X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FIR%2FVerifier.cpp;h=ba1a8e8b762d3569f4310537b0f47fa286ad75b9;hb=88116fe71ab0953859fd3f32027149b5ee6d3a16;hp=43a023ec7c0a50b8aedc85a54a8fe9be4f7b9eda;hpb=05be69f1e396139127a31aa6586348cdc5691093;p=oota-llvm.git diff --git a/lib/IR/Verifier.cpp b/lib/IR/Verifier.cpp index 43a023ec7c0..ba1a8e8b762 100644 --- a/lib/IR/Verifier.cpp +++ b/lib/IR/Verifier.cpp @@ -78,7 +78,7 @@ #include using namespace llvm; -static cl::opt VerifyDebugInfo("verify-debug-info", cl::init(false)); +static cl::opt VerifyDebugInfo("verify-debug-info", cl::init(true)); namespace { struct VerifierSupport { @@ -91,7 +91,8 @@ struct VerifierSupport { explicit VerifierSupport(raw_ostream &OS) : OS(OS), M(nullptr), Broken(false) {} - void WriteValue(const Value *V) { +private: + void Write(const Value *V) { if (!V) return; if (isa(V)) { @@ -102,81 +103,65 @@ struct VerifierSupport { } } - void WriteMetadata(const Metadata *MD) { + void Write(const Metadata *MD) { if (!MD) return; - MD->printAsOperand(OS, true, M); + MD->print(OS, M); + OS << '\n'; + } + + template void Write(const MDTupleTypedArrayWrapper &MD) { + Write(MD.get()); + } + + void Write(const NamedMDNode *NMD) { + if (!NMD) + return; + NMD->print(OS); OS << '\n'; } - void WriteType(Type *T) { + void Write(Type *T) { if (!T) return; OS << ' ' << *T; } - void WriteComdat(const Comdat *C) { + void Write(const Comdat *C) { if (!C) return; OS << *C; } - // CheckFailed - A check failed, so print out the condition and the message - // that failed. This provides a nice place to put a breakpoint if you want - // to see why something is not correct. - void CheckFailed(const Twine &Message, const Value *V1 = nullptr, - const Value *V2 = nullptr, const Value *V3 = nullptr, - const Value *V4 = nullptr) { - OS << Message.str() << "\n"; - WriteValue(V1); - WriteValue(V2); - WriteValue(V3); - WriteValue(V4); - Broken = true; - } - - void CheckFailed(const Twine &Message, const Metadata *V1, const Metadata *V2, - const Metadata *V3 = nullptr, const Metadata *V4 = nullptr) { - OS << Message.str() << "\n"; - WriteMetadata(V1); - WriteMetadata(V2); - WriteMetadata(V3); - WriteMetadata(V4); - Broken = true; + template + void WriteTs(const T1 &V1, const Ts &... Vs) { + Write(V1); + WriteTs(Vs...); } - void CheckFailed(const Twine &Message, const Metadata *V1, - const Value *V2 = nullptr) { - OS << Message.str() << "\n"; - WriteMetadata(V1); - WriteValue(V2); - Broken = true; - } + template void WriteTs() {} - void CheckFailed(const Twine &Message, const Value *V1, Type *T2, - const Value *V3 = nullptr) { - OS << Message.str() << "\n"; - WriteValue(V1); - WriteType(T2); - WriteValue(V3); - Broken = true; - } - - void CheckFailed(const Twine &Message, Type *T1, Type *T2 = nullptr, - Type *T3 = nullptr) { - OS << Message.str() << "\n"; - WriteType(T1); - WriteType(T2); - WriteType(T3); +public: + /// \brief A check failed, so printout out the condition and the message. + /// + /// This provides a nice place to put a breakpoint if you want to see why + /// something is not correct. + void CheckFailed(const Twine &Message) { + OS << Message << '\n'; Broken = true; } - void CheckFailed(const Twine &Message, const Comdat *C) { - OS << Message.str() << "\n"; - WriteComdat(C); - Broken = true; + /// \brief A check failed (with values to print). + /// + /// This calls the Message-only version so that the above is easier to set a + /// breakpoint on. + template + void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { + CheckFailed(Message); + WriteTs(V1, Vs...); } }; + class Verifier : public InstVisitor, VerifierSupport { friend class InstVisitor; @@ -193,19 +178,26 @@ class Verifier : public InstVisitor, VerifierSupport { /// \brief Keep track of the metadata nodes that have been checked already. SmallPtrSet MDNodes; + /// \brief Track unresolved string-based type references. + SmallDenseMap UnresolvedTypeRefs; + /// \brief The personality function referenced by the LandingPadInsts. /// All LandingPadInsts within the same function must use the same /// personality function. const Value *PersonalityFn; - /// \brief Whether we've seen a call to @llvm.frameallocate in this function + /// \brief Whether we've seen a call to @llvm.frameescape in this function /// already. - bool SawFrameAllocate; + bool SawFrameEscape; + + /// Stores the count of how many objects were passed to llvm.frameescape for a + /// given function and the largest index passed to llvm.framerecover. + DenseMap> FrameEscapeInfo; public: - explicit Verifier(raw_ostream &OS = dbgs()) + explicit Verifier(raw_ostream &OS) : VerifierSupport(OS), Context(nullptr), PersonalityFn(nullptr), - SawFrameAllocate(false) {} + SawFrameEscape(false) {} bool verify(const Function &F) { M = F.getParent(); @@ -240,7 +232,7 @@ public: visit(const_cast(F)); InstsInThisBlock.clear(); PersonalityFn = nullptr; - SawFrameAllocate = false; + SawFrameEscape = false; return !Broken; } @@ -259,6 +251,10 @@ public: visitFunction(*I); } + // Now that we've visited every function, verify that we never asked to + // recover a frame index that wasn't escaped. + verifyFrameRecoverIndices(); + for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) visitGlobalVariable(*I); @@ -278,6 +274,9 @@ public: visitModuleFlags(M); visitModuleIdents(M); + // Verify type referneces last. + verifyTypeRefs(); + return !Broken; } @@ -303,8 +302,37 @@ private: void visitBasicBlock(BasicBlock &BB); void visitRangeMetadata(Instruction& I, MDNode* Range, Type* Ty); + template bool isValidMetadataArray(const MDTuple &N); #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); #include "llvm/IR/Metadata.def" + void visitMDScope(const MDScope &N); + void visitMDDerivedTypeBase(const MDDerivedTypeBase &N); + void visitMDVariable(const MDVariable &N); + void visitMDLexicalBlockBase(const MDLexicalBlockBase &N); + void visitMDTemplateParameter(const MDTemplateParameter &N); + + void visitTemplateParams(const MDNode &N, const Metadata &RawParams); + + /// \brief Check for a valid string-based type reference. + /// + /// Checks if \c MD is a string-based type reference. If it is, keeps track + /// of it (and its user, \c N) for error messages later. + bool isValidUUID(const MDNode &N, const Metadata *MD); + + /// \brief Check for a valid type reference. + /// + /// Checks for subclasses of \a MDType, or \a isValidUUID(). + bool isTypeRef(const MDNode &N, const Metadata *MD); + + /// \brief Check for a valid scope reference. + /// + /// Checks for subclasses of \a MDScope, or \a isValidUUID(). + bool isScopeRef(const MDNode &N, const Metadata *MD); + + /// \brief Check for a valid debug info reference. + /// + /// Checks for subclasses of \a DebugNode, or \a isValidUUID(). + bool isDIRef(const MDNode &N, const Metadata *MD); // InstVisitor overrides... using InstVisitor::visit; @@ -347,6 +375,8 @@ private: void visitUserOp1(Instruction &I); void visitUserOp2(Instruction &I) { visitUserOp1(I); } void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI); + template + void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII); void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); void visitAtomicRMWInst(AtomicRMWInst &RMWI); void visitFenceInst(FenceInst &FI); @@ -373,85 +403,70 @@ private: void VerifyConstantExprBitcastType(const ConstantExpr *CE); void VerifyStatepoint(ImmutableCallSite CS); -}; -class DebugInfoVerifier : public VerifierSupport { -public: - explicit DebugInfoVerifier(raw_ostream &OS = dbgs()) : VerifierSupport(OS) {} - - bool verify(const Module &M) { - this->M = &M; - verifyDebugInfo(); - return !Broken; - } - -private: - void verifyDebugInfo(); - void processInstructions(DebugInfoFinder &Finder); - void processCallInst(DebugInfoFinder &Finder, const CallInst &CI); + void verifyFrameRecoverIndices(); + + // Module-level debug info verification... + void verifyTypeRefs(); + template + void verifyBitPieceExpression(const DbgInfoIntrinsic &I, + const MapTy &TypeRefs); + void visitUnresolvedTypeRef(const MDString *S, const MDNode *N); }; } // End anonymous namespace // Assert - We know that cond should be true, if not print an error message. -#define Assert(C, M) \ - do { if (!(C)) { CheckFailed(M); return; } } while (0) -#define Assert1(C, M, V1) \ - do { if (!(C)) { CheckFailed(M, V1); return; } } while (0) -#define Assert2(C, M, V1, V2) \ - do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0) -#define Assert3(C, M, V1, V2, V3) \ - do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0) -#define Assert4(C, M, V1, V2, V3, V4) \ - do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0) +#define Assert(C, ...) \ + do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (0) void Verifier::visit(Instruction &I) { for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) - Assert1(I.getOperand(i) != nullptr, "Operand is null", &I); + Assert(I.getOperand(i) != nullptr, "Operand is null", &I); InstVisitor::visit(I); } void Verifier::visitGlobalValue(const GlobalValue &GV) { - Assert1(!GV.isDeclaration() || GV.hasExternalLinkage() || - GV.hasExternalWeakLinkage(), - "Global is external, but doesn't have external or weak linkage!", - &GV); + Assert(!GV.isDeclaration() || GV.hasExternalLinkage() || + GV.hasExternalWeakLinkage(), + "Global is external, but doesn't have external or weak linkage!", &GV); - Assert1(GV.getAlignment() <= Value::MaximumAlignment, - "huge alignment values are unsupported", &GV); - Assert1(!GV.hasAppendingLinkage() || isa(GV), - "Only global variables can have appending linkage!", &GV); + Assert(GV.getAlignment() <= Value::MaximumAlignment, + "huge alignment values are unsupported", &GV); + Assert(!GV.hasAppendingLinkage() || isa(GV), + "Only global variables can have appending linkage!", &GV); if (GV.hasAppendingLinkage()) { const GlobalVariable *GVar = dyn_cast(&GV); - Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(), - "Only global arrays can have appending linkage!", GVar); + Assert(GVar && GVar->getType()->getElementType()->isArrayTy(), + "Only global arrays can have appending linkage!", GVar); } } void Verifier::visitGlobalVariable(const GlobalVariable &GV) { if (GV.hasInitializer()) { - Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(), - "Global variable initializer type does not match global " - "variable type!", &GV); + Assert(GV.getInitializer()->getType() == GV.getType()->getElementType(), + "Global variable initializer type does not match global " + "variable type!", + &GV); // If the global has common linkage, it must have a zero initializer and // cannot be constant. if (GV.hasCommonLinkage()) { - Assert1(GV.getInitializer()->isNullValue(), - "'common' global must have a zero initializer!", &GV); - Assert1(!GV.isConstant(), "'common' global may not be marked constant!", - &GV); - Assert1(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); + Assert(GV.getInitializer()->isNullValue(), + "'common' global must have a zero initializer!", &GV); + Assert(!GV.isConstant(), "'common' global may not be marked constant!", + &GV); + Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); } } else { - Assert1(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(), - "invalid linkage type for global declaration", &GV); + Assert(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(), + "invalid linkage type for global declaration", &GV); } if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || GV.getName() == "llvm.global_dtors")) { - Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(), - "invalid linkage for intrinsic global variable", &GV); + Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), + "invalid linkage for intrinsic global variable", &GV); // Don't worry about emitting an error for it not being an array, // visitGlobalValue will complain on appending non-array. if (ArrayType *ATy = dyn_cast(GV.getType()->getElementType())) { @@ -459,48 +474,48 @@ void Verifier::visitGlobalVariable(const GlobalVariable &GV) { PointerType *FuncPtrTy = FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo(); // FIXME: Reject the 2-field form in LLVM 4.0. - Assert1(STy && (STy->getNumElements() == 2 || - STy->getNumElements() == 3) && - STy->getTypeAtIndex(0u)->isIntegerTy(32) && - STy->getTypeAtIndex(1) == FuncPtrTy, - "wrong type for intrinsic global variable", &GV); + Assert(STy && + (STy->getNumElements() == 2 || STy->getNumElements() == 3) && + STy->getTypeAtIndex(0u)->isIntegerTy(32) && + STy->getTypeAtIndex(1) == FuncPtrTy, + "wrong type for intrinsic global variable", &GV); if (STy->getNumElements() == 3) { Type *ETy = STy->getTypeAtIndex(2); - Assert1(ETy->isPointerTy() && - cast(ETy)->getElementType()->isIntegerTy(8), - "wrong type for intrinsic global variable", &GV); + Assert(ETy->isPointerTy() && + cast(ETy)->getElementType()->isIntegerTy(8), + "wrong type for intrinsic global variable", &GV); } } } if (GV.hasName() && (GV.getName() == "llvm.used" || GV.getName() == "llvm.compiler.used")) { - Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(), - "invalid linkage for intrinsic global variable", &GV); + Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), + "invalid linkage for intrinsic global variable", &GV); Type *GVType = GV.getType()->getElementType(); if (ArrayType *ATy = dyn_cast(GVType)) { PointerType *PTy = dyn_cast(ATy->getElementType()); - Assert1(PTy, "wrong type for intrinsic global variable", &GV); + Assert(PTy, "wrong type for intrinsic global variable", &GV); if (GV.hasInitializer()) { const Constant *Init = GV.getInitializer(); const ConstantArray *InitArray = dyn_cast(Init); - Assert1(InitArray, "wrong initalizer for intrinsic global variable", - Init); + Assert(InitArray, "wrong initalizer for intrinsic global variable", + Init); for (unsigned i = 0, e = InitArray->getNumOperands(); i != e; ++i) { Value *V = Init->getOperand(i)->stripPointerCastsNoFollowAliases(); - Assert1( - isa(V) || isa(V) || isa(V), - "invalid llvm.used member", V); - Assert1(V->hasName(), "members of llvm.used must be named", V); + Assert(isa(V) || isa(V) || + isa(V), + "invalid llvm.used member", V); + Assert(V->hasName(), "members of llvm.used must be named", V); } } } } - Assert1(!GV.hasDLLImportStorageClass() || - (GV.isDeclaration() && GV.hasExternalLinkage()) || - GV.hasAvailableExternallyLinkage(), - "Global is marked as dllimport, but not external", &GV); + Assert(!GV.hasDLLImportStorageClass() || + (GV.isDeclaration() && GV.hasExternalLinkage()) || + GV.hasAvailableExternallyLinkage(), + "Global is marked as dllimport, but not external", &GV); if (!GV.hasInitializer()) { visitGlobalValue(GV); @@ -540,13 +555,13 @@ void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl &Visited, const GlobalAlias &GA, const Constant &C) { if (const auto *GV = dyn_cast(&C)) { - Assert1(!GV->isDeclaration(), "Alias must point to a definition", &GA); + Assert(!GV->isDeclaration(), "Alias must point to a definition", &GA); if (const auto *GA2 = dyn_cast(GV)) { - Assert1(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); + Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); - Assert1(!GA2->mayBeOverridden(), "Alias cannot point to a weak alias", - &GA); + Assert(!GA2->mayBeOverridden(), "Alias cannot point to a weak alias", + &GA); } else { // Only continue verifying subexpressions of GlobalAliases. // Do not recurse into global initializers. @@ -567,19 +582,18 @@ void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl &Visited, } void Verifier::visitGlobalAlias(const GlobalAlias &GA) { - Assert1(!GA.getName().empty(), - "Alias name cannot be empty!", &GA); - Assert1(GlobalAlias::isValidLinkage(GA.getLinkage()), - "Alias should have private, internal, linkonce, weak, linkonce_odr, " - "weak_odr, or external linkage!", - &GA); + Assert(!GA.getName().empty(), "Alias name cannot be empty!", &GA); + Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), + "Alias should have private, internal, linkonce, weak, linkonce_odr, " + "weak_odr, or external linkage!", + &GA); const Constant *Aliasee = GA.getAliasee(); - Assert1(Aliasee, "Aliasee cannot be NULL!", &GA); - Assert1(GA.getType() == Aliasee->getType(), - "Alias and aliasee types should match!", &GA); + Assert(Aliasee, "Aliasee cannot be NULL!", &GA); + Assert(GA.getType() == Aliasee->getType(), + "Alias and aliasee types should match!", &GA); - Assert1(isa(Aliasee) || isa(Aliasee), - "Aliasee should be either GlobalValue or ConstantExpr", &GA); + Assert(isa(Aliasee) || isa(Aliasee), + "Aliasee should be either GlobalValue or ConstantExpr", &GA); visitAliaseeSubExpr(GA, *Aliasee); @@ -589,6 +603,11 @@ void Verifier::visitGlobalAlias(const GlobalAlias &GA) { void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) { MDNode *MD = NMD.getOperand(i); + + if (NMD.getName() == "llvm.dbg.cu") { + Assert(MD && isa(MD), "invalid compile unit", &NMD, MD); + } + if (!MD) continue; @@ -618,8 +637,8 @@ void Verifier::visitMDNode(const MDNode &MD) { Metadata *Op = MD.getOperand(i); if (!Op) continue; - Assert2(!isa(Op), "Invalid operand for global metadata!", - &MD, Op); + Assert(!isa(Op), "Invalid operand for global metadata!", + &MD, Op); if (auto *N = dyn_cast(Op)) { visitMDNode(*N); continue; @@ -631,26 +650,26 @@ void Verifier::visitMDNode(const MDNode &MD) { } // Check these last, so we diagnose problems in operands first. - Assert1(!MD.isTemporary(), "Expected no forward declarations!", &MD); - Assert1(MD.isResolved(), "All nodes should be resolved!", &MD); + Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); + Assert(MD.isResolved(), "All nodes should be resolved!", &MD); } void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { - Assert1(MD.getValue(), "Expected valid value", &MD); - Assert2(!MD.getValue()->getType()->isMetadataTy(), - "Unexpected metadata round-trip through values", &MD, MD.getValue()); + Assert(MD.getValue(), "Expected valid value", &MD); + Assert(!MD.getValue()->getType()->isMetadataTy(), + "Unexpected metadata round-trip through values", &MD, MD.getValue()); auto *L = dyn_cast(&MD); if (!L) return; - Assert1(F, "function-local metadata used outside a function", L); + Assert(F, "function-local metadata used outside a function", L); // If this was an instruction, bb, or argument, verify that it is in the // function that we expect. Function *ActualF = nullptr; if (Instruction *I = dyn_cast(L->getValue())) { - Assert2(I->getParent(), "function-local metadata not in basic block", L, I); + Assert(I->getParent(), "function-local metadata not in basic block", L, I); ActualF = I->getParent()->getParent(); } else if (BasicBlock *BB = dyn_cast(L->getValue())) ActualF = BB->getParent(); @@ -658,7 +677,7 @@ void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { ActualF = A->getParent(); assert(ActualF && "Unimplemented function local metadata case!"); - Assert1(ActualF == F, "function-local metadata used in wrong function", L); + Assert(ActualF == F, "function-local metadata used in wrong function", L); } void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { @@ -677,134 +696,418 @@ void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { visitValueAsMetadata(*V, F); } +bool Verifier::isValidUUID(const MDNode &N, const Metadata *MD) { + auto *S = dyn_cast(MD); + if (!S) + return false; + if (S->getString().empty()) + return false; + + // Keep track of names of types referenced via UUID so we can check that they + // actually exist. + UnresolvedTypeRefs.insert(std::make_pair(S, &N)); + return true; +} + +/// \brief Check if a value can be a reference to a type. +bool Verifier::isTypeRef(const MDNode &N, const Metadata *MD) { + return !MD || isValidUUID(N, MD) || isa(MD); +} + +/// \brief Check if a value can be a ScopeRef. +bool Verifier::isScopeRef(const MDNode &N, const Metadata *MD) { + return !MD || isValidUUID(N, MD) || isa(MD); +} + +/// \brief Check if a value can be a debug info ref. +bool Verifier::isDIRef(const MDNode &N, const Metadata *MD) { + return !MD || isValidUUID(N, MD) || isa(MD); +} + +template +bool isValidMetadataArrayImpl(const MDTuple &N, bool AllowNull) { + for (Metadata *MD : N.operands()) { + if (MD) { + if (!isa(MD)) + return false; + } else { + if (!AllowNull) + return false; + } + } + return true; +} + +template +bool isValidMetadataArray(const MDTuple &N) { + return isValidMetadataArrayImpl(N, /* AllowNull */ false); +} + +template +bool isValidMetadataNullArray(const MDTuple &N) { + return isValidMetadataArrayImpl(N, /* AllowNull */ true); +} + void Verifier::visitMDLocation(const MDLocation &N) { - Assert1(N.getScope(), "location requires a valid scope", &N); - if (auto *IA = N.getInlinedAt()) - Assert2(isa(IA), "inlined-at should be a location", &N, IA); + Assert(N.getRawScope() && isa(N.getRawScope()), + "location requires a valid scope", &N, N.getRawScope()); + if (auto *IA = N.getRawInlinedAt()) + Assert(isa(IA), "inlined-at should be a location", &N, IA); } void Verifier::visitGenericDebugNode(const GenericDebugNode &N) { - Assert1(N.getTag(), "invalid tag", &N); + Assert(N.getTag(), "invalid tag", &N); +} + +void Verifier::visitMDScope(const MDScope &N) { + if (auto *F = N.getRawFile()) + Assert(isa(F), "invalid file", &N, F); } void Verifier::visitMDSubrange(const MDSubrange &N) { - Assert1(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); + Assert(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); + Assert(N.getCount() >= -1, "invalid subrange count", &N); } void Verifier::visitMDEnumerator(const MDEnumerator &N) { - Assert1(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); + Assert(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); } void Verifier::visitMDBasicType(const MDBasicType &N) { - Assert1(N.getTag() == dwarf::DW_TAG_base_type || - N.getTag() == dwarf::DW_TAG_unspecified_type, - "invalid tag", &N); + Assert(N.getTag() == dwarf::DW_TAG_base_type || + N.getTag() == dwarf::DW_TAG_unspecified_type, + "invalid tag", &N); +} + +void Verifier::visitMDDerivedTypeBase(const MDDerivedTypeBase &N) { + // Common scope checks. + visitMDScope(N); + + Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getScope()); + Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N, + N.getBaseType()); + + // FIXME: Sink this into the subclass verifies. + if (!N.getFile() || N.getFile()->getFilename().empty()) { + // Check whether the filename is allowed to be empty. + uint16_t Tag = N.getTag(); + Assert( + Tag == dwarf::DW_TAG_const_type || Tag == dwarf::DW_TAG_volatile_type || + Tag == dwarf::DW_TAG_pointer_type || + Tag == dwarf::DW_TAG_ptr_to_member_type || + Tag == dwarf::DW_TAG_reference_type || + Tag == dwarf::DW_TAG_rvalue_reference_type || + Tag == dwarf::DW_TAG_restrict_type || + Tag == dwarf::DW_TAG_array_type || + Tag == dwarf::DW_TAG_enumeration_type || + Tag == dwarf::DW_TAG_subroutine_type || + Tag == dwarf::DW_TAG_inheritance || Tag == dwarf::DW_TAG_friend || + Tag == dwarf::DW_TAG_structure_type || + Tag == dwarf::DW_TAG_member || Tag == dwarf::DW_TAG_typedef, + "derived/composite type requires a filename", &N, N.getFile()); + } } void Verifier::visitMDDerivedType(const MDDerivedType &N) { - Assert1(N.getTag() == dwarf::DW_TAG_typedef || - N.getTag() == dwarf::DW_TAG_pointer_type || - N.getTag() == dwarf::DW_TAG_ptr_to_member_type || - N.getTag() == dwarf::DW_TAG_reference_type || - N.getTag() == dwarf::DW_TAG_rvalue_reference_type || - N.getTag() == dwarf::DW_TAG_const_type || - N.getTag() == dwarf::DW_TAG_volatile_type || - N.getTag() == dwarf::DW_TAG_restrict_type || - N.getTag() == dwarf::DW_TAG_member || - N.getTag() == dwarf::DW_TAG_inheritance || - N.getTag() == dwarf::DW_TAG_friend, - "invalid tag", &N); + // Common derived type checks. + visitMDDerivedTypeBase(N); + + Assert(N.getTag() == dwarf::DW_TAG_typedef || + N.getTag() == dwarf::DW_TAG_pointer_type || + N.getTag() == dwarf::DW_TAG_ptr_to_member_type || + N.getTag() == dwarf::DW_TAG_reference_type || + N.getTag() == dwarf::DW_TAG_rvalue_reference_type || + N.getTag() == dwarf::DW_TAG_const_type || + N.getTag() == dwarf::DW_TAG_volatile_type || + N.getTag() == dwarf::DW_TAG_restrict_type || + N.getTag() == dwarf::DW_TAG_member || + N.getTag() == dwarf::DW_TAG_inheritance || + N.getTag() == dwarf::DW_TAG_friend, + "invalid tag", &N); + if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { + Assert(isTypeRef(N, N.getExtraData()), "invalid pointer to member type", &N, + N.getExtraData()); + } +} + +static bool hasConflictingReferenceFlags(unsigned Flags) { + return (Flags & DebugNode::FlagLValueReference) && + (Flags & DebugNode::FlagRValueReference); +} + +void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { + auto *Params = dyn_cast(&RawParams); + Assert(Params, "invalid template params", &N, &RawParams); + for (Metadata *Op : Params->operands()) { + Assert(Op && isa(Op), "invalid template parameter", &N, + Params, Op); + } } void Verifier::visitMDCompositeType(const MDCompositeType &N) { - Assert1(N.getTag() == dwarf::DW_TAG_array_type || - N.getTag() == dwarf::DW_TAG_structure_type || - N.getTag() == dwarf::DW_TAG_union_type || - N.getTag() == dwarf::DW_TAG_enumeration_type || - N.getTag() == dwarf::DW_TAG_subroutine_type || - N.getTag() == dwarf::DW_TAG_class_type, - "invalid tag", &N); + // Common derived type checks. + visitMDDerivedTypeBase(N); + + Assert(N.getTag() == dwarf::DW_TAG_array_type || + N.getTag() == dwarf::DW_TAG_structure_type || + N.getTag() == dwarf::DW_TAG_union_type || + N.getTag() == dwarf::DW_TAG_enumeration_type || + N.getTag() == dwarf::DW_TAG_subroutine_type || + N.getTag() == dwarf::DW_TAG_class_type, + "invalid tag", &N); + + Assert(!N.getRawElements() || isa(N.getRawElements()), + "invalid composite elements", &N, N.getRawElements()); + Assert(isTypeRef(N, N.getRawVTableHolder()), "invalid vtable holder", &N, + N.getRawVTableHolder()); + Assert(!N.getRawElements() || isa(N.getRawElements()), + "invalid composite elements", &N, N.getRawElements()); + Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags", + &N); + if (auto *Params = N.getRawTemplateParams()) + visitTemplateParams(N, *Params); } void Verifier::visitMDSubroutineType(const MDSubroutineType &N) { - Assert1(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); + Assert(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); + if (auto *Types = N.getRawTypeArray()) { + Assert(isa(Types), "invalid composite elements", &N, Types); + for (Metadata *Ty : N.getTypeArray()->operands()) { + Assert(isTypeRef(N, Ty), "invalid subroutine type ref", &N, Types, Ty); + } + } + Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags", + &N); } void Verifier::visitMDFile(const MDFile &N) { - Assert1(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); + Assert(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); } void Verifier::visitMDCompileUnit(const MDCompileUnit &N) { - Assert1(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); + Assert(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); + + // Don't bother verifying the compilation directory or producer string + // as those could be empty. + Assert(N.getRawFile() && isa(N.getRawFile()), + "invalid file", &N, N.getRawFile()); + Assert(!N.getFile()->getFilename().empty(), "invalid filename", &N, + N.getFile()); + + if (auto *Array = N.getRawEnumTypes()) { + Assert(isa(Array), "invalid enum list", &N, Array); + for (Metadata *Op : N.getEnumTypes()->operands()) { + auto *Enum = dyn_cast_or_null(Op); + Assert(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, + "invalid enum type", &N, N.getEnumTypes(), Op); + } + } + if (auto *Array = N.getRawRetainedTypes()) { + Assert(isa(Array), "invalid retained type list", &N, Array); + for (Metadata *Op : N.getRetainedTypes()->operands()) { + Assert(Op && isa(Op), "invalid retained type", &N, Op); + } + } + if (auto *Array = N.getRawSubprograms()) { + Assert(isa(Array), "invalid subprogram list", &N, Array); + for (Metadata *Op : N.getSubprograms()->operands()) { + Assert(Op && isa(Op), "invalid subprogram ref", &N, Op); + } + } + if (auto *Array = N.getRawGlobalVariables()) { + Assert(isa(Array), "invalid global variable list", &N, Array); + for (Metadata *Op : N.getGlobalVariables()->operands()) { + Assert(Op && isa(Op), "invalid global variable ref", &N, + Op); + } + } + if (auto *Array = N.getRawImportedEntities()) { + Assert(isa(Array), "invalid imported entity list", &N, Array); + for (Metadata *Op : N.getImportedEntities()->operands()) { + Assert(Op && isa(Op), "invalid imported entity ref", &N, + Op); + } + } } void Verifier::visitMDSubprogram(const MDSubprogram &N) { - Assert1(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); + Assert(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); + Assert(isScopeRef(N, N.getRawScope()), "invalid scope", &N, N.getRawScope()); + if (auto *T = N.getRawType()) + Assert(isa(T), "invalid subroutine type", &N, T); + Assert(isTypeRef(N, N.getRawContainingType()), "invalid containing type", &N, + N.getRawContainingType()); + if (auto *RawF = N.getRawFunction()) { + auto *FMD = dyn_cast(RawF); + auto *F = FMD ? FMD->getValue() : nullptr; + auto *FT = F ? dyn_cast(F->getType()) : nullptr; + Assert(F && FT && isa(FT->getElementType()), + "invalid function", &N, F, FT); + } + if (auto *Params = N.getRawTemplateParams()) + visitTemplateParams(N, *Params); + if (auto *S = N.getRawDeclaration()) { + Assert(isa(S) && !cast(S)->isDefinition(), + "invalid subprogram declaration", &N, S); + } + if (auto *RawVars = N.getRawVariables()) { + auto *Vars = dyn_cast(RawVars); + Assert(Vars, "invalid variable list", &N, RawVars); + for (Metadata *Op : Vars->operands()) { + Assert(Op && isa(Op), "invalid local variable", &N, Vars, + Op); + } + } + Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags", + &N); + + auto *F = N.getFunction(); + if (!F) + return; + + // Check that all !dbg attachments lead to back to N (or, at least, another + // subprogram that describes the same function). + // + // FIXME: Check this incrementally while visiting !dbg attachments. + // FIXME: Only check when N is the canonical subprogram for F. + SmallPtrSet Seen; + for (auto &BB : *F) + for (auto &I : BB) { + // Be careful about using MDLocation here since we might be dealing with + // broken code (this is the Verifier after all). + MDLocation *DL = + dyn_cast_or_null(I.getDebugLoc().getAsMDNode()); + if (!DL) + continue; + if (!Seen.insert(DL).second) + continue; + + MDLocalScope *Scope = DL->getInlinedAtScope(); + if (Scope && !Seen.insert(Scope).second) + continue; + + MDSubprogram *SP = Scope ? Scope->getSubprogram() : nullptr; + if (SP && !Seen.insert(SP).second) + continue; + + // FIXME: Once N is canonical, check "SP == &N". + Assert(DISubprogram(SP).describes(F), + "!dbg attachment points at wrong subprogram for function", &N, F, + &I, DL, Scope, SP); + } +} + +void Verifier::visitMDLexicalBlockBase(const MDLexicalBlockBase &N) { + Assert(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); + Assert(N.getRawScope() && isa(N.getRawScope()), + "invalid local scope", &N, N.getRawScope()); } void Verifier::visitMDLexicalBlock(const MDLexicalBlock &N) { - Assert1(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); + visitMDLexicalBlockBase(N); + + Assert(N.getLine() || !N.getColumn(), + "cannot have column info without line info", &N); } void Verifier::visitMDLexicalBlockFile(const MDLexicalBlockFile &N) { - Assert1(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); + visitMDLexicalBlockBase(N); } void Verifier::visitMDNamespace(const MDNamespace &N) { - Assert1(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); + Assert(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); + if (auto *S = N.getRawScope()) + Assert(isa(S), "invalid scope ref", &N, S); +} + +void Verifier::visitMDTemplateParameter(const MDTemplateParameter &N) { + Assert(isTypeRef(N, N.getType()), "invalid type ref", &N, N.getType()); } void Verifier::visitMDTemplateTypeParameter(const MDTemplateTypeParameter &N) { - Assert1(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", - &N); + visitMDTemplateParameter(N); + + Assert(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", + &N); } void Verifier::visitMDTemplateValueParameter( const MDTemplateValueParameter &N) { - Assert1(N.getTag() == dwarf::DW_TAG_template_value_parameter || - N.getTag() == dwarf::DW_TAG_GNU_template_template_param || - N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, - "invalid tag", &N); + visitMDTemplateParameter(N); + + Assert(N.getTag() == dwarf::DW_TAG_template_value_parameter || + N.getTag() == dwarf::DW_TAG_GNU_template_template_param || + N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, + "invalid tag", &N); +} + +void Verifier::visitMDVariable(const MDVariable &N) { + if (auto *S = N.getRawScope()) + Assert(isa(S), "invalid scope", &N, S); + Assert(isTypeRef(N, N.getRawType()), "invalid type ref", &N, N.getRawType()); + if (auto *F = N.getRawFile()) + Assert(isa(F), "invalid file", &N, F); } void Verifier::visitMDGlobalVariable(const MDGlobalVariable &N) { - Assert1(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); + // Checks common to all variables. + visitMDVariable(N); + + Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); + Assert(!N.getName().empty(), "missing global variable name", &N); + if (auto *V = N.getRawVariable()) { + Assert(isa(V) && + !isa(cast(V)->getValue()), + "invalid global varaible ref", &N, V); + } + if (auto *Member = N.getRawStaticDataMemberDeclaration()) { + Assert(isa(Member), "invalid static data member declaration", + &N, Member); + } } void Verifier::visitMDLocalVariable(const MDLocalVariable &N) { - Assert1(N.getTag() == dwarf::DW_TAG_auto_variable || - N.getTag() == dwarf::DW_TAG_arg_variable, - "invalid tag", &N); + // Checks common to all variables. + visitMDVariable(N); + + Assert(N.getTag() == dwarf::DW_TAG_auto_variable || + N.getTag() == dwarf::DW_TAG_arg_variable, + "invalid tag", &N); + Assert(N.getRawScope() && isa(N.getRawScope()), + "local variable requires a valid scope", &N, N.getRawScope()); + if (auto *IA = N.getRawInlinedAt()) + Assert(isa(IA), "local variable requires a valid scope", &N, + IA); } void Verifier::visitMDExpression(const MDExpression &N) { - Assert1(N.getTag() == dwarf::DW_TAG_expression, "invalid tag", &N); - Assert1(N.isValid(), "invalid expression", &N); + Assert(N.isValid(), "invalid expression", &N); } void Verifier::visitMDObjCProperty(const MDObjCProperty &N) { - Assert1(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); + Assert(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); + if (auto *T = N.getRawType()) + Assert(isa(T), "invalid type ref", &N, T); + if (auto *F = N.getRawFile()) + Assert(isa(F), "invalid file", &N, F); } void Verifier::visitMDImportedEntity(const MDImportedEntity &N) { - Assert1(N.getTag() == dwarf::DW_TAG_imported_module || - N.getTag() == dwarf::DW_TAG_imported_declaration, - "invalid tag", &N); + Assert(N.getTag() == dwarf::DW_TAG_imported_module || + N.getTag() == dwarf::DW_TAG_imported_declaration, + "invalid tag", &N); + if (auto *S = N.getRawScope()) + Assert(isa(S), "invalid scope for imported entity", &N, S); + Assert(isDIRef(N, N.getEntity()), "invalid imported entity", &N, + N.getEntity()); } void Verifier::visitComdat(const Comdat &C) { - // All Comdat::SelectionKind values other