X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FExecutionEngine%2FInterpreter%2FExecution.cpp;h=97411d3943c26f6f647f11e05e06639354176794;hb=e49661bdf5b7a913d4e368cf511381e524ae403a;hp=eb1193a61800370dd4f1f89852bbe9348fad982d;hpb=374344c0cc5368da4bb1806b2b198bd7401fa1e8;p=oota-llvm.git diff --git a/lib/ExecutionEngine/Interpreter/Execution.cpp b/lib/ExecutionEngine/Interpreter/Execution.cpp index eb1193a6180..97411d3943c 100644 --- a/lib/ExecutionEngine/Interpreter/Execution.cpp +++ b/lib/ExecutionEngine/Interpreter/Execution.cpp @@ -1,165 +1,186 @@ //===-- Execution.cpp - Implement code to simulate the program ------------===// -// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// // This file contains the actual instruction interpreter. // //===----------------------------------------------------------------------===// +#define DEBUG_TYPE "interpreter" #include "Interpreter.h" -#include "ExecutionAnnotations.h" -#include "llvm/Module.h" -#include "llvm/Instructions.h" -#include "llvm/DerivedTypes.h" #include "llvm/Constants.h" -#include "llvm/Assembly/Writer.h" -#include "Support/CommandLine.h" -#include "Support/Statistic.h" -#include // For fmod -#include -#include - -Interpreter *TheEE = 0; - -namespace { - Statistic<> NumDynamicInsts("lli", "Number of dynamic instructions executed"); - - cl::opt - QuietMode("quiet", cl::desc("Do not emit any non-program output"), - cl::init(true)); - - cl::alias - QuietModeA("q", cl::desc("Alias for -quiet"), cl::aliasopt(QuietMode)); - - cl::opt - ArrayChecksEnabled("array-checks", cl::desc("Enable array bound checks")); - - cl::opt - AbortOnExceptions("abort-on-exception", - cl::desc("Halt execution on a machine exception")); -} - -// Create a TargetData structure to handle memory addressing and size/alignment -// computations -// -CachedWriter CW; // Object to accelerate printing of LLVM - -#ifdef PROFILE_STRUCTURE_FIELDS -static cl::opt -ProfileStructureFields("profilestructfields", - cl::desc("Profile Structure Field Accesses")); -#include -static std::map > FieldAccessCounts; -#endif - -sigjmp_buf SignalRecoverBuffer; -static bool InInstruction = false; - -extern "C" { -static void SigHandler(int Signal) { - if (InInstruction) - siglongjmp(SignalRecoverBuffer, Signal); -} -} +#include "llvm/DerivedTypes.h" +#include "llvm/Instructions.h" +#include "llvm/CodeGen/IntrinsicLowering.h" +#include "llvm/Support/GetElementPtrTypeIterator.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Support/Debug.h" +#include +using namespace llvm; -static void initializeSignalHandlers() { - struct sigaction Action; - Action.sa_handler = SigHandler; - Action.sa_flags = SA_SIGINFO; - sigemptyset(&Action.sa_mask); - sigaction(SIGSEGV, &Action, 0); - sigaction(SIGBUS, &Action, 0); - sigaction(SIGINT, &Action, 0); - sigaction(SIGFPE, &Action, 0); -} +STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed"); +static Interpreter *TheEE = 0; //===----------------------------------------------------------------------===// // Value Manipulation code //===----------------------------------------------------------------------===// -static unsigned getOperandSlot(Value *V) { - SlotNumber *SN = (SlotNumber*)V->getAnnotation(SlotNumberAID); - assert(SN && "Operand does not have a slot number annotation!"); - return SN->SlotNum; +static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeMulInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeUDivInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeSDivInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeFDivInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeURemInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeSRemInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeFRemInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeAndInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeOrInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeXorInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1, + GenericValue Src2, const Type *Ty); +static GenericValue executeShlInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeLShrInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeAShrInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2, + GenericValue Src3); + +GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE, + ExecutionContext &SF) { + switch (CE->getOpcode()) { + case Instruction::Trunc: + case Instruction::ZExt: + case Instruction::SExt: + case Instruction::FPTrunc: + case Instruction::FPExt: + case Instruction::UIToFP: + case Instruction::SIToFP: + case Instruction::FPToUI: + case Instruction::FPToSI: + case Instruction::PtrToInt: + case Instruction::IntToPtr: + case Instruction::BitCast: + return executeCastOperation(Instruction::CastOps(CE->getOpcode()), + CE->getOperand(0), CE->getType(), SF); + case Instruction::GetElementPtr: + return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE), + gep_type_end(CE), SF); + case Instruction::Add: + return executeAddInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::Sub: + return executeSubInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::Mul: + return executeMulInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::SDiv: + return executeSDivInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::UDiv: + return executeUDivInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::FDiv: + return executeFDivInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::URem: + return executeURemInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::SRem: + return executeSRemInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::FRem: + return executeFRemInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::And: + return executeAndInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::Or: + return executeOrInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::Xor: + return executeXorInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::FCmp: + case Instruction::ICmp: + return executeCmpInst(CE->getPredicate(), + getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::Shl: + return executeShlInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::LShr: + return executeLShrInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::AShr: + return executeAShrInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::Select: + return executeSelectInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + getOperandValue(CE->getOperand(2), SF)); + default: + cerr << "Unhandled ConstantExpr: " << *CE << "\n"; + abort(); + return GenericValue(); + } } -// Operations used by constant expr implementations... -static GenericValue executeCastOperation(Value *Src, const Type *DestTy, - ExecutionContext &SF); -static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2, - const Type *Ty); - - -static GenericValue getOperandValue(Value *V, ExecutionContext &SF) { +GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) { if (ConstantExpr *CE = dyn_cast(V)) { - switch (CE->getOpcode()) { - case Instruction::Cast: - return executeCastOperation(CE->getOperand(0), CE->getType(), SF); - case Instruction::GetElementPtr: - return TheEE->executeGEPOperation(CE->getOperand(0), CE->op_begin()+1, - CE->op_end(), SF); - case Instruction::Add: - return executeAddInst(getOperandValue(CE->getOperand(0), SF), - getOperandValue(CE->getOperand(1), SF), - CE->getType()); - default: - std::cerr << "Unhandled ConstantExpr: " << CE << "\n"; - abort(); - return GenericValue(); - } + return getConstantExprValue(CE, SF); } else if (Constant *CPV = dyn_cast(V)) { - return TheEE->getConstantValue(CPV); + return getConstantValue(CPV); } else if (GlobalValue *GV = dyn_cast(V)) { - return PTOGV(TheEE->getPointerToGlobal(GV)); - } else { - unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value - unsigned OpSlot = getOperandSlot(V); - assert(TyP < SF.Values.size() && - OpSlot < SF.Values[TyP].size() && "Value out of range!"); - return SF.Values[TyP][getOperandSlot(V)]; - } -} - -static void printOperandInfo(Value *V, ExecutionContext &SF) { - if (isa(V)) { - std::cout << "Constant Pool Value\n"; - } else if (isa(V)) { - std::cout << "Global Value\n"; + return PTOGV(getPointerToGlobal(GV)); } else { - unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value - unsigned Slot = getOperandSlot(V); - std::cout << "Value=" << (void*)V << " TypeID=" << TyP << " Slot=" << Slot - << " Addr=" << &SF.Values[TyP][Slot] << " SF=" << &SF - << " Contents=0x"; - - const unsigned char *Buf = (const unsigned char*)&SF.Values[TyP][Slot]; - for (unsigned i = 0; i < sizeof(GenericValue); ++i) { - unsigned char Cur = Buf[i]; - std::cout << ( Cur >= 160?char((Cur>>4)+'A'-10):char((Cur>>4) + '0')) - << ((Cur&15) >= 10?char((Cur&15)+'A'-10):char((Cur&15) + '0')); - } - std::cout << "\n"; + return SF.Values[V]; } } - - static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) { - unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value - - //std::cout << "Setting value: " << &SF.Values[TyP][getOperandSlot(V)]<< "\n"; - SF.Values[TyP][getOperandSlot(V)] = Val; + SF.Values[V] = Val; } - -//===----------------------------------------------------------------------===// -// Annotation