue::PrivateLinkage: + // If we are promoting the local to global scope, it is handled + // similarly to a normal externally visible global. + if (doPromoteLocalToGlobal(SGV)) { + if (doImportAsDefinition(SGV) && !dyn_cast(SGV)) + return GlobalValue::AvailableExternallyLinkage; + else + return GlobalValue::ExternalLinkage; + } + // A non-promoted imported local definition stays local. + // The ThinLTO pass will eventually force-import their definitions. + return SGV->getLinkage(); + + case GlobalValue::ExternalWeakLinkage: + // External weak doesn't apply to definitions, must be a declaration. + assert(!doImportAsDefinition(SGV)); + // Linkage stays external_weak. + return SGV->getLinkage(); + + case GlobalValue::CommonLinkage: + // Linkage stays common on definitions. + // The ThinLTO pass will eventually force-import their definitions. + return SGV->getLinkage(); + } + + llvm_unreachable("unknown linkage type"); +} + +/// Loop through the global variables in the src module and merge them into the +/// dest module. +GlobalVariable * +ModuleLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) { + // No linking to be performed or linking from the source: simply create an + // identical version of the symbol over in the dest module... the + // initializer will be filled in later by LinkGlobalInits. + GlobalVariable *NewDGV = + new GlobalVariable(DstM, TypeMap.get(SGVar->getType()->getElementType()), + SGVar->isConstant(), GlobalValue::ExternalLinkage, + /*init*/ nullptr, getName(SGVar), + /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(), + SGVar->getType()->getAddressSpace()); + + return NewDGV; +} + +/// Link the function in the source module into the destination module if +/// needed, setting up mapping information. +Function *ModuleLinker::copyFunctionProto(const Function *SF) { + // If there is no linkage to be performed or we are linking from the source, + // bring SF over. + return Function::Create(TypeMap.get(SF->getFunctionType()), + GlobalValue::ExternalLinkage, getName(SF), &DstM); +} + +/// Set up prototypes for any aliases that come over from the source module. +GlobalValue *ModuleLinker::copyGlobalAliasProto(const GlobalAlias *SGA) { + // If there is no linkage to be performed or we're linking from the source, + // bring over SGA. + auto *Ty = TypeMap.get(SGA->getValueType()); + return GlobalAlias::create(Ty, SGA->getType()->getPointerAddressSpace(), + GlobalValue::ExternalLinkage, getName(SGA), &DstM); +} + +static GlobalValue::VisibilityTypes +getMinVisibility(GlobalValue::VisibilityTypes A, + GlobalValue::VisibilityTypes B) { + if (A == GlobalValue::HiddenVisibility || B == GlobalValue::HiddenVisibility) + return GlobalValue::HiddenVisibility; + if (A == GlobalValue::ProtectedVisibility || + B == GlobalValue::ProtectedVisibility) + return GlobalValue::ProtectedVisibility; + return GlobalValue::DefaultVisibility; +} + +void ModuleLinker::setVisibility(GlobalValue *NewGV, const GlobalValue *SGV, + const GlobalValue *DGV) { + GlobalValue::VisibilityTypes Visibility = SGV->getVisibility(); + if (DGV) + Visibility = getMinVisibility(DGV->getVisibility(), Visibility); + // For promoted locals, mark them hidden so that they can later be + // stripped from the symbol table to reduce bloat. + if (SGV->hasLocalLinkage() && doPromoteLocalToGlobal(SGV)) + Visibility = GlobalValue::HiddenVisibility; + NewGV->setVisibility(Visibility); +} + +GlobalValue *ModuleLinker::copyGlobalValueProto(const GlobalValue *SGV, + const GlobalValue *DGV, + bool ForDefinition) { + GlobalValue *NewGV; + if (auto *SGVar = dyn_cast(SGV)) { + NewGV = copyGlobalVariableProto(SGVar); + } else if (auto *SF = dyn_cast(SGV)) { + NewGV = copyFunctionProto(SF); + } else { + if (ForDefinition) + NewGV = copyGlobalAliasProto(cast(SGV)); + else + NewGV = new GlobalVariable( + DstM, TypeMap.get(SGV->getType()->getElementType()), + /*isConstant*/ false, GlobalValue::ExternalLinkage, + /*init*/ nullptr, getName(SGV), + /*insertbefore*/ nullptr, SGV->getThreadLocalMode(), + SGV->getType()->getAddressSpace()); + } + + if (ForDefinition) + NewGV->setLinkage(getLinkage(SGV)); + else if (SGV->hasAvailableExternallyLinkage() || SGV->hasWeakLinkage() || + SGV->hasLinkOnceLinkage()) + NewGV->setLinkage(GlobalValue::ExternalWeakLinkage); + + copyGVAttributes(NewGV, SGV); + setVisibility(NewGV, SGV, DGV); + return NewGV; +} + +Value *ValueMaterializerTy::materializeDeclFor(Value *V) { + return ModLinker->materializeDeclFor(V); +} + +Value *ModuleLinker::materializeDeclFor(Value *V) { + auto *SGV = dyn_cast(V); + if (!SGV) return nullptr; - Function *DF = Function::Create(TypeMap.get(SF->getFunctionType()), - SF->getLinkage(), SF->getName(), DstM); - copyGVAttributes(DF, SF); + return linkGlobalValueProto(SGV); +} + +void ValueMaterializerTy::materializeInitFor(GlobalValue *New, + GlobalValue *Old) { + return ModLinker->materializeInitFor(New, Old); +} + +static bool shouldLazyLink(const GlobalValue &GV) { + return GV.hasLocalLinkage() || GV.hasLinkOnceLinkage() || + GV.hasAvailableExternallyLinkage(); +} - if (Comdat *SC = SF->getComdat()) { - Comdat *DC = DstM->getOrInsertComdat(SC->getName()); - DF->setComdat(DC); +void ModuleLinker::materializeInitFor(GlobalValue *New, GlobalValue *Old) { + if (auto *F = dyn_cast(New)) { + if (!F->isDeclaration()) + return; + } else if (auto *V = dyn_cast(New)) { + if (V->hasInitializer()) + return; + } else { + auto *A = cast(New); + if (A->getAliasee()) + return; } - LazilyLinkFunctions.push_back(SF); - return DF; + if (Old->isDeclaration()) + return; + + if (isPerformingImport() && !doImportAsDefinition(Old)) + return; + + if (!ValuesToLink.count(Old) && !shouldLazyLink(*Old)) + return; + + linkGlobalValueBody(*New, *Old); } -bool ModuleLinker::getComdatLeader(Module *M, StringRef ComdatName, +bool ModuleLinker::getComdatLeader(Module &M, StringRef ComdatName, const GlobalVariable *&GVar) { - const GlobalValue *GVal = M->getNamedValue(ComdatName); + const GlobalValue *GVal = M.getNamedValue(ComdatName); if (const auto *GA = dyn_cast_or_null(GVal)) { GVal = GA->getBaseObject(); if (!GVal) @@ -630,17 +957,12 @@ bool ModuleLinker::computeResultingSelectionKind(StringRef ComdatName, getComdatLeader(SrcM, ComdatName, SrcGV)) return true; - const DataLayout *DstDL = DstM->getDataLayout(); - const DataLayout *SrcDL = SrcM->getDataLayout(); - if (!DstDL || !SrcDL) { - return emitError( - "Linking COMDATs named '" + ComdatName + - "': can't do size dependent selection without DataLayout!"); - } + const DataLayout &DstDL = DstM.getDataLayout(); + const DataLayout &SrcDL = SrcM.getDataLayout(); uint64_t DstSize = - DstDL->getTypeAllocSize(DstGV->getType()->getPointerElementType()); + DstDL.getTypeAllocSize(DstGV->getType()->getPointerElementType()); uint64_t SrcSize = - SrcDL->getTypeAllocSize(SrcGV->getType()->getPointerElementType()); + SrcDL.getTypeAllocSize(SrcGV->getType()->getPointerElementType()); if (Result == Comdat::SelectionKind::ExactMatch) { if (SrcGV->getInitializer() != DstGV->getInitializer()) return emitError("Linking COMDATs named '" + ComdatName + @@ -668,7 +990,7 @@ bool ModuleLinker::getComdatResult(const Comdat *SrcC, bool &LinkFromSrc) { Comdat::SelectionKind SSK = SrcC->getSelectionKind(); StringRef ComdatName = SrcC->getName(); - Module::ComdatSymTabType &ComdatSymTab = DstM->getComdatSymbolTable(); + Module::ComdatSymTabType &ComdatSymTab = DstM.getComdatSymbolTable(); Module::ComdatSymTabType::iterator DstCI = ComdatSymTab.find(ComdatName); if (DstCI == ComdatSymTab.end()) { @@ -687,11 +1009,44 @@ bool ModuleLinker::getComdatResult(const