than Comdat::Any require a - // GlobalValue with the same name as the Comdat. - const GlobalValue *GV = M->getNamedValue(C.getName()); - if (C.getSelectionKind() != Comdat::Any) - Assert1(GV, - "comdat selection kind requires a global value with the same name", - &C); // The Module is invalid if the GlobalValue has private linkage. Entities // with private linkage don't have entries in the symbol table. - if (GV) - Assert1(!GV->hasPrivateLinkage(), "comdat global value has private linkage", - GV); + if (const GlobalValue *GV = M->getNamedValue(C.getName())) + Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage", + GV); } void Verifier::visitModuleIdents(const Module &M) { @@ -816,12 +1119,12 @@ void Verifier::visitModuleIdents(const Module &M) { // Scan each llvm.ident entry and make sure that this requirement is met. for (unsigned i = 0, e = Idents->getNumOperands(); i != e; ++i) { const MDNode *N = Idents->getOperand(i); - Assert1(N->getNumOperands() == 1, - "incorrect number of operands in llvm.ident metadata", N); - Assert1(dyn_cast_or_null(N->getOperand(0)), - ("invalid value for llvm.ident metadata entry operand" - "(the operand should be a string)"), - N->getOperand(0)); + Assert(N->getNumOperands() == 1, + "incorrect number of operands in llvm.ident metadata", N); + Assert(dyn_cast_or_null(N->getOperand(0)), + ("invalid value for llvm.ident metadata entry operand" + "(the operand should be a string)"), + N->getOperand(0)); } } @@ -864,22 +1167,21 @@ Verifier::visitModuleFlag(const MDNode *Op, SmallVectorImpl &Requirements) { // Each module flag should have three arguments, the merge behavior (a // constant int), the flag ID (an MDString), and the value. - Assert1(Op->getNumOperands() == 3, - "incorrect number of operands in module flag", Op); + Assert(Op->getNumOperands() == 3, + "incorrect number of operands in module flag", Op); Module::ModFlagBehavior MFB; if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { - Assert1( + Assert( mdconst::dyn_extract_or_null(Op->getOperand(0)), "invalid behavior operand in module flag (expected constant integer)", Op->getOperand(0)); - Assert1(false, - "invalid behavior operand in module flag (unexpected constant)", - Op->getOperand(0)); + Assert(false, + "invalid behavior operand in module flag (unexpected constant)", + Op->getOperand(0)); } MDString *ID = dyn_cast_or_null(Op->getOperand(1)); - Assert1(ID, - "invalid ID operand in module flag (expected metadata string)", - Op->getOperand(1)); + Assert(ID, "invalid ID operand in module flag (expected metadata string)", + Op->getOperand(1)); // Sanity check the values for behaviors with additional requirements. switch (MFB) { @@ -893,13 +1195,13 @@ Verifier::visitModuleFlag(const MDNode *Op, // The value should itself be an MDNode with two operands, a flag ID (an // MDString), and a value. MDNode *Value = dyn_cast(Op->getOperand(2)); - Assert1(Value && Value->getNumOperands() == 2, - "invalid value for 'require' module flag (expected metadata pair)", - Op->getOperand(2)); - Assert1(isa(Value->getOperand(0)), - ("invalid value for 'require' module flag " - "(first value operand should be a string)"), - Value->getOperand(0)); + Assert(Value && Value->getNumOperands() == 2, + "invalid value for 'require' module flag (expected metadata pair)", + Op->getOperand(2)); + Assert(isa(Value->getOperand(0)), + ("invalid value for 'require' module flag " + "(first value operand should be a string)"), + Value->getOperand(0)); // Append it to the list of requirements, to check once all module flags are // scanned. @@ -910,9 +1212,10 @@ Verifier::visitModuleFlag(const MDNode *Op, case Module::Append: case Module::AppendUnique: { // These behavior types require the operand be an MDNode. - Assert1(isa(Op->getOperand(2)), - "invalid value for 'append'-type module flag " - "(expected a metadata node)", Op->getOperand(2)); + Assert(isa(Op->getOperand(2)), + "invalid value for 'append'-type module flag " + "(expected a metadata node)", + Op->getOperand(2)); break; } } @@ -920,9 +1223,8 @@ Verifier::visitModuleFlag(const MDNode *Op, // Unless this is a "requires" flag, check the ID is unique. if (MFB != Module::Require) { bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; - Assert1(Inserted, - "module flag identifiers must be unique (or of 'require' type)", - ID); + Assert(Inserted, + "module flag identifiers must be unique (or of 'require' type)", ID); } } @@ -998,14 +1300,15 @@ void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty, VerifyAttributeTypes(Attrs, Idx, false, V); if (isReturnValue) - Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) && - !Attrs.hasAttribute(Idx, Attribute::Nest) && - !Attrs.hasAttribute(Idx, Attribute::StructRet) && - !Attrs.hasAttribute(Idx, Attribute::NoCapture) && - !Attrs.hasAttribute(Idx, Attribute::Returned) && - !Attrs.hasAttribute(Idx, Attribute::InAlloca), - "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and " - "'returned' do not apply to return values!", V); + Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) && + !Attrs.hasAttribute(Idx, Attribute::Nest) && + !Attrs.hasAttribute(Idx, Attribute::StructRet) && + !Attrs.hasAttribute(Idx, Attribute::NoCapture) && + !Attrs.hasAttribute(Idx, Attribute::Returned) && + !Attrs.hasAttribute(Idx, Attribute::InAlloca), + "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and " + "'returned' do not apply to return values!", + V); // Check for mutually incompatible attributes. Only inreg is compatible with // sret. @@ -1015,45 +1318,58 @@ void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty, AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) || Attrs.hasAttribute(Idx, Attribute::InReg); AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest); - Assert1(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', " - "and 'sret' are incompatible!", V); - - Assert1(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) && - Attrs.hasAttribute(Idx, Attribute::ReadOnly)), "Attributes " - "'inalloca and readonly' are incompatible!", V); - - Assert1(!(Attrs.hasAttribute(Idx, Attribute::StructRet) && - Attrs.hasAttribute(Idx, Attribute::Returned)), "Attributes " - "'sret and returned' are incompatible!", V); - - Assert1(!(Attrs.hasAttribute(Idx, Attribute::ZExt) && - Attrs.hasAttribute(Idx, Attribute::SExt)), "Attributes " - "'zeroext and signext' are incompatible!", V); - - Assert1(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) && - Attrs.hasAttribute(Idx, Attribute::ReadOnly)), "Attributes " - "'readnone and readonly' are incompatible!", V); - - Assert1(!(Attrs.hasAttribute(Idx, Attribute::NoInline) && - Attrs.hasAttribute(Idx, Attribute::AlwaysInline)), "Attributes " - "'noinline and alwaysinline' are incompatible!", V); - - Assert1(!AttrBuilder(Attrs, Idx). - hasAttributes(AttributeFuncs::typeIncompatible(Ty, Idx), Idx), - "Wrong types for attribute: " + - AttributeFuncs::typeIncompatible(Ty, Idx).getAsString(Idx), V); + Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', " + "and 'sret' are incompatible!", + V); + + Assert(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) && + Attrs.hasAttribute(Idx, Attribute::ReadOnly)), + "Attributes " + "'inalloca and readonly' are incompatible!", + V); + + Assert(!(Attrs.hasAttribute(Idx, Attribute::StructRet) && + Attrs.hasAttribute(Idx, Attribute::Returned)), + "Attributes " + "'sret and returned' are incompatible!", + V); + + Assert(!(Attrs.hasAttribute(Idx, Attribute::ZExt) && + Attrs.hasAttribute(Idx, Attribute::SExt)), + "Attributes " + "'zeroext and signext' are incompatible!", + V); + + Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) && + Attrs.hasAttribute(Idx, Attribute::ReadOnly)), + "Attributes " + "'readnone and readonly' are incompatible!", + V); + + Assert(!(Attrs.hasAttribute(Idx, Attribute::NoInline) && + Attrs.hasAttribute(Idx, Attribute::AlwaysInline)), + "Attributes " + "'noinline and alwaysinline' are incompatible!", + V); + + Assert(!AttrBuilder(Attrs, Idx) + .hasAttributes(AttributeFuncs::typeIncompatible(Ty, Idx), Idx), + "Wrong types for attribute: " + + AttributeFuncs::typeIncompatible(Ty, Idx).getAsString(Idx), + V); if (PointerType *PTy = dyn_cast(Ty)) { - if (!PTy->getElementType()->isSized()) { - Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) && - !Attrs.hasAttribute(Idx, Attribute::InAlloca), - "Attributes 'byval' and 'inalloca' do not support unsized types!", - V); + SmallPtrSet Visited; + if (!PTy->getElementType()->isSized(&Visited)) { + Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) && + !Attrs.hasAttribute(Idx, Attribute::InAlloca), + "Attributes 'byval' and 'inalloca' do not support unsized types!", + V); } } else { - Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal), - "Attribute 'byval' only applies to parameters with pointer type!", - V); + Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal), + "Attribute 'byval' only applies to parameters with pointer type!", + V); } } @@ -1085,28 +1401,30 @@ void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs, continue; if (Attrs.hasAttribute(Idx, Attribute::Nest)) { - Assert1(!SawNest, "More than one parameter has attribute nest!", V); + Assert(!SawNest, "More than one parameter has attribute nest!", V); SawNest = true; } if (Attrs.hasAttribute(Idx, Attribute::Returned)) { - Assert1(!SawReturned, "More than one parameter has attribute returned!", - V); - Assert1(Ty->canLosslesslyBitCastTo(FT->getReturnType()), "Incompatible " - "argument and return types for 'returned' attribute", V); + Assert(!SawReturned, "More than one parameter has attribute returned!", + V); + Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), + "Incompatible " + "argument and return types for 'returned' attribute", + V); SawReturned = true; } if (Attrs.hasAttribute(Idx, Attribute::StructRet)) { - Assert1(!SawSRet, "Cannot have multiple 'sret' parameters!", V); - Assert1(Idx == 1 || Idx == 2, - "Attribute 'sret' is not on first or second parameter!", V); + Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); + Assert(Idx == 1 || Idx == 2, + "Attribute 'sret' is not on first or second parameter!", V); SawSRet = true; } if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) { - Assert1(Idx == FT->getNumParams(), - "inalloca isn't on the last parameter!", V); + Assert(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!", + V); } } @@ -1115,39 +1433,35 @@ void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs, VerifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V); - Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, - Attribute::ReadNone) && - Attrs.hasAttribute(AttributeSet::FunctionIndex, - Attribute::ReadOnly)), - "Attributes 'readnone and readonly' are incompatible!", V); + Assert( + !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) && + Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly)), + "Attributes 'readnone and readonly' are incompatible!", V); - Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, - Attribute::NoInline) && - Attrs.hasAttribute(AttributeSet::FunctionIndex, - Attribute::AlwaysInline)), - "Attributes 'noinline and alwaysinline' are incompatible!", V); + Assert( + !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) && + Attrs.hasAttribute(AttributeSet::FunctionIndex, + Attribute::AlwaysInline)), + "Attributes 'noinline and alwaysinline' are incompatible!", V); if (Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeNone)) { - Assert1(Attrs.hasAttribute(AttributeSet::FunctionIndex, - Attribute::NoInline), - "Attribute 'optnone' requires 'noinline'!", V); + Assert(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline), + "Attribute 'optnone' requires 'noinline'!", V); - Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex, - Attribute::OptimizeForSize), - "Attributes 'optsize and optnone' are incompatible!", V); + Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, + Attribute::OptimizeForSize), + "Attributes 'optsize and optnone' are incompatible!", V); - Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex, - Attribute::MinSize), - "Attributes 'minsize and optnone' are incompatible!", V); + Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize), + "Attributes 'minsize and optnone' are incompatible!", V); } if (Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::JumpTable)) { const GlobalValue *GV = cast(V); - Assert1(GV->hasUnnamedAddr(), - "Attribute 'jumptable' requires 'unnamed_addr'", V); - + Assert(GV->hasUnnamedAddr(), + "Attribute 'jumptable' requires 'unnamed_addr'", V); } } @@ -1155,9 +1469,9 @@ void Verifier::VerifyConstantExprBitcastType(const ConstantExpr *CE) { if (CE->getOpcode() != Instruction::BitCast) return; - Assert1(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), - CE->getType()), - "Invalid bitcast", CE); + Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), + CE->getType()), + "Invalid bitcast", CE); } bool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) { @@ -1182,84 +1496,86 @@ void Verifier::VerifyStatepoint(ImmutableCallSite CS) { const Instruction &CI = *CS.getInstruction(); - Assert1(!CS.doesNotAccessMemory() && - !CS.onlyReadsMemory(), - "gc.statepoint must read and write memory to preserve " - "reordering restrictions required by safepoint semantics", &CI); - + Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory(), + "gc.statepoint must read and write memory to preserve " + "reordering restrictions required by safepoint semantics", + &CI); + const Value *Target = CS.getArgument(0); const PointerType *PT = dyn_cast(Target->getType()); - Assert2(PT && PT->getElementType()->isFunctionTy(), - "gc.statepoint callee must be of function pointer type", - &CI, Target); + Assert(PT && PT->getElementType()->isFunctionTy(), + "gc.statepoint callee must be of function pointer type", &CI, Target); FunctionType *TargetFuncType = cast(PT->getElementType()); const Value *NumCallArgsV = CS.getArgument(1); - Assert1(isa(NumCallArgsV), - "gc.statepoint number of arguments to underlying call " - "must be constant integer", &CI); + Assert(isa(NumCallArgsV), + "gc.statepoint number of arguments to underlying call " + "must be constant integer", + &CI); const int NumCallArgs = cast(NumCallArgsV)->getZExtValue(); - Assert1(NumCallArgs >= 0, - "gc.statepoint number of arguments to underlying call " - "must be positive", &CI); + Assert(NumCallArgs >= 0, + "gc.statepoint number of arguments to underlying call " + "must be positive", + &CI); const int NumParams = (int)TargetFuncType->getNumParams(); if (TargetFuncType->isVarArg()) { - Assert1(NumCallArgs >= NumParams, - "gc.statepoint mismatch in number of vararg call args", &CI); + Assert(NumCallArgs >= NumParams, + "gc.statepoint mismatch in number of vararg call args", &CI); // TODO: Remove this limitation - Assert1(TargetFuncType->getReturnType()->isVoidTy(), - "gc.statepoint doesn't support wrapping non-void " - "vararg functions yet", &CI); + Assert(TargetFuncType->getReturnType()->isVoidTy(), + "gc.statepoint doesn't support wrapping non-void " + "vararg functions yet", + &CI); } else - Assert1(NumCallArgs == NumParams, - "gc.statepoint mismatch in number of call args", &CI); + Assert(NumCallArgs == NumParams, + "gc.statepoint mismatch in number of call args", &CI); const Value *Unused = CS.getArgument(2); - Assert1(isa(Unused) && - cast(Unused)->isNullValue(), - "gc.statepoint parameter #3 must be zero", &CI); + Assert(isa(Unused) && cast(Unused)->isNullValue(), + "gc.statepoint parameter #3 must be zero", &CI); // Verify that the types of the call parameter arguments match // the type of the wrapped callee. for (int i = 0; i < NumParams; i++) { Type *ParamType = TargetFuncType->getParamType(i); Type *ArgType = CS.getArgument(3+i)->getType(); - Assert1(ArgType == ParamType, - "gc.statepoint call argument does not match wrapped " - "function type", &CI); + Assert(ArgType == ParamType, + "gc.statepoint call argument does not match wrapped " + "function type", + &CI); } const int EndCallArgsInx = 2+NumCallArgs; const Value *NumDeoptArgsV = CS.getArgument(EndCallArgsInx+1); - Assert1(isa(NumDeoptArgsV), - "gc.statepoint number of deoptimization arguments " - "must be constant integer", &CI); + Assert(isa(NumDeoptArgsV), + "gc.statepoint number of deoptimization arguments " + "must be constant integer", + &CI); const int NumDeoptArgs = cast(NumDeoptArgsV)->getZExtValue(); - Assert1(NumDeoptArgs >= 0, - "gc.statepoint number of deoptimization arguments " - "must be positive", &CI); + Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments " + "must be positive", + &CI); + + Assert(4 + NumCallArgs + NumDeoptArgs <= (int)CS.arg_size(), + "gc.statepoint too few arguments according to length fields", &CI); - Assert1(4 + NumCallArgs + NumDeoptArgs <= (int)CS.arg_size(), - "gc.statepoint too few arguments according to length fields", &CI); - // Check that the only uses of this gc.statepoint are gc.result or // gc.relocate calls which are tied to this statepoint and thus part // of the same statepoint sequence for (const User *U : CI.users()) { const CallInst *Call = dyn_cast(U); - Assert2(Call, "illegal use of statepoint token", &CI, U); + Assert(Call, "illegal use of statepoint token", &CI, U); if (!Call) continue; - Assert2(isGCRelocate(Call) || isGCResult(Call), - "gc.result or gc.relocate are the only value uses" - "of a gc.statepoint", &CI, U); + Assert(isGCRelocate(Call) || isGCResult(Call), + "gc.result or gc.relocate are the only value uses" + "of a gc.statepoint", + &CI, U); if (isGCResult(Call)) { - Assert2(Call->getArgOperand(0) == &CI, - "gc.result connected to wrong gc.statepoint", - &CI, Call); + Assert(Call->getArgOperand(0) == &CI, + "gc.result