Wrangling code -//===----------------------------------------------------------------------===// - void Interpreter::initializeExecutionEngine() { TheEE = this; - AnnotationManager::registerAnnotationFactory(FunctionInfoAID, - &FunctionInfo::Create); - initializeSignalHandlers(); } //===----------------------------------------------------------------------===// @@ -169,102 +190,138 @@ void Interpreter::initializeExecutionEngine() { #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \ case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; break -static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { GenericValue Dest; - switch (Ty->getPrimitiveID()) { - IMPLEMENT_BINARY_OPERATOR(+, UByte); - IMPLEMENT_BINARY_OPERATOR(+, SByte); - IMPLEMENT_BINARY_OPERATOR(+, UShort); - IMPLEMENT_BINARY_OPERATOR(+, Short); - IMPLEMENT_BINARY_OPERATOR(+, UInt); - IMPLEMENT_BINARY_OPERATOR(+, Int); - IMPLEMENT_BINARY_OPERATOR(+, ULong); - IMPLEMENT_BINARY_OPERATOR(+, Long); + switch (Ty->getTypeID()) { + IMPLEMENT_BINARY_OPERATOR(+, Int8); + IMPLEMENT_BINARY_OPERATOR(+, Int16); + IMPLEMENT_BINARY_OPERATOR(+, Int32); + IMPLEMENT_BINARY_OPERATOR(+, Int64); IMPLEMENT_BINARY_OPERATOR(+, Float); IMPLEMENT_BINARY_OPERATOR(+, Double); default: - std::cout << "Unhandled type for Add instruction: " << *Ty << "\n"; + cerr << "Unhandled type for Add instruction: " << *Ty << "\n"; abort(); } return Dest; } -static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { GenericValue Dest; - switch (Ty->getPrimitiveID()) { - IMPLEMENT_BINARY_OPERATOR(-, UByte); - IMPLEMENT_BINARY_OPERATOR(-, SByte); - IMPLEMENT_BINARY_OPERATOR(-, UShort); - IMPLEMENT_BINARY_OPERATOR(-, Short); - IMPLEMENT_BINARY_OPERATOR(-, UInt); - IMPLEMENT_BINARY_OPERATOR(-, Int); - IMPLEMENT_BINARY_OPERATOR(-, ULong); - IMPLEMENT_BINARY_OPERATOR(-, Long); + switch (Ty->getTypeID()) { + IMPLEMENT_BINARY_OPERATOR(-, Int8); + IMPLEMENT_BINARY_OPERATOR(-, Int16); + IMPLEMENT_BINARY_OPERATOR(-, Int32); + IMPLEMENT_BINARY_OPERATOR(-, Int64); IMPLEMENT_BINARY_OPERATOR(-, Float); IMPLEMENT_BINARY_OPERATOR(-, Double); default: - std::cout << "Unhandled type for Sub instruction: " << *Ty << "\n"; + cerr << "Unhandled type for Sub instruction: " << *Ty << "\n"; abort(); } return Dest; } -static GenericValue executeMulInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +static GenericValue executeMulInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { GenericValue Dest; - switch (Ty->getPrimitiveID()) { - IMPLEMENT_BINARY_OPERATOR(*, UByte); - IMPLEMENT_BINARY_OPERATOR(*, SByte); - IMPLEMENT_BINARY_OPERATOR(*, UShort); - IMPLEMENT_BINARY_OPERATOR(*, Short); - IMPLEMENT_BINARY_OPERATOR(*, UInt); - IMPLEMENT_BINARY_OPERATOR(*, Int); - IMPLEMENT_BINARY_OPERATOR(*, ULong); - IMPLEMENT_BINARY_OPERATOR(*, Long); + switch (Ty->getTypeID()) { + IMPLEMENT_BINARY_OPERATOR(*, Int8); + IMPLEMENT_BINARY_OPERATOR(*, Int16); + IMPLEMENT_BINARY_OPERATOR(*, Int32); + IMPLEMENT_BINARY_OPERATOR(*, Int64); IMPLEMENT_BINARY_OPERATOR(*, Float); IMPLEMENT_BINARY_OPERATOR(*, Double); default: - std::cout << "Unhandled type for Mul instruction: " << Ty << "\n"; + cerr << "Unhandled type for Mul instruction: " << *Ty << "\n"; abort(); } return Dest; } -static GenericValue executeDivInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +#define IMPLEMENT_SIGNLESS_BINOP(OP, TY, CAST) \ + case Type::TY##TyID: Dest.TY##Val = \ + ((CAST)Src1.TY##Val) OP ((CAST)Src2.TY##Val); break + +static GenericValue executeUDivInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { GenericValue Dest; - switch (Ty->getPrimitiveID()) { - IMPLEMENT_BINARY_OPERATOR(/, UByte); - IMPLEMENT_BINARY_OPERATOR(/, SByte); - IMPLEMENT_BINARY_OPERATOR(/, UShort); - IMPLEMENT_BINARY_OPERATOR(/, Short); - IMPLEMENT_BINARY_OPERATOR(/, UInt); - IMPLEMENT_BINARY_OPERATOR(/, Int); - IMPLEMENT_BINARY_OPERATOR(/, ULong); - IMPLEMENT_BINARY_OPERATOR(/, Long); + switch (Ty->getTypeID()) { + IMPLEMENT_SIGNLESS_BINOP(/, Int8, uint8_t); + IMPLEMENT_SIGNLESS_BINOP(/, Int16, uint16_t); + IMPLEMENT_SIGNLESS_BINOP(/, Int32, uint32_t); + IMPLEMENT_SIGNLESS_BINOP(/, Int64, uint64_t); + default: + cerr << "Unhandled type for UDiv instruction: " << *Ty << "\n"; + abort(); + } + return Dest; +} + +static GenericValue executeSDivInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_SIGNLESS_BINOP(/, Int8, int8_t); + IMPLEMENT_SIGNLESS_BINOP(/, Int16, int16_t); + IMPLEMENT_SIGNLESS_BINOP(/, Int32, int32_t); + IMPLEMENT_SIGNLESS_BINOP(/, Int64, int64_t); + default: + cerr << "Unhandled type for SDiv instruction: " << *Ty << "\n"; + abort(); + } + return Dest; +} + +static GenericValue executeFDivInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { IMPLEMENT_BINARY_OPERATOR(/, Float); IMPLEMENT_BINARY_OPERATOR(/, Double); default: - std::cout << "Unhandled type for Div instruction: " << *Ty << "\n"; + cerr << "Unhandled type for Div instruction: " << *Ty << "\n"; abort(); } return Dest; } -static GenericValue executeRemInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +static GenericValue executeURemInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { GenericValue Dest; - switch (Ty->getPrimitiveID()) { - IMPLEMENT_BINARY_OPERATOR(%, UByte); - IMPLEMENT_BINARY_OPERATOR(%, SByte); - IMPLEMENT_BINARY_OPERATOR(%, UShort); - IMPLEMENT_BINARY_OPERATOR(%, Short); - IMPLEMENT_BINARY_OPERATOR(%, UInt); - IMPLEMENT_BINARY_OPERATOR(%, Int); - IMPLEMENT_BINARY_OPERATOR(%, ULong); - IMPLEMENT_BINARY_OPERATOR(%, Long); + switch (Ty->getTypeID()) { + IMPLEMENT_SIGNLESS_BINOP(%, Int8, uint8_t); + IMPLEMENT_SIGNLESS_BINOP(%, Int16, uint16_t); + IMPLEMENT_SIGNLESS_BINOP(%, Int32, uint32_t); + IMPLEMENT_SIGNLESS_BINOP(%, Int64, uint64_t ); + default: + cerr << "Unhandled type for URem instruction: " << *Ty << "\n"; + abort(); + } + return Dest; +} + +static GenericValue executeSRemInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_SIGNLESS_BINOP(%, Int8, int8_t); + IMPLEMENT_SIGNLESS_BINOP(%, Int16, int16_t); + IMPLEMENT_SIGNLESS_BINOP(%, Int32, int32_t); + IMPLEMENT_SIGNLESS_BINOP(%, Int64, int64_t); + default: + cerr << "Unhandled type for Rem instruction: " << *Ty << "\n"; + abort(); + } + return Dest; +} + +static GenericValue executeFRemInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { case Type::FloatTyID: Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal); break; @@ -272,221 +329,419 @@ static GenericValue executeRemInst(GenericValue Src1, GenericValue Src2, Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal); break; default: - std::cout << "Unhandled type for Rem instruction: " << *Ty << "\n"; + cerr << "Unhandled type for Rem instruction: " << *Ty << "\n"; abort(); } return Dest; } -static GenericValue executeAndInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +static GenericValue executeAndInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { GenericValue Dest; - switch (Ty->getPrimitiveID()) { + switch (Ty->getTypeID()) { IMPLEMENT_BINARY_OPERATOR(&, Bool); - IMPLEMENT_BINARY_OPERATOR(&, UByte); - IMPLEMENT_BINARY_OPERATOR(&, SByte); - IMPLEMENT_BINARY_OPERATOR(&, UShort); - IMPLEMENT_BINARY_OPERATOR(&, Short); - IMPLEMENT_BINARY_OPERATOR(&, UInt); - IMPLEMENT_BINARY_OPERATOR(&, Int); - IMPLEMENT_BINARY_OPERATOR(&, ULong); - IMPLEMENT_BINARY_OPERATOR(&, Long); + IMPLEMENT_BINARY_OPERATOR(&, Int8); + IMPLEMENT_BINARY_OPERATOR(&, Int16); + IMPLEMENT_BINARY_OPERATOR(&, Int32); + IMPLEMENT_BINARY_OPERATOR(&, Int64); default: - std::cout << "Unhandled type for And instruction: " << *Ty << "\n"; + cerr << "Unhandled type for And instruction: " << *Ty << "\n"; abort(); } return Dest; } - -static GenericValue executeOrInst(GenericValue Src1, GenericValue Src2, +static GenericValue executeOrInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; - switch (Ty->getPrimitiveID()) { + switch (Ty->getTypeID()) { IMPLEMENT_BINARY_OPERATOR(|, Bool); - IMPLEMENT_BINARY_OPERATOR(|, UByte); - IMPLEMENT_BINARY_OPERATOR(|, SByte); - IMPLEMENT_BINARY_OPERATOR(|, UShort); - IMPLEMENT_BINARY_OPERATOR(|, Short); - IMPLEMENT_BINARY_OPERATOR(|, UInt); - IMPLEMENT_BINARY_OPERATOR(|, Int); - IMPLEMENT_BINARY_OPERATOR(|, ULong); - IMPLEMENT_BINARY_OPERATOR(|, Long); + IMPLEMENT_BINARY_OPERATOR(|, Int8); + IMPLEMENT_BINARY_OPERATOR(|, Int16); + IMPLEMENT_BINARY_OPERATOR(|, Int32); + IMPLEMENT_BINARY_OPERATOR(|, Int64); default: - std::cout << "Unhandled type for Or instruction: " << *Ty << "\n"; + cerr << "Unhandled type for Or instruction: " << *Ty << "\n"; abort(); } return Dest; } - -static GenericValue executeXorInst(GenericValue Src1, GenericValue Src2, +static GenericValue executeXorInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; - switch (Ty->getPrimitiveID()) { + switch (Ty->getTypeID()) { IMPLEMENT_BINARY_OPERATOR(^, Bool); - IMPLEMENT_BINARY_OPERATOR(^, UByte); - IMPLEMENT_BINARY_OPERATOR(^, SByte); - IMPLEMENT_BINARY_OPERATOR(^, UShort); - IMPLEMENT_BINARY_OPERATOR(^, Short); - IMPLEMENT_BINARY_OPERATOR(^, UInt); - IMPLEMENT_BINARY_OPERATOR(^, Int); - IMPLEMENT_BINARY_OPERATOR(^, ULong); - IMPLEMENT_BINARY_OPERATOR(^, Long); + IMPLEMENT_BINARY_OPERATOR(^, Int8); + IMPLEMENT_BINARY_OPERATOR(^, Int16); + IMPLEMENT_BINARY_OPERATOR(^, Int32); + IMPLEMENT_BINARY_OPERATOR(^, Int64); default: - std::cout << "Unhandled type for Xor instruction: " << *Ty << "\n"; + cerr << "Unhandled type for Xor instruction: " << *Ty << "\n"; abort(); } return Dest; } - -#define IMPLEMENT_SETCC(OP, TY) \ - case Type::TY##TyID: Dest.BoolVal = Src1.TY##Val OP Src2.TY##Val; break +#define IMPLEMENT_ICMP(OP, TY, CAST) \ + case Type::TY##TyID: Dest.BoolVal = \ + ((CAST)Src1.TY##Val) OP ((CAST)Src2.TY##Val); break // Handle pointers specially because they must be compared with only as much // width as the host has. We _do not_ want to be comparing 64 bit values when // running on a 32-bit target, otherwise the upper 32 bits might mess up // comparisons if they contain garbage. -#define IMPLEMENT_POINTERSETCC(OP) \ +#define IMPLEMENT_POINTERCMP(OP) \ case Type::PointerTyID: \ Dest.BoolVal = (void*)(intptr_t)Src1.PointerVal OP \ (void*)(intptr_t)Src2.PointerVal; break -static GenericValue executeSetEQInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_ICMP(==, Int8, uint8_t); + IMPLEMENT_ICMP(==, Int16, uint16_t); + IMPLEMENT_ICMP(==, Int32, uint32_t); + IMPLEMENT_ICMP(==, Int64, uint64_t); + IMPLEMENT_POINTERCMP(==); + default: + cerr << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n"; + abort(); + } + return Dest; +} + +static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { GenericValue Dest; - switch (Ty->getPrimitiveID()) { - IMPLEMENT_SETCC(==, UByte); - IMPLEMENT_SETCC(==, SByte); - IMPLEMENT_SETCC(==, UShort); - IMPLEMENT_SETCC(==, Short); - IMPLEMENT_SETCC(==, UInt); - IMPLEMENT_SETCC(==, Int); - IMPLEMENT_SETCC(==, ULong); - IMPLEMENT_SETCC(==, Long); - IMPLEMENT_SETCC(==, Float); - IMPLEMENT_SETCC(==, Double); - IMPLEMENT_POINTERSETCC(==); + switch (Ty->getTypeID()) { + IMPLEMENT_ICMP(!=, Int8, uint8_t); + IMPLEMENT_ICMP(!=, Int16, uint16_t); + IMPLEMENT_ICMP(!=, Int32, uint32_t); + IMPLEMENT_ICMP(!=, Int64, uint64_t); + IMPLEMENT_POINTERCMP(!=); default: - std::cout << "Unhandled type for SetEQ instruction: " << *Ty << "\n"; + cerr << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n"; abort(); } return Dest; } -static GenericValue executeSetNEInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2, + const Type *Ty) { GenericValue Dest; - switch (Ty->getPrimitiveID()) { - IMPLEMENT_SETCC(!=, UByte); - IMPLEMENT_SETCC(!=, SByte); - IMPLEMENT_SETCC(!=, UShort); - IMPLEMENT_SETCC(!=, Short); - IMPLEMENT_SETCC(!=, UInt); - IMPLEMENT_SETCC(!=, Int); - IMPLEMENT_SETCC(!=, ULong); - IMPLEMENT_SETCC(!=, Long); - IMPLEMENT_SETCC(!=, Float); - IMPLEMENT_SETCC(!=, Double); - IMPLEMENT_POINTERSETCC(!=); + switch (Ty->getTypeID()) { + IMPLEMENT_ICMP(<, Int8, uint8_t); + IMPLEMENT_ICMP(<, Int16, uint16_t); + IMPLEMENT_ICMP(<, Int32, uint32_t); + IMPLEMENT_ICMP(<, Int64, uint64_t); + IMPLEMENT_POINTERCMP(<); + default: + cerr << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n"; + abort(); + } + return Dest; +} +static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_ICMP(<, Int8, int8_t); + IMPLEMENT_ICMP(<, Int16, int16_t); + IMPLEMENT_ICMP(<, Int32, int32_t); + IMPLEMENT_ICMP(<, Int64, int64_t); + IMPLEMENT_POINTERCMP(<); default: - std::cout << "Unhandled type for SetNE instruction: " << *Ty << "\n"; + cerr << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n"; abort(); } return Dest; } -static GenericValue executeSetLEInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2, + const Type *Ty) { GenericValue Dest; - switch (Ty->getPrimitiveID()) { - IMPLEMENT_SETCC(<=, UByte); - IMPLEMENT_SETCC(<=, SByte); - IMPLEMENT_SETCC(<=, UShort); - IMPLEMENT_SETCC(<=, Short); - IMPLEMENT_SETCC(<=, UInt); - IMPLEMENT_SETCC(<=, Int); - IMPLEMENT_SETCC(<=, ULong); - IMPLEMENT_SETCC(<=, Long); - IMPLEMENT_SETCC(<=, Float); - IMPLEMENT_SETCC(<=, Double); - IMPLEMENT_POINTERSETCC(<=); + switch (Ty->getTypeID()) { + IMPLEMENT_ICMP(>, Int8, uint8_t); + IMPLEMENT_ICMP(>, Int16, uint16_t); + IMPLEMENT_ICMP(>, Int32, uint32_t); + IMPLEMENT_ICMP(>, Int64, uint64_t); + IMPLEMENT_POINTERCMP(>); default: - std::cout << "Unhandled type for SetLE instruction: " << Ty << "\n"; + cerr << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n"; abort(); } return Dest; } -static GenericValue executeSetGEInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2, + const Type *Ty) { GenericValue Dest; - switch (Ty->getPrimitiveID()) { - IMPLEMENT_SETCC(>=, UByte); - IMPLEMENT_SETCC(>=, SByte); - IMPLEMENT_SETCC(>=, UShort); - IMPLEMENT_SETCC(>=, Short); - IMPLEMENT_SETCC(>=, UInt); - IMPLEMENT_SETCC(>=, Int); - IMPLEMENT_SETCC(>=, ULong); - IMPLEMENT_SETCC(>=, Long); - IMPLEMENT_SETCC(>=, Float); - IMPLEMENT_SETCC(>=, Double); - IMPLEMENT_POINTERSETCC(>=); + switch (Ty->getTypeID()) { + IMPLEMENT_ICMP(>, Int8, int8_t); + IMPLEMENT_ICMP(>, Int16, int16_t); + IMPLEMENT_ICMP(>, Int32, int32_t); + IMPLEMENT_ICMP(>, Int64, int64_t); + IMPLEMENT_POINTERCMP(>); default: - std::cout << "Unhandled type for SetGE instruction: " << *Ty << "\n"; + cerr << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n"; abort(); } return Dest; } -static GenericValue executeSetLTInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { GenericValue Dest; - switch (Ty->getPrimitiveID()) { - IMPLEMENT_SETCC(<, UByte); - IMPLEMENT_SETCC(<, SByte); - IMPLEMENT_SETCC(<, UShort); - IMPLEMENT_SETCC(<, Short); - IMPLEMENT_SETCC(<, UInt); - IMPLEMENT_SETCC(<, Int); - IMPLEMENT_SETCC(<, ULong); - IMPLEMENT_SETCC(<, Long); - IMPLEMENT_SETCC(<, Float); - IMPLEMENT_SETCC(<, Double); - IMPLEMENT_POINTERSETCC(<); + switch (Ty->getTypeID()) { + IMPLEMENT_ICMP(<=, Int8, uint8_t); + IMPLEMENT_ICMP(<=, Int16, uint16_t); + IMPLEMENT_ICMP(<=, Int32, uint32_t); + IMPLEMENT_ICMP(<=, Int64, uint64_t); + IMPLEMENT_POINTERCMP(<=); default: - std::cout << "Unhandled type for SetLT instruction: " << *Ty << "\n"; + cerr << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n"; abort(); } return Dest; } -static GenericValue executeSetGTInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { GenericValue Dest; - switch (Ty->getPrimitiveID()) { - IMPLEMENT_SETCC(>, UByte); - IMPLEMENT_SETCC(>, SByte); - IMPLEMENT_SETCC(>, UShort); - IMPLEMENT_SETCC(>, Short); - IMPLEMENT_SETCC(>, UInt); - IMPLEMENT_SETCC(>, Int); - IMPLEMENT_SETCC(>, ULong); - IMPLEMENT_SETCC(>, Long); - IMPLEMENT_SETCC(>, Float); - IMPLEMENT_SETCC(>, Double); - IMPLEMENT_POINTERSETCC(>); + switch (Ty->getTypeID()) { + IMPLEMENT_ICMP(<=, Int8, int8_t); + IMPLEMENT_ICMP(<=, Int16, int16_t); + IMPLEMENT_ICMP(<=, Int32, int32_t); + IMPLEMENT_ICMP(<=, Int64, int64_t); + IMPLEMENT_POINTERCMP(<=); default: - std::cout << "Unhandled type for SetGT instruction: " << *Ty << "\n"; + cerr << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n"; abort(); } return Dest; } -static void executeBinaryInst(BinaryOperator &I, ExecutionContext &SF) { +static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_ICMP(>=, Int8, uint8_t); + IMPLEMENT_ICMP(>=, Int16, uint16_t); + IMPLEMENT_ICMP(>=, Int32, uint32_t); + IMPLEMENT_ICMP(>=, Int64, uint64_t); + IMPLEMENT_POINTERCMP(>=); + default: + cerr << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n"; + abort(); + } + return Dest; +} + +static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_ICMP(>=, Int8, int8_t); + IMPLEMENT_ICMP(>=, Int16, int16_t); + IMPLEMENT_ICMP(>=, Int32, int32_t); + IMPLEMENT_ICMP(>=, Int64, int64_t); + IMPLEMENT_POINTERCMP(>=); + default: + cerr << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n"; + abort(); + } + return Dest; +} + +void Interpreter::visitICmpInst(ICmpInst &I) { + ExecutionContext &SF = ECStack.back(); + const Type *Ty = I.getOperand(0)->getType(); + GenericValue Src1 = getOperandValue(I.getOperand(0), SF); + GenericValue Src2 = getOperandValue(I.getOperand(1), SF); + GenericValue R; // Result + + switch (I.getPredicate()) { + case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break; + case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break; + case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break; + case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break; + case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break; + case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break; + case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break; + case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break; + case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break; + case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break; + default: + cerr << "Don't know how to handle this ICmp predicate!\n-->" << I; + abort(); + } + + SetValue(&I, R, SF); +} + +#define IMPLEMENT_FCMP(OP, TY) \ + case Type::TY##TyID: Dest.BoolVal = Src1.TY##Val OP Src2.TY##Val; break + +static GenericValue executeFCMP_EQ(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_FCMP(==, Float); + IMPLEMENT_FCMP(==, Double); + default: + cerr << "Unhandled type for SetEQ instruction: " << *Ty << "\n"; + abort(); + } + return Dest; +} + +static GenericValue executeFCMP_NE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_FCMP(!=, Float); + IMPLEMENT_FCMP(!