Comdat *SrcC, bool ModuleLinker::shouldLinkFromSource(bool &LinkFromSrc, const GlobalValue &Dest, const GlobalValue &Src) { + // Should we unconditionally use the Src? + if (shouldOverrideFromSrc()) { + LinkFromSrc = true; + return false; + } + + // We always have to add Src if it has appending linkage. + if (Src.hasAppendingLinkage()) { + // Should have prevented importing for appending linkage in linkIfNeeded. + assert(!isPerformingImport()); + LinkFromSrc = true; + return false; + } + bool SrcIsDeclaration = Src.isDeclarationForLinker(); bool DestIsDeclaration = Dest.isDeclarationForLinker(); - // FIXME: Make datalayout mandatory and just use getDataLayout(). - DataLayout DL(Dest.getParent()); + if (isPerformingImport()) { + if (isa(&Src)) { + // For functions, LinkFromSrc iff this is the function requested + // for importing. For variables, decide below normally. + LinkFromSrc = ImportFunction->count(&Src); + return false; + } + + // Check if this is an alias with an already existing definition + // in Dest, which must have come from a prior importing pass from + // the same Src module. Unlike imported function and variable + // definitions, which are imported as available_externally and are + // not definitions for the linker, that is not a valid linkage for + // imported aliases which must be definitions. Simply use the existing + // Dest copy. + if (isa(&Src) && !DestIsDeclaration) { + assert(isa(&Dest)); + LinkFromSrc = false; + return false; + } + } if (SrcIsDeclaration) { // If Src is external or if both Src & Dest are external.. Just link the @@ -723,6 +1078,7 @@ bool ModuleLinker::shouldLinkFromSource(bool &LinkFromSrc, return false; } + const DataLayout &DL = Dest.getParent()->getDataLayout(); uint64_t DestSize = DL.getTypeAllocSize(Dest.getType()->getElementType()); uint64_t SrcSize = DL.getTypeAllocSize(Src.getType()->getElementType()); LinkFromSrc = SrcSize > DestSize; @@ -756,108 +1112,78 @@ bool ModuleLinker::shouldLinkFromSource(bool &LinkFromSrc, "': symbol multiply defined!"); } -/// This analyzes the two global values and determines what the result will look -/// like in the destination module. In particular, it computes the resultant -/// linkage type and visibility, computes whether the global in the source -/// should be copied over to the destination (replacing the existing one), and -/// computes whether this linkage is an error or not. -bool ModuleLinker::getLinkageResult(GlobalValue *Dest, const GlobalValue *Src, - GlobalValue::LinkageTypes <, - GlobalValue::VisibilityTypes &Vis, - bool &LinkFromSrc) { - assert(Dest && "Must have two globals being queried"); - assert(!Src->hasLocalLinkage() && - "If Src has internal linkage, Dest shouldn't be set!"); - - if (shouldLinkFromSource(LinkFromSrc, *Dest, *Src)) - return true; - - if (LinkFromSrc) - LT = Src->getLinkage(); - else - LT = Dest->getLinkage(); - - // Compute the visibility. We follow the rules in the System V Application - // Binary Interface. - assert(!GlobalValue::isLocalLinkage(LT) && - "Symbols with local linkage should not be merged"); - Vis = isLessConstraining(Src->getVisibility(), Dest->getVisibility()) ? - Dest->getVisibility() : Src->getVisibility(); - return false; -} - /// Loop over all of the linked values to compute type mappings. For example, /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct /// types 'Foo' but one got renamed when the module was loaded into the same /// LLVMContext. void ModuleLinker::computeTypeMapping() { - // Incorporate globals. - for (Module::global_iterator I = SrcM->global_begin(), - E = SrcM->global_end(); I != E; ++I) { - GlobalValue *DGV = getLinkedToGlobal(I); - if (!DGV) continue; - - if (!DGV->hasAppendingLinkage() || !I->hasAppendingLinkage()) { - TypeMap.addTypeMapping(DGV->getType(), I->getType()); + for (GlobalValue &SGV : SrcM.globals()) { + GlobalValue *DGV = getLinkedToGlobal(&SGV); + if (!DGV) + continue; + + if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) { + TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); continue; } // Unify the element type of appending arrays. ArrayType *DAT = cast(DGV->getType()->getElementType()); - ArrayType *SAT = cast(I->getType()->getElementType()); + ArrayType *SAT = cast(SGV.getType()->getElementType()); TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType()); } - // Incorporate functions. - for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) { - if (GlobalValue *DGV = getLinkedToGlobal(I)) - TypeMap.addTypeMapping(DGV->getType(), I->getType()); + for (GlobalValue &SGV : SrcM) { + if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) + TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); + } + + for (GlobalValue &SGV : SrcM.aliases()) { + if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) + TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); } // Incorporate types by name, scanning all the types in the source module. // At this point, the destination module may have a type "%foo = { i32 }" for // example. When the source module got loaded into the same LLVMContext, if // it had the same type, it would have been renamed to "%foo.42 = { i32 }". - TypeFinder SrcStructTypes; - SrcStructTypes.run(*SrcM, true); - SmallPtrSet SrcStructTypesSet(SrcStructTypes.begin(), - SrcStructTypes.end()); - - for (unsigned i = 0, e = SrcStructTypes.size(); i != e; ++i) { - StructType *ST = SrcStructTypes[i]; - if (!ST->hasName()) continue; + std::vector Types = SrcM.getIdentifiedStructTypes(); + for (StructType *ST : Types) { + if (!ST->hasName()) + continue; // Check to see if there is a dot in the name followed by a digit. size_t DotPos = ST->getName().rfind('.'); if (DotPos == 0 || DotPos == StringRef::npos || ST->getName().back() == '.' || - !isdigit(static_cast(ST->getName()[DotPos+1]))) + !isdigit(static_cast(ST->getName()[DotPos + 1]))) continue; // Check to see if the destination module has a struct with the prefix name. - if (StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos))) - // Don't use it if this actually came from the source module. They're in - // the same LLVMContext after all. Also don't use it unless the type is - // actually used in the destination module. This can happen in situations - // like this: - // - // Module A Module B - // -------- -------- - // %Z = type { %A } %B = type { %C.1 } - // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* } - // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] } - // %C = type { i8* } %B.3 = type { %C.1 } - // - // When we link Module B with Module A, the '%B' in Module B is - // used. However, that would then use '%C.1'. But when we process '%C.1', - // we prefer to take the '%C' version. So we are then left with both - // '%C.1' and '%C' being used for the same types. This leads to some - // variables using one type and some using the other. - if (!SrcStructTypesSet.count(DST) && TypeMap.DstStructTypesSet.count(DST)) - TypeMap.addTypeMapping(DST, ST); - } - - // Don't bother incorporating aliases, they aren't generally typed well. + StructType *DST = DstM.getTypeByName(ST->getName().substr(0, DotPos)); + if (!DST) + continue; + + // Don't use it if this actually came from the source module. They're in + // the same LLVMContext after all. Also don't use it unless the type is + // actually used in the destination module. This can happen in situations + // like this: + // + // Module A Module B + // -------- -------- + // %Z = type { %A } %B = type { %C.1 } + // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* } + // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] } + // %C = type { i8* } %B.3 = type { %C.1 } + // + // When we link Module B with Module A, the '%B' in Module B is + // used. However, that would then use '%C.1'. But when we process '%C.1', + // we prefer to take the '%C' version. So we are then left with both + // '%C.1' and '%C' being used for the same types. This leads to some + // variables using one type and some using the other. + if (TypeMap.DstStructTypesSet.hasType(DST)) + TypeMap.addTypeMapping(DST, ST); + } // Now that we have discovered all of the type equivalences, get a body for // any 'opaque' types in the dest module that are now resolved. @@ -908,10 +1234,10 @@ static void upgradeGlobalArray(GlobalVariable *GV) { void ModuleLinker::upgradeMismatchedGlobalArray(StringRef Name) { // Look for the global arrays. - auto *DstGV = dyn_cast_or_null(DstM->getNamedValue(Name)); + auto *DstGV = dyn_cast_or_null(DstM.getNamedValue(Name)); if (!DstGV) return; - auto *SrcGV = dyn_cast_or_null(SrcM->getNamedValue(Name)); + auto *SrcGV = dyn_cast_or_null(SrcM.getNamedValue(Name)); if (!SrcGV) return; @@ -941,458 +1267,329 @@ void ModuleLinker::upgradeMismatchedGlobals() { upgradeMismatchedGlobalArray("llvm.global_dtors"); } +static void getArrayElements(const Constant *C, + SmallVectorImpl &Dest) { + unsigned NumElements = cast(C->getType())->getNumElements(); + + for (unsigned i = 0; i != NumElements; ++i) + Dest.push_back(C->getAggregateElement(i)); +} + /// If there were any appending global variables, link them together now. /// Return true on error. -bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV, - GlobalVariable *SrcGV) { +Constant *ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV, + const GlobalVariable *SrcGV) { + ArrayType *SrcTy = + cast(TypeMap.get(SrcGV->getType()->getElementType())); + Type *EltTy = SrcTy->getElementType(); - if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage()) - return emitError("Linking globals named '" + SrcGV->getName() + - "': can only link appending global with another appending global!"); + if (DstGV) { + ArrayType *DstTy = cast(DstGV->getType()->getElementType()); - ArrayType *DstTy = cast(DstGV->getType()->getElementType()); - ArrayType *SrcTy = - cast(TypeMap.get(SrcGV->getType()->getElementType())); - Type *EltTy = DstTy->getElementType(); + if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage()) { + emitError( + "Linking globals named '" + SrcGV->getName() + + "': can only link appending global with another appending global!"); + return nullptr; + } - // Check to see that they two arrays agree on type. - if (EltTy != SrcTy->getElementType()) - return emitError("Appending variables with different element types!"); - if (DstGV->isConstant() != SrcGV->isConstant()) - return emitError("Appending variables linked with different const'ness!"); + // Check to see that they two arrays agree on type. + if (EltTy != DstTy->getElementType()) { + emitError("Appending variables with different element types!"); + return nullptr; + } + if (DstGV->isConstant() != SrcGV->isConstant()) { + emitError("Appending variables linked with different const'ness!"); + return nullptr; + } - if (DstGV->getAlignment() != SrcGV->getAlignment()) - return emitError( - "Appending variables with different alignment need to be linked!"); + if (DstGV->getAlignment() != SrcGV->getAlignment()) { + emitError( + "Appending variables with different alignment need to be linked!"); + return nullptr; + } - if (DstGV->getVisibility() != SrcGV->getVisibility()) - return emitError( - "Appending variables with different visibility need to be linked!"); + if (DstGV->getVisibility() != SrcGV->getVisibility()) { + emitError( + "Appending variables with different visibility need to be linked!"); + return nullptr; + } - if (DstGV->hasUnnamedAddr() != SrcGV->hasUnnamedAddr()) - return emitError( - "Appending variables with different unnamed_addr need to be linked!"); + if (DstGV->hasUnnamedAddr() != SrcGV->hasUnnamedAddr()) { + emitError( + "Appending variables with different unnamed_addr need to be linked!"); + return nullptr; + } - if (StringRef(DstGV->getSection()) != SrcGV->getSection()) - return emitError( + if (StringRef(DstGV->getSection()) != SrcGV->getSection()) { + emitError( "Appending variables with different section name need to be linked!"); + return nullptr; + } + } - uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements(); + SmallVector DstElements; + if (DstGV) + getArrayElements(DstGV->getInitializer(), DstElements); + + SmallVector SrcElements; + getArrayElements(SrcGV->getInitializer(), SrcElements); + + StringRef Name = SrcGV->getName(); + bool IsNewStructor = + (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") && + cast(EltTy)->getNumElements() == 3; + if (IsNewStructor) + SrcElements.erase( + std::remove_if(SrcElements.begin(), SrcElements.end(), + [this](Constant *E) { + auto *Key = dyn_cast( + E->getAggregateElement(2)->stripPointerCasts()); + return Key && !ValuesToLink.count(Key) && + !shouldLazyLink(*Key); + }), + SrcElements.end()); + uint64_t NewSize = DstElements.size() + SrcElements.size(); ArrayType *NewType = ArrayType::get(EltTy, NewSize); // Create the new global variable. - GlobalVariable *NG = - new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(), - DstGV->getLinkage(), /*init*/nullptr, /*name*/"", DstGV, - DstGV->getThreadLocalMode(), - DstGV->getType()->getAddressSpace()); + GlobalVariable *NG = new GlobalVariable( + DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(), + /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(), + SrcGV->getType()->getAddressSpace()); // Propagate alignment, visibility and section info. - copyGVAttributes(NG, DstGV); - - AppendingVarInfo AVI; - AVI.NewGV = NG; - AVI.DstInit = DstGV->getInitializer(); - AVI.SrcInit = SrcGV->getInitializer(); - AppendingVars.push_back(AVI); - - // Replace any uses of the two global variables with uses of the new - // global. - ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType())); - - DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType())); - DstGV->eraseFromParent(); - - // Track the source variable so we don't try to link it. - DoNotLinkFromSource.insert(SrcGV); - - return false; -} - -/// Loop through the global variables in the src module and merge them into the -/// dest module. -bool ModuleLinker::linkGlobalProto(GlobalVariable *SGV) { - GlobalValue *DGV = getLinkedToGlobal(SGV); - llvm::Optional NewVisibility; - bool HasUnnamedAddr = SGV->hasUnnamedAddr(); - unsigned Alignment = SGV->getAlignment(); + copyGVAttributes(NG, SrcGV); - bool LinkFromSrc = false; - Comdat *DC = nullptr; - if (const Comdat *SC = SGV->getComdat()) { - Comdat::SelectionKind SK; - std::tie(SK, LinkFromSrc) = ComdatsChosen[SC]; - DC = DstM->getOrInsertComdat(SC->getName()); - DC->setSelectionKind(SK); - } - - if (DGV) { - if (!DC) { - // Concatenation of appending linkage variables is magic and handled later. - if (DGV->hasAppendingLinkage() || SGV->hasAppendingLinkage()) - return linkAppendingVarProto(cast(DGV), SGV); - - // Determine whether linkage of these two globals follows the source - // module's definition or the destination module's definition. - GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage; - GlobalValue::VisibilityTypes NV; - if (getLinkageResult(DGV, SGV, NewLinkage, NV, LinkFromSrc)) - return true; - NewVisibility = NV; - HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr(); - if (DGV->hasCommonLinkage() && SGV->hasCommonLinkage()) - Alignment = std::max(Alignment, DGV->getAlignment()); - else if (!LinkFromSrc) - Alignment = DGV->getAlignment(); - - // If we're not linking from the source, then keep the definition that we - // have. - if (!LinkFromSrc) { - // Special case for const propagation. - if (GlobalVariable *DGVar = dyn_cast(DGV)) { - DGVar->setAlignment(Alignment); - - if (DGVar->isDeclaration() && SGV->isConstant() && - !DGVar->isConstant()) - DGVar->setConstant(true); - } - - // Set calculated linkage, visibility and unnamed_addr. - DGV->setLinkage(NewLinkage); - DGV->setVisibility(*NewVisibility); - DGV->setUnnamedAddr(HasUnnamedAddr); - } - } - - if (!LinkFromSrc) { - // Make sure to remember this mapping. - ValueMap[SGV] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGV->getType())); + Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType())); - // Track the source global so that we don't attempt to copy it over when - // processing global initializers. - DoNotLinkFromSource.insert(SGV); + // Stop recursion. + ValueMap[SrcGV] = Ret; - return false; - } + for (auto *V : SrcElements) { + DstElements.push_back( + MapValue(V, ValueMap, RF_MoveDistinctMDs, &TypeMap, &ValMaterializer)); } - // If the Comdat this variable was inside of wasn't selected, skip it. - if (DC && !DGV && !LinkFromSrc) { - DoNotLinkFromSource.insert(SGV); - return false; + NG->setInitializer(ConstantArray::get(NewType, DstElements)); + + // Replace any uses of the two global variables with uses of the new + // global. + if (DstGV) { + DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType())); + DstGV->eraseFromParent(); } - // No linking to be performed or linking from the source: simply create an - // identical version of the symbol over in the dest module... the - // initializer will be filled in later by LinkGlobalInits. - GlobalVariable *NewDGV = - new GlobalVariable(*DstM, TypeMap.get(SGV->getType()->getElementType()), - SGV->isConstant(), SGV->getLinkage(), /*init*/nullptr, - SGV->getName(), /*insertbefore*/nullptr, - SGV->getThreadLocalMode(), - SGV->getType()->getAddressSpace()); - // Propagate alignment, visibility and section info. - copyGVAttributes(NewDGV, SGV); - NewDGV->setAlignment(Alignment); - if (NewVisibility) - NewDGV->setVisibility(*NewVisibility); - NewDGV->setUnnamedAddr(HasUnnamedAddr); + return Ret; +} - if (DC) - NewDGV->setComdat(DC); +Constant *ModuleLinker::linkGlobalValueProto(GlobalValue *SGV) { + GlobalValue *DGV = getLinkedToGlobal(SGV); - if (DGV) { - DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, DGV->getType())); - DGV->eraseFromParent(); + // Handle the ultra special appending linkage case first. + assert(!DGV || SGV->hasAppendingLinkage() == DGV->hasAppendingLinkage()); + if (SGV->hasAppendingLinkage()) { + // Should have prevented importing for appending linkage in linkIfNeeded. + assert(!isPerformingImport()); + return linkAppendingVarProto(cast_or_null(DGV), + cast(SGV)); } - // Make sure to remember this mapping. - ValueMap[SGV] = NewDGV; - return false; -} + bool LinkFromSrc = true; + Comdat *C = nullptr; + bool HasUnnamedAddr = SGV->hasUnnamedAddr(); -/// Link the function in the source module into the destination module if -/// needed, setting up mapping information. -bool ModuleLinker::linkFunctionProto(Function *SF) { - GlobalValue *DGV = getLinkedToGlobal(SF); - llvm::Optional NewVisibility; - bool HasUnnamedAddr = SF->hasUnnamedAddr(); - - bool LinkFromSrc = false; - Comdat *DC = nullptr; - if (const Comdat *SC = SF->getComdat()) { + if (isPerformingImport() && !doImportAsDefinition(SGV)) { + LinkFromSrc = false; + } else if (const Comdat *SC = SGV->getComdat()) { Comdat::SelectionKind SK; std::tie(SK, LinkFromSrc) = ComdatsChosen[SC]; - DC = DstM->getOrInsertComdat(SC->getName()); - DC->setSelectionKind(SK); - } - - if (DGV) { - if (!DC) { - GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage; - GlobalValue::VisibilityTypes NV; - if (getLinkageResult(DGV, SF, NewLinkage, NV, LinkFromSrc)) - return true; - NewVisibility = NV; - HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr(); - - if (!LinkFromSrc) { - // Set calculated linkage - DGV->setLinkage(NewLinkage); - DGV->setVisibility(*NewVisibility); - DGV->setUnnamedAddr(HasUnnamedAddr); - } - } - - if (!LinkFromSrc) { - // Make sure to remember this mapping. - ValueMap[SF] = ConstantExpr::getBitCast(DGV, TypeMap.get(SF->getType())); - - // Track the function from the source module so we don't attempt to remap - // it. - DoNotLinkFromSource.insert(SF); - - return false; - } + C = DstM.getOrInsertComdat(SC->getName()); + C->setSelectionKind(SK); + if (SGV->hasLocalLinkage()) + LinkFromSrc = true; + } else if (DGV) { + if (shouldLinkFromSource(LinkFromSrc, *DGV, *SGV)) + return nullptr; } - // If the function is to be lazily linked, don't create it just yet. - // The ValueMaterializerTy will deal with creating it if it's used. - if (!DGV && (SF->hasLocalLinkage() || SF->hasLinkOnceLinkage() || - SF->hasAvailableExternallyLinkage())) { - DoNotLinkFromSource.insert(SF); - return false; - } + if (DGV) + HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr(); - // If the Comdat this function was inside of wasn't selected, skip it. - if (DC && !DGV && !LinkFromSrc) { - DoNotLinkFromSource.insert(SF); - return false; - } + GlobalValue *NewGV; + if (!LinkFromSrc && DGV) { + NewGV = DGV; + // When linking from source we setVisibility from copyGlobalValueProto. + setVisibility(NewGV, SGV, DGV); + } else { + // If we are done linking global value bodies (i.e. we are performing + // metadata linking), don't link in the global value due to this + // reference, simply map it to null. + if (DoneLinkingBodies) + return nullptr; - // If there is no linkage to be performed or we are linking from the source, - // bring SF over. - Function *NewDF = Function::Create(TypeMap.get(SF->getFunctionType()), - SF->getLinkage(), SF->getName(), DstM); - copyGVAttributes(NewDF, SF); - if (NewVisibility) - NewDF->setVisibility(*NewVisibility); - NewDF->setUnnamedAddr(HasUnnamedAddr); - - if (DC) - NewDF->setComdat(DC); - - if (DGV) { - // Any uses of DF need to change to NewDF, with cast. - DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DGV->getType())); - DGV->eraseFromParent(); + NewGV = copyGlobalValueProto(SGV, DGV, LinkFromSrc); } - ValueMap[SF] = NewDF; - return false; -} - -/// Set up prototypes for any aliases that come over from the source module. -bool ModuleLinker::linkAliasProto(GlobalAlias *SGA) { - GlobalValue *DGV = getLinkedToGlobal(SGA); - llvm::Optional NewVisibility; - bool HasUnnamedAddr = SGA->hasUnnamedAddr(); - - bool LinkFromSrc = false; - Comdat *DC = nullptr; - if (const Comdat *SC = SGA->getComdat()) { - Comdat::SelectionKind SK; - std::tie(SK, LinkFromSrc) = ComdatsChosen[SC]; - DC = DstM->getOrInsertComdat(SC->getName()); - DC->setSelectionKind(SK); - } - - if (DGV) { - if (!DC) { - GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage; - GlobalValue::VisibilityTypes NV; - if (getLinkageResult(DGV, SGA, NewLinkage, NV, LinkFromSrc)) - return true; - NewVisibility = NV; - HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr(); - - if (!LinkFromSrc) { - // Set calculated linkage. - DGV->setLinkage(NewLinkage); - DGV->setVisibility(*NewVisibility); - DGV->setUnnamedAddr(HasUnnamedAddr); - } - } - - if (!LinkFromSrc) { - // Make sure to remember this mapping. - ValueMap[SGA] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGA->getType())); + NewGV->setUnnamedAddr(HasUnnamedAddr); - // Track the alias from the source module so we don't attempt to remap it. - DoNotLinkFromSource.insert(SGA); + if (auto *NewGO = dyn_cast(NewGV)) { + if (C && LinkFromSrc) + NewGO->setComdat(C); - return