X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FExecutionEngine%2FRuntimeDyld%2FRuntimeDyldMachO.cpp;h=7d4dea630d0741c8cc2f25a110b653b3ac239ab0;hb=973e54ac96b4bfd71bf9999c46f3e267c819bcc0;hp=f5a68c86c3c09498ebb4880e907f0a1ce89ab485;hpb=fadfd7b9776c723357894af00442a35d0a4d0acf;p=oota-llvm.git diff --git a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp index f5a68c86c3c..7d4dea630d0 100644 --- a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp +++ b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp @@ -1,4 +1,4 @@ -//===-- RuntimeDyldMachO.cpp - Run-time dynamic linker for MC-JIT ------*- C++ -*-===// +//===-- RuntimeDyldMachO.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-=// // // The LLVM Compiler Infrastructure // @@ -11,516 +11,291 @@ // //===----------------------------------------------------------------------===// -#define DEBUG_TYPE "dyld" -#include "llvm/ADT/OwningPtr.h" -#include "llvm/ADT/StringRef.h" +#include "RuntimeDyldMachO.h" #include "llvm/ADT/STLExtras.h" -#include "RuntimeDyldImpl.h" +#include "llvm/ADT/StringRef.h" + +#include "Targets/RuntimeDyldMachOARM.h" +#include "Targets/RuntimeDyldMachOAArch64.h" +#include "Targets/RuntimeDyldMachOI386.h" +#include "Targets/RuntimeDyldMachOX86_64.h" + using namespace llvm; using namespace llvm::object; -namespace llvm { +#define DEBUG_TYPE "dyld" -bool RuntimeDyldMachO:: -resolveRelocation(uint8_t *Address, uint8_t *Value, bool isPCRel, - unsigned Type, unsigned Size) { - // This just dispatches to the proper target specific routine. - switch (CPUType) { - default: assert(0 && "Unsupported CPU type!"); - case mach::CTM_x86_64: - return resolveX86_64Relocation((uintptr_t)Address, (uintptr_t)Value, - isPCRel, Type, Size); - case mach::CTM_ARM: - return resolveARMRelocation((uintptr_t)Address, (uintptr_t)Value, - isPCRel, Type, Size); - } - llvm_unreachable(""); -} +namespace { -bool RuntimeDyldMachO:: -resolveX86_64Relocation(uintptr_t Address, uintptr_t Value, - bool isPCRel, unsigned Type, - unsigned Size) { - // If the relocation is PC-relative, the value to be encoded is the - // pointer difference. - if (isPCRel) - // FIXME: It seems this value needs to be adjusted by 4 for an effective PC - // address. Is that expected? Only for branches, perhaps? - Value -= Address + 4; - - switch(Type) { - default: - llvm_unreachable("Invalid relocation type!"); - case macho::RIT_X86_64_Unsigned: - case macho::RIT_X86_64_Branch: { - // Mask in the target value a byte at a time (we don't have an alignment - // guarantee for the target address, so this is safest). - uint8_t *p = (uint8_t*)Address; - for (unsigned i = 0; i < Size; ++i) { - *p++ = (uint8_t)Value; - Value >>= 8; - } - return false; - } - case macho::RIT_X86_64_Signed: - case macho::RIT_X86_64_GOTLoad: - case macho::RIT_X86_64_GOT: - case macho::RIT_X86_64_Subtractor: - case macho::RIT_X86_64_Signed1: - case macho::RIT_X86_64_Signed2: - case macho::RIT_X86_64_Signed4: - case macho::RIT_X86_64_TLV: - return Error("Relocation type not implemented yet!"); - } - return false; -} +class LoadedMachOObjectInfo : public RuntimeDyld::LoadedObjectInfo { +public: + LoadedMachOObjectInfo(RuntimeDyldImpl &RTDyld, unsigned BeginIdx, + unsigned EndIdx) + : RuntimeDyld::LoadedObjectInfo(RTDyld, BeginIdx, EndIdx) {} -bool RuntimeDyldMachO::resolveARMRelocation(uintptr_t Address, uintptr_t Value, - bool isPCRel, unsigned Type, - unsigned Size) { - // If the relocation is PC-relative, the value to be encoded is the - // pointer difference. - if (isPCRel) { - Value -= Address; - // ARM