=, Double); + + default: + cerr << "Unhandled type for SetNE instruction: " << *Ty << "\n"; + abort(); + } + return Dest; +} + +static GenericValue executeFCMP_LE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_FCMP(<=, Float); + IMPLEMENT_FCMP(<=, Double); + default: + cerr << "Unhandled type for SetLE instruction: " << *Ty << "\n"; + abort(); + } + return Dest; +} + +static GenericValue executeFCMP_GE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_FCMP(>=, Float); + IMPLEMENT_FCMP(>=, Double); + default: + cerr << "Unhandled type for SetGE instruction: " << *Ty << "\n"; + abort(); + } + return Dest; +} + +static GenericValue executeFCMP_LT(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_FCMP(<, Float); + IMPLEMENT_FCMP(<, Double); + default: + cerr << "Unhandled type for SetLT instruction: " << *Ty << "\n"; + abort(); + } + return Dest; +} + +static GenericValue executeFCMP_GT(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_FCMP(>, Float); + IMPLEMENT_FCMP(>, Double); + default: + cerr << "Unhandled type for SetGT instruction: " << *Ty << "\n"; + abort(); + } + return Dest; +} + +void Interpreter::visitFCmpInst(FCmpInst &I) { + ExecutionContext &SF = ECStack.back(); + const Type *Ty = I.getOperand(0)->getType(); + GenericValue Src1 = getOperandValue(I.getOperand(0), SF); + GenericValue Src2 = getOperandValue(I.getOperand(1), SF); + GenericValue R; // Result + + switch (I.getPredicate()) { + case FCmpInst::FCMP_FALSE: R.BoolVal = false; + case FCmpInst::FCMP_ORD: R = executeFCMP_EQ(Src1, Src2, Ty); break; ///??? + case FCmpInst::FCMP_UNO: R = executeFCMP_NE(Src1, Src2, Ty); break; ///??? + case FCmpInst::FCMP_OEQ: + case FCmpInst::FCMP_UEQ: R = executeFCMP_EQ(Src1, Src2, Ty); break; + case FCmpInst::FCMP_ONE: + case FCmpInst::FCMP_UNE: R = executeFCMP_NE(Src1, Src2, Ty); break; + case FCmpInst::FCMP_OLT: + case FCmpInst::FCMP_ULT: R = executeFCMP_LT(Src1, Src2, Ty); break; + case FCmpInst::FCMP_OGT: + case FCmpInst::FCMP_UGT: R = executeFCMP_GT(Src1, Src2, Ty); break; + case FCmpInst::FCMP_OLE: + case FCmpInst::FCMP_ULE: R = executeFCMP_LE(Src1, Src2, Ty); break; + case FCmpInst::FCMP_OGE: + case FCmpInst::FCMP_UGE: R = executeFCMP_GE(Src1, Src2, Ty); break; + case FCmpInst::FCMP_TRUE: R.BoolVal = true; + default: + cerr << "Don't know how to handle this FCmp predicate!\n-->" << I; + abort(); + } + + SetValue(&I, R, SF); +} + +static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1, + GenericValue Src2, const Type *Ty) { + GenericValue Result; + switch (predicate) { + case ICmpInst::ICMP_EQ: return executeICMP_EQ(Src1, Src2, Ty); + case ICmpInst::ICMP_NE: return executeICMP_NE(Src1, Src2, Ty); + case ICmpInst::ICMP_UGT: return executeICMP_UGT(Src1, Src2, Ty); + case ICmpInst::ICMP_SGT: return executeICMP_SGT(Src1, Src2, Ty); + case ICmpInst::ICMP_ULT: return executeICMP_ULT(Src1, Src2, Ty); + case ICmpInst::ICMP_SLT: return executeICMP_SLT(Src1, Src2, Ty); + case ICmpInst::ICMP_UGE: return executeICMP_UGE(Src1, Src2, Ty); + case ICmpInst::ICMP_SGE: return executeICMP_SGE(Src1, Src2, Ty); + case ICmpInst::ICMP_ULE: return executeICMP_ULE(Src1, Src2, Ty); + case ICmpInst::ICMP_SLE: return executeICMP_SLE(Src1, Src2, Ty); + case FCmpInst::FCMP_ORD: return executeFCMP_EQ(Src1, Src2, Ty); break; + case FCmpInst::FCMP_UNO: return executeFCMP_NE(Src1, Src2, Ty); break; + case FCmpInst::FCMP_OEQ: + case FCmpInst::FCMP_UEQ: return executeFCMP_EQ(Src1, Src2, Ty); break; + case FCmpInst::FCMP_ONE: + case FCmpInst::FCMP_UNE: return executeFCMP_NE(Src1, Src2, Ty); break; + case FCmpInst::FCMP_OLT: + case FCmpInst::FCMP_ULT: return executeFCMP_LT(Src1, Src2, Ty); break; + case FCmpInst::FCMP_OGT: + case FCmpInst::FCMP_UGT: return executeFCMP_GT(Src1, Src2, Ty); break; + case FCmpInst::FCMP_OLE: + case FCmpInst::FCMP_ULE: return executeFCMP_LE(Src1, Src2, Ty); break; + case FCmpInst::FCMP_OGE: + case FCmpInst::FCMP_UGE: return executeFCMP_GE(Src1, Src2, Ty); break; + case FCmpInst::FCMP_FALSE: { + GenericValue Result; + Result.BoolVal = false; + return Result; + } + case FCmpInst::FCMP_TRUE: { + GenericValue Result; + Result.BoolVal = true; + return Result; + } + default: + cerr << "Unhandled Cmp predicate\n"; + abort(); + } +} + +void Interpreter::visitBinaryOperator(BinaryOperator &I) { + ExecutionContext &SF = ECStack.back(); const Type *Ty = I.getOperand(0)->getType(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); @@ -496,89 +751,87 @@ static void executeBinaryInst(BinaryOperator &I, ExecutionContext &SF) { case Instruction::Add: R = executeAddInst (Src1, Src2, Ty); break; case Instruction::Sub: R = executeSubInst (Src1, Src2, Ty); break; case Instruction::Mul: R = executeMulInst (Src1, Src2, Ty); break; - case Instruction::Div: R = executeDivInst (Src1, Src2, Ty); break; - case Instruction::Rem: R = executeRemInst (Src1, Src2, Ty); break; + case Instruction::UDiv: R = executeUDivInst (Src1, Src2, Ty); break; + case Instruction::SDiv: R = executeSDivInst (Src1, Src2, Ty); break; + case Instruction::FDiv: R = executeFDivInst (Src1, Src2, Ty); break; + case Instruction::URem: R = executeURemInst (Src1, Src2, Ty); break; + case Instruction::SRem: R = executeSRemInst (Src1, Src2, Ty); break; + case Instruction::FRem: R = executeFRemInst (Src1, Src2, Ty); break; case Instruction::And: R = executeAndInst (Src1, Src2, Ty); break; case Instruction::Or: R = executeOrInst (Src1, Src2, Ty); break; case Instruction::Xor: R = executeXorInst (Src1, Src2, Ty); break; - case Instruction::SetEQ: R = executeSetEQInst(Src1, Src2, Ty); break; - case Instruction::SetNE: R = executeSetNEInst(Src1, Src2, Ty); break; - case Instruction::SetLE: R = executeSetLEInst(Src1, Src2, Ty); break; - case Instruction::SetGE: R = executeSetGEInst(Src1, Src2, Ty); break; - case Instruction::SetLT: R = executeSetLTInst(Src1, Src2, Ty); break; - case Instruction::SetGT: R = executeSetGTInst(Src1, Src2, Ty); break; default: - std::cout << "Don't know how to handle this binary operator!\n-->" << I; + cerr << "Don't know how to handle this binary operator!\n-->" << I; abort(); } SetValue(&I, R, SF); } +static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2, + GenericValue Src3) { + return Src1.BoolVal ? Src2 : Src3; +} + +void Interpreter::visitSelectInst(SelectInst &I) { + ExecutionContext &SF = ECStack.back(); + GenericValue Src1 = getOperandValue(I.getOperand(0), SF); + GenericValue Src2 = getOperandValue(I.getOperand(1), SF); + GenericValue Src3 = getOperandValue(I.getOperand(2), SF); + GenericValue R = executeSelectInst(Src1, Src2, Src3); + SetValue(&I, R, SF); +} + + //===----------------------------------------------------------------------===// // Terminator Instruction Implementations //===----------------------------------------------------------------------===// -static void PerformExitStuff() { -#ifdef PROFILE_STRUCTURE_FIELDS - // Print out structure field accounting information... - if (!FieldAccessCounts.empty()) { - CW << "Profile Field Access Counts:\n"; - std::map >::iterator - I = FieldAccessCounts.begin(), E = FieldAccessCounts.end(); - for (; I != E; ++I) { - std::vector &OfC = I->second; - CW << " '" << (Value*)I->first << "'\t- Sum="; - - unsigned Sum = 0; - for (unsigned i = 0; i < OfC.size(); ++i) - Sum += OfC[i]; - CW << Sum << " - "; - - for (unsigned i = 0; i < OfC.size(); ++i) { - if (i) CW << ", "; - CW << OfC[i]; - } - CW << "\n"; - } - CW << "\n"; - - CW << "Profile Field Access Percentages:\n"; - std::cout.precision(3); - for (I = FieldAccessCounts.begin(); I != E; ++I) { - std::vector &OfC = I->second; - unsigned Sum = 0; - for (unsigned i = 0; i < OfC.size(); ++i) - Sum += OfC[i]; - - CW << " '" << (Value*)I->first << "'\t- "; - for (unsigned i = 0; i < OfC.size(); ++i) { - if (i) CW << ", "; - CW << double(OfC[i])/Sum; - } - CW << "\n"; - } - CW << "\n"; - - FieldAccessCounts.clear(); - } -#endif +void Interpreter::exitCalled(GenericValue GV) { + // runAtExitHandlers() assumes there are no stack frames, but + // if exit() was called, then it had a stack frame. Blow away + // the stack before interpreting atexit handlers. + ECStack.clear (); + runAtExitHandlers (); + exit (GV.Int32Val); } -void Interpreter::exitCalled(GenericValue GV) { - if (!QuietMode) { - std::cout << "Program returned "; - print(Type::IntTy, GV); - std::cout << " via 'void exit(int)'\n"; - } +/// Pop the last stack frame off of ECStack and then copy the result +/// back into the result variable if we are not returning void. The +/// result variable may be the ExitValue, or the Value of the calling +/// CallInst if there was a previous stack frame. This method may +/// invalidate any ECStack iterators you have. This method also takes +/// care of switching to the normal destination BB, if we are returning +/// from an invoke. +/// +void Interpreter::popStackAndReturnValueToCaller (const Type *RetTy, + GenericValue Result) { + // Pop the current stack frame. + ECStack.pop_back(); - ExitCode = GV.SByteVal; - ECStack.clear(); - PerformExitStuff(); + if (ECStack.empty()) { // Finished main. Put result into exit code... + if (RetTy && RetTy->isIntegral()) { // Nonvoid return