false; - } + if (DGV && DGV->hasCommonLinkage() && SGV->hasCommonLinkage()) + NewGO->setAlignment(std::max(DGV->getAlignment(), SGV->getAlignment())); } - // If the Comdat this alias was inside of wasn't selected, skip it. - if (DC && !DGV && !LinkFromSrc) { - DoNotLinkFromSource.insert(SGA); - return false; + if (auto *NewGVar = dyn_cast(NewGV)) { + auto *DGVar = dyn_cast_or_null(DGV); + auto *SGVar = dyn_cast(SGV); + if (DGVar && SGVar && DGVar->isDeclaration() && SGVar->isDeclaration() && + (!DGVar->isConstant() || !SGVar->isConstant())) + NewGVar->setConstant(false); } - // If there is no linkage to be performed or we're linking from the source, - // bring over SGA. - auto *PTy = cast(TypeMap.get(SGA->getType())); - auto *NewDA = - GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), - SGA->getLinkage(), SGA->getName(), DstM); - copyGVAttributes(NewDA, SGA); - if (NewVisibility) - NewDA->setVisibility(*NewVisibility); - NewDA->setUnnamedAddr(HasUnnamedAddr); - - if (DGV) { - // Any uses of DGV need to change to NewDA, with cast. - DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDA, DGV->getType())); + if (NewGV != DGV && DGV) { + DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewGV, DGV->getType())); DGV->eraseFromParent(); } - ValueMap[SGA] = NewDA; - return false; -} - -static void getArrayElements(Constant *C, SmallVectorImpl &Dest) { - unsigned NumElements = cast(C->getType())->getNumElements(); - - for (unsigned i = 0; i != NumElements; ++i) - Dest.push_back(C->getAggregateElement(i)); -} - -void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) { - // Merge the initializer. - SmallVector DstElements; - getArrayElements(AVI.DstInit, DstElements); - - SmallVector SrcElements; - getArrayElements(AVI.SrcInit, SrcElements); - - ArrayType *NewType = cast(AVI.NewGV->getType()->getElementType()); - - StringRef Name = AVI.NewGV->getName(); - bool IsNewStructor = - (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") && - cast(NewType->getElementType())->getNumElements() == 3; - - for (auto *V : SrcElements) { - if (IsNewStructor) { - Constant *Key = V->getAggregateElement(2); - if (DoNotLinkFromSource.count(Key)) - continue; - } - DstElements.push_back( - MapValue(V, ValueMap, RF_None, &TypeMap, &ValMaterializer)); - } - if (IsNewStructor) { - NewType = ArrayType::get(NewType->getElementType(), DstElements.size()); - AVI.NewGV->mutateType(PointerType::get(NewType, 0)); - } - - AVI.NewGV->setInitializer(ConstantArray::get(NewType, DstElements)); + return ConstantExpr::getBitCast(NewGV, TypeMap.get(SGV->getType())); } /// Update the initializers in the Dest module now that all globals that may be /// referenced are in Dest. -void ModuleLinker::linkGlobalInits() { - // Loop over all of the globals in the src module, mapping them over as we go - for (Module::const_global_iterator I = SrcM->global_begin(), - E = SrcM->global_end(); I != E; ++I) { - - // Only process initialized GV's or ones not already in dest. - if (!I->hasInitializer() || DoNotLinkFromSource.count(I)) continue; - - // Grab destination global variable. - GlobalVariable *DGV = cast(ValueMap[I]); - // Figure out what the initializer looks like in the dest module. - DGV->setInitializer(MapValue(I->getInitializer(), ValueMap, - RF_None, &TypeMap, &ValMaterializer)); - } +void ModuleLinker::linkGlobalInit(GlobalVariable &Dst, GlobalVariable &Src) { + // Figure out what the initializer looks like in the dest module. + Dst.setInitializer(MapValue(Src.getInitializer(), ValueMap, + RF_MoveDistinctMDs, &TypeMap, &ValMaterializer)); } /// Copy the source function over into the dest function and fix up references /// to values. At this point we know that Dest is an external function, and /// that Src is not. -void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) { - assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration()); +bool ModuleLinker::linkFunctionBody(Function &Dst, Function &Src) { + assert(Dst.isDeclaration() && !Src.isDeclaration()); + + // Materialize if needed. + if (std::error_code EC = Src.materialize()) + return emitError(EC.message()); + + // Link in the prefix data. + if (Src.hasPrefixData()) + Dst.setPrefixData(MapValue(Src.getPrefixData(), ValueMap, + RF_MoveDistinctMDs, &TypeMap, &ValMaterializer)); + + // Link in the prologue data. + if (Src.hasPrologueData()) + Dst.setPrologueData(MapValue(Src.getPrologueData(), ValueMap, + RF_MoveDistinctMDs, &TypeMap, + &ValMaterializer)); + + // Link in the personality function. + if (Src.hasPersonalityFn()) + Dst.setPersonalityFn(MapValue(Src.getPersonalityFn(), ValueMap, + RF_MoveDistinctMDs, &TypeMap, + &ValMaterializer)); // Go through and convert function arguments over, remembering the mapping. - Function::arg_iterator DI = Dst->arg_begin(); - for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end(); - I != E; ++I, ++DI) { - DI->setName(I->getName()); // Copy the name over. + Function::arg_iterator DI = Dst.arg_begin(); + for (Argument &Arg : Src.args()) { + DI->setName(Arg.getName()); // Copy the name over. // Add a mapping to our mapping. - ValueMap[I] = DI; + ValueMap[&Arg] = &*DI; + ++DI; } + // Copy over the metadata attachments. + SmallVector, 8> MDs; + Src.getAllMetadata(MDs); + for (const auto &I : MDs) + Dst.setMetadata(I.first, MapMetadata(I.second, ValueMap, RF_MoveDistinctMDs, + &TypeMap, &ValMaterializer)); + // Splice the body of the source function into the dest function. - Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList()); + Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList()); // At this point, all of the instructions and values of the function are now // copied over. The only problem is that they are still referencing values in // the Source function as operands. Loop through all of the operands of the // functions and patch them up to point to the local versions. - for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB) - for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) - RemapInstruction(I, ValueMap, RF_IgnoreMissingEntries, &TypeMap, + for (BasicBlock &BB : Dst) + for (Instruction &I : BB) + RemapInstruction(&I, ValueMap, + RF_IgnoreMissingEntries | RF_MoveDistinctMDs, &TypeMap, &ValMaterializer); // There is no need to map the arguments anymore. - for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end(); - I != E; ++I) - ValueMap.erase(I); + for (Argument &Arg : Src.args()) + ValueMap.erase(&Arg); + + Src.dematerialize(); + return false; +} +void ModuleLinker::linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src) { + Constant *Aliasee = Src.getAliasee(); + Constant *Val = MapValue(Aliasee, ValueMap, RF_MoveDistinctMDs, &TypeMap, + &ValMaterializer); + Dst.setAliasee(Val); } -/// Insert all of the aliases in Src into the Dest module. -void ModuleLinker::linkAliasBodies() { - for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end(); - I != E; ++I) { - if (DoNotLinkFromSource.count(I)) - continue; - if (Constant *Aliasee = I->getAliasee()) { - GlobalAlias *DA = cast(ValueMap[I]); - Constant *Val = - MapValue(Aliasee, ValueMap, RF_None, &TypeMap, &ValMaterializer); - DA->setAliasee(Val); +bool ModuleLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) { + if (const Comdat *SC = Src.getComdat()) { + // To ensure that we don't generate an incomplete comdat group, + // we must materialize and map in any other members that are not + // yet materialized in Dst, which also ensures their definitions + // are linked in. Otherwise, linkonce and other lazy linked GVs will + // not be materialized if they aren't