connected to wrong gc.statepoint", &CI, Call); } else if (isGCRelocate(Call)) { - Assert2(Call->getArgOperand(0) == &CI, - "gc.relocate connected to wrong gc.statepoint", - &CI, Call); + Assert(Call->getArgOperand(0) == &CI, + "gc.relocate connected to wrong gc.statepoint", &CI, Call); } } @@ -1273,6 +1589,19 @@ void Verifier::VerifyStatepoint(ImmutableCallSite CS) { // about. See example statepoint.ll in the verifier subdirectory } +void Verifier::verifyFrameRecoverIndices() { + for (auto &Counts : FrameEscapeInfo) { + Function *F = Counts.first; + unsigned EscapedObjectCount = Counts.second.first; + unsigned MaxRecoveredIndex = Counts.second.second; + Assert(MaxRecoveredIndex <= EscapedObjectCount, + "all indices passed to llvm.framerecover must be less than the " + "number of arguments passed ot llvm.frameescape in the parent " + "function", + F); + } +} + // visitFunction - Verify that a function is ok. // void Verifier::visitFunction(const Function &F) { @@ -1280,25 +1609,24 @@ void Verifier::visitFunction(const Function &F) { FunctionType *FT = F.getFunctionType(); unsigned NumArgs = F.arg_size(); - Assert1(Context == &F.getContext(), - "Function context does not match Module context!", &F); + Assert(Context == &F.getContext(), + "Function context does not match Module context!", &F); - Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); - Assert2(FT->getNumParams() == NumArgs, - "# formal arguments must match # of arguments for function type!", - &F, FT); - Assert1(F.getReturnType()->isFirstClassType() || - F.getReturnType()->isVoidTy() || - F.getReturnType()->isStructTy(), - "Functions cannot return aggregate values!", &F); + Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); + Assert(FT->getNumParams() == NumArgs, + "# formal arguments must match # of arguments for function type!", &F, + FT); + Assert(F.getReturnType()->isFirstClassType() || + F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), + "Functions cannot return aggregate values!", &F); - Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), - "Invalid struct return type!", &F); + Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), + "Invalid struct return type!", &F); AttributeSet Attrs = F.getAttributes(); - Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()), - "Attribute after last parameter!", &F); + Assert(VerifyAttributeCount(Attrs, FT->getNumParams()), + "Attribute after last parameter!", &F); // Check function attributes. VerifyFunctionAttrs(FT, Attrs, &F); @@ -1306,9 +1634,8 @@ void Verifier::visitFunction(const Function &F) { // On function declarations/definitions, we do not support the builtin // attribute. We do not check this in VerifyFunctionAttrs since that is // checking for Attributes that can/can not ever be on functions. - Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex, - Attribute::Builtin), - "Attribute 'builtin' can only be applied to a callsite.", &F); + Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::Builtin), + "Attribute 'builtin' can only be applied to a callsite.", &F); // Check that this function meets the restrictions on this calling convention. // Sometimes varargs is used for perfectly forwarding thunks, so some of these @@ -1322,8 +1649,9 @@ void Verifier::visitFunction(const Function &F) { case CallingConv::Intel_OCL_BI: case CallingConv::PTX_Kernel: case CallingConv::PTX_Device: - Assert1(!F.isVarArg(), "Calling convention does not support varargs or " - "perfect forwarding!", &F); + Assert(!F.isVarArg(), "Calling convention does not support varargs or " + "perfect forwarding!", + &F); break; } @@ -1334,35 +1662,35 @@ void Verifier::visitFunction(const Function &F) { unsigned i = 0; for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I, ++i) { - Assert2(I->getType() == FT->getParamType(i), - "Argument value does not match function argument type!", - I, FT->getParamType(i)); - Assert1(I->getType()->isFirstClassType(), - "Function arguments must have first-class types!", I); + Assert(I->getType() == FT->getParamType(i), + "Argument value does not match function argument type!", I, + FT->getParamType(i)); + Assert(I->getType()->isFirstClassType(), + "Function arguments must have first-class types!", I); if (!isLLVMdotName) - Assert2(!I->getType()->isMetadataTy(), - "Function takes metadata but isn't an intrinsic", I, &F); + Assert(!I->getType()->isMetadataTy(), + "Function takes metadata but isn't an intrinsic", I, &F); } if (F.isMaterializable()) { // Function has a body somewhere we can't see. } else if (F.isDeclaration()) { - Assert1(F.hasExternalLinkage() || F.hasExternalWeakLinkage(), - "invalid linkage type for function declaration", &F); + Assert(F.hasExternalLinkage() || F.hasExternalWeakLinkage(), + "invalid linkage type for function declaration", &F); } else { // Verify that this function (which has a body) is not named "llvm.*". It // is not legal to define intrinsics. - Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); + Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); // Check the entry node const BasicBlock *Entry = &F.getEntryBlock(); - Assert1(pred_empty(Entry), - "Entry block to function must not have predecessors!", Entry); + Assert(pred_empty(Entry), + "Entry block to function must not have predecessors!", Entry); // The address of the entry block cannot be taken, unless it is dead. if (Entry->hasAddressTaken()) { - Assert1(!BlockAddress::lookup(Entry)->isConstantUsed(), - "blockaddress may not be used with the entry block!", Entry); + Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), + "blockaddress may not be used with the entry block!", Entry); } } @@ -1371,13 +1699,13 @@ void Verifier::visitFunction(const Function &F) { if (F.getIntrinsicID()) { const User *U; if (F.hasAddressTaken(&U)) - Assert1(0, "Invalid user of intrinsic instruction!", U); + Assert(0, "Invalid user of intrinsic instruction!", U); } - Assert1(!F.hasDLLImportStorageClass() || - (F.isDeclaration() && F.hasExternalLinkage()) || - F.hasAvailableExternallyLinkage(), - "Function is marked as dllimport, but not external.", &F); + Assert(!F.hasDLLImportStorageClass() || + (F.isDeclaration() && F.hasExternalLinkage()) || + F.hasAvailableExternallyLinkage(), + "Function is marked as dllimport, but not external.", &F); } // verifyBasicBlock - Verify that a basic block is well formed... @@ -1386,7 +1714,7 @@ void Verifier::visitBasicBlock(BasicBlock &BB) { InstsInThisBlock.clear(); // Ensure that basic blocks have terminators! - Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB); + Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); // Check constraints that this basic block imposes on all of the PHI nodes in // it. @@ -1397,12 +1725,14 @@ void Verifier::visitBasicBlock(BasicBlock &BB) { PHINode *PN; for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast(I));++I) { // Ensure that PHI nodes have at least one entry! - Assert1(PN->getNumIncomingValues() != 0, - "PHI nodes must have at least one entry. If the block is dead, " - "the PHI should be removed!", PN); - Assert1(PN->getNumIncomingValues() == Preds.size(), - "PHINode should have one entry for each predecessor of its " - "parent basic block!", PN); + Assert(PN->getNumIncomingValues() != 0, + "PHI nodes must have at least one entry. If the block is dead, " + "the PHI should be removed!", + PN); + Assert(PN->getNumIncomingValues() == Preds.size(), + "PHINode should have one entry for each predecessor of its " + "parent basic block!", + PN); // Get and sort all incoming values in the PHI node... Values.clear(); @@ -1417,17 +1747,17 @@ void Verifier::visitBasicBlock(BasicBlock &BB) { // particular basic block in this PHI node, that the incoming values are // all identical. // - Assert4(i == 0 || Values[i].first != Values[i-1].first || - Values[i].second == Values[i-1].second, - "PHI node has multiple entries for the same basic block with " - "different incoming values!", PN, Values[i].first, - Values[i].second, Values[i-1].second); + Assert(i == 0 || Values[i].first != Values[i - 1].first || + Values[i].second == Values[i - 1].second, + "PHI node has multiple entries for the same basic block with " + "different incoming values!", + PN, Values[i].first, Values[i].second, Values[i - 1].second); // Check to make sure that the predecessors and PHI node entries are // matched up. - Assert3(Values[i].first == Preds[i], - "PHI node entries do not match predecessors!", PN, - Values[i].first, Preds[i]); + Assert(Values[i].first == Preds[i], + "PHI node entries do not match predecessors!", PN, + Values[i].first, Preds[i]); } } } @@ -1441,15 +1771,15 @@ void Verifier::visitBasicBlock(BasicBlock &BB) { void Verifier::visitTerminatorInst(TerminatorInst &I) { // Ensure that terminators only exist at the end of the basic block. - Assert1(&I == I.getParent()->getTerminator(), - "Terminator found in the middle of a basic block!", I.getParent()); + Assert(&I == I.getParent()->getTerminator(), + "Terminator found in the middle of a basic block!", I.getParent()); visitInstruction(I); } void Verifier::visitBranchInst(BranchInst &BI) { if (BI.isConditional()) { - Assert2(BI.getCondition()->getType()->isIntegerTy(1), - "Branch condition is not 'i1' type!", &BI, BI.getCondition()); + Assert(BI.getCondition()->getType()->isIntegerTy(1), + "Branch condition is not 'i1' type!", &BI, BI.getCondition()); } visitTerminatorInst(BI); } @@ -1458,13 +1788,15 @@ void Verifier::visitReturnInst(ReturnInst &RI) { Function *F = RI.getParent()->getParent(); unsigned N = RI.getNumOperands(); if (F->getReturnType()->isVoidTy()) - Assert2(N == 0, - "Found return instr that returns non-void in Function of void " - "return type!", &RI, F->getReturnType()); + Assert(N == 0, + "Found return instr that returns non-void in Function of void " + "return type!", + &RI, F->getReturnType()); else - Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), - "Function return type does not match operand " - "type of return inst!", &RI, F->getReturnType()); + Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), + "Function return type does not match operand " + "type of return inst!", + &RI, F->getReturnType()); // Check to make sure that the return value has necessary properties for // terminators... @@ -1477,32 +1809,32 @@ void Verifier::visitSwitchInst(SwitchInst &SI) { Type *SwitchTy = SI.getCondition()->getType(); SmallPtrSet Constants; for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) { - Assert1(i.getCaseValue()->getType() == SwitchTy, - "Switch constants must all be same type as switch value!", &SI); - Assert2(Constants.insert(i.getCaseValue()).second, - "Duplicate integer as switch case", &SI, i.getCaseValue()); + Assert(i.getCaseValue()->getType() == SwitchTy, + "Switch constants must all be same type as switch value!", &SI); + Assert(Constants.insert(i.getCaseValue()).second, + "Duplicate integer as switch case", &SI, i.getCaseValue()); } visitTerminatorInst(SI); } void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { - Assert1(BI.getAddress()->getType()->isPointerTy(), - "Indirectbr operand must have pointer type!", &BI); + Assert(BI.getAddress()->getType()->isPointerTy(), + "Indirectbr operand must have pointer type!", &BI); for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) - Assert1(BI.getDestination(i)->getType()->isLabelTy(), - "Indirectbr destinations must all have pointer type!", &BI); + Assert(BI.getDestination(i)->getType()->isLabelTy(), + "Indirectbr destinations must all have pointer type!", &BI); visitTerminatorInst(BI); } void Verifier::visitSelectInst(SelectInst &SI) { - Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), - SI.getOperand(2)), - "Invalid operands for select instruction!", &SI); + Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), + SI.getOperand(2)), + "Invalid operands for select instruction!", &SI); - Assert1(SI.getTrueValue()->getType() == SI.getType(), - "Select values must have same type as select instruction!", &SI); + Assert(SI.getTrueValue()->getType() == SI.getType(), + "Select values must have same type as select instruction!", &SI); visitInstruction(SI); } @@ -1510,7 +1842,7 @@ void Verifier::visitSelectInst(SelectInst &SI) { /// a pass, if any exist, it's an error. /// void Verifier::visitUserOp1(Instruction &I) { - Assert1(0, "User-defined operators should not live outside of a pass!", &I); + Assert(0, "User-defined operators should not live outside of a pass!", &I); } void Verifier::visitTruncInst(TruncInst &I) { @@ -1522,11 +1854,11 @@ void Verifier::visitTruncInst(TruncInst &I) { unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); unsigned DestBitSize = DestTy->getScalarSizeInBits(); - Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); - Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); - Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), - "trunc source and destination must both be a vector or neither", &I); - Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I); + Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); + Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); + Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), + "trunc source and destination must both be a vector or neither", &I); + Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); visitInstruction(I); } @@ -1537,14 +1869,14 @@ void Verifier::visitZExtInst(ZExtInst &I) { Type *DestTy = I.getType(); // Get the size of the types in bits, we'll need this later - Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); - Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); - Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), - "zext source and destination must both be a vector or neither", &I); + Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); + Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); + Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), + "zext source and destination must both be a vector or neither", &I); unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); unsigned DestBitSize = DestTy->getScalarSizeInBits(); - Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I); + Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); visitInstruction(I); } @@ -1558,11 +1890,11 @@ void Verifier::visitSExtInst(SExtInst &I) { unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); unsigned DestBitSize = DestTy->getScalarSizeInBits(); - Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); - Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); - Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), - "sext source and destination must both be a vector or neither", &I); - Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I); + Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); + Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); + Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), + "sext source and destination must both be a vector or neither", &I); + Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); visitInstruction(I); } @@ -1575,11 +1907,11 @@ void Verifier::visitFPTruncInst(FPTruncInst &I) { unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); unsigned DestBitSize = DestTy->getScalarSizeInBits(); - Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I); - Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I); - Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), - "fptrunc source and destination must both be a vector or neither",&I); - Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I); + Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); + Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); + Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), + "fptrunc source and destination must both be a vector or neither", &I); + Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); visitInstruction(I); } @@ -1593,11 +1925,11 @@ void Verifier::visitFPExtInst(FPExtInst &I) { unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); unsigned DestBitSize = DestTy->getScalarSizeInBits(); - Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I); - Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I); - Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), - "fpext source and destination must both be a vector or neither", &I); - Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I); + Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); + Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); + Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), + "fpext source and destination must both be a vector or neither", &I); + Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); visitInstruction(I); } @@ -1610,17 +1942,17 @@ void Verifier::visitUIToFPInst(UIToFPInst &I) { bool SrcVec = SrcTy->isVectorTy(); bool DstVec = DestTy->isVectorTy(); - Assert1(SrcVec == DstVec, - "UIToFP source and dest must both be vector or scalar", &I); - Assert1(SrcTy->isIntOrIntVectorTy(), - "UIToFP source must be integer or integer vector", &I); - Assert1(DestTy->isFPOrFPVectorTy(), - "UIToFP result must be FP or FP vector", &I); + Assert(SrcVec == DstVec, + "UIToFP source and dest must both be vector or scalar", &I); + Assert(SrcTy->isIntOrIntVectorTy(), + "UIToFP source must be integer or integer vector", &I); + Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", + &I); if (SrcVec && DstVec) - Assert1(cast(SrcTy)->getNumElements() == - cast(DestTy)->getNumElements(), - "UIToFP source and dest vector length mismatch", &I); + Assert(cast(SrcTy)->getNumElements() == + cast(DestTy)->getNumElements(), + "UIToFP source and dest vector length mismatch", &I); visitInstruction(I); } @@ -1633,17 +1965,17 @@ void Verifier::visitSIToFPInst(SIToFPInst &I) { bool