type? + ExitValue = Result; // Capture the exit value of the program + } else { + memset(&ExitValue, 0, sizeof(ExitValue)); + } + } else { + // If we have a previous stack frame, and we have a previous call, + // fill in the return value... + ExecutionContext &CallingSF = ECStack.back(); + if (Instruction *I = CallingSF.Caller.getInstruction()) { + if (CallingSF.Caller.getType() != Type::VoidTy) // Save result... + SetValue(I, Result, CallingSF); + if (InvokeInst *II = dyn_cast (I)) + SwitchToNewBasicBlock (II->getNormalDest (), CallingSF); + CallingSF.Caller = CallSite(); // We returned from the call... + } + } } -void Interpreter::executeRetInst(ReturnInst &I, ExecutionContext &SF) { - const Type *RetTy = 0; +void Interpreter::visitReturnInst(ReturnInst &I) { + ExecutionContext &SF = ECStack.back(); + const Type *RetTy = Type::VoidTy; GenericValue Result; // Save away the return value... (if we are not 'ret void') @@ -587,99 +840,115 @@ void Interpreter::executeRetInst(ReturnInst &I, ExecutionContext &SF) { Result = getOperandValue(I.getReturnValue(), SF); } - // Save previously executing meth - const Function *M = ECStack.back().CurFunction; - - // Pop the current stack frame... this invalidates SF - ECStack.pop_back(); - - if (ECStack.empty()) { // Finished main. Put result into exit code... - if (RetTy) { // Nonvoid return type? - if (!QuietMode) { - CW << "Function " << M->getType() << " \"" << M->getName() - << "\" returned "; - print(RetTy, Result); - std::cout << "\n"; - } - - if (RetTy->isIntegral()) - ExitCode = Result.IntVal; // Capture the exit code of the program - } else { - ExitCode = 0; - } + popStackAndReturnValueToCaller(RetTy, Result); +} - PerformExitStuff(); - return; - } +void Interpreter::visitUnwindInst(UnwindInst &I) { + // Unwind stack + Instruction *Inst; + do { + ECStack.pop_back (); + if (ECStack.empty ()) + abort (); + Inst = ECStack.back ().Caller.getInstruction (); + } while (!(Inst && isa (Inst))); + + // Return from invoke + ExecutionContext &InvokingSF = ECStack.back (); + InvokingSF.Caller = CallSite (); + + // Go to exceptional destination BB of invoke instruction + SwitchToNewBasicBlock(cast(Inst)->getUnwindDest(), InvokingSF); +} - // If we have a previous stack frame, and we have a previous call, fill in - // the return value... - // - ExecutionContext &NewSF = ECStack.back(); - if (NewSF.Caller) { - if (NewSF.Caller->getType() != Type::VoidTy) // Save result... - SetValue(NewSF.Caller, Result, NewSF); - - NewSF.Caller = 0; // We returned from the call... - } else if (!QuietMode) { - // This must be a function that is executing because of a user 'call' - // instruction. - CW << "Function " << M->getType() << " \"" << M->getName() - << "\" returned "; - print(RetTy, Result); - std::cout << "\n"; - } +void Interpreter::visitUnreachableInst(UnreachableInst &I) { + cerr << "ERROR: Program executed an 'unreachable' instruction!\n"; + abort(); } -void Interpreter::executeBrInst(BranchInst &I, ExecutionContext &SF) { - SF.PrevBB = SF.CurBB; // Update PrevBB so that PHI nodes work... +void Interpreter::visitBranchInst(BranchInst &I) { + ExecutionContext &SF = ECStack.back(); BasicBlock *Dest; Dest = I.getSuccessor(0); // Uncond branches have a fixed dest... if (!I.isUnconditional()) { Value *Cond = I.getCondition(); - GenericValue CondVal = getOperandValue(Cond, SF); - if (CondVal.BoolVal == 0) // If false cond... - Dest = I.getSuccessor(1); + if (getOperandValue(Cond, SF).BoolVal == 0) // If false cond... + Dest = I.getSuccessor(1); } - SF.CurBB = Dest; // Update CurBB to branch destination - SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr... + SwitchToNewBasicBlock(Dest, SF); } -static void executeSwitch(SwitchInst &I, ExecutionContext &SF) { +void Interpreter::visitSwitchInst(SwitchInst &I) { + ExecutionContext &SF = ECStack.back(); GenericValue CondVal = getOperandValue(I.getOperand(0), SF); const Type *ElTy = I.getOperand(0)->getType(); - SF.PrevBB = SF.CurBB; // Update PrevBB so that PHI nodes work... - BasicBlock *Dest = 0; // Check to see if any of the cases match... - for (unsigned i = 2, e = I.getNumOperands(); i != e; i += 2) { - if (executeSetEQInst(CondVal, - getOperandValue(I.getOperand(i), SF), ElTy).BoolVal) { + BasicBlock *Dest = 0; + for (unsigned i = 2, e = I.getNumOperands(); i != e; i += 2) + if (executeICMP_EQ(CondVal, + getOperandValue(I.getOperand(i), SF), ElTy).BoolVal) { Dest = cast(I.getOperand(i+1)); break; } - } - + if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default - SF.CurBB = Dest; // Update CurBB to branch destination - SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr... + SwitchToNewBasicBlock(Dest, SF); } +// SwitchToNewBasicBlock - This method is used to jump to a new basic block. +// This function handles the actual updating of block and instruction iterators +// as well as execution of all of the PHI nodes in the destination block. +// +// This method does this because all of the PHI nodes must be executed +// atomically, reading their inputs before any of the results are updated. Not +// doing this can cause problems if the PHI nodes depend on other PHI nodes for +// their inputs. If the input PHI node is updated before it is read, incorrect +// results can happen. Thus we use a two phase approach. +// +void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){ + BasicBlock *PrevBB = SF.CurBB; // Remember where we came from... + SF.CurBB = Dest; // Update CurBB to branch destination + SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr... + + if (!isa(SF.CurInst)) return; // Nothing fancy to do + + // Loop over all of the PHI nodes in the current block, reading their inputs. + std::vector ResultValues; + + for (; PHINode *PN = dyn_cast(SF.CurInst); ++SF.CurInst) { + // Search for the value corresponding to this previous bb... + int i = PN->getBasicBlockIndex(PrevBB); + assert(i != -1 && "PHINode doesn't contain entry for predecessor??"); + Value *IncomingValue = PN->getIncomingValue(i); + + // Save the incoming value for this PHI node... + ResultValues.push_back(getOperandValue(IncomingValue, SF)); + } + + // Now loop over all of the PHI nodes setting their values... + SF.CurInst = SF.CurBB->begin(); + for (unsigned i = 0; isa(SF.CurInst); ++SF.CurInst, ++i) { + PHINode *PN = cast(SF.CurInst); + SetValue(PN, ResultValues[i], SF); + } +} //===----------------------------------------------------------------------===// // Memory Instruction Implementations //===----------------------------------------------------------------------===// -void Interpreter::executeAllocInst(AllocationInst &I, ExecutionContext &SF) { +void Interpreter::visitAllocationInst(AllocationInst &I) { + ExecutionContext &SF = ECStack.back(); + const Type *Ty = I.getType()->getElementType(); // Type to be allocated // Get the number of elements being allocated by the array... - unsigned NumElements = getOperandValue(I.getOperand(0), SF).UIntVal; + unsigned NumElements = getOperandValue(I.getOperand(0), SF).Int32Val; // Allocate enough memory to hold the type... - // FIXME: Don't use CALLOC, use a tainted malloc. - void *Memory = calloc(NumElements, TD.getTypeSize(Ty)); + void *Memory = malloc(NumElements * (size_t)TD.getTypeSize(Ty)); GenericValue Result = PTOGV(Memory); assert(Result.PointerVal != 0 && "Null pointer returned by malloc!"); @@ -689,63 +958,47 @@ void Interpreter::executeAllocInst(AllocationInst &I, ExecutionContext &SF) { ECStack.back().Allocas.add(Memory); } -static void executeFreeInst(FreeInst &I, ExecutionContext &SF) { +void Interpreter::visitFreeInst(FreeInst &I) { + ExecutionContext &SF = ECStack.back(); assert(isa(I.getOperand(0)->getType()) && "Freeing nonptr?"); GenericValue Value = getOperandValue(I.getOperand(0), SF); // TODO: Check to make sure memory is allocated free(GVTOP(Value)); // Free memory } - // getElementOffset - The workhorse for getelementptr. // -GenericValue Interpreter::executeGEPOperation(Value *Ptr, User::op_iterator I, - User::op_iterator E, - ExecutionContext &SF) { +GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I, + gep_type_iterator E, + ExecutionContext &SF) { assert(isa(Ptr->getType()) && "Cannot getElementOffset of a nonpointer type!"); PointerTy Total = 0; - const Type *Ty = Ptr->getType(); for (; I != E; ++I) { - if (const StructType *STy = dyn_cast(Ty)) { + if (const StructType *STy = dyn_cast(*I)) { const StructLayout *SLO = TD.getStructLayout(STy); - - // Indicies must be ubyte constants... - const ConstantUInt *CPU = cast(*I); - assert(CPU->getType() == Type::UByteTy); - unsigned Index = CPU->getValue(); - -#ifdef PROFILE_STRUCTURE_FIELDS - if (ProfileStructureFields) { - // Do accounting for this field... - std::vector &OfC = FieldAccessCounts[STy]; - if (OfC.size() == 0) OfC.resize(STy->getElementTypes().size()); - OfC[Index]++; - } -#endif - - Total += SLO->MemberOffsets[Index]; - Ty = STy->getElementTypes()[Index]; - } else if (const SequentialType *ST = cast(Ty)) { + const ConstantInt *CPU = cast(I.getOperand()); + unsigned Index = unsigned(CPU->getZExtValue()); + + Total += (PointerTy)SLO->MemberOffsets[Index]; + } else { + const SequentialType *ST = cast(*I); // Get the index number for the array... which must be long type... - assert((*I)->getType() == Type::LongTy); - unsigned Idx = getOperandValue(*I, SF).LongVal; - if (const ArrayType *AT = dyn_cast(ST)) - if (Idx >= AT->getNumElements() && ArrayChecksEnabled) { - std::cerr << "Out of range memory access to element #" << Idx - << " of a " << AT->getNumElements() << " element array." - << " Subscript #" << *I << "\n"; - // Get outta here!!! - siglongjmp(SignalRecoverBuffer, SIGTRAP); - } - - Ty = ST->getElementType(); - unsigned Size = TD.getTypeSize(Ty); - Total += Size*Idx; - } + GenericValue IdxGV = getOperandValue(I.getOperand(), SF); + + uint64_t Idx; + switch (I.getOperand()->getType()->getTypeID()) { + default: assert(0 && "Illegal getelementptr index for sequential type!"); + case Type::Int8TyID: Idx = IdxGV.Int8Val; break; + case Type::Int16TyID: Idx = IdxGV.Int16Val; break; + case Type::Int32TyID: Idx = IdxGV.Int32Val; break; + case Type::Int64TyID: Idx = IdxGV.Int64Val; break; + } + Total += PointerTy(TD.getTypeSize(ST->getElementType())*Idx); + } } GenericValue Result; @@ -753,570 +1006,431 @@ GenericValue Interpreter::executeGEPOperation(Value *Ptr, User::op_iterator I, return Result; } -static void executeGEPInst(GetElementPtrInst &I, ExecutionContext &SF) { +void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) { + ExecutionContext &SF = ECStack.back(); SetValue(&I, TheEE->executeGEPOperation(I.getPointerOperand(), - I.idx_begin(), I.idx_end(), SF), SF); + gep_type_begin(I), gep_type_end(I), SF), SF); } -void Interpreter::executeLoadInst(LoadInst &I, ExecutionContext &SF) { +void Interpreter::visitLoadInst(LoadInst &I) { + ExecutionContext &SF = ECStack.back(); GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); GenericValue *Ptr = (GenericValue*)GVTOP(SRC); GenericValue Result = LoadValueFromMemory(Ptr, I.getType()); SetValue(&I, Result, SF); } -void Interpreter::executeStoreInst(StoreInst &I, ExecutionContext &SF) { +void Interpreter::visitStoreInst(StoreInst &I) { + ExecutionContext &SF = ECStack.back(); GenericValue Val = getOperandValue(I.getOperand(0), SF); GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC), I.getOperand(0)->getType()); } - - //===----------------------------------------------------------------------===// // Miscellaneous Instruction Implementations //===----------------------------------------------------------------------===// -void Interpreter::executeCallInst(CallInst &I, ExecutionContext &SF) { - ECStack.back().Caller = &I; +void Interpreter::visitCallSite(CallSite CS) { + ExecutionContext &SF = ECStack.back(); + + // Check to see if this is an intrinsic function call... + if (Function *F = CS.getCalledFunction()) + if (F->isExternal ()) + switch (F->getIntrinsicID()) { + case Intrinsic::not_intrinsic: + break; + case Intrinsic::vastart: { // va_start + GenericValue ArgIndex; + ArgIndex.UIntPairVal.first = ECStack.size() - 1; + ArgIndex.UIntPairVal.second = 0; + SetValue(CS.getInstruction(), ArgIndex, SF); + return; + } + case Intrinsic::vaend: // va_end is a noop for the interpreter + return; + case Intrinsic::vacopy: // va_copy: dest = src + SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF); + return; + default: + // If it is an unknown intrinsic function, use the intrinsic lowering + // class to transform it into hopefully tasty LLVM code. + // + Instruction *Prev = CS.getInstruction()->getPrev(); + BasicBlock *Parent = CS.getInstruction()->getParent(); + IL->LowerIntrinsicCall(cast(CS.getInstruction())); + + // Restore the CurInst pointer to the first instruction newly inserted, if + // any. + if (!Prev) { + SF.CurInst = Parent->begin(); + } else { + SF.CurInst = Prev; + ++SF.CurInst; + } + return; + } + + SF.Caller = CS; std::vector ArgVals; - ArgVals.reserve(I.getNumOperands()-1); - for (unsigned i = 1; i < I.getNumOperands(); ++i) { - ArgVals.push_back(getOperandValue(I.getOperand(i), SF)); + const unsigned NumArgs = SF.Caller.arg_size(); + ArgVals.reserve(NumArgs); + for (CallSite::arg_iterator i = SF.Caller.arg_begin(), + e = SF.Caller.arg_end(); i != e; ++i) { + Value *V = *i; + ArgVals.push_back(getOperandValue(V, SF)); // Promote all integral types whose size is < sizeof(int) into ints. We do // this by zero or sign extending the value as appropriate according to the // source type. - if (I.getOperand(i)->getType()->isIntegral() && - I.getOperand(i)->getType()->getPrimitiveSize() < 4) { - const Type *Ty = I.getOperand(i)->getType(); - if (Ty == Type::ShortTy) - ArgVals.back().IntVal = ArgVals.back().ShortVal; - else if (Ty == Type::UShortTy) - ArgVals.back().UIntVal = ArgVals.back().UShortVal; - else if (Ty == Type::SByteTy) - ArgVals.back().IntVal = ArgVals.back().SByteVal; - else if (Ty == Type::UByteTy) - ArgVals.back().UIntVal = ArgVals.back().UByteVal; + const Type *Ty = V->getType(); + if (Ty->isIntegral() && Ty->getPrimitiveSize() < 4) { + if (Ty == Type::Int16Ty) + ArgVals.back().Int32Val = ArgVals.back().Int16Val; + else if (Ty == Type::Int8Ty) + ArgVals.back().Int32Val = ArgVals.back().Int8Val; else if (Ty == Type::BoolTy) - ArgVals.back().UIntVal = ArgVals.back().BoolVal; + ArgVals.back().Int32Val = ArgVals.back().BoolVal; else - assert(0 && "Unknown type!"); + assert(0 && "Unknown type!"); } } - // To handle indirect calls, we must get the pointer value from the argument + // To handle indirect calls, we must get the pointer value from the argument // and treat it as a function pointer. - GenericValue SRC = getOperandValue(I.getCalledValue(), SF); - + GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF); callFunction((Function*)GVTOP(SRC), ArgVals); } -static void executePHINode(PHINode &I, ExecutionContext &SF) { - BasicBlock *PrevBB = SF.PrevBB; - Value *IncomingValue = 0; +#define IMPLEMENT_SHIFT(OP, TY) \ + case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.Int8Val; break - // Search for the value corresponding to this previous bb... - for (unsigned i = I.getNumIncomingValues(); i > 0;) { - if (I.getIncomingBlock(--i) == PrevBB) { - IncomingValue = I.getIncomingValue(i); - break; - } +#define IMPLEMENT_SIGNLESS_SHIFT(OP, TY, CAST) \ + case Type::TY##TyID: Dest.TY##Val = ((CAST)Src1.TY##Val) OP Src2.Int8Val; \ + break + +static GenericValue executeShlInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_SHIFT(<<, Int8); + IMPLEMENT_SHIFT(<<, Int16); + IMPLEMENT_SHIFT(<<, Int32); + IMPLEMENT_SHIFT(<<, Int64); + default: + cerr << "Unhandled type for Shl instruction: " << *Ty << "\n"; } - assert(IncomingValue && "No PHI node predecessor for current PrevBB!"); + return Dest; +} - // Found the value, set as the result... - SetValue(&I, getOperandValue(IncomingValue, SF), SF); +static GenericValue executeLShrInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_SIGNLESS_SHIFT(>>, Int8, uint8_t); + IMPLEMENT_SIGNLESS_SHIFT(>>, Int16, uint16_t); + IMPLEMENT_SIGNLESS_SHIFT(>>, Int32, uint32_t); + IMPLEMENT_SIGNLESS_SHIFT(>>, Int64, uint64_t); + default: + cerr << "Unhandled type for LShr instruction: " << *Ty << "\n"; + abort(); + } + return Dest; } -#define IMPLEMENT_SHIFT(OP, TY) \ - case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.UByteVal; break +static GenericValue executeAShrInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_SIGNLESS_SHIFT(>>, Int8, int8_t); + IMPLEMENT_SIGNLESS_SHIFT(>>, Int16, int16_t); + IMPLEMENT_SIGNLESS_SHIFT(>>, Int32, int32_t); + IMPLEMENT_SIGNLESS_SHIFT(>>, Int64, int64_t); + default: + cerr << "Unhandled type for AShr instruction: " << *Ty << "\n"; + abort(); + } + return Dest; +} -static void executeShlInst(ShiftInst &I, ExecutionContext &SF) { +void Interpreter::visitShl(ShiftInst &I) { + ExecutionContext &SF = ECStack.back(); const Type *Ty = I.getOperand(0)->getType(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue Dest; - - switch (Ty->getPrimitiveID()) { - IMPLEMENT_SHIFT(<<, UByte); - IMPLEMENT_SHIFT(<<, SByte); - IMPLEMENT_SHIFT(<<, UShort); - IMPLEMENT_SHIFT(<<, Short); - IMPLEMENT_SHIFT(<<, UInt); - IMPLEMENT_SHIFT(<<, Int); - IMPLEMENT_SHIFT(<<, ULong); - IMPLEMENT_SHIFT(<<, Long); - default: - std::cout << "Unhandled type for Shl instruction: " << *Ty << "\n"; - } + Dest = executeShlInst (Src1, Src2, Ty); SetValue(&I, Dest, SF); } -static void executeShrInst(ShiftInst &I, ExecutionContext &SF) { +void Interpreter::visitLShr(ShiftInst &I) { + ExecutionContext &SF = ECStack.back(); const Type *Ty = I.getOperand(0)->getType(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue Dest; + Dest = executeLShrInst (Src1, Src2, Ty); + SetValue(&I, Dest, SF); +} - switch (Ty->getPrimitiveID()) { - IMPLEMENT_SHIFT(>>, UByte); - IMPLEMENT_SHIFT(>>, SByte); - IMPLEMENT_SHIFT(>>, UShort); - IMPLEMENT_SHIFT(>>, Short); - IMPLEMENT_SHIFT(>>, UInt); - IMPLEMENT_SHIFT(>>, Int); - IMPLEMENT_SHIFT(>>, ULong); - IMPLEMENT_SHIFT(>>, Long); - default: - std::cout << "Unhandled type for Shr instruction: " << *Ty << "\n"; - abort(); - } +void Interpreter::visitAShr(ShiftInst &I) { + ExecutionContext &SF = ECStack.back(); + const Type *Ty = I.getOperand(0)->getType(); + GenericValue Src1 = getOperandValue(I.getOperand(0), SF); + GenericValue