referenced. + for (auto *SGV : ComdatMembers[SC]) { + auto *DGV = cast_or_null(ValueMap.lookup(SGV)); + if (DGV && !DGV->isDeclaration()) + continue; + MapValue(SGV, ValueMap, RF_MoveDistinctMDs, &TypeMap, &ValMaterializer); } } + if (shouldInternalizeLinkedSymbols()) + if (auto *DGV = dyn_cast(&Dst)) + DGV->setLinkage(GlobalValue::InternalLinkage); + if (auto *F = dyn_cast(&Src)) + return linkFunctionBody(cast(Dst), *F); + if (auto *GVar = dyn_cast(&Src)) { + linkGlobalInit(cast(Dst), *GVar); + return false; + } + linkAliasBody(cast(Dst), cast(Src)); + return false; } /// Insert all of the named MDNodes in Src into the Dest module. void ModuleLinker::linkNamedMDNodes() { - const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata(); - for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(), - E = SrcM->named_metadata_end(); I != E; ++I) { + const NamedMDNode *SrcModFlags = SrcM.getModuleFlagsMetadata(); + for (const NamedMDNode &NMD : SrcM.named_metadata()) { // Don't link module flags here. Do them separately. - if (&*I == SrcModFlags) continue; - NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName()); + if (&NMD == SrcModFlags) + continue; + NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName()); // Add Src elements into Dest node. - for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) - DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap, - RF_None, &TypeMap, &ValMaterializer)); + for (const MDNode *op : NMD.operands()) + DestNMD->addOperand(MapMetadata( + op, ValueMap, RF_MoveDistinctMDs | RF_NullMapMissingGlobalValues, + &TypeMap, &ValMaterializer)); } } /// Merge the linker flags in Src into the Dest module. bool ModuleLinker::linkModuleFlagsMetadata() { // If the source module has no module flags, we are done. - const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata(); - if (!SrcModFlags) return false; + const NamedMDNode *SrcModFlags = SrcM.getModuleFlagsMetadata(); + if (!SrcModFlags) + return false; // If the destination module doesn't have module flags yet, then just copy // over the source module's flags. - NamedMDNode *DstModFlags = DstM->getOrInsertModuleFlagsMetadata(); + NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata(); if (DstModFlags->getNumOperands() == 0) { for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) DstModFlags->addOperand(SrcModFlags->getOperand(I)); @@ -1401,17 +1598,17 @@ bool ModuleLinker::linkModuleFlagsMetadata() { } // First build a map of the existing module flags and requirements. - DenseMap Flags; - SmallSetVector Requirements; + DenseMap> Flags; + SmallSetVector Requirements; for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) { MDNode *Op = DstModFlags->getOperand(I); - ConstantInt *Behavior = cast(Op->getOperand(0)); + ConstantInt *Behavior = mdconst::extract(Op->getOperand(0)); MDString *ID = cast(Op->getOperand(1)); if (Behavior->getZExtValue() == Module::Require) { Requirements.insert(cast(Op->getOperand(2))); } else { - Flags[ID] = Op; + Flags[ID] = std::make_pair(Op, I); } } @@ -1420,9 +1617,12 @@ bool ModuleLinker::linkModuleFlagsMetadata() { bool HasErr = false; for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) { MDNode *SrcOp = SrcModFlags->getOperand(I); - ConstantInt *SrcBehavior = cast(SrcOp->getOperand(0)); + ConstantInt *SrcBehavior = + mdconst::extract(SrcOp->getOperand(0)); MDString *ID = cast(SrcOp->getOperand(1)); - MDNode *DstOp = Flags.lookup(ID); + MDNode *DstOp; + unsigned DstIndex; + std::tie(DstOp, DstIndex) = Flags.lookup(ID); unsigned SrcBehaviorValue = SrcBehavior->getZExtValue(); // If this is a requirement, add it and continue. @@ -1437,13 +1637,14 @@ bool ModuleLinker::linkModuleFlagsMetadata() { // If there is no existing flag with this ID, just add it. if (!DstOp) { - Flags[ID] = SrcOp; + Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands()); DstModFlags->addOperand(SrcOp); continue; } // Otherwise, perform a merge. - ConstantInt *DstBehavior = cast(DstOp->getOperand(0)); + ConstantInt *DstBehavior = + mdconst::extract(DstOp->getOperand(0)); unsigned DstBehaviorValue = DstBehavior->getZExtValue(); // If either flag has override behavior, handle it first. @@ -1457,8 +1658,8 @@ bool ModuleLinker::linkModuleFlagsMetadata() { continue; } else if (SrcBehaviorValue == Module::Override) { // Update the destination flag to that of the source. - DstOp->replaceOperandWith(0, SrcBehavior); - DstOp->replaceOperandWith(2, SrcOp->getOperand(2)); + DstModFlags->setOperand(DstIndex, SrcOp); + Flags[ID].first = SrcOp; continue; } @@ -1469,10 +1670,18 @@ bool ModuleLinker::linkModuleFlagsMetadata() { continue; } + auto replaceDstValue = [&](MDNode *New) { + Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New}; + MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps); + DstModFlags->setOperand(DstIndex, Flag); + Flags[ID].first = Flag; + }; + // Perform the merge for standard behavior types. switch (SrcBehaviorValue) { case Module::Require: - case Module::Override: llvm_unreachable("not possible"); + case Module::Override: + llvm_unreachable("not possible"); case Module::Error: { // Emit an error if the values differ. if (SrcOp->getOperand(2) != DstOp->getOperand(2)) { @@ -1492,29 +1701,23 @@ bool ModuleLinker::linkModuleFlagsMetadata() { case Module::Append: { MDNode *DstValue = cast(DstOp->getOperand(2)); MDNode *SrcValue = cast(SrcOp->getOperand(2)); - unsigned NumOps = DstValue->getNumOperands() + SrcValue->getNumOperands(); - Value **VP, **Values = VP = new Value*[NumOps]; - for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i, ++VP) - *VP = DstValue->getOperand(i); - for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i, ++VP) - *VP = SrcValue->getOperand(i); - DstOp->replaceOperandWith(2, MDNode::get(DstM->getContext(), - ArrayRef(Values, - NumOps))); - delete[] Values; + SmallVector MDs; + MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands()); + MDs.append(DstValue->op_begin(), DstValue->op_end()); + MDs.append(SrcValue->op_begin(), SrcValue->op_end()); + + replaceDstValue(MDNode::get(DstM.getContext(), MDs)); break; } case Module::AppendUnique: { - SmallSetVector Elts; + SmallSetVector Elts; MDNode *DstValue = cast(DstOp->getOperand(2)); MDNode *SrcValue = cast(SrcOp->getOperand(2)); - for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i) - Elts.insert(DstValue->getOperand(i)); - for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i) - Elts.insert(SrcValue->getOperand(i)); - DstOp->replaceOperandWith(2, MDNode::get(DstM->getContext(), - ArrayRef(Elts.begin(), - Elts.end()))); + Elts.insert(DstValue->op_begin(), DstValue->op_end()); + Elts.insert(SrcValue->op_begin(), SrcValue->op_end()); + + replaceDstValue(MDNode::get(DstM.getContext(), + makeArrayRef(Elts.begin(), Elts.end()))); break; } } @@ -1524,9 +1727,9 @@ bool ModuleLinker::linkModuleFlagsMetadata() { for (unsigned I = 0, E = Requirements.size(); I != E; ++I) { MDNode *Requirement = Requirements[I]; MDString *Flag = cast(Requirement->getOperand(0)); - Value *ReqValue = Requirement->getOperand(1); + Metadata *ReqValue = Requirement->getOperand(1); - MDNode *Op = Flags[Flag]; + MDNode *Op = Flags[Flag].first; if (!Op || Op->getOperand(2) != ReqValue) { HasErr |= emitError("linking module flags '" + Flag->getString() + "': does not have the required value"); @@ -1537,50 +1740,133 @@ bool ModuleLinker::linkModuleFlagsMetadata() { return HasErr; } -bool ModuleLinker::run() { - assert(DstM && "Null destination module"); - assert(SrcM && "Null source module"); +// This function returns true if the triples match. +static bool triplesMatch(const Triple &T0, const Triple &T1) { + // If vendor is apple, ignore the version number. + if (T0.getVendor() == Triple::Apple) + return T0.getArch() == T1.getArch() && T0.getSubArch() == T1.getSubArch() && + T0.getVendor() == T1.getVendor() && T0.getOS() == T1.getOS(); + + return T0 == T1; +} + +// This function returns the merged triple. +static std::string mergeTriples(const Triple &SrcTriple, + const Triple &DstTriple) { + // If vendor is apple, pick the triple with the larger version number. + if (SrcTriple.getVendor() == Triple::Apple) + if (DstTriple.isOSVersionLT(SrcTriple)) + return SrcTriple.str(); + + return DstTriple.str(); +} + +bool ModuleLinker::linkIfNeeded(GlobalValue &GV) { + GlobalValue *DGV = getLinkedToGlobal(&GV); + + if (shouldLinkOnlyNeeded() && !