PCRel relocations have an effective-PC offset of two instructions - // (four bytes in Thumb mode, 8 bytes in ARM mode). - // FIXME: For now, assume ARM mode. - Value -= 8; + OwningBinary + getObjectForDebug(const ObjectFile &Obj) const override { + return OwningBinary(); } +}; - switch(Type) { - default: - llvm_unreachable("Invalid relocation type!"); - case macho::RIT_Vanilla: { - llvm_unreachable("Invalid relocation type!"); - // Mask in the target value a byte at a time (we don't have an alignment - // guarantee for the target address, so this is safest). - uint8_t *p = (uint8_t*)Address; - for (unsigned i = 0; i < Size; ++i) { - *p++ = (uint8_t)Value; - Value >>= 8; - } - break; - } - case macho::RIT_ARM_Branch24Bit: { - // Mask the value into the target address. We know instructions are - // 32-bit aligned, so we can do it all at once. - uint32_t *p = (uint32_t*)Address; - // The low two bits of the value are not encoded. - Value >>= 2; - // Mask the value to 24 bits. - Value &= 0xffffff; - // FIXME: If the destination is a Thumb function (and the instruction - // is a non-predicated BL instruction), we need to change it to a BLX - // instruction instead. - - // Insert the value into the instruction. - *p = (*p & ~0xffffff) | Value; - break; - } - case macho::RIT_ARM_ThumbBranch22Bit: - case macho::RIT_ARM_ThumbBranch32Bit: - case macho::RIT_ARM_Half: - case macho::RIT_ARM_HalfDifference: - case macho::RIT_Pair: - case macho::RIT_Difference: - case macho::RIT_ARM_LocalDifference: - case macho::RIT_ARM_PreboundLazyPointer: - return Error("Relocation type not implemented yet!"); - } - return false; } -bool RuntimeDyldMachO:: -loadSegment32(const MachOObject *Obj, - const MachOObject::LoadCommandInfo *SegmentLCI, - const InMemoryStruct &SymtabLC) { - InMemoryStruct SegmentLC; - Obj->ReadSegmentLoadCommand(*SegmentLCI, SegmentLC); - if (!SegmentLC) - return Error("unable to load segment load command"); - - for (unsigned SectNum = 0; SectNum != SegmentLC->NumSections; ++SectNum) { - InMemoryStruct Sect; - Obj->ReadSection(*SegmentLCI, SectNum, Sect); - if (!Sect) - return Error("unable to load section: '" + Twine(SectNum) + "'"); - - // FIXME: For the time being, we're only loading text segments. - if (Sect->Flags != 0x80000400) - continue; +namespace llvm { - // Address and names of symbols in the section. - typedef std::pair SymbolEntry; - SmallVector Symbols; - // Index of all the names, in this section or not. Used when we're - // dealing with relocation entries. - SmallVector SymbolNames; - for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) { - InMemoryStruct STE; - Obj->ReadSymbolTableEntry(SymtabLC->SymbolTableOffset, i, STE); - if (!STE) - return Error("unable to read symbol: '" + Twine(i) + "'"); - if (STE->SectionIndex > SegmentLC->NumSections) - return Error("invalid section index for symbol: '" + Twine(i) + "'"); - // Get the symbol name. - StringRef Name = Obj->getStringAtIndex(STE->StringIndex); - SymbolNames.push_back(Name); - - // Just skip symbols not defined in this section. - if ((unsigned)STE->SectionIndex - 1 != SectNum) - continue; - - // FIXME: Check the symbol type and flags. - if (STE->Type != 0xF) // external, defined in this section. - continue; - // Flags == 0x8 marks a thumb function for ARM, which is fine as it - // doesn't require any special handling here. - // Flags in the upper nibble we don't care about. - if ((STE->Flags & 0xf) != 0x0 && STE->Flags != 0x8) - continue; - - // Remember the symbol. - Symbols.push_back(SymbolEntry(STE->Value, Name)); - - DEBUG(dbgs() << "Function