Src2 = getOperandValue(I.getOperand(1), SF); + GenericValue Dest; + Dest = executeAShrInst (Src1, Src2, Ty); SetValue(&I, Dest, SF); } -#define IMPLEMENT_CAST(DTY, DCTY, STY) \ - case Type::STY##TyID: Dest.DTY##Val = DCTY Src.STY##Val; break; - -#define IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY) \ - case Type::DESTTY##TyID: \ - switch (SrcTy->getPrimitiveID()) { \ - IMPLEMENT_CAST(DESTTY, DESTCTY, Bool); \ - IMPLEMENT_CAST(DESTTY, DESTCTY, UByte); \ - IMPLEMENT_CAST(DESTTY, DESTCTY, SByte); \ - IMPLEMENT_CAST(DESTTY, DESTCTY, UShort); \ - IMPLEMENT_CAST(DESTTY, DESTCTY, Short); \ - IMPLEMENT_CAST(DESTTY, DESTCTY, UInt); \ - IMPLEMENT_CAST(DESTTY, DESTCTY, Int); \ - IMPLEMENT_CAST(DESTTY, DESTCTY, ULong); \ - IMPLEMENT_CAST(DESTTY, DESTCTY, Long); \ - IMPLEMENT_CAST(DESTTY, DESTCTY, Pointer); - -#define IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY) \ - IMPLEMENT_CAST(DESTTY, DESTCTY, Float); \ - IMPLEMENT_CAST(DESTTY, DESTCTY, Double) - -#define IMPLEMENT_CAST_CASE_END() \ - default: std::cout << "Unhandled cast: " << SrcTy << " to " << Ty << "\n"; \ +#define IMPLEMENT_CAST_START \ + switch (DstTy->getTypeID()) { + +#define IMPLEMENT_CAST(STY, DTY, CAST) \ + case Type::STY##TyID: Dest.DTY##Val = (CAST(Src.STY##Val)); break; + +#define IMPLEMENT_CAST_CASE(DTY, CAST) \ + case Type::DTY##TyID: \ + switch (SrcTy->getTypeID()) { \ + IMPLEMENT_CAST(Bool, DTY, CAST); \ + IMPLEMENT_CAST(Int8, DTY, CAST); \ + IMPLEMENT_CAST(Int16, DTY, CAST); \ + IMPLEMENT_CAST(Int32, DTY, CAST); \ + IMPLEMENT_CAST(Int64, DTY, CAST); \ + IMPLEMENT_CAST(Pointer,DTY, CAST); \ + IMPLEMENT_CAST(Float, DTY, CAST); \ + IMPLEMENT_CAST(Double, DTY, CAST); \ + default: \ + cerr << "Unhandled cast: " \ + << *SrcTy << " to " << *DstTy << "\n"; \ abort(); \ } \ break -#define IMPLEMENT_CAST_CASE(DESTTY, DESTCTY) \ - IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY); \ - IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY); \ - IMPLEMENT_CAST_CASE_END() +#define IMPLEMENT_CAST_END \ + default: cerr \ + << "Unhandled dest type for cast instruction: " \ + << *DstTy << "\n"; \ + abort(); \ + } -static GenericValue executeCastOperation(Value *SrcVal, const Type *Ty, - ExecutionContext &SF) { +GenericValue Interpreter::executeCastOperation(Instruction::CastOps opcode, + Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { const Type *SrcTy = SrcVal->getType(); GenericValue Dest, Src = getOperandValue(SrcVal, SF); - switch (Ty->getPrimitiveID()) { - IMPLEMENT_CAST_CASE(UByte , (unsigned char)); - IMPLEMENT_CAST_CASE(SByte , ( signed char)); - IMPLEMENT_CAST_CASE(UShort , (unsigned short)); - IMPLEMENT_CAST_CASE(Short , ( signed short)); - IMPLEMENT_CAST_CASE(UInt , (unsigned int )); - IMPLEMENT_CAST_CASE(Int , ( signed int )); - IMPLEMENT_CAST_CASE(ULong , (uint64_t)); - IMPLEMENT_CAST_CASE(Long , ( int64_t)); - IMPLEMENT_CAST_CASE(Pointer, (PointerTy)); - IMPLEMENT_CAST_CASE(Float , (float)); - IMPLEMENT_CAST_CASE(Double , (double)); - IMPLEMENT_CAST_CASE(Bool , (bool)); - default: - std::cout << "Unhandled dest type for cast instruction: " << *Ty << "\n"; - abort(); + if (opcode == Instruction::Trunc && DstTy->getTypeID() == Type::BoolTyID) { + // For truncations to bool, we must clear the high order bits of the source + switch (SrcTy->getTypeID()) { + case Type::BoolTyID: Src.BoolVal &= 1; break; + case Type::Int8TyID: Src.Int8Val &= 1; break; + case Type::Int16TyID: Src.Int16Val &= 1; break; + case Type::Int32TyID: Src.Int32Val &= 1; break; + case Type::Int64TyID: Src.Int64Val &= 1; break; + default: + assert(0 && "Can't trunc a non-integer!"); + break; + } + } else if (opcode == Instruction::SExt && + SrcTy->getTypeID() == Type::BoolTyID) { + // For sign extension from bool, we must extend the source bits. + SrcTy = Type::Int64Ty; + Src.Int64Val = 0 - Src.BoolVal; } + switch (opcode) { + case Instruction::Trunc: // src integer, dest integral (can't be long) + IMPLEMENT_CAST_START + IMPLEMENT_CAST_CASE(Bool , (bool)); + IMPLEMENT_CAST_CASE(Int8 , (uint8_t)); + IMPLEMENT_CAST_CASE(Int16, (uint16_t)); + IMPLEMENT_CAST_CASE(Int32, (uint32_t)); + IMPLEMENT_CAST_CASE(Int64, (uint64_t)); + IMPLEMENT_CAST_END + break; + case Instruction::ZExt: // src integral (can't be long), dest integer + IMPLEMENT_CAST_START + IMPLEMENT_CAST_CASE(Int8 , (uint8_t)); + IMPLEMENT_CAST_CASE(Int16, (uint16_t)); + IMPLEMENT_CAST_CASE(Int32, (uint32_t)); + IMPLEMENT_CAST_CASE(Int64, (uint64_t)); + IMPLEMENT_CAST_END + break; + case Instruction::SExt: // src integral (can't be long), dest integer + IMPLEMENT_CAST_START + IMPLEMENT_CAST_CASE(Int8 , (uint8_t)(int8_t)); + IMPLEMENT_CAST_CASE(Int16, (uint16_t)(int16_t)); + IMPLEMENT_CAST_CASE(Int32, (uint32_t)(int32_t)); + IMPLEMENT_CAST_CASE(Int64, (uint64_t)(int64_t)); + IMPLEMENT_CAST_END + break; + case Instruction::FPTrunc: // src double, dest float + IMPLEMENT_CAST_START + IMPLEMENT_CAST_CASE(Float , (float)); + IMPLEMENT_CAST_END + break; + case Instruction::FPExt: // src float, dest double + IMPLEMENT_CAST_START + IMPLEMENT_CAST_CASE(Double , (double)); + IMPLEMENT_CAST_END + break; + case Instruction::UIToFP: // src integral, dest floating + IMPLEMENT_CAST_START + IMPLEMENT_CAST_CASE(Float , (float)(uint64_t)); + IMPLEMENT_CAST_CASE(Double , (double)(uint64_t)); + IMPLEMENT_CAST_END + break; + case Instruction::SIToFP: // src integeral, dest floating + IMPLEMENT_CAST_START + IMPLEMENT_CAST_CASE(Float , (float)(int64_t)); + IMPLEMENT_CAST_CASE(Double , (double)(int64_t)); + IMPLEMENT_CAST_END + break; + case Instruction::FPToUI: // src floating, dest integral + IMPLEMENT_CAST_START + IMPLEMENT_CAST_CASE(Bool , (bool)); + IMPLEMENT_CAST_CASE(Int8 , (uint8_t)); + IMPLEMENT_CAST_CASE(Int16, (uint16_t)); + IMPLEMENT_CAST_CASE(Int32, (uint32_t )); + IMPLEMENT_CAST_CASE(Int64, (uint64_t)); + IMPLEMENT_CAST_END + break; + case Instruction::FPToSI: // src floating, dest integral + IMPLEMENT_CAST_START + IMPLEMENT_CAST_CASE(Bool , (bool)); + IMPLEMENT_CAST_CASE(Int8 , (uint8_t) (int8_t)); + IMPLEMENT_CAST_CASE(Int16, (uint16_t)(int16_t)); + IMPLEMENT_CAST_CASE(Int32, (uint32_t)(int32_t)); + IMPLEMENT_CAST_CASE(Int64, (uint64_t)(int64_t)); + IMPLEMENT_CAST_END + break; + case Instruction::PtrToInt: // src pointer, dest integral + IMPLEMENT_CAST_START + IMPLEMENT_CAST_CASE(Bool , (bool)); + IMPLEMENT_CAST_CASE(Int8 , (uint8_t)); + IMPLEMENT_CAST_CASE(Int16, (uint16_t)); + IMPLEMENT_CAST_CASE(Int32, (uint32_t)); + IMPLEMENT_CAST_CASE(Int64, (uint64_t)); + IMPLEMENT_CAST_END + break; + case Instruction::IntToPtr: // src integral, dest pointer + IMPLEMENT_CAST_START + IMPLEMENT_CAST_CASE(Pointer, (PointerTy)); + IMPLEMENT_CAST_END + break; + case Instruction::BitCast: // src any, dest any (same size) + IMPLEMENT_CAST_START + IMPLEMENT_CAST_CASE(Bool , (bool)); + IMPLEMENT_CAST_CASE(Int8 , (uint8_t)); + IMPLEMENT_CAST_CASE(Int16 , (uint16_t)); + IMPLEMENT_CAST_CASE(Int32 , (uint32_t)); + IMPLEMENT_CAST_CASE(Int64 , (uint64_t)); + IMPLEMENT_CAST_CASE(Pointer, (PointerTy)); + IMPLEMENT_CAST_CASE(Float , (float)); + IMPLEMENT_CAST_CASE(Double , (double)); + IMPLEMENT_CAST_END + break; + default: + cerr << "Invalid cast opcode for cast instruction: " << opcode << "\n"; + abort(); + } return Dest; } - -static void executeCastInst(CastInst &I, ExecutionContext &SF) { - SetValue(&I, executeCastOperation(I.getOperand(0), I.getType(), SF), SF); +void Interpreter::visitCastInst(CastInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executeCastOperation(I.getOpcode(), I.getOperand(0), + I.getType(), SF), SF); } -static void executeVarArgInst(VarArgInst &I, ExecutionContext &SF) { - // Get the pointer to the valist element. LLI treats the valist in memory as - // an integer. - GenericValue VAListPtr = getOperandValue(I.getOperand(0), SF); +#define IMPLEMENT_VAARG(TY) \ + case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break - // Load the pointer - GenericValue VAList = - TheEE->LoadValueFromMemory((GenericValue *)GVTOP(VAListPtr), Type::UIntTy); +void Interpreter::visitVAArgInst(VAArgInst &I) { + ExecutionContext &SF = ECStack.back(); - unsigned Argument = VAList.IntVal++; + // Get the incoming valist parameter. LLI treats the valist as a + // (ec-stack-depth var-arg-index) pair. + GenericValue VAList = getOperandValue(I.getOperand(0), SF); + GenericValue Dest; + GenericValue Src = ECStack[VAList.UIntPairVal.first] + .VarArgs[VAList.UIntPairVal.second]; + const Type *Ty = I.getType(); + switch (Ty->getTypeID()) { + IMPLEMENT_VAARG(Int8); + IMPLEMENT_VAARG(Int16); + IMPLEMENT_VAARG(Int32); + IMPLEMENT_VAARG(Int64); + IMPLEMENT_VAARG(Pointer); + IMPLEMENT_VAARG(Float); + IMPLEMENT_VAARG(Double); + IMPLEMENT_VAARG(Bool); + default: + cerr << "Unhandled dest type for vaarg instruction: " << *Ty << "\n"; + abort(); + } - // Update the valist to point to the next argument... - TheEE->StoreValueToMemory(VAList, (GenericValue *)GVTOP(VAListPtr), - Type::UIntTy); + // Set the Value of this Instruction. + SetValue(&I, Dest, SF); - // Set the value... - assert(Argument < SF.VarArgs.size() && - "Accessing past the last vararg argument!"); - SetValue(&I, SF.VarArgs[Argument], SF); + // Move