SrcVec = SrcTy->isVectorTy(); bool DstVec = DestTy->isVectorTy(); - Assert1(SrcVec == DstVec, - "SIToFP source and dest must both be vector or scalar", &I); - Assert1(SrcTy->isIntOrIntVectorTy(), - "SIToFP source must be integer or integer vector", &I); - Assert1(DestTy->isFPOrFPVectorTy(), - "SIToFP result must be FP or FP vector", &I); + Assert(SrcVec == DstVec, + "SIToFP source and dest must both be vector or scalar", &I); + Assert(SrcTy->isIntOrIntVectorTy(), + "SIToFP source must be integer or integer vector", &I); + Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", + &I); if (SrcVec && DstVec) - Assert1(cast(SrcTy)->getNumElements() == - cast(DestTy)->getNumElements(), - "SIToFP source and dest vector length mismatch", &I); + Assert(cast(SrcTy)->getNumElements() == + cast(DestTy)->getNumElements(), + "SIToFP source and dest vector length mismatch", &I); visitInstruction(I); } @@ -1656,17 +1988,17 @@ void Verifier::visitFPToUIInst(FPToUIInst &I) { bool SrcVec = SrcTy->isVectorTy(); bool DstVec = DestTy->isVectorTy(); - Assert1(SrcVec == DstVec, - "FPToUI source and dest must both be vector or scalar", &I); - Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", - &I); - Assert1(DestTy->isIntOrIntVectorTy(), - "FPToUI result must be integer or integer vector", &I); + Assert(SrcVec == DstVec, + "FPToUI source and dest must both be vector or scalar", &I); + Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", + &I); + Assert(DestTy->isIntOrIntVectorTy(), + "FPToUI result must be integer or integer vector", &I); if (SrcVec && DstVec) - Assert1(cast(SrcTy)->getNumElements() == - cast(DestTy)->getNumElements(), - "FPToUI source and dest vector length mismatch", &I); + Assert(cast(SrcTy)->getNumElements() == + cast(DestTy)->getNumElements(), + "FPToUI source and dest vector length mismatch", &I); visitInstruction(I); } @@ -1679,17 +2011,17 @@ void Verifier::visitFPToSIInst(FPToSIInst &I) { bool SrcVec = SrcTy->isVectorTy(); bool DstVec = DestTy->isVectorTy(); - Assert1(SrcVec == DstVec, - "FPToSI source and dest must both be vector or scalar", &I); - Assert1(SrcTy->isFPOrFPVectorTy(), - "FPToSI source must be FP or FP vector", &I); - Assert1(DestTy->isIntOrIntVectorTy(), - "FPToSI result must be integer or integer vector", &I); + Assert(SrcVec == DstVec, + "FPToSI source and dest must both be vector or scalar", &I); + Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", + &I); + Assert(DestTy->isIntOrIntVectorTy(), + "FPToSI result must be integer or integer vector", &I); if (SrcVec && DstVec) - Assert1(cast(SrcTy)->getNumElements() == - cast(DestTy)->getNumElements(), - "FPToSI source and dest vector length mismatch", &I); + Assert(cast(SrcTy)->getNumElements() == + cast(DestTy)->getNumElements(), + "FPToSI source and dest vector length mismatch", &I); visitInstruction(I); } @@ -1699,18 +2031,18 @@ void Verifier::visitPtrToIntInst(PtrToIntInst &I) { Type *SrcTy = I.getOperand(0)->getType(); Type *DestTy = I.getType(); - Assert1(SrcTy->getScalarType()->isPointerTy(), - "PtrToInt source must be pointer", &I); - Assert1(DestTy->getScalarType()->isIntegerTy(), - "PtrToInt result must be integral", &I); - Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), - "PtrToInt type mismatch", &I); + Assert(SrcTy->getScalarType()->isPointerTy(), + "PtrToInt source must be pointer", &I); + Assert(DestTy->getScalarType()->isIntegerTy(), + "PtrToInt result must be integral", &I); + Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", + &I); if (SrcTy->isVectorTy()) { VectorType *VSrc = dyn_cast(SrcTy); VectorType *VDest = dyn_cast(DestTy); - Assert1(VSrc->getNumElements() == VDest->getNumElements(), - "PtrToInt Vector width mismatch", &I); + Assert(VSrc->getNumElements() == VDest->getNumElements(), + "PtrToInt Vector width mismatch", &I); } visitInstruction(I); @@ -1721,23 +2053,23 @@ void Verifier::visitIntToPtrInst(IntToPtrInst &I) { Type *SrcTy = I.getOperand(0)->getType(); Type *DestTy = I.getType(); - Assert1(SrcTy->getScalarType()->isIntegerTy(), - "IntToPtr source must be an integral", &I); - Assert1(DestTy->getScalarType()->isPointerTy(), - "IntToPtr result must be a pointer",&I); - Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), - "IntToPtr type mismatch", &I); + Assert(SrcTy->getScalarType()->isIntegerTy(), + "IntToPtr source must be an integral", &I); + Assert(DestTy->getScalarType()->isPointerTy(), + "IntToPtr result must be a pointer", &I); + Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", + &I); if (SrcTy->isVectorTy()) { VectorType *VSrc = dyn_cast(SrcTy); VectorType *VDest = dyn_cast(DestTy); - Assert1(VSrc->getNumElements() == VDest->getNumElements(), - "IntToPtr Vector width mismatch", &I); + Assert(VSrc->getNumElements() == VDest->getNumElements(), + "IntToPtr Vector width mismatch", &I); } visitInstruction(I); } void Verifier::visitBitCastInst(BitCastInst &I) { - Assert1( + Assert( CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), "Invalid bitcast", &I); visitInstruction(I); @@ -1747,15 +2079,15 @@ void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { Type *SrcTy = I.getOperand(0)->getType(); Type *DestTy = I.getType(); - Assert1(SrcTy->isPtrOrPtrVectorTy(), - "AddrSpaceCast source must be a pointer", &I); - Assert1(DestTy->isPtrOrPtrVectorTy(), - "AddrSpaceCast result must be a pointer", &I); - Assert1(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), - "AddrSpaceCast must be between different address spaces", &I); + Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", + &I); + Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", + &I); + Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), + "AddrSpaceCast must be between different address spaces", &I); if (SrcTy->isVectorTy()) - Assert1(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(), - "AddrSpaceCast vector pointer number of elements mismatch", &I); + Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(), + "AddrSpaceCast vector pointer number of elements mismatch", &I); visitInstruction(I); } @@ -1766,16 +2098,15 @@ void Verifier::visitPHINode(PHINode &PN) { // This can be tested by checking whether the instruction before this is // either nonexistent (because this is begin()) or is a PHI node. If not, // then there is some other instruction before a PHI. - Assert2(&PN == &PN.getParent()->front() || - isa(--BasicBlock::iterator(&PN)), - "PHI nodes not grouped at top of basic block!", - &PN, PN.getParent()); + Assert(&PN == &PN.getParent()->front() || + isa(--BasicBlock::iterator(&PN)), + "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); // Check that all of the values of the PHI node have the same type as the // result, and that the incoming blocks are really basic blocks. for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { - Assert1(PN.getType() == PN.getIncomingValue(i)->getType(), - "PHI node operands are not the same type as the result!", &PN); + Assert(PN.getType() == PN.getIncomingValue(i)->getType(), + "PHI node operands are not the same type as the result!", &PN); } // All other PHI node constraints are checked in the visitBasicBlock method. @@ -1786,32 +2117,32 @@ void Verifier::visitPHINode(PHINode &PN) { void Verifier::VerifyCallSite(CallSite CS) { Instruction *I = CS.getInstruction(); - Assert1(CS.getCalledValue()->getType()->isPointerTy(), - "Called function must be a pointer!", I); + Assert(CS.getCalledValue()->getType()->isPointerTy(), + "Called function must be a pointer!", I); PointerType *FPTy = cast(CS.getCalledValue()->getType()); - Assert1(FPTy->getElementType()->isFunctionTy(), - "Called function is not pointer to function type!", I); + Assert(FPTy->getElementType()->isFunctionTy(), + "Called function is not pointer to function type!", I); FunctionType *FTy = cast(FPTy->getElementType()); // Verify that the correct number of arguments are being passed if (FTy->isVarArg()) - Assert1(CS.arg_size() >= FTy->getNumParams(), - "Called function requires more parameters than were provided!",I); + Assert(CS.arg_size() >= FTy->getNumParams(), + "Called function requires more parameters than were provided!", I); else - Assert1(CS.arg_size() == FTy->getNumParams(), - "Incorrect number of arguments passed to called function!", I); + Assert(CS.arg_size() == FTy->getNumParams(), + "Incorrect number of arguments passed to called function!", I); // Verify that all arguments to the call match the function type. for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) - Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i), - "Call parameter type does not match function signature!", - CS.getArgument(i), FTy->getParamType(i), I); + Assert(CS.getArgument(i)->getType() == FTy->getParamType(i), + "Call parameter type does not match function signature!", + CS.getArgument(i), FTy->getParamType(i), I); AttributeSet Attrs = CS.getAttributes(); - Assert1(VerifyAttributeCount(Attrs, CS.arg_size()), - "Attribute after last parameter!", I); + Assert(VerifyAttributeCount(Attrs, CS.arg_size()), + "Attribute after last parameter!", I); // Verify call attributes. VerifyFunctionAttrs(FTy, Attrs, I); @@ -1822,8 +2153,8 @@ void Verifier::VerifyCallSite(CallSite CS) { if (CS.hasInAllocaArgument()) { Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1); if (auto AI = dyn_cast(InAllocaArg->stripInBoundsOffsets())) - Assert2(AI->isUsedWithInAlloca(), - "inalloca argument for call has mismatched alloca", AI, I); + Assert(AI->isUsedWithInAlloca(), + "inalloca argument for call has mismatched alloca", AI, I); } if (FTy->isVarArg()) { @@ -1844,25 +2175,25 @@ void Verifier::VerifyCallSite(CallSite CS) { VerifyParameterAttrs(Attrs, Idx, Ty, false, I); if (Attrs.hasAttribute(Idx, Attribute::Nest)) { - Assert1(!SawNest, "More than one parameter has attribute nest!", I); + Assert(!SawNest, "More than one parameter has attribute nest!", I); SawNest = true; } if (Attrs.hasAttribute(Idx, Attribute::Returned)) { - Assert1(!SawReturned, "More than one parameter has attribute returned!", - I); - Assert1(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), - "Incompatible argument and return types for 'returned' " - "attribute", I); + Assert(!SawReturned, "More than one parameter has attribute returned!", + I); + Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), + "Incompatible argument and return types for 'returned' " + "attribute", + I); SawReturned = true; } - Assert1(!Attrs.hasAttribute(Idx, Attribute::StructRet), - "Attribute 'sret' cannot be used for vararg call arguments!", I); + Assert(!Attrs.hasAttribute(Idx, Attribute::StructRet), + "Attribute 'sret' cannot be used for vararg call arguments!", I); if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) - Assert1(Idx == CS.arg_size(), "inalloca isn't on the last argument!", - I); + Assert(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I); } } @@ -1871,8 +2202,8 @@ void Verifier::VerifyCallSite(CallSite CS) { !CS.getCalledFunction()->getName().startswith("llvm.")) { for (FunctionType::param_iterator PI = FTy->param_begin(), PE = FTy->param_end(); PI != PE; ++PI) - Assert1(!(*PI)->isMetadataTy(), - "Function has metadata parameter but isn't an intrinsic", I); + Assert(!(*PI)->isMetadataTy(), + "Function has metadata parameter but isn't an intrinsic", I); } visitInstruction(*I); @@ -1905,7 +2236,7 @@ static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) { } void Verifier::verifyMustTailCall(CallInst &CI) { - Assert1(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); + Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); // - The caller and callee prototypes must match. Pointer types of // parameters or return types may differ in pointee type, but not @@ -1917,21 +2248,21 @@ void Verifier::verifyMustTailCall(CallInst &CI) { }; FunctionType *CallerTy = GetFnTy(F); FunctionType *CalleeTy = GetFnTy(CI.getCalledValue()); - Assert1(CallerTy->getNumParams() == CalleeTy->getNumParams(), - "cannot guarantee tail call due to mismatched parameter counts", &CI); - Assert1(CallerTy->isVarArg() == CalleeTy->isVarArg(), - "cannot guarantee tail call due to mismatched varargs", &CI); - Assert1(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), - "cannot guarantee tail call due to mismatched return types", &CI); + Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), + "cannot guarantee tail call due to mismatched parameter counts", &CI); + Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), + "cannot guarantee tail call due to mismatched varargs", &CI); + Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), + "cannot guarantee tail call due to mismatched return types", &CI); for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { - Assert1( + Assert( isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), "cannot guarantee tail call due to mismatched parameter types", &CI); } // - The calling conventions of the caller and callee must match. - Assert1(F->getCallingConv() == CI.getCallingConv(), - "cannot guarantee tail call due to mismatched calling conv", &CI); + Assert(F->getCallingConv() == CI.getCallingConv(), + "cannot guarantee tail call due to mismatched calling conv", &CI); // - All ABI-impacting function attributes, such as sret, byval, inreg, // returned, and inalloca, must match. @@ -1940,9 +2271,10 @@ void Verifier::verifyMustTailCall(CallInst &CI) { for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); - Assert2(CallerABIAttrs == CalleeABIAttrs, - "cannot guarantee tail call due to mismatched ABI impacting " - "function attributes", &CI, CI.getOperand(I)); + Assert(CallerABIAttrs == CalleeABIAttrs, + "cannot guarantee tail call due to mismatched ABI impacting " + "function attributes", + &CI, CI.getOperand(I)); } // - The call must immediately precede a :ref:`ret ` instruction, @@ -1954,18 +2286,18 @@ void Verifier::verifyMustTailCall(CallInst &CI) { // Handle the optional bitcast. if (BitCastInst *BI = dyn_cast_or_null(Next)) { - Assert1(BI->getOperand(0) == RetVal, - "bitcast following musttail call must use the call", BI); + Assert(BI->getOperand(0) == RetVal, + "bitcast following musttail call must use the call", BI); RetVal = BI; Next = BI->getNextNode(); } // Check the return. ReturnInst *Ret = dyn_cast_or_null(Next); - Assert1(Ret, "musttail call must be precede a ret with an optional bitcast", - &CI); - Assert1(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, - "musttail call result must be returned", Ret); + Assert(Ret, "musttail call must be precede a ret with an optional bitcast", + &CI); + Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, + "musttail call result must be returned", Ret); } void Verifier::visitCallInst(CallInst &CI) { @@ -1984,8 +2316,8 @@ void Verifier::visitInvokeInst(InvokeInst &II) { // Verify that there is a landingpad instruction as the first non-PHI // instruction of the 'unwind' destination. - Assert1(II.getUnwindDest()->isLandingPad(), - "The unwind destination does not have a landingpad instruction!",&II); + Assert(II.getUnwindDest()->isLandingPad(), + "The unwind destination does not have a landingpad instruction!", &II); if (Function *F = II.getCalledFunction()) // TODO: Ideally we should use visitIntrinsicFunction here. But it uses @@ -2001,8 +2333,8 @@ void Verifier::visitInvokeInst(InvokeInst &II) { /// of the same type! /// void Verifier::visitBinaryOperator(BinaryOperator &B) { - Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(), - "Both operands to a binary operator are not of the same type!", &B); + Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), + "Both operands to a binary operator are not of the same type!", &B); switch (B.getOpcode()) { // Check that integer arithmetic operators are only used with @@ -2014,11 +2346,12 @@ void Verifier::visitBinaryOperator(BinaryOperator &B) { case Instruction::UDiv: case Instruction::SRem: case Instruction::URem: - Assert1(B.getType()->isIntOrIntVectorTy(), - "Integer arithmetic operators only work with integral types!", &B); - Assert1(B.getType() == B.getOperand(0)->getType(), - "Integer arithmetic operators must have same type " - "for operands and result!", &B); + Assert(B.getType()->isIntOrIntVectorTy(), + "Integer arithmetic operators only work with integral types!", &B); + Assert(B.getType() == B.getOperand(0)->getType(), + "Integer arithmetic operators must have same type " + "for operands and result!", + &B); break; // Check that floating-point arithmetic operators are only used with // floating-point operands. @@ -2027,30 +2360,32 @@ void Verifier::visitBinaryOperator(BinaryOperator &B) { case Instruction::FMul: case Instruction::FDiv: case Instruction::FRem: - Assert1(B.getType()->isFPOrFPVectorTy(), - "Floating-point arithmetic operators only work with " - "floating-point types!", &B); - Assert1(B.getType() == B.getOperand(0)->getType(), - "Floating-point arithmetic operators must have same type " - "for operands and result!", &B); + Assert(B.getType()->isFPOrFPVectorTy(), + "Floating-point arithmetic operators only work with " + "floating-point types!", + &B); + Assert(B.getType() == B.getOperand(0)->getType(), + "Floating-point arithmetic operators must have same type " + "for operands and result!", + &B); break; // Check that logical operators are only used with integral operands. case Instruction::And: case Instruction::Or: case Instruction::Xor: - Assert1(B.getType()->isIntOrIntVectorTy(), - "Logical operators only work with integral types!", &B); - Assert1(B.getType() == B.getOperand(0)->getType(), - "Logical operators must have same type for operands and result!", - &B); + Assert(B.getType()->isIntOrIntVectorTy(), + "Logical operators only work with integral types!", &B); + Assert(B.getType() == B.getOperand(0)->getType(), + "Logical