sym: '" << Name << "' @ " << - (Sect->Address + STE->Value) << "\n"); - } - // Sort the symbols by address, just in case they didn't come in that way. - array_pod_sort(Symbols.begin(), Symbols.end()); +int64_t RuntimeDyldMachO::memcpyAddend(const RelocationEntry &RE) const { + unsigned NumBytes = 1 << RE.Size; + uint8_t *Src = Sections[RE.SectionID].Address + RE.Offset; - // If there weren't any functions (odd, but just in case...) - if (!Symbols.size()) - continue; + return static_cast(readBytesUnaligned(Src, NumBytes)); +} - // Extract the function data. - uint8_t *Base = (uint8_t*)Obj->getData(SegmentLC->FileOffset, - SegmentLC->FileSize).data(); - for (unsigned i = 0, e = Symbols.size() - 1; i != e; ++i) { - uint64_t StartOffset = Sect->Address + Symbols[i].first; - uint64_t EndOffset = Symbols[i + 1].first - 1; - DEBUG(dbgs() << "Extracting function: " << Symbols[i].second - << " from [" << StartOffset << ", " << EndOffset << "]\n"); - extractFunction(Symbols[i].second, Base + StartOffset, Base + EndOffset); - } - // The last symbol we do after since the end address is calculated - // differently because there is no next symbol to reference. - uint64_t StartOffset = Symbols[Symbols.size() - 1].first; - uint64_t EndOffset = Sect->Size - 1; - DEBUG(dbgs() << "Extracting function: " << Symbols[Symbols.size()-1].second - << " from [" << StartOffset << ", " << EndOffset << "]\n"); - extractFunction(Symbols[Symbols.size()-1].second, - Base + StartOffset, Base + EndOffset); - - // Now extract the relocation information for each function and process it. - for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) { - InMemoryStruct RE; - Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE); - if (RE->Word0 & macho::RF_Scattered) - return Error("NOT YET IMPLEMENTED: scattered relocations."); - // Word0 of the relocation is the offset into the section where the - // relocation should be applied. We need to translate that into an - // offset into a function since that's our atom. - uint32_t Offset = RE->Word0; - // Look for the function containing the address. This is used for JIT - // code, so the number of functions in section is almost always going - // to be very small (usually just one), so until we have use cases - // where that's not true, just use a trivial linear search. - unsigned SymbolNum; - unsigned NumSymbols = Symbols.size(); - assert(NumSymbols > 0 && Symbols[0].first <= Offset && - "No symbol containing relocation!"); - for (SymbolNum = 0; SymbolNum < NumSymbols - 1; ++SymbolNum) - if (Symbols[SymbolNum + 1].first > Offset) - break; - // Adjust the offset to be relative to the symbol. - Offset -= Symbols[SymbolNum].first; - // Get the name of the symbol containing the relocation. - StringRef TargetName = SymbolNames[SymbolNum]; - - bool isExtern = (RE->Word1 >> 27) & 1; - // Figure out the source symbol of the relocation. If isExtern is true, - // this relocation references the symbol table, otherwise it references - // a section in the same object, numbered from 1 through NumSections - // (SectionBases is [0, NumSections-1]). - // FIXME: Some targets (ARM) use internal relocations even for - // externally visible symbols, if the definition is in the same - // file as the reference. We need to convert those back to by-name - // references. We can resolve the address based on the section - // offset and see if we have a symbol at that address. If we do, - // use that; otherwise, puke. - if (!isExtern) - return Error("Internal relocations not supported."); - uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value - StringRef SourceName = SymbolNames[SourceNum]; - - // FIXME: Get the relocation addend from the target address. - - // Now store the relocation information. Associate it with the source - // symbol. - Relocations[SourceName].push_back(RelocationEntry(TargetName, - Offset, - RE->Word1, - 0 /*Addend*/)); - DEBUG(dbgs() << "Relocation at '" << TargetName << "' + " << Offset - << " from '" << SourceName << "(Word1: " - << format("0x%x", RE->Word1) << ")\n"); +RelocationValueRef RuntimeDyldMachO::getRelocationValueRef( + const ObjectFile &BaseTObj, const relocation_iterator &RI, + const RelocationEntry &RE, ObjSectionToIDMap &ObjSectionToID) { + + const MachOObjectFile &Obj = + static_cast(BaseTObj); + MachO::any_relocation_info RelInfo = + Obj.getRelocation(RI->getRawDataRefImpl()); + RelocationValueRef Value; + + bool IsExternal = Obj.getPlainRelocationExternal(RelInfo); + if (IsExternal) { + symbol_iterator Symbol = RI->getSymbol(); + StringRef TargetName; + Symbol->getName(TargetName); + SymbolTableMap::const_iterator SI = + GlobalSymbolTable.find(TargetName.data()); + if (SI != GlobalSymbolTable.end()) { + Value.SectionID = SI->second.first; + Value.Offset = SI->second.second + RE.Addend; + } else { + Value.SymbolName = TargetName.data(); + Value.Offset = RE.Addend; } + } else { + SectionRef Sec = Obj.getRelocationSection(RelInfo); + bool IsCode = Sec.isText(); + Value.SectionID = findOrEmitSection(Obj, Sec, IsCode, ObjSectionToID); + uint64_t Addr = Sec.getAddress(); + Value.Offset = RE.Addend - Addr; } - return false; -} + return Value; +} -bool RuntimeDyldMachO:: -loadSegment64(const MachOObject *Obj, - const MachOObject::LoadCommandInfo *SegmentLCI, - const InMemoryStruct &SymtabLC) { - InMemoryStruct Segment64LC; - Obj->ReadSegment64LoadCommand(*SegmentLCI, Segment64LC); - if (!Segment64LC) - return Error("unable to load segment load command"); +void RuntimeDyldMachO::makeValueAddendPCRel(RelocationValueRef &Value, + const ObjectFile &BaseTObj, + const relocation_iterator &RI, + unsigned OffsetToNextPC) { + const MachOObjectFile &Obj = + static_cast(BaseTObj); + MachO::any_relocation_info RelInfo = + Obj.getRelocation(RI->getRawDataRefImpl()); + + bool IsPCRel = Obj.getAnyRelocationPCRel(RelInfo); + if (IsPCRel) { + uint64_t RelocAddr = 0; + RI->getAddress(RelocAddr); + Value.Offset += RelocAddr + OffsetToNextPC; + } +} - for (unsigned SectNum = 0; SectNum != Segment64LC->NumSections; ++SectNum) { - InMemoryStruct Sect; - Obj->ReadSection64(*SegmentLCI, SectNum, Sect); - if (!Sect) - return Error("unable to load section: '" + Twine(SectNum) + "'"); +void RuntimeDyldMachO::dumpRelocationToResolve(const RelocationEntry &RE, + uint64_t Value) const { + const SectionEntry &Section = Sections[RE.SectionID]; + uint8_t *LocalAddress = Section.Address + RE.Offset; + uint64_t FinalAddress = Section.LoadAddress + RE.Offset; + + dbgs() << "resolveRelocation Section: " << RE.SectionID + << " LocalAddress: " << format("%p", LocalAddress) + << " FinalAddress: " << format("0x%016" PRIx64, FinalAddress) + << " Value: " << format("0x%016" PRIx64, Value) << " Addend: " << RE.Addend + << " isPCRel: " << RE.IsPCRel << " MachoType: " << RE.RelType + << " Size: " << (1 << RE.Size) << "\n"; +} - // FIXME: For the time being, we're only loading text segments. - if (Sect->Flags != 0x80000400) - continue; +section_iterator +RuntimeDyldMachO::getSectionByAddress(const MachOObjectFile &Obj, + uint64_t Addr) { + section_iterator SI = Obj.section_begin(); + section_iterator SE = Obj.section_end(); + + for (; SI != SE; ++SI) { + uint64_t SAddr = SI->getAddress(); + uint64_t SSize = SI->getSize(); + if ((Addr >= SAddr) && (Addr < SAddr + SSize)) + return SI; + } - // Address and names of symbols in the section. - typedef std::pair SymbolEntry; - SmallVector Symbols; - // Index of all the names, in this section or not. Used when we're - // dealing with relocation entries. - SmallVector SymbolNames; - for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) { - InMemoryStruct STE; - Obj->ReadSymbol64TableEntry(SymtabLC->SymbolTableOffset, i, STE); - if (!STE) - return Error("unable to read symbol: '" + Twine(i) + "'"); - if (STE->SectionIndex > Segment64LC->NumSections) - return Error("invalid section index for symbol: '" + Twine(i) + "'"); - // Get the symbol name. - StringRef Name = Obj->getStringAtIndex(STE->StringIndex); - SymbolNames.push_back(Name); - - // Just skip symbols not defined in this section. - if ((unsigned)STE->SectionIndex - 1 != SectNum) - continue; - - // FIXME: Check the symbol type and flags. - if (STE->Type != 0xF) // external, defined in this section. - continue; - // Flags in the upper nibble we don't care about. - if ((STE->Flags & 0xf) != 0x0) - continue; - - // Remember the symbol. - Symbols.push_back(SymbolEntry(STE->Value, Name)); - - DEBUG(dbgs() << "Function sym: '" << Name << "' @ " << - (Sect->Address + STE->Value) << "\n"); - } - // Sort the symbols by address, just in case they didn't come in that way. - array_pod_sort(Symbols.begin(), Symbols.end()); + return SE; +} - // If there weren't any functions (odd, but just in case...) - if (!Symbols.size()) - continue; - // Extract the function data. - uint8_t *Base = (uint8_t*)Obj->getData(Segment64LC->FileOffset, - Segment64LC->FileSize).data(); - for (unsigned i = 0, e = Symbols.size() - 1; i != e; ++i) { - uint64_t StartOffset = Sect->Address + Symbols[i].first; - uint64_t EndOffset = Symbols[i + 1].first - 1; - DEBUG(dbgs() << "Extracting function: " << Symbols[i].second - << " from [" << StartOffset << ", " << EndOffset << "]\n"); - extractFunction(Symbols[i].second, Base + StartOffset, Base + EndOffset); - } - // The last symbol we do after since the end address is calculated - // differently because there is no next symbol to reference. - uint64_t StartOffset = Symbols[Symbols.size() - 1].first; - uint64_t EndOffset = Sect->Size - 1; - DEBUG(dbgs() << "Extracting function: " << Symbols[Symbols.size()-1].second - << " from [" << StartOffset << ", " << EndOffset << "]\n"); - extractFunction(Symbols[Symbols.size()-1].second, - Base + StartOffset, Base + EndOffset); - - // Now extract the relocation information for each function and process it. - for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) { - InMemoryStruct RE; - Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE); - if (RE->Word0 & macho::RF_Scattered) - return Error("NOT YET IMPLEMENTED: scattered relocations."); - // Word0 of the relocation is the offset into the section where the - // relocation should be applied. We need to translate that into an - // offset into a function since that's our atom. - uint32_t Offset = RE->Word0; - // Look for the function containing the address. This is used for JIT - // code, so the number of functions in section is almost always going - // to be very small (usually just one), so until we have use cases - // where that's not true, just use a trivial linear search. - unsigned SymbolNum; - unsigned NumSymbols = Symbols.size(); - assert(NumSymbols > 0 && Symbols[0].first <= Offset && - "No symbol containing relocation!"); - for (SymbolNum = 0; SymbolNum < NumSymbols - 1; ++SymbolNum) - if (Symbols[SymbolNum + 1].first > Offset) - break; - // Adjust the offset to be relative to the symbol. - Offset -= Symbols[SymbolNum].first; - // Get the name of the symbol containing the relocation. - StringRef TargetName = SymbolNames[SymbolNum]; - - bool isExtern = (RE->Word1 >> 27) & 1; - // Figure out the source symbol of the relocation. If isExtern is true, - // this relocation references the symbol table, otherwise it references - // a section in the same object, numbered from 1 through NumSections - // (SectionBases is [0, NumSections-1]). - if (!isExtern) - return Error("Internal relocations not supported."); - uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value - StringRef SourceName = SymbolNames[SourceNum]; - - // FIXME: Get the relocation addend from the target address. - - // Now store the relocation information. Associate it with the source - // symbol. - Relocations[SourceName].push_back(RelocationEntry(TargetName, - Offset, - RE->Word1, - 0 /*Addend*/)); - DEBUG(dbgs() << "Relocation at '" << TargetName << "' + " << Offset - << " from '" << SourceName << "(Word1: " - << format("0x%x", RE->Word1) << ")\n"); - } +// Populate __pointers section. +void RuntimeDyldMachO::populateIndirectSymbolPointersSection( + const MachOObjectFile &Obj, + const SectionRef &PTSection, + unsigned PTSectionID) { + assert(!Obj.is64Bit() && + "Pointer table section not supported in 64-bit MachO."); + + MachO::dysymtab_command DySymTabCmd = Obj.getDysymtabLoadCommand(); + MachO::section Sec32 = Obj.getSection(PTSection.getRawDataRefImpl()); + uint32_t PTSectionSize = Sec32.size; + unsigned FirstIndirectSymbol = Sec32.reserved1; + const unsigned PTEntrySize = 4; + unsigned NumPTEntries = PTSectionSize / PTEntrySize; + unsigned PTEntryOffset = 0; + + assert((PTSectionSize % PTEntrySize) == 0 && + "Pointers section does not contain a whole number of stubs?"); + + DEBUG(dbgs() << "Populating pointer table section " + << Sections[PTSectionID].Name + << ", Section ID " << PTSectionID << ", " + << NumPTEntries << " entries, " << PTEntrySize + << " bytes each:\n"); + + for (unsigned i = 0; i < NumPTEntries; ++i) { + unsigned SymbolIndex = + Obj.getIndirectSymbolTableEntry(DySymTabCmd, FirstIndirectSymbol + i); + symbol_iterator SI = Obj.getSymbolByIndex(SymbolIndex); + StringRef IndirectSymbolName; + SI->getName(IndirectSymbolName); + DEBUG(dbgs() << " " << IndirectSymbolName << ": index " << SymbolIndex + << ", PT offset: " << PTEntryOffset << "\n"); + RelocationEntry RE(PTSectionID, PTEntryOffset, + MachO::GENERIC_RELOC_VANILLA, 0, false, 2); + addRelocationForSymbol(RE, IndirectSymbolName); + PTEntryOffset += PTEntrySize; } - return false; } -bool RuntimeDyldMachO::loadObject(MemoryBuffer *InputBuffer) { - // If the linker is in an error state, don't do anything. - if (hasError()) - return true; - // Load the Mach-O wrapper object. - std::string ErrorStr; - OwningPtr Obj( - MachOObject::LoadFromBuffer(InputBuffer, &ErrorStr)); - if (!Obj) - return Error("unable to load object: '" + ErrorStr + "'"); - - // Get the CPU type information from the header. - const macho::Header &Header = Obj->getHeader(); - - // FIXME: Error checking that the loaded object is compatible with - // the system we're running on. - CPUType = Header.CPUType; - CPUSubtype = Header.CPUSubtype; - - // Validate that the load commands match what we expect. - const MachOObject::LoadCommandInfo *SegmentLCI = 0, *SymtabLCI = 0, - *DysymtabLCI = 0; - for (unsigned i = 0; i != Header.NumLoadCommands; ++i) { - const MachOObject::LoadCommandInfo &LCI = Obj->getLoadCommandInfo(i); - switch (LCI.Command.Type) { - case macho::LCT_Segment: - case macho::LCT_Segment64: - if (SegmentLCI) - return Error("unexpected input object (multiple segments)"); - SegmentLCI = &LCI; - break; - case macho::LCT_Symtab: - if (SymtabLCI) - return Error("unexpected input object (multiple symbol tables)"); - SymtabLCI = &LCI; - break; - case macho::LCT_Dysymtab: - if (DysymtabLCI) - return Error("unexpected input object (multiple symbol tables)"); - DysymtabLCI = &LCI; - break; - default: - return Error("unexpected input object (unexpected load command"); - } - } +bool RuntimeDyldMachO::isCompatibleFile(const object::ObjectFile &Obj) const { + return Obj.isMachO(); +} - if (!SymtabLCI) - return Error("no symbol table found in object"); - if (!SegmentLCI) - return Error("no symbol table found in object"); - - // Read and register the symbol table data. - InMemoryStruct SymtabLC; - Obj->ReadSymtabLoadCommand(*SymtabLCI, SymtabLC); - if (!SymtabLC) - return Error("unable to load symbol table load command"); - Obj->RegisterStringTable(*SymtabLC); - - // Read the dynamic link-edit information, if present (not present in static - // objects). - if (DysymtabLCI) { - InMemoryStruct DysymtabLC; - Obj->ReadDysymtabLoadCommand(*DysymtabLCI, DysymtabLC); - if (!DysymtabLC) - return Error("unable to load dynamic link-exit load command"); - - // FIXME: We don't support anything interesting yet. -// if (DysymtabLC->LocalSymbolsIndex != 0) -// return Error("NOT YET IMPLEMENTED: local symbol entries"); -// if (DysymtabLC->ExternalSymbolsIndex != 0) -// return Error("NOT YET IMPLEMENTED: non-external symbol entries"); -// if (DysymtabLC->UndefinedSymbolsIndex != SymtabLC->NumSymbolTableEntries) -// return Error("NOT YET IMPLEMENTED: undefined symbol entries"); +template +void RuntimeDyldMachOCRTPBase::finalizeLoad(const ObjectFile &ObjImg, + ObjSectionToIDMap &SectionMap) { + unsigned EHFrameSID = RTDYLD_INVALID_SECTION_ID; + unsigned TextSID = RTDYLD_INVALID_SECTION_ID; + unsigned ExceptTabSID = RTDYLD_INVALID_SECTION_ID; + ObjSectionToIDMap::iterator i, e; + + for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) { + const SectionRef &Section = i->first; + StringRef Name; + Section.getName(Name); + if (Name == "__eh_frame") + EHFrameSID = i->second; + else if (Name == "__text") + TextSID = i->second; + else if (Name == "__gcc_except_tab") + ExceptTabSID = i->second; + else + impl().finalizeSection(ObjImg, i->second, Section); } + UnregisteredEHFrameSections.push_back( + EHFrameRelatedSections(EHFrameSID, TextSID, ExceptTabSID)); +} - // Load the segment load command. - if (SegmentLCI->Command.Type == macho::LCT_Segment) { - if (loadSegment32(Obj.get(), SegmentLCI, SymtabLC)) - return true; - } else { - if (loadSegment64(Obj.get(), SegmentLCI, SymtabLC)) - return true; +template +unsigned char *RuntimeDyldMachOCRTPBase::processFDE(unsigned char *P, + int64_t DeltaForText, + int64_t DeltaForEH) { + typedef typename Impl::TargetPtrT TargetPtrT; + + DEBUG(dbgs() << "Processing FDE: Delta for text: " << DeltaForText + << ", Delta for EH: " << DeltaForEH << "\n"); + uint32_t Length = readBytesUnaligned(P, 4); + P += 4; + unsigned char *Ret = P + Length; + uint32_t Offset = readBytesUnaligned(P, 4); + if (Offset == 0) // is a CIE + return Ret; + + P += 4; + TargetPtrT FDELocation = readBytesUnaligned(P, sizeof(TargetPtrT)); + TargetPtrT NewLocation = FDELocation - DeltaForText; + writeBytesUnaligned(NewLocation, P, sizeof(TargetPtrT)); + + P += sizeof(TargetPtrT); + + // Skip the FDE address range + P += sizeof(TargetPtrT); + + uint8_t Augmentationsize = *P; + P += 1; + if (Augmentationsize != 0) { + TargetPtrT LSDA = readBytesUnaligned(P, sizeof(TargetPtrT)); + TargetPtrT NewLSDA = LSDA - DeltaForEH; + writeBytesUnaligned(NewLSDA, P, sizeof(TargetPtrT)); } - return false; + return Ret; } -// Assign an address to a symbol name and resolve all the relocations -// associated with it. -void RuntimeDyldMachO::reassignSymbolAddress(StringRef Name, uint8_t *Addr) { - // Assign the address in our symbol table. - SymbolTable[Name] = Addr; - - RelocationList &Relocs = Relocations[Name]; - for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { - RelocationEntry &RE = Relocs[i]; - uint8_t *Target = SymbolTable[RE.Target] + RE.Offset; - bool isPCRel = (RE.Data >> 24) & 1; - unsigned Type = (RE.Data >> 28) & 0xf; - unsigned Size = 1 << ((RE.Data >> 25) & 3); - - DEBUG(dbgs() << "Resolving relocation at '" << RE.Target - << "' + " << RE.Offset << " (" << format("%p", Target) << ")" - << " from '" << Name << " (" << format("%p", Addr) << ")" - << "(" << (isPCRel ? "pcrel" : "absolute") - << ", type: " << Type << ", Size: " << Size << ").\n"); - - resolveRelocation(Target, Addr, isPCRel, Type, Size); - RE.isResolved = true; +static int64_t computeDelta(SectionEntry *A, SectionEntry *B) { + int64_t ObjDistance = A->ObjAddress - B->ObjAddress; + int64_t MemDistance = A->LoadAddress - B->LoadAddress; + return ObjDistance - MemDistance; +} + +template +void RuntimeDyldMachOCRTPBase::registerEHFrames() { + + if (!MemMgr) + return; + for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) { + EHFrameRelatedSections &SectionInfo = UnregisteredEHFrameSections[i]; + if (SectionInfo.EHFrameSID == RTDYLD_INVALID_SECTION_ID || + SectionInfo.TextSID == RTDYLD_INVALID_SECTION_ID) + continue; + SectionEntry *Text = &Sections[SectionInfo.TextSID]; + SectionEntry *EHFrame = &Sections[SectionInfo.EHFrameSID]; + SectionEntry *ExceptTab = nullptr; + if (SectionInfo.ExceptTabSID != RTDYLD_INVALID_SECTION_ID) + ExceptTab = &Sections[SectionInfo.ExceptTabSID]; + + int64_t DeltaForText = computeDelta(Text, EHFrame); + int64_t DeltaForEH = 0; + if (ExceptTab) + DeltaForEH = computeDelta(ExceptTab, EHFrame); + + unsigned char *P = EHFrame->Address; + unsigned char *End = P + EHFrame->Size; + do { + P = processFDE(P, DeltaForText, DeltaForEH); + } while (P != End); + + MemMgr->registerEHFrames(EHFrame->Address, EHFrame->LoadAddress, + EHFrame->Size); + } + UnregisteredEHFrameSections.clear(); +} + +std::unique_ptr +RuntimeDyldMachO::create(Triple::ArchType Arch, RTDyldMemoryManager *MM) { + switch (Arch) { + default: + llvm_unreachable("Unsupported target for RuntimeDyldMachO."); + break; + case Triple::arm: return make_unique(MM); + case Triple::aarch64: return make_unique(MM); + case Triple::x86: return make_unique(MM); + case Triple::x86_64: return make_unique(MM); } } -bool RuntimeDyldMachO::isKnownFormat(const MemoryBuffer *InputBuffer) { - StringRef Magic = InputBuffer->getBuffer().slice(0, 4); - if (Magic == "\xFE\xED\xFA\xCE") return true; - if (Magic == "\xCE\xFA\xED\xFE") return true; - if (Magic == "\xFE\xED\xFA\xCF") return true; - if (Magic == "\xCF\xFA\xED\xFE") return true; - return false; +std::unique_ptr +RuntimeDyldMachO::loadObject(const object::ObjectFile &O) { + unsigned SectionStartIdx, SectionEndIdx; + std::tie(SectionStartIdx, SectionEndIdx) = loadObjectImpl(O); + return llvm::make_unique(*this, SectionStartIdx, + SectionEndIdx); } } // end namespace llvm