(DGV && DGV->isDeclaration())) + return false; + + if (DGV && !GV.hasLocalLinkage() && !GV.hasAppendingLinkage()) { + auto *DGVar = dyn_cast(DGV); + auto *SGVar = dyn_cast(&GV); + if (DGVar && SGVar) { + if (DGVar->isDeclaration() && SGVar->isDeclaration() && + (!DGVar->isConstant() || !SGVar->isConstant())) { + DGVar->setConstant(false); + SGVar->setConstant(false); + } + if (DGVar->hasCommonLinkage() && SGVar->hasCommonLinkage()) { + unsigned Align = std::max(DGVar->getAlignment(), SGVar->getAlignment()); + SGVar->setAlignment(Align); + DGVar->setAlignment(Align); + } + } + GlobalValue::VisibilityTypes Visibility = + getMinVisibility(DGV->getVisibility(), GV.getVisibility()); + DGV->setVisibility(Visibility); + GV.setVisibility(Visibility); + + bool HasUnnamedAddr = GV.hasUnnamedAddr() && DGV->hasUnnamedAddr(); + DGV->setUnnamedAddr(HasUnnamedAddr); + GV.setUnnamedAddr(HasUnnamedAddr); + } + + // Don't want to append to global_ctors list, for example, when we + // are importing for ThinLTO, otherwise the global ctors and dtors + // get executed multiple times for local variables (the latter causing + // double frees). + if (GV.hasAppendingLinkage() && isPerformingImport()) + return false; + + if (isPerformingImport() && !doImportAsDefinition(&GV)) + return false; + + if (!DGV && !shouldOverrideFromSrc() && + (GV.hasLocalLinkage() || GV.hasLinkOnceLinkage() || + GV.hasAvailableExternallyLinkage())) + return false; + + if (const Comdat *SC = GV.getComdat()) { + bool LinkFromSrc; + Comdat::SelectionKind SK; + std::tie(SK, LinkFromSrc) = ComdatsChosen[SC]; + if (LinkFromSrc) + ValuesToLink.insert(&GV); + return false; + } + + bool LinkFromSrc = true; + if (DGV && shouldLinkFromSource(LinkFromSrc, *DGV, GV)) + return true; + if (LinkFromSrc) + ValuesToLink.insert(&GV); + return false; +} + +bool ModuleLinker::run() { // Inherit the target data from the source module if the destination module // doesn't have one already. - if (!DstM->getDataLayout() && SrcM->getDataLayout()) - DstM->setDataLayout(SrcM->getDataLayout()); - - // Copy the target triple from the source to dest if the dest's is empty. - if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty()) - DstM->setTargetTriple(SrcM->getTargetTriple()); + if (DstM.getDataLayout().isDefault()) + DstM.setDataLayout(SrcM.getDataLayout()); - if (SrcM->getDataLayout() && DstM->getDataLayout() && - *SrcM->getDataLayout() != *DstM->getDataLayout()) { + if (SrcM.getDataLayout() != DstM.getDataLayout()) { emitWarning("Linking two modules of different data layouts: '" + - SrcM->getModuleIdentifier() + "' is '" + - SrcM->getDataLayoutStr() + "' whereas '" + - DstM->getModuleIdentifier() + "' is '" + - DstM->getDataLayoutStr() + "'\n"); + SrcM.getModuleIdentifier() + "' is '" + + SrcM.getDataLayoutStr() + "' whereas '" + + DstM.getModuleIdentifier() + "' is '" + + DstM.getDataLayoutStr() + "'\n"); } - if (!SrcM->getTargetTriple().empty() && - DstM->getTargetTriple() != SrcM->getTargetTriple()) { + + // Copy the target triple from the source to dest if the dest's is empty. + if (DstM.getTargetTriple().empty() && !SrcM.getTargetTriple().empty()) + DstM.setTargetTriple(SrcM.getTargetTriple()); + + Triple SrcTriple(SrcM.getTargetTriple()), DstTriple(DstM.getTargetTriple()); + + if (!SrcM.getTargetTriple().empty() && !triplesMatch(SrcTriple, DstTriple)) emitWarning("Linking two modules of different target triples: " + - SrcM->getModuleIdentifier() + "' is '" + - SrcM->getTargetTriple() + "' whereas '" + - DstM->getModuleIdentifier() + "' is '" + - DstM->getTargetTriple() + "'\n"); - } + SrcM.getModuleIdentifier() + "' is '" + SrcM.getTargetTriple() + + "' whereas '" + DstM.getModuleIdentifier() + "' is '" + + DstM.getTargetTriple() + "'\n"); + + DstM.setTargetTriple(mergeTriples(SrcTriple, DstTriple)); // Append the module inline asm string. - if (!SrcM->getModuleInlineAsm().empty()) { - if (DstM->getModuleInlineAsm().empty()) - DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm()); + if (!SrcM.getModuleInlineAsm().empty()) { + if (DstM.getModuleInlineAsm().empty()) + DstM.setModuleInlineAsm(SrcM.getModuleInlineAsm()); else - DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+ - SrcM->getModuleInlineAsm()); + DstM.setModuleInlineAsm(DstM.getModuleInlineAsm() + "\n" + + SrcM.getModuleInlineAsm()); } // Loop over all of the linked values to compute type mappings. computeTypeMapping(); ComdatsChosen.clear(); - for (const StringMapEntry &SMEC : SrcM->getComdatSymbolTable()) { + for (const auto &SMEC : SrcM.getComdatSymbolTable()) { const Comdat &C = SMEC.getValue(); if (ComdatsChosen.count(&C)) continue; @@ -1594,60 +1880,41 @@ bool ModuleLinker::run() { // Upgrade mismatched global arrays. upgradeMismatchedGlobals(); + for (GlobalVariable &GV : SrcM.globals()) + if (const Comdat *SC = GV.getComdat()) + ComdatMembers[SC].push_back(&GV); + + for (Function &SF : SrcM) + if (const Comdat *SC = SF.getComdat()) + ComdatMembers[SC].push_back(&SF); + + for (GlobalAlias &GA : SrcM.aliases()) + if (const Comdat *SC = GA.getComdat()) + ComdatMembers[SC].push_back(&GA); + // Insert all of the globals in src into the DstM module... without linking // initializers (which could refer to functions not yet mapped over). - for (Module::global_iterator I = SrcM->global_begin(), - E = SrcM->global_end(); I != E; ++I) - if (linkGlobalProto(I)) + for (GlobalVariable &GV : SrcM.globals()) + if (linkIfNeeded(GV)) return true; - // Link the functions together between the two modules, without doing function - // bodies... this just adds external function prototypes to the DstM - // function... We do this so that when we begin processing function bodies, - // all of the global values that may be referenced are available in our - // ValueMap. - for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) - if (linkFunctionProto(I)) + for (Function &SF : SrcM) + if (linkIfNeeded(SF)) return true; - // If there were any aliases, link them now. - for (Module::alias_iterator I = SrcM->alias_begin(), - E = SrcM->alias_end(); I != E; ++I) - if (linkAliasProto(I)) + for (GlobalAlias &GA : SrcM.aliases()) + if (linkIfNeeded(GA)) return true; - for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i) - linkAppendingVarInit(AppendingVars[i]); - - // Link in the function bodies that are defined in the source module into - // DstM. - for (Module::iterator SF = SrcM->begin(), E = SrcM->end(); SF != E; ++SF) { - // Skip if not linking from source. - if (DoNotLinkFromSource.count(SF)) continue; - - Function *DF = cast(ValueMap[SF]); - if (SF->hasPrefixData()) { - // Link in the prefix data. - DF->setPrefixData(MapValue( - SF->getPrefixData(), ValueMap, RF_None, &TypeMap, &ValMaterializer)); - } - - // Materialize if needed. - if (SF->isMaterializable()) { - if (std::error_code EC = SF->materialize()) - return