operators must have same type for operands and result!", + &B); break; case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: - Assert1(B.getType()->isIntOrIntVectorTy(), - "Shifts only work with integral types!", &B); - Assert1(B.getType() == B.getOperand(0)->getType(), - "Shift return type must be same as operands!", &B); + Assert(B.getType()->isIntOrIntVectorTy(), + "Shifts only work with integral types!", &B); + Assert(B.getType() == B.getOperand(0)->getType(), + "Shift return type must be same as operands!", &B); break; default: llvm_unreachable("Unknown BinaryOperator opcode!"); @@ -2063,15 +2398,15 @@ void Verifier::visitICmpInst(ICmpInst &IC) { // Check that the operands are the same type Type *Op0Ty = IC.getOperand(0)->getType(); Type *Op1Ty = IC.getOperand(1)->getType(); - Assert1(Op0Ty == Op1Ty, - "Both operands to ICmp instruction are not of the same type!", &IC); + Assert(Op0Ty == Op1Ty, + "Both operands to ICmp instruction are not of the same type!", &IC); // Check that the operands are the right type - Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(), - "Invalid operand types for ICmp instruction", &IC); + Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(), + "Invalid operand types for ICmp instruction", &IC); // Check that the predicate is valid. - Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE && - IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE, - "Invalid predicate in ICmp instruction!", &IC); + Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE && + IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE, + "Invalid predicate in ICmp instruction!", &IC); visitInstruction(IC); } @@ -2080,72 +2415,72 @@ void Verifier::visitFCmpInst(FCmpInst &FC) { // Check that the operands are the same type Type *Op0Ty = FC.getOperand(0)->getType(); Type *Op1Ty = FC.getOperand(1)->getType(); - Assert1(Op0Ty == Op1Ty, - "Both operands to FCmp instruction are not of the same type!", &FC); + Assert(Op0Ty == Op1Ty, + "Both operands to FCmp instruction are not of the same type!", &FC); // Check that the operands are the right type - Assert1(Op0Ty->isFPOrFPVectorTy(), - "Invalid operand types for FCmp instruction", &FC); + Assert(Op0Ty->isFPOrFPVectorTy(), + "Invalid operand types for FCmp instruction", &FC); // Check that the predicate is valid. - Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE && - FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE, - "Invalid predicate in FCmp instruction!", &FC); + Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE && + FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE, + "Invalid predicate in FCmp instruction!", &FC); visitInstruction(FC); } void Verifier::visitExtractElementInst(ExtractElementInst &EI) { - Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0), - EI.getOperand(1)), - "Invalid extractelement operands!", &EI); + Assert( + ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), + "Invalid extractelement operands!", &EI); visitInstruction(EI); } void Verifier::visitInsertElementInst(InsertElementInst &IE) { - Assert1(InsertElementInst::isValidOperands(IE.getOperand(0), - IE.getOperand(1), - IE.getOperand(2)), - "Invalid insertelement operands!", &IE); + Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), + IE.getOperand(2)), + "Invalid insertelement operands!", &IE); visitInstruction(IE); } void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { - Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), - SV.getOperand(2)), - "Invalid shufflevector operands!", &SV); + Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), + SV.getOperand(2)), + "Invalid shufflevector operands!", &SV); visitInstruction(SV); } void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); - Assert1(isa(TargetTy), - "GEP base pointer is not a vector or a vector of pointers", &GEP); - Assert1(cast(TargetTy)->getElementType()->isSized(), - "GEP into unsized type!", &GEP); - Assert1(GEP.getPointerOperandType()->isVectorTy() == - GEP.getType()->isVectorTy(), "Vector GEP must return a vector value", - &GEP); + Assert(isa(TargetTy), + "GEP base pointer is not a vector or a vector of pointers", &GEP); + Assert(cast(TargetTy)->getElementType()->isSized(), + "GEP into unsized type!", &GEP); + Assert(GEP.getPointerOperandType()->isVectorTy() == + GEP.getType()->isVectorTy(), + "Vector GEP must return a vector value", &GEP); SmallVector Idxs(GEP.idx_begin(), GEP.idx_end()); Type *ElTy = - GetElementPtrInst::getIndexedType(GEP.getPointerOperandType(), Idxs); - Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP); + GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); + Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); - Assert2(GEP.getType()->getScalarType()->isPointerTy() && - cast(GEP.getType()->getScalarType())->getElementType() - == ElTy, "GEP is not of right type for indices!", &GEP, ElTy); + Assert(GEP.getType()->getScalarType()->isPointerTy() && + cast(GEP.getType()->getScalarType()) + ->getElementType() == ElTy, + "GEP is not of right type for indices!", &GEP, ElTy); if (GEP.getPointerOperandType()->isVectorTy()) { // Additional checks for vector GEPs. unsigned GepWidth = GEP.getPointerOperandType()->getVectorNumElements(); - Assert1(GepWidth == GEP.getType()->getVectorNumElements(), - "Vector GEP result width doesn't match operand's", &GEP); + Assert(GepWidth == GEP.getType()->getVectorNumElements(), + "Vector GEP result width doesn't match operand's", &GEP); for (unsigned i = 0, e = Idxs.size(); i != e; ++i) { Type *IndexTy = Idxs[i]->getType(); - Assert1(IndexTy->isVectorTy(), - "Vector GEP must have vector indices!", &GEP); + Assert(IndexTy->isVectorTy(), "Vector GEP must have vector indices!", + &GEP); unsigned IndexWidth = IndexTy->getVectorNumElements(); - Assert1(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP); + Assert(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP); } } visitInstruction(GEP); @@ -2162,34 +2497,33 @@ void Verifier::visitRangeMetadata(Instruction& I, "precondition violation"); unsigned NumOperands = Range->getNumOperands(); - Assert1(NumOperands % 2 == 0, "Unfinished range!", Range); + Assert(NumOperands % 2 == 0, "Unfinished range!", Range); unsigned NumRanges = NumOperands / 2; - Assert1(NumRanges >= 1, "It should have at least one range!", Range); - + Assert(NumRanges >= 1, "It should have at least one range!", Range); + ConstantRange LastRange(1); // Dummy initial value for (unsigned i = 0; i < NumRanges; ++i) { ConstantInt *Low = mdconst::dyn_extract(Range->getOperand(2 * i)); - Assert1(Low, "The lower limit must be an integer!", Low); + Assert(Low, "The lower limit must be an integer!", Low); ConstantInt *High = mdconst::dyn_extract(Range->getOperand(2 * i + 1)); - Assert1(High, "The upper limit must be an integer!", High); - Assert1(High->getType() == Low->getType() && - High->getType() == Ty, "Range types must match instruction type!", - &I); - + Assert(High, "The upper limit must be an integer!", High); + Assert(High->getType() == Low->getType() && High->getType() == Ty, + "Range types must match instruction type!", &I); + APInt HighV = High->getValue(); APInt LowV = Low->getValue(); ConstantRange CurRange(LowV, HighV); - Assert1(!CurRange.isEmptySet() && !CurRange.isFullSet(), - "Range must not be empty!", Range); + Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), + "Range must not be empty!", Range); if (i != 0) { - Assert1(CurRange.intersectWith(LastRange).isEmptySet(), - "Intervals are overlapping", Range); - Assert1(LowV.sgt(LastRange.getLower()), "Intervals are not in order", - Range); - Assert1(!isContiguous(CurRange, LastRange), "Intervals are contiguous", - Range); + Assert(CurRange.intersectWith(LastRange).isEmptySet(), + "Intervals are overlapping", Range); + Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", + Range); + Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", + Range); } LastRange = ConstantRange(LowV, HighV); } @@ -2199,38 +2533,35 @@ void Verifier::visitRangeMetadata(Instruction& I, APInt FirstHigh = mdconst::dyn_extract(Range->getOperand(1))->getValue(); ConstantRange FirstRange(FirstLow, FirstHigh); - Assert1(FirstRange.intersectWith(LastRange).isEmptySet(), - "Intervals are overlapping", Range); - Assert1(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", - Range); + Assert(FirstRange.intersectWith(LastRange).isEmptySet(), + "Intervals are overlapping", Range); + Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", + Range); } } void Verifier::visitLoadInst(LoadInst &LI) { PointerType *PTy = dyn_cast(LI.getOperand(0)->getType()); - Assert1(PTy, "Load operand must be a pointer.", &LI); - Type *ElTy = PTy->getElementType(); - Assert2(ElTy == LI.getType(), - "Load result type does not match pointer operand type!", &LI, ElTy); - Assert1(LI.getAlignment() <= Value::MaximumAlignment, - "huge alignment values are unsupported", &LI); + Assert(PTy, "Load operand must be a pointer.", &LI); + Type *ElTy = LI.getType(); + Assert(LI.getAlignment() <= Value::MaximumAlignment, + "huge alignment values are unsupported", &LI); if (LI.isAtomic()) { - Assert1(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease, - "Load cannot have Release ordering", &LI); - Assert1(LI.getAlignment() != 0, - "Atomic load must specify explicit alignment", &LI); + Assert(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease, + "Load cannot have Release ordering", &LI); + Assert(LI.getAlignment() != 0, + "Atomic load must specify explicit alignment", &LI); if (!ElTy->isPointerTy()) { - Assert2(ElTy->isIntegerTy(), - "atomic load operand must have integer type!", - &LI, ElTy); + Assert(ElTy->isIntegerTy(), "atomic load operand must have integer type!", + &LI, ElTy); unsigned Size = ElTy->getPrimitiveSizeInBits(); - Assert2(Size >= 8 && !(Size & (Size - 1)), - "atomic load operand must be power-of-two byte-sized integer", - &LI, ElTy); + Assert(Size >= 8 && !(Size & (Size - 1)), + "atomic load operand must be power-of-two byte-sized integer", &LI, + ElTy); } } else { - Assert1(LI.getSynchScope() == CrossThread, - "Non-atomic load cannot have SynchronizationScope specified", &LI); + Assert(LI.getSynchScope() == CrossThread, + "Non-atomic load cannot have SynchronizationScope specified", &LI); } visitInstruction(LI); @@ -2238,30 +2569,28 @@ void Verifier::visitLoadInst(LoadInst &LI) { void Verifier::visitStoreInst(StoreInst &SI) { PointerType *PTy = dyn_cast(SI.getOperand(1)->getType()); - Assert1(PTy, "Store operand must be a pointer.", &SI); + Assert(PTy, "Store operand must be a pointer.", &SI); Type *ElTy = PTy->getElementType(); - Assert2(ElTy == SI.getOperand(0)->getType(), - "Stored value type does not match pointer operand type!", - &SI, ElTy); - Assert1(SI.getAlignment() <= Value::MaximumAlignment, - "huge alignment values are unsupported", &SI); + Assert(ElTy == SI.getOperand(0)->getType(), + "Stored value type does not match pointer operand type!", &SI, ElTy); + Assert(SI.getAlignment() <= Value::MaximumAlignment, + "huge alignment values are unsupported", &SI); if (SI.isAtomic()) { - Assert1(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease, - "Store cannot have Acquire ordering", &SI); - Assert1(SI.getAlignment() != 0, - "Atomic store must specify explicit alignment", &SI); + Assert(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease, + "Store cannot have Acquire ordering", &SI); + Assert(SI.getAlignment() != 0, + "Atomic store must specify explicit alignment", &SI); if (!ElTy->isPointerTy()) { - Assert2(ElTy->isIntegerTy(), - "atomic store operand must have integer type!", - &SI, ElTy); + Assert(ElTy->isIntegerTy(), + "atomic store operand must have integer type!", &SI, ElTy); unsigned Size = ElTy->getPrimitiveSizeInBits(); - Assert2(Size >= 8 && !(Size & (Size - 1)), - "atomic store operand must be power-of-two byte-sized integer", - &SI, ElTy); + Assert(Size >= 8 && !(Size & (Size - 1)), + "atomic store operand must be power-of-two byte-sized integer", + &SI, ElTy); } } else { - Assert1(SI.getSynchScope() == CrossThread, - "Non-atomic store cannot have SynchronizationScope specified", &SI); + Assert(SI.getSynchScope() == CrossThread, + "Non-atomic store cannot have SynchronizationScope specified", &SI); } visitInstruction(SI); } @@ -2269,15 +2598,15 @@ void Verifier::visitStoreInst(StoreInst &SI) { void Verifier::visitAllocaInst(AllocaInst &AI) { SmallPtrSet Visited; PointerType *PTy = AI.getType(); - Assert1(PTy->getAddressSpace() == 0, - "Allocation instruction pointer not in the generic address space!", - &AI); - Assert1(PTy->getElementType()->isSized(&Visited), "Cannot allocate unsized type", - &AI); - Assert1(AI.getArraySize()->getType()->isIntegerTy(), - "Alloca array size must have integer type", &AI); - Assert1(AI.getAlignment() <= Value::MaximumAlignment, - "huge alignment values are unsupported", &AI); + Assert(PTy->getAddressSpace() == 0, + "Allocation instruction pointer not in the generic address space!", + &AI); + Assert(PTy->getElementType()->isSized(&Visited), + "Cannot allocate unsized type", &AI); + Assert(AI.getArraySize()->getType()->isIntegerTy(), + "Alloca array size must have integer type", &AI); + Assert(AI.getAlignment() <= Value::MaximumAlignment, + "huge alignment values are unsupported", &AI); visitInstruction(AI); } @@ -2285,87 +2614,83 @@ void Verifier::visitAllocaInst(AllocaInst &AI) { void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { // FIXME: more conditions??? - Assert1(CXI.getSuccessOrdering() != NotAtomic, - "cmpxchg instructions must be atomic.", &CXI); - Assert1(CXI.getFailureOrdering() != NotAtomic, - "cmpxchg instructions must be atomic.", &CXI); - Assert1(CXI.getSuccessOrdering() != Unordered, - "cmpxchg instructions cannot be unordered.", &CXI); - Assert1(CXI.getFailureOrdering() != Unordered, - "cmpxchg instructions cannot be unordered.", &CXI); - Assert1(CXI.getSuccessOrdering() >= CXI.getFailureOrdering(), - "cmpxchg instructions be at least as constrained on success as fail", - &CXI); - Assert1(CXI.getFailureOrdering() != Release && - CXI.getFailureOrdering() != AcquireRelease, - "cmpxchg failure ordering cannot include release semantics", &CXI); + Assert(CXI.getSuccessOrdering() != NotAtomic, + "cmpxchg instructions must be atomic.", &CXI); + Assert(CXI.getFailureOrdering() != NotAtomic, + "cmpxchg instructions must be atomic.", &CXI); + Assert(CXI.getSuccessOrdering() != Unordered, + "cmpxchg instructions cannot be unordered.", &CXI); + Assert(CXI.getFailureOrdering() != Unordered, + "cmpxchg instructions cannot be unordered.", &CXI); + Assert(CXI.getSuccessOrdering() >= CXI.getFailureOrdering(), + "cmpxchg instructions be at least as constrained on success as fail", + &CXI); + Assert(CXI.getFailureOrdering() != Release && + CXI.getFailureOrdering() != AcquireRelease, + "cmpxchg failure ordering cannot include release semantics", &CXI); PointerType *PTy = dyn_cast(CXI.getOperand(0)->getType()); - Assert1(PTy, "First cmpxchg operand must be a pointer.", &CXI); + Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI); Type *ElTy = PTy->getElementType(); - Assert2(ElTy->isIntegerTy(), - "cmpxchg operand must have integer type!", - &CXI, ElTy); + Assert(ElTy->isIntegerTy(), "cmpxchg operand must have integer type!", &CXI, + ElTy); unsigned Size = ElTy->getPrimitiveSizeInBits(); - Assert2(Size >= 8 && !(Size & (Size - 1)), - "cmpxchg operand must be power-of-two byte-sized integer", - &CXI, ElTy); - Assert2(ElTy == CXI.getOperand(1)->getType(), - "Expected value type does not match pointer operand type!", - &CXI, ElTy); - Assert2(ElTy == CXI.getOperand(2)->getType(), - "Stored value type does not match pointer operand type!", - &CXI, ElTy); + Assert(Size >= 8 && !(Size & (Size - 1)), + "cmpxchg operand must be power-of-two byte-sized integer", &CXI, ElTy); + Assert(ElTy == CXI.getOperand(1)->getType(), + "Expected value type does not match pointer operand type!", &CXI, + ElTy); + Assert(ElTy == CXI.getOperand(2)->getType(), + "Stored value type does not match pointer operand type!", &CXI, ElTy); visitInstruction(CXI); } void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { - Assert1(RMWI.getOrdering() != NotAtomic, - "atomicrmw instructions must be atomic.", &RMWI); - Assert1(RMWI.getOrdering() != Unordered, - "atomicrmw instructions cannot be unordered.", &RMWI); + Assert(RMWI.getOrdering() != NotAtomic, + "atomicrmw instructions must be atomic.", &RMWI); + Assert(RMWI.getOrdering() != Unordered, + "atomicrmw instructions cannot be unordered.", &RMWI); PointerType *PTy = dyn_cast(RMWI.getOperand(0)->getType()); - Assert1(PTy, "First atomicrmw operand must be a pointer.", &RMWI); + Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI); Type *ElTy = PTy->getElementType(); - Assert2(ElTy->isIntegerTy(), - "atomicrmw operand must have integer type!", - &RMWI, ElTy); + Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!", + &RMWI, ElTy); unsigned Size = ElTy->getPrimitiveSizeInBits(); - Assert2(Size >= 8 && !(Size & (Size - 1)), - "atomicrmw operand must be power-of-two byte-sized integer", - &RMWI, ElTy); - Assert2(ElTy == RMWI.getOperand(1)->getType(), - "Argument value type does not match pointer operand type!", - &RMWI, ElTy); - Assert1(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() && - RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP, - "Invalid binary operation!", &RMWI); + Assert(Size >= 8 && !(Size & (Size - 1)), + "atomicrmw operand must be power-of-two byte-sized integer", &RMWI, + ElTy); + Assert(ElTy == RMWI.getOperand(1)->getType(), + "Argument value type does not match pointer operand type!", &RMWI, + ElTy); + Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() && + RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP, + "Invalid binary operation!", &RMWI); visitInstruction(RMWI); } void Verifier::visitFenceInst(FenceInst &FI) { const AtomicOrdering Ordering = FI.getOrdering(); - Assert1(Ordering == Acquire || Ordering == Release || - Ordering == AcquireRelease || Ordering == SequentiallyConsistent, - "fence instructions may only have " - "acquire, release, acq_rel, or seq_cst ordering.", &FI); + Assert(Ordering == Acquire || Ordering == Release || + Ordering == AcquireRelease || Ordering == SequentiallyConsistent, + "fence instructions may only have " + "acquire, release, acq_rel, or seq_cst ordering.", + &FI); visitInstruction(FI); } void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { - Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), - EVI.getIndices()) == - EVI.getType(), - "Invalid ExtractValueInst operands!", &EVI); + Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), + EVI.getIndices()) == EVI.getType(), + "Invalid ExtractValueInst operands!", &EVI); visitInstruction(EVI); } void Verifier::visitInsertValueInst(InsertValueInst &IVI) { - Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), - IVI.getIndices()) == - IVI.getOperand(1)->getType(), - "Invalid InsertValueInst operands!", &IVI); + Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), + IVI.getIndices()) == + IVI.getOperand(1)->getType(), + "Invalid InsertValueInst operands!", &IVI); visitInstruction(IVI); } @@ -2375,43 +2700,44 @@ void Verifier::visitLandingPadInst(LandingPadInst &LPI) { // The landingpad instruction is ill-formed if it doesn't have any clauses and // isn't a cleanup. - Assert1(LPI.getNumClauses() > 0 || LPI.isCleanup(), - "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); + Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), + "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); // The landingpad instruction defines its parent as a landing pad block. The // landing pad block may be branched to only by the unwind edge of an invoke. for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { const InvokeInst *II = dyn_cast((*I)->getTerminator()); - Assert1(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, - "Block containing LandingPadInst must be jumped to " - "only by the unwind edge of an invoke.", &LPI); + Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, + "Block containing LandingPadInst must be jumped to " + "only by the unwind edge of an invoke.", + &LPI); } // The landingpad instruction must be the first non-PHI instruction in the // block. - Assert1(LPI.getParent()->getLandingPadInst() == &LPI, - "LandingPadInst not the first non-PHI instruction in the block.", - &LPI); + Assert(LPI.getParent()->getLandingPadInst() == &LPI, + "LandingPadInst not the first non-PHI instruction in the block.", + &LPI); // The personality functions for all landingpad instructions within the same // function should match. if (PersonalityFn) - Assert1(LPI.getPersonalityFn() == PersonalityFn, - "Personality function doesn't match others in function", &LPI); + Assert(LPI.getPersonalityFn() == PersonalityFn, + "Personality function doesn't match others in function", &LPI); PersonalityFn = LPI.getPersonalityFn(); // All operands must be constants. - Assert1(isa(PersonalityFn), "Personality function is not constant!", - &LPI); + Assert(isa(PersonalityFn), "Personality function is not constant!", + &LPI); for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { Constant *Clause = LPI.getClause(i); if (LPI.isCatch(i)) { - Assert1(isa(Clause->getType()), - "Catch operand does not have pointer type!", &LPI); + Assert(isa(Clause->getType()), + "Catch operand does not have pointer type!", &LPI); } else { - Assert1(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); - Assert1(isa(Clause) || isa(Clause), - "Filter operand is not an array of constants!", &LPI); + Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); + Assert(isa(Clause) || isa(Clause), + "Filter operand is not an array of constants!", &LPI); } } @@ -2429,46 +2755,46 @@ void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { } const Use &U = I.getOperandUse(i); - Assert2(InstsInThisBlock.count(Op) || DT.dominates(Op, U), - "Instruction does not dominate all uses!", Op, &I); + Assert(InstsInThisBlock.count(Op) || DT.dominates(Op, U), + "Instruction does not dominate all uses!", Op, &I); } /// verifyInstruction - Verify that an instruction is well formed. /// void Verifier::visitInstruction(Instruction &I) { BasicBlock *BB = I.getParent(); - Assert1(BB, "Instruction not embedded in basic block!", &I); + Assert(BB, "Instruction not embedded in basic block!", &I); if (!isa(I)) { // Check that non-phi nodes are not self referential for (User *U : I.users()) { - Assert1(U != (User*)&I || !DT.isReachableFromEntry(BB), - "Only PHI nodes may reference their own value!", &I); + Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), + "Only PHI nodes may reference their own value!", &I); } } // Check that void typed values don't have names - Assert1(!I.getType()->isVoidTy() || !I.hasName(), - "Instruction has a name, but provides a void value!", &I); + Assert(!I.getType()->isVoidTy() || !I.hasName(), + "Instruction has a name, but provides a void value!", &I); // Check that the return value of the instruction is either void or a legal // value type. - Assert1(I.getType()->isVoidTy() || - I.getType()->isFirstClassType(), - "Instruction returns a non-scalar type!", &I); + Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), + "Instruction returns a non-scalar type!", &I); // Check that the instruction doesn't produce metadata. Calls are already // checked against the callee type. - Assert1(!I.getType()->isMetadataTy() || - isa(I) || isa(I), - "Invalid use of metadata!", &I); + Assert(!I.getType()->isMetadataTy() || isa(I) || isa(I), + "Invalid use of metadata!", &I); // Check that all uses of the instruction, if they are instructions // themselves, actually have parent basic blocks. If the use is not an // instruction, it is an error! for (Use &U : I.uses()) { if (Instruction *Used = dyn_cast(U.getUser())) - Assert2(Used->getParent() != nullptr, "Instruction referencing" - " instruction not embedded in a basic block!", &I, Used); + Assert(Used->getParent() != nullptr, + "Instruction referencing" + " instruction not embedded in a basic block!", + &I, Used); else { CheckFailed("Use of instruction is not an instruction!", U); return; @@ -2476,44 +2802,46 @@ void Verifier::visitInstruction(Instruction &I) { } for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { - Assert1(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); + Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); // Check to make sure that only first-class-values are operands to // instructions. if (!I.getOperand(i)->getType()->isFirstClassType()) { - Assert1(0, "Instruction operands must be first-class values!", &I); + Assert(0, "Instruction operands must be first-class values!", &I); } if (Function *F = dyn_cast(I.getOperand(i))) { // Check to make sure that the "address of" an intrinsic function is never // taken. - Assert1(!F->isIntrinsic() || i == (isa(I) ? e-1 : - isa(I) ? e-3 : 0), - "Cannot take the address of an intrinsic!", &I); - Assert1(!F->isIntrinsic() || isa(I) || + Assert( + !F->isIntrinsic() || + i == (isa(I) ? e - 1 : isa(I) ? e - 3 : 0), + "Cannot take the address of an intrinsic!", &I); + Assert( + !F->isIntrinsic() || isa(I) || F->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint, - "Cannot invoke an intrinsinc other than" - " donothing or patchpoint", &I); - Assert1(F->getParent() == M, "Referencing function in another module!", - &I); + "Cannot invoke an intrinsinc other than" + " donothing or patchpoint", + &I); + Assert(F->getParent() == M, "Referencing function in another module!", + &I); } else if (BasicBlock *OpBB = dyn_cast(I.getOperand(i))) { - Assert1(OpBB->getParent() == BB->getParent(), - "Referring to a basic block in another function!", &I); + Assert(OpBB->getParent() == BB->getParent(), + "Referring to a basic block in another function!", &I); } else if (Argument *OpArg = dyn_cast(I.getOperand(i))) { - Assert1(OpArg->getParent() == BB->getParent(), - "Referring to an argument in another function!", &I); + Assert(OpArg->getParent() == BB->getParent(), + "Referring to an argument in another function!", &I); } else if (GlobalValue *GV = dyn_cast(I.getOperand(i))) { - Assert1(GV->getParent() == M, "Referencing global in another module!", - &I); + Assert(GV->getParent() == M, "Referencing global in another module!", &I); } else if (isa(I.getOperand(i))) { verifyDominatesUse(I, i); } else if (isa(I.getOperand(i))) { - Assert1((i + 1 == e && isa(I)) || - (i + 3 == e && isa(I)), - "Cannot take the address of an inline asm!", &I); + Assert((i + 1 == e && isa(I)) || + (i + 3 == e && isa(I)), + "Cannot take the address of an inline asm!", &I); } else if (ConstantExpr *CE = dyn_cast(I.getOperand(i))) { if (CE->getType()->isPtrOrPtrVectorTy()) { // If we have a ConstantExpr pointer, we need to see if it came from an @@ -2539,31 +2867,37 @@ void Verifier::visitInstruction(Instruction &I) { } if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { - Assert1(I.getType()->isFPOrFPVectorTy(), - "fpmath requires a floating point result!", &I); - Assert1(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); + Assert(I.getType()->isFPOrFPVectorTy(), + "fpmath requires a floating point result!", &I); + Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); if (ConstantFP *CFP0 = mdconst::dyn_extract_or_null(MD->getOperand(0))) { APFloat Accuracy = CFP0->getValueAPF(); - Assert1(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), - "fpmath accuracy not a positive number!", &I); + Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), + "fpmath accuracy not a positive number!", &I); } else { - Assert1(false, "invalid fpmath accuracy!", &I); + Assert(false, "invalid fpmath accuracy!", &I); } } if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { - Assert1(isa(I) || isa(I) || isa(I), - "Ranges are only for loads, calls and invokes!", &I); + Assert(isa(I) || isa(I) || isa(I), + "Ranges are only for loads, calls and invokes!", &I); visitRangeMetadata(I, Range, I.getType()); } if (I.getMetadata(LLVMContext::MD_nonnull)) { - Assert1(I.getType()->isPointerTy(), - "nonnull applies only to pointer types", &I); - Assert1(isa(I), - "nonnull applies only to load instructions, use attributes" - " for calls or invokes", &I); + Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", + &I); + Assert(isa(I), + "nonnull applies only to load instructions, use attributes" + " for calls or invokes", + &I); + } + + if (MDNode *N = I.getDebugLoc().getAsMDNode()) { + Assert(isa(N), "invalid !dbg metadata attachment", &I, N); + visitMDNode(*N); } InstsInThisBlock.insert(&I); @@ -2724,7 +3058,7 @@ Verifier::VerifyIntrinsicIsVarArg(bool isVarArg, // If there are no descriptors left, then it can't be a vararg. if (Infos.empty()) - return isVarArg ? true : false; + return isVarArg; // There should be only one descriptor remaining at this point. if (Infos.size() != 1) @@ -2734,7 +3068,7 @@ Verifier::VerifyIntrinsicIsVarArg(bool isVarArg, IITDescriptor D = Infos.front(); Infos = Infos.slice(1); if (D.Kind == IITDescriptor::VarArg) - return isVarArg ? false : true; + return !isVarArg; return true; } @@ -2743,8 +3077,8 @@ Verifier::VerifyIntrinsicIsVarArg(bool isVarArg, /// void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { Function *IF = CI.getCalledFunction(); - Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!", - IF); + Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", + IF); // Verify that the intrinsic prototype lines up with what the .td files // describe. @@ -2756,31 +3090,33 @@ void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { ArrayRef TableRef = Table; SmallVector ArgTys; - Assert1(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys), - "Intrinsic has incorrect return type!", IF); + Assert(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys), + "Intrinsic has incorrect return type!", IF); for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i) - Assert1(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys), - "Intrinsic has incorrect argument type!", IF); + Assert(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys), + "Intrinsic has incorrect argument type!", IF); // Verify if the intrinsic call matches the vararg property. if (IsVarArg) - Assert1(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef), - "Intrinsic was not defined with variable arguments!", IF); + Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef), + "Intrinsic was not defined with variable arguments!", IF); else - Assert1(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef), - "Callsite was not defined with variable arguments!", IF); + Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef), + "Callsite was not defined with variable arguments!", IF); // All descriptors should be absorbed by now. - Assert1(TableRef.empty(), "Intrinsic has too few arguments!", IF); + Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); // Now that we have the intrinsic ID and the actual argument types (and we // know they are legal for the intrinsic!) get the intrinsic name through the // usual means. This allows us to verify the mangling of argument types into // the name. const std::string ExpectedName = Intrinsic::getName(ID, ArgTys); - Assert1(ExpectedName == IF->getName(), - "Intrinsic name not mangled correctly for type arguments! " - "Should be: " + ExpectedName, IF); + Assert(ExpectedName == IF->getName(), + "Intrinsic name not mangled correctly for type arguments! " + "Should be: " + + ExpectedName, + IF); // If the intrinsic takes MDNode arguments, verify that they are either global // or are local to *this* function. @@ -2793,95 +3129,120 @@ void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { break; case Intrinsic::ctlz: // llvm.ctlz case Intrinsic::cttz: // llvm.cttz - Assert1(isa(CI.getArgOperand(1)), - "is_zero_undef argument of bit counting intrinsics must be a " - "constant int", &CI); + Assert(isa(CI.getArgOperand(1)), + "is_zero_undef argument of bit counting intrinsics must be a " + "constant int", + &CI); + break; + case Intrinsic::dbg_declare: // llvm.dbg.declare + Assert(isa(CI.getArgOperand(0)), + "invalid llvm.dbg.declare intrinsic call 1", &CI); + visitDbgIntrinsic("declare", cast(CI)); + break; + case Intrinsic::dbg_value: // llvm.dbg.value + visitDbgIntrinsic("value", cast(CI)); break; - case Intrinsic::dbg_declare: { // llvm.dbg.declare - Assert1(CI.getArgOperand(0) && isa(CI.getArgOperand(0)), - "invalid llvm.dbg.declare intrinsic call 1", &CI); - } break; case Intrinsic::memcpy: case Intrinsic::memmove: - case Intrinsic::memset: - Assert1(isa(CI.getArgOperand(3)), - "alignment argument of memory intrinsics must be a constant int", - &CI); - Assert1(isa(CI.getArgOperand(4)), - "isvolatile argument of memory intrinsics must be a constant int", - &CI); + case Intrinsic::memset: { + ConstantInt *AlignCI = dyn_cast(CI.getArgOperand(3)); + Assert(AlignCI, + "alignment argument of memory intrinsics must be a constant int", + &CI); + const APInt &AlignVal = AlignCI->getValue(); + Assert(AlignCI->isZero() || AlignVal.isPowerOf2(), + "alignment argument of memory intrinsics must be a power of 2", &CI); + Assert(isa(CI.getArgOperand(4)), + "isvolatile argument of memory intrinsics must be a constant int", + &CI); break; + } case Intrinsic::gcroot: case Intrinsic::gcwrite: case Intrinsic::gcread: if (ID == Intrinsic::gcroot) { AllocaInst *AI = dyn_cast(CI.getArgOperand(0)->stripPointerCasts()); - Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI); - Assert1(isa(CI.getArgOperand(1)), - "llvm.gcroot parameter #2 must be a constant.", &CI); + Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI); + Assert(isa(CI.getArgOperand(1)), + "llvm.gcroot parameter #2 must be a constant.", &CI); if (!AI->getType()->getElementType()->isPointerTy()) { - Assert1(!isa(CI.getArgOperand(1)), - "llvm.gcroot parameter #1 must either be a pointer alloca, " - "or argument #2 must be a non-null constant.", &CI); + Assert(!isa(CI.getArgOperand(1)), + "llvm.gcroot parameter #1 must either be a pointer alloca, " + "or argument #2 must be a non-null constant.", + &CI); } } - Assert1(CI.getParent()->getParent()->hasGC(), - "Enclosing function does not use GC.", &CI); + Assert(CI.getParent()->getParent()->hasGC(), + "Enclosing function does not use GC.", &CI); break; case Intrinsic::init_trampoline: - Assert1(isa(CI.getArgOperand(1)->stripPointerCasts()), - "llvm.init_trampoline parameter #2 must resolve to a function.", - &CI); + Assert(isa(CI.getArgOperand(1)->stripPointerCasts()), + "llvm.init_trampoline parameter #2 must resolve to a function.", + &CI); break; case Intrinsic::prefetch: - Assert1(isa(CI.getArgOperand(1)) && - isa(CI.getArgOperand(2)) && - cast(CI.getArgOperand(1))->getZExtValue() < 2 && - cast(CI.getArgOperand(2))->getZExtValue() < 4, - "invalid arguments to llvm.prefetch", - &CI); + Assert(isa(CI.getArgOperand(1)) && + isa(CI.getArgOperand(2)) && + cast(CI.getArgOperand(1))->getZExtValue() < 2 && + cast(CI.getArgOperand(2))->getZExtValue() < 4, + "invalid arguments to llvm.prefetch", &CI); break; case Intrinsic::stackprotector: - Assert1(isa(CI.getArgOperand(1)->stripPointerCasts()), - "llvm.stackprotector parameter #2 must resolve to an alloca.", - &CI); + Assert(isa(CI.getArgOperand(1)->stripPointerCasts()), + "llvm.stackprotector parameter #2 must resolve to an