emitError(EC.message()); - } - - // Skip if no body (function is external). - if (SF->isDeclaration()) - continue; - - linkFunctionBody(DF, SF); - SF->Dematerialize(); + for (GlobalValue *GV : ValuesToLink) { + MapValue(GV, ValueMap, RF_MoveDistinctMDs, &TypeMap, &ValMaterializer); + if (HasError) + return true; } - // Resolve all uses of aliases with aliasees. - linkAliasBodies(); + // Note that we are done linking global value bodies. This prevents + // metadata linking from creating new references. + DoneLinkingBodies = true; // Remap all of the named MDNodes in Src into the DstM module. We do this // after linking GlobalValues so that MDNodes that reference GlobalValues @@ -1658,87 +1925,119 @@ bool ModuleLinker::run() { if (linkModuleFlagsMetadata()) return true; - // Update the initializers in the DstM module now that all globals that may - // be referenced are in DstM. - linkGlobalInits(); + return false; +} - // Process vector of lazily linked in functions. - bool LinkedInAnyFunctions; - do { - LinkedInAnyFunctions = false; +Linker::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef E, bool P) + : ETypes(E), IsPacked(P) {} - for(std::vector::iterator I = LazilyLinkFunctions.begin(), - E = LazilyLinkFunctions.end(); I != E; ++I) { - Function *SF = *I; - if (!SF) - continue; +Linker::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST) + : ETypes(ST->elements()), IsPacked(ST->isPacked()) {} - Function *DF = cast(ValueMap[SF]); - if (SF->hasPrefixData()) { - // Link in the prefix data. - DF->setPrefixData(MapValue(SF->getPrefixData(), - ValueMap, - RF_None, - &TypeMap, - &ValMaterializer)); - } +bool Linker::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const { + if (IsPacked != That.IsPacked) + return false; + if (ETypes != That.ETypes) + return false; + return true; +} - // Materialize if needed. - if (SF->isMaterializable()) { - if (std::error_code EC = SF->materialize()) - return emitError(EC.message()); - } +bool Linker::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const { + return !this->operator==(That); +} - // Skip if no body (function is external). - if (SF->isDeclaration()) - continue; +StructType *Linker::StructTypeKeyInfo::getEmptyKey() { + return DenseMapInfo::getEmptyKey(); +} - // Erase from vector *before* the function body is linked - linkFunctionBody could - // invalidate I. - LazilyLinkFunctions.erase(I); +StructType *Linker::StructTypeKeyInfo::getTombstoneKey() { + return DenseMapInfo::getTombstoneKey(); +} - // Link in function body. - linkFunctionBody(DF, SF); - SF->Dematerialize(); +unsigned Linker::StructTypeKeyInfo::getHashValue(const KeyTy &Key) { + return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()), + Key.IsPacked); +} - // Set flag to indicate we may have more functions to lazily link in - // since we linked in a function. - LinkedInAnyFunctions = true; - break; - } - } while (LinkedInAnyFunctions); +unsigned Linker::StructTypeKeyInfo::getHashValue(const StructType *ST) { + return getHashValue(KeyTy(ST)); +} - // Now that all of the types from the source are used, resolve any structs - // copied over to the dest that didn't exist there. - TypeMap.linkDefinedTypeBodies(); +bool Linker::StructTypeKeyInfo::isEqual(const KeyTy &LHS, + const StructType *RHS) { + if (RHS == getEmptyKey() || RHS == getTombstoneKey()) + return false; + return LHS == KeyTy(RHS); +} - return false; +bool Linker::StructTypeKeyInfo::isEqual(const StructType *LHS, + const StructType *RHS) { + if (RHS == getEmptyKey()) + return LHS == getEmptyKey(); + + if (RHS == getTombstoneKey()) + return LHS == getTombstoneKey(); + + return KeyTy(LHS) == KeyTy(RHS); +} + +void Linker::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) { + assert(!Ty->isOpaque()); + NonOpaqueStructTypes.insert(Ty); } -Linker::Linker(Module *M, DiagnosticHandlerFunction DiagnosticHandler) - : Composite(M), DiagnosticHandler(DiagnosticHandler) {} +void Linker::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) { + assert(!Ty->isOpaque()); + NonOpaqueStructTypes.insert(Ty); + bool Removed = OpaqueStructTypes.erase(Ty); + (void)Removed; + assert(Removed); +} -Linker::Linker(Module *M) - : Composite(M), DiagnosticHandler([this](const DiagnosticInfo &DI) { - Composite->getContext().diagnose(DI); - }) { - TypeFinder StructTypes; - StructTypes.run(*M, true); - IdentifiedStructTypes.insert(StructTypes.begin(), StructTypes.end()); +void Linker::IdentifiedStructTypeSet::addOpaque(StructType *Ty) { + assert(Ty->isOpaque()); + OpaqueStructTypes.insert(Ty); } -Linker::~Linker() { +StructType * +Linker::IdentifiedStructTypeSet::findNonOpaque(ArrayRef ETypes, + bool IsPacked) { + Linker::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked); + auto I = NonOpaqueStructTypes.find_as(Key); + if (I == NonOpaqueStructTypes.end()) + return nullptr; + return *I; } -void Linker::deleteModule() { - delete Composite; - Composite = nullptr; +bool Linker::IdentifiedStructTypeSet::hasType(StructType *Ty) { + if (Ty->isOpaque()) + return OpaqueStructTypes.count(Ty); + auto I = NonOpaqueStructTypes.find(Ty); + if (I == NonOpaqueStructTypes.end()) + return false; + return *I == Ty; } -bool Linker::linkInModule(Module *Src) { +Linker::Linker(Module &M, DiagnosticHandlerFunction DiagnosticHandler) + : Composite(M), DiagnosticHandler(DiagnosticHandler) { + TypeFinder StructTypes; + StructTypes.run(M, true); + for (StructType *Ty : StructTypes) { + if (Ty->isOpaque()) + IdentifiedStructTypes.addOpaque(Ty); + else + IdentifiedStructTypes.addNonOpaque(Ty); + } +} + +bool Linker::linkInModule(Module &Src, unsigned Flags, + const FunctionInfoIndex *Index, + DenseSet *FunctionsToImport) { ModuleLinker TheLinker(Composite, IdentifiedStructTypes, Src, - DiagnosticHandler); - return TheLinker.run(); + DiagnosticHandler, Flags, Index, FunctionsToImport); + bool RetCode = TheLinker.run(); + Composite.dropTriviallyDeadConstantArrays(); + return RetCode; } //===----------------------------------------------------------------------===// @@ -1750,15 +2049,11 @@ bool Linker::linkInModule(Module *Src) { /// true is returned and ErrorMsg (if not null) is set to indicate the problem. /// Upon failure, the Dest module could be in a modified state, and shouldn't be /// relied on to be consistent. -bool Linker::LinkModules(Module *Dest, Module *Src, - DiagnosticHandlerFunction DiagnosticHandler) { +bool Linker::linkModules(Module &Dest, Module &Src, + DiagnosticHandlerFunction DiagnosticHandler, + unsigned Flags) { Linker L(Dest, DiagnosticHandler); - return L.linkInModule(Src); -} - -bool Linker::LinkModules(Module *Dest, Module *Src) { - Linker L(Dest); - return L.linkInModule(Src); + return L.linkInModule(Src, Flags); } //===----------------------------------------------------------------------===// @@ -1766,16 +2061,18 @@ bool Linker::LinkModules(Module *Dest, Module *Src) { //===----------------------------------------------------------------------===// LLVMBool LLVMLinkModules(LLVMModuleRef Dest, LLVMModuleRef Src, - LLVMLinkerMode Mode, char **OutMessages) { + LLVMLinkerMode Unused, char **OutMessages) { Module *D = unwrap(Dest); std::string Message; raw_string_ostream Stream(Message); DiagnosticPrinterRawOStream DP(Stream); - LLVMBool Result = Linker::LinkModules( - D, unwrap(Src), [&](const DiagnosticInfo &DI) { DI.print(DP); }); + LLVMBool Result = Linker::linkModules( + *D, *unwrap(Src), [&](const DiagnosticInfo &DI) { DI.print(DP); }); - if (OutMessages && Result) + if (OutMessages && Result) { + Stream.flush(); *OutMessages = strdup(Message.c_str()); + } return Result; }