alloca.", &CI); break; case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: case Intrinsic::invariant_start: - Assert1(isa(CI.getArgOperand(0)), - "size argument of memory use markers must be a constant integer", - &CI); + Assert(isa(CI.getArgOperand(0)), + "size argument of memory use markers must be a constant integer", + &CI); break; case Intrinsic::invariant_end: - Assert1(isa(CI.getArgOperand(1)), - "llvm.invariant.end parameter #2 must be a constant integer", &CI); + Assert(isa(CI.getArgOperand(1)), + "llvm.invariant.end parameter #2 must be a constant integer", &CI); break; - case Intrinsic::frameallocate: { + case Intrinsic::frameescape: { BasicBlock *BB = CI.getParent(); - Assert1(BB == &BB->getParent()->front(), - "llvm.frameallocate used outside of entry block", &CI); - Assert1(!SawFrameAllocate, - "multiple calls to llvm.frameallocate in one function", &CI); - SawFrameAllocate = true; - Assert1(isa(CI.getArgOperand(0)), - "llvm.frameallocate argument must be constant integer size", &CI); + Assert(BB == &BB->getParent()->front(), + "llvm.frameescape used outside of entry block", &CI); + Assert(!SawFrameEscape, + "multiple calls to llvm.frameescape in one function", &CI); + for (Value *Arg : CI.arg_operands()) { + if (isa(Arg)) + continue; // Null values are allowed as placeholders. + auto *AI = dyn_cast(Arg->stripPointerCasts()); + Assert(AI && AI->isStaticAlloca(), + "llvm.frameescape only accepts static allocas", &CI); + } + FrameEscapeInfo[BB->getParent()].first = CI.getNumArgOperands(); + SawFrameEscape = true; break; } case Intrinsic::framerecover: { Value *FnArg = CI.getArgOperand(0)->stripPointerCasts(); Function *Fn = dyn_cast(FnArg); - Assert1(Fn && !Fn->isDeclaration(), "llvm.framerecover first " - "argument must be function defined in this module", &CI); + Assert(Fn && !Fn->isDeclaration(), + "llvm.framerecover first " + "argument must be function defined in this module", + &CI); + auto *IdxArg = dyn_cast(CI.getArgOperand(2)); + Assert(IdxArg, "idx argument of llvm.framerecover must be a constant int", + &CI); + auto &Entry = FrameEscapeInfo[Fn]; + Entry.second = unsigned( + std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); break; } case Intrinsic::experimental_gc_statepoint: - Assert1(!CI.isInlineAsm(), - "gc.statepoint support for inline assembly unimplemented", &CI); + Assert(!CI.isInlineAsm(), + "gc.statepoint support for inline assembly unimplemented", &CI); + Assert(CI.getParent()->getParent()->hasGC(), + "Enclosing function does not use GC.", &CI); VerifyStatepoint(ImmutableCallSite(&CI)); break; @@ -2889,60 +3250,58 @@ void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { case Intrinsic::experimental_gc_result_float: case Intrinsic::experimental_gc_result_ptr: case Intrinsic::experimental_gc_result: { + Assert(CI.getParent()->getParent()->hasGC(), + "Enclosing function does not use GC.", &CI); // Are we tied to a statepoint properly? CallSite StatepointCS(CI.getArgOperand(0)); const Function *StatepointFn = StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr; - Assert2(StatepointFn && StatepointFn->isDeclaration() && - StatepointFn->getIntrinsicID() == Intrinsic::experimental_gc_statepoint, - "gc.result operand #1 must be from a statepoint", - &CI, CI.getArgOperand(0)); + Assert(StatepointFn && StatepointFn->isDeclaration() && + StatepointFn->getIntrinsicID() == + Intrinsic::experimental_gc_statepoint, + "gc.result operand #1 must be from a statepoint", &CI, + CI.getArgOperand(0)); // Assert that result type matches wrapped callee. const Value *Target = StatepointCS.getArgument(0); const PointerType *PT = cast(Target->getType()); const FunctionType *TargetFuncType = cast(PT->getElementType()); - Assert1(CI.getType() == TargetFuncType->getReturnType(), - "gc.result result type does not match wrapped callee", - &CI); + Assert(CI.getType() == TargetFuncType->getReturnType(), + "gc.result result type does not match wrapped callee", &CI); break; } case Intrinsic::experimental_gc_relocate: { - Assert1(CI.getNumArgOperands() == 3, "wrong number of arguments", &CI); + Assert(CI.getNumArgOperands() == 3, "wrong number of arguments", &CI); // Check that this relocate is correctly tied to the statepoint // This is case for relocate on the unwinding path of an invoke statepoint if (ExtractValueInst *ExtractValue = dyn_cast(CI.getArgOperand(0))) { - Assert1(isa(ExtractValue->getAggregateOperand()), - "gc relocate on unwind path incorrectly linked to the statepoint", - &CI); + Assert(isa(ExtractValue->getAggregateOperand()), + "gc relocate on unwind path incorrectly linked to the statepoint", + &CI); const BasicBlock *invokeBB = ExtractValue->getParent()->getUniquePredecessor(); // Landingpad relocates should have only one predecessor with invoke // statepoint terminator - Assert1(invokeBB, - "safepoints should have unique landingpads", - ExtractValue->getParent()); - Assert1(invokeBB->getTerminator(), - "safepoint block should be well formed", - invokeBB); - Assert1(isStatepoint(invokeBB->getTerminator()), - "gc relocate should be linked to a statepoint", - invokeBB); + Assert(invokeBB, "safepoints should have unique landingpads", + ExtractValue->getParent()); + Assert(invokeBB->getTerminator(), "safepoint block should be well formed", + invokeBB); + Assert(isStatepoint(invokeBB->getTerminator()), + "gc relocate should be linked to a statepoint", invokeBB); } else { // In all other cases relocate should be tied to the statepoint directly. // This covers relocates on a normal return path of invoke statepoint and // relocates of a call statepoint auto Token = CI.getArgOperand(0); - Assert2(isa(Token) && isStatepoint(cast(Token)), - "gc relocate is incorrectly tied to the statepoint", - &CI, Token); + Assert(isa(Token) && isStatepoint(cast(Token)), + "gc relocate is incorrectly tied to the statepoint", &CI, Token); } // Verify rest of the relocate arguments @@ -2952,111 +3311,197 @@ void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { // Both the base and derived must be piped through the safepoint Value* Base = CI.getArgOperand(1); - Assert1(isa(Base), - "gc.relocate operand #2 must be integer offset", &CI); - + Assert(isa(Base), + "gc.relocate operand #2 must be integer offset", &CI); + Value* Derived = CI.getArgOperand(2); - Assert1(isa(Derived), - "gc.relocate operand #3 must be integer offset", &CI); + Assert(isa(Derived), + "gc.relocate operand #3 must be integer offset", &CI); const int BaseIndex = cast(Base)->getZExtValue(); const int DerivedIndex = cast(Derived)->getZExtValue(); // Check the bounds - Assert1(0 <= BaseIndex && - BaseIndex < (int)StatepointCS.arg_size(), - "gc.relocate: statepoint base index out of bounds", &CI); - Assert1(0 <= DerivedIndex && - DerivedIndex < (int)StatepointCS.arg_size(), - "gc.relocate: statepoint derived index out of bounds", &CI); + Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(), + "gc.relocate: statepoint base index out of bounds", &CI); + Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(), + "gc.relocate: statepoint derived index out of bounds", &CI); // Check that BaseIndex and DerivedIndex fall within the 'gc parameters' // section of the statepoint's argument - const int NumCallArgs = + Assert(StatepointCS.arg_size() > 0, + "gc.statepoint: insufficient arguments"); + Assert(isa(StatepointCS.getArgument(1)), + "gc.statement: number of call arguments must be constant integer"); + const unsigned NumCallArgs = cast(StatepointCS.getArgument(1))->getZExtValue(); + Assert(StatepointCS.arg_size() > NumCallArgs+3, + "gc.statepoint: mismatch in number of call arguments"); + Assert(isa(StatepointCS.getArgument(NumCallArgs+3)), + "gc.statepoint: number of deoptimization arguments must be " + "a constant integer"); const int NumDeoptArgs = cast(StatepointCS.getArgument(NumCallArgs + 3))->getZExtValue(); const int GCParamArgsStart = NumCallArgs + NumDeoptArgs + 4; const int GCParamArgsEnd = StatepointCS.arg_size(); - Assert1(GCParamArgsStart <= BaseIndex && - BaseIndex < GCParamArgsEnd, - "gc.relocate: statepoint base index doesn't fall within the " - "'gc parameters' section of the statepoint call", &CI); - Assert1(GCParamArgsStart <= DerivedIndex && - DerivedIndex < GCParamArgsEnd, - "gc.relocate: statepoint derived index doesn't fall within the " - "'gc parameters' section of the statepoint call", &CI); - + Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd, + "gc.relocate: statepoint base index doesn't fall within the " + "'gc parameters' section of the statepoint call", + &CI); + Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd, + "gc.relocate: statepoint derived index doesn't fall within the " + "'gc parameters' section of the statepoint call", + &CI); // Assert that the result type matches the type of the relocated pointer GCRelocateOperands Operands(&CI); - Assert1(Operands.derivedPtr()->getType() == CI.getType(), - "gc.relocate: relocating a pointer shouldn't change its type", - &CI); + Assert(Operands.derivedPtr()->getType() == CI.getType(), + "gc.relocate: relocating a pointer shouldn't change its type", &CI); break; } }; } -void DebugInfoVerifier::verifyDebugInfo() { - if (!VerifyDebugInfo) - return; +template +void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) { + auto *MD = cast(DII.getArgOperand(0))->getMetadata(); + Assert(isa(MD) || + (isa(MD) && !cast(MD)->getNumOperands()), + "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); + Assert(isa(DII.getRawVariable()), + "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, + DII.getRawVariable()); + Assert(isa(DII.getRawExpression()), + "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, + DII.getRawExpression()); + + // Ignore broken !dbg attachments; they're checked elsewhere. + if (MDNode *N = DII.getDebugLoc().getAsMDNode()) + if (!isa(N)) + return; - DebugInfoFinder Finder; - Finder.processModule(*M); - processInstructions(Finder); + // The inlined-at attachments for variables and !dbg attachments must agree. + MDLocalVariable *Var = DII.getVariable(); + MDLocation *VarIA = Var->getInlinedAt(); + MDLocation *Loc = DII.getDebugLoc(); + MDLocation *LocIA = Loc ? Loc->getInlinedAt() : nullptr; + BasicBlock *BB = DII.getParent(); + Assert(VarIA == LocIA, "mismatched variable and !dbg inlined-at", &DII, BB, + BB ? BB->getParent() : nullptr, Var, VarIA, Loc, LocIA); +} + +template +static uint64_t getVariableSize(const MDLocalVariable &V, const MapTy &Map) { + // Be careful of broken types (checked elsewhere). + const Metadata *RawType = V.getRawType(); + while (RawType) { + // Try to get the size directly. + if (auto *T = dyn_cast(RawType)) + if (uint64_t Size = T->getSizeInBits()) + return Size; + + if (auto *DT = dyn_cast(RawType)) { + // Look at the base type. + RawType = DT->getRawBaseType(); + continue; + } - // Verify Debug Info. - // - // NOTE: The loud braces are necessary for MSVC compatibility. - for (DICompileUnit CU : Finder.compile_units()) { - Assert1(CU.Verify(), "DICompileUnit does not Verify!", CU); - } - for (DISubprogram S : Finder.subprograms()) { - Assert1(S.Verify(), "DISubprogram does not Verify!", S); - } - for (DIGlobalVariable GV : Finder.global_variables()) { - Assert1(GV.Verify(), "DIGlobalVariable does not Verify!", GV); - } - for (DIType T : Finder.types()) { - Assert1(T.Verify(), "DIType does not Verify!", T); + if (auto *S = dyn_cast(RawType)) { + // Don't error on missing types (checked elsewhere). + RawType = Map.lookup(S); + continue; + } + + // Missing type or size. + break; } - for (DIScope S : Finder.scopes()) { - Assert1(S.Verify(), "DIScope does not Verify!", S); + + // Fail gracefully. + return 0; +} + +template +void Verifier::verifyBitPieceExpression(const DbgInfoIntrinsic &I, + const MapTy &TypeRefs) { + MDLocalVariable *V; + MDExpression *E; + if (auto *DVI = dyn_cast(&I)) { + V = dyn_cast_or_null(DVI->getRawVariable()); + E = dyn_cast_or_null(DVI->getRawExpression()); + } else { + auto *DDI = cast(&I); + V = dyn_cast_or_null(DDI->getRawVariable()); + E = dyn_cast_or_null(DDI->getRawExpression()); } + + // We don't know whether this intrinsic verified correctly. + if (!V || !E || !E->isValid()) + return; + + // Nothing to do if this isn't a bit piece expression. + if (!E->isBitPiece()) + return; + + // If there's no size, the type is broken, but that should be checked + // elsewhere. + uint64_t VarSize = getVariableSize(*V, TypeRefs); + if (!VarSize) + return; + + unsigned PieceSize = E->getBitPieceSize(); + unsigned PieceOffset = E->getBitPieceOffset(); + Assert(PieceSize + PieceOffset <= VarSize, + "piece is larger than or outside of variable", &I, V, E); + Assert(PieceSize != VarSize, "piece covers entire variable", &I, V, E); } -void DebugInfoVerifier::processInstructions(DebugInfoFinder &Finder) { - for (const Function &F : *M) - for (auto I = inst_begin(&F), E = inst_end(&F); I != E; ++I) { - if (MDNode *MD = I->getMetadata(LLVMContext::MD_dbg)) - Finder.processLocation(*M, DILocation(MD)); - if (const CallInst *CI = dyn_cast(&*I)) - processCallInst(Finder, *CI); - } +void Verifier::visitUnresolvedTypeRef(const MDString *S, const MDNode *N) { + // This is in its own function so we get an error for each bad type ref (not + // just the first). + Assert(false, "unresolved type ref", S, N); } -void DebugInfoVerifier::processCallInst(DebugInfoFinder &Finder, - const CallInst &CI) { - if (Function *F = CI.getCalledFunction()) - if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) - switch (ID) { - case Intrinsic::dbg_declare: { - auto *DDI = cast(&CI); - Finder.processDeclare(*M, DDI); - if (auto E = DDI->getExpression()) - Assert1(DIExpression(E).Verify(), "DIExpression does not Verify!", E); - break; - } - case Intrinsic::dbg_value: { - auto *DVI = cast(&CI); - Finder.processValue(*M, DVI); - if (auto E = DVI->getExpression()) - Assert1(DIExpression(E).Verify(), "DIExpression does not Verify!", E); - break; - } - default: - break; - } +void Verifier::verifyTypeRefs() { + auto *CUs = M->getNamedMetadata("llvm.dbg.cu"); + if (!CUs) + return; + + // Visit all the compile units again to map the type references. + SmallDenseMap TypeRefs; + for (auto *CU : CUs->operands()) + if (auto Ts = cast(CU)->getRetainedTypes()) + for (MDType *Op : Ts) + if (auto *T = dyn_cast(Op)) + if (auto *S = T->getRawIdentifier()) { + UnresolvedTypeRefs.erase(S); + TypeRefs.insert(std::make_pair(S, T)); + } + + // Verify debug info intrinsic bit piece expressions. This needs a second + // pass through the intructions, since we haven't built TypeRefs yet when + // verifying functions, and simply queuing the DbgInfoIntrinsics to evaluate + // later/now would queue up some that could be later deleted. + for (const Function &F : *M) + for (const BasicBlock &BB : F) + for (const Instruction &I : BB) + if (auto *DII = dyn_cast(&I)) + verifyBitPieceExpression(*DII, TypeRefs); + + // Return early if all typerefs were resolved. + if (UnresolvedTypeRefs.empty()) + return; + + // Sort the unresolved references by name so the output is deterministic. + typedef std::pair TypeRef; + SmallVector Unresolved(UnresolvedTypeRefs.begin(), + UnresolvedTypeRefs.end()); + std::sort(Unresolved.begin(), Unresolved.end(), + [](const TypeRef &LHS, const TypeRef &RHS) { + return LHS.first->getString() < RHS.first->getString(); + }); + + // Visit the unresolved refs (printing out the errors). + for (const TypeRef &TR : Unresolved) + visitUnresolvedTypeRef(TR.first, TR.second); } //===----------------------------------------------------------------------===// @@ -3086,8 +3531,7 @@ bool llvm::verifyModule(const Module &M, raw_ostream *OS) { // Note that this function's return value is inverted from what you would // expect of a function called "verify". - DebugInfoVerifier DIV(OS ? *OS : NullStr); - return !V.verify(M) || !DIV.verify(M) || Broken; + return !V.verify(M) || Broken; } namespace { @@ -3097,7 +3541,7 @@ struct VerifierLegacyPass : public FunctionPass { Verifier V; bool FatalErrors; - VerifierLegacyPass() : FunctionPass(ID), FatalErrors(true) { + VerifierLegacyPass() : FunctionPass(ID), V(dbgs()), FatalErrors(true) { initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); } explicit VerifierLegacyPass(bool FatalErrors) @@ -3123,48 +3567,15 @@ struct VerifierLegacyPass : public FunctionPass { AU.setPreservesAll(); } }; -struct DebugInfoVerifierLegacyPass : public ModulePass { - static char ID; - - DebugInfoVerifier V; - bool FatalErrors; - - DebugInfoVerifierLegacyPass() : ModulePass(ID), FatalErrors(true) { - initializeDebugInfoVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); - } - explicit DebugInfoVerifierLegacyPass(bool FatalErrors) - : ModulePass(ID), V(dbgs()), FatalErrors(FatalErrors) { - initializeDebugInfoVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); - } - - bool runOnModule(Module &M) override { - if (!V.verify(M) && FatalErrors) - report_fatal_error("Broken debug info found, compilation aborted!"); - - return false; - } - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.setPreservesAll(); - } -}; } char VerifierLegacyPass::ID = 0; INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) -char DebugInfoVerifierLegacyPass::ID = 0; -INITIALIZE_PASS(DebugInfoVerifierLegacyPass, "verify-di", "Debug Info Verifier", - false, false) - FunctionPass *llvm::createVerifierPass(bool FatalErrors) { return new VerifierLegacyPass(FatalErrors); } -ModulePass *llvm::createDebugInfoVerifierPass(bool FatalErrors) { - return new DebugInfoVerifierLegacyPass(FatalErrors); -} - PreservedAnalyses VerifierPass::run(Module &M) { if (verifyModule(M, &dbgs()) && FatalErrors) report_fatal_error("Broken module found, compilation aborted!");