the pointer to the next vararg. + ++VAList.UIntPairVal.second; } //===----------------------------------------------------------------------===// // Dispatch and Execution Code //===----------------------------------------------------------------------===// -FunctionInfo::FunctionInfo(Function *F) : Annotation(FunctionInfoAID) { - // Assign slot numbers to the function arguments... - for (Function::const_aiterator AI = F->abegin(), E = F->aend(); AI != E; ++AI) - AI->addAnnotation(new SlotNumber(getValueSlot(AI))); - - // Iterate over all of the instructions... - unsigned InstNum = 0; - for (Function::iterator BB = F->begin(), BBE = F->end(); BB != BBE; ++BB) - for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE; ++II) - // For each instruction... Add Annote - II->addAnnotation(new InstNumber(++InstNum, getValueSlot(II))); -} - -unsigned FunctionInfo::getValueSlot(const Value *V) { - unsigned Plane = V->getType()->getUniqueID(); - if (Plane >= NumPlaneElements.size()) - NumPlaneElements.resize(Plane+1, 0); - return NumPlaneElements[Plane]++; -} - - //===----------------------------------------------------------------------===// // callFunction - Execute the specified function... // void Interpreter::callFunction(Function *F, const std::vector &ArgVals) { - assert((ECStack.empty() || ECStack.back().Caller == 0 || - ECStack.back().Caller->getNumOperands()-1 == ArgVals.size()) && - "Incorrect number of arguments passed into function call!"); - if (F->isExternal()) { - GenericValue Result = callExternalFunction(F, ArgVals); - const Type *RetTy = F->getReturnType(); - - // Copy the result back into the result variable if we are not returning - // void. - if (RetTy != Type::VoidTy) { - if (!ECStack.empty() && ECStack.back().Caller) { - ExecutionContext &SF = ECStack.back(); - SetValue(SF.Caller, Result, SF); - - SF.Caller = 0; // We returned from the call... - } else if (!QuietMode) { - // print it. - CW << "Function " << F->getType() << " \"" << F->getName() - << "\" returned "; - print(RetTy, Result); - std::cout << "\n"; - - if (RetTy->isIntegral()) - ExitCode = Result.IntVal; // Capture the exit code of the program - } - } + assert((ECStack.empty() || ECStack.back().Caller.getInstruction() == 0 || + ECStack.back().Caller.arg_size() == ArgVals.size()) && + "Incorrect number of arguments passed into function call!"); + // Make a new stack frame... and fill it in. + ECStack.push_back(ExecutionContext()); + ExecutionContext &StackFrame = ECStack.back(); + StackFrame.CurFunction = F; + // Special handling for external functions. + if (F->isExternal()) { + GenericValue Result = callExternalFunction (F, ArgVals); + // Simulate a 'ret' instruction of the appropriate type. + popStackAndReturnValueToCaller (F->getReturnType (), Result); return; } - // Process the function, assigning instruction numbers to the instructions in - // the function. Also calculate the number of values for each type slot - // active. - // - FunctionInfo *FuncInfo = - (FunctionInfo*)F->getOrCreateAnnotation(FunctionInfoAID); - ECStack.push_back(ExecutionContext()); // Make a new stack frame... - - ExecutionContext &StackFrame = ECStack.back(); // Fill it in... - StackFrame.CurFunction = F; + // Get pointers to first LLVM BB & Instruction in function. StackFrame.CurBB = F->begin(); StackFrame.CurInst = StackFrame.CurBB->begin(); - StackFrame.FuncInfo = FuncInfo; - - // Initialize the values to nothing... - StackFrame.Values.resize(FuncInfo->NumPlaneElements.size()); - for (unsigned i = 0; i < FuncInfo->NumPlaneElements.size(); ++i) { - StackFrame.Values[i].resize(FuncInfo->NumPlaneElements[i]); - - // Taint the initial values of stuff - memset(&StackFrame.Values[i][0], 42, - FuncInfo->NumPlaneElements[i]*sizeof(GenericValue)); - } - - StackFrame.PrevBB = 0; // No previous BB for PHI nodes... - // Run through the function arguments and initialize their values... - assert((ArgVals.size() == F->asize() || - (ArgVals.size() > F->asize() && F->getFunctionType()->isVarArg())) && + assert((ArgVals.size() == F->arg_size() || + (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&& "Invalid number of values passed to function invocation!"); // Handle non-varargs arguments... unsigned i = 0; - for (Function::aiterator AI = F->abegin(), E = F->aend(); AI != E; ++AI, ++i) + for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; ++AI, ++i) SetValue(AI, ArgVals[i], StackFrame); // Handle varargs arguments... StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end()); } -// executeInstruction - Interpret a single instruction, increment the "PC", and -// return true if the next instruction is a breakpoint... -// -bool Interpreter::executeInstruction() { - assert(!ECStack.empty() && "No program running, cannot execute inst!"); - - ExecutionContext &SF = ECStack.back(); // Current stack frame - Instruction &I = *SF.CurInst++; // Increment before execute - - if (Trace) - CW << "Run:" << I; - - // Track the number of dynamic instructions executed. - ++NumDynamicInsts; - - // Set a sigsetjmp buffer so that we can recover if an error happens during - // instruction execution... - // - if (int SigNo = sigsetjmp(SignalRecoverBuffer, 1)) { - --SF.CurInst; // Back up to erroring instruction - if (SigNo != SIGINT) { - std::cout << "EXCEPTION OCCURRED [" << strsignal(SigNo) << "]:\n"; - printStackTrace(); - // If -abort-on-exception was specified, terminate LLI instead of trying - // to debug it. - // - if (AbortOnExceptions) exit(1); - } else if (SigNo == SIGINT) { - std::cout << "CTRL-C Detected, execution halted.\n"; - } - InInstruction = false; - return true; - } - - InInstruction = true; - if (I.isBinaryOp()) { - executeBinaryInst(cast(I), SF); - } else { - switch (I.getOpcode()) { - // Terminators - case Instruction::Ret: executeRetInst (cast(I), SF); break; - case Instruction::Br: executeBrInst (cast(I), SF); break; - case Instruction::Switch: executeSwitch (cast(I), SF); break; - // Memory Instructions - case Instruction::Alloca: - case Instruction::Malloc: executeAllocInst((AllocationInst&)I, SF); break; - case Instruction::Free: executeFreeInst (cast (I), SF); break; - case Instruction::Load: executeLoadInst (cast (I), SF); break; - case Instruction::Store: executeStoreInst(cast(I), SF); break; - case Instruction::GetElementPtr: - executeGEPInst(cast(I), SF); break; - - // Miscellaneous Instructions - case Instruction::Call: executeCallInst (cast (I), SF); break; - case Instruction::PHINode: executePHINode (cast (I), SF); break; - case Instruction::Cast: executeCastInst (cast (I), SF); break; - case Instruction::Shl: executeShlInst (cast(I), SF); break; - case Instruction::Shr: executeShrInst (cast(I), SF); break; - case Instruction::VarArg: executeVarArgInst(cast(I),SF); break; - default: - std::cout << "Don't know how to execute this instruction!\n-->" << I; - abort(); - } - } - InInstruction = false; - - // Reset the current frame location to the top of stack - CurFrame = ECStack.size()-1; - - if (CurFrame == -1) return false; // No breakpoint if no code - - // Return true if there is a breakpoint annotation on the instruction... - return ECStack[CurFrame].CurInst->getAnnotation(BreakpointAID) != 0; -} - -void Interpreter::stepInstruction() { // Do the 'step' command - if (ECStack.empty()) { - std::cout << "Error: no program running, cannot step!\n"; - return; - } - - // Run an instruction... - executeInstruction(); - - // Print the next instruction to execute... - printCurrentInstruction(); -} - -// --- UI Stuff... -void Interpreter::nextInstruction() { // Do the 'next' command - if (ECStack.empty()) { - std::cout << "Error: no program running, cannot 'next'!\n"; - return; - } - - // If this is a call instruction, step over the call instruction... - // TODO: ICALL, CALL WITH, ... - if (ECStack.back().CurInst->getOpcode() == Instruction::Call) { - unsigned StackSize = ECStack.size(); - // Step into the function... - if (executeInstruction()) { - // Hit a breakpoint, print current instruction, then return to user... - std::cout << "Breakpoint hit!\n"; - printCurrentInstruction(); - return; - } - - // If we we able to step into the function, finish it now. We might not be - // able the step into a function, if it's external for example. - if (ECStack.size() != StackSize) - finish(); // Finish executing the function... - else - printCurrentInstruction(); - - } else { - // Normal instruction, just step... - stepInstruction(); - } -} - void Interpreter::run() { - if (ECStack.empty()) { - std::cout << "Error: no program running, cannot run!\n"; - return; - } - - bool HitBreakpoint = false; - while (!ECStack.empty() && !HitBreakpoint) { - // Run an instruction... - HitBreakpoint = executeInstruction(); - } + while (!ECStack.empty()) { + // Interpret a single instruction & increment the "PC". + ExecutionContext &SF = ECStack.back(); // Current stack frame + Instruction &I = *SF.CurInst++; // Increment before execute - if (HitBreakpoint) - std::cout << "Breakpoint hit!\n"; + // Track the number of dynamic instructions executed. + ++NumDynamicInsts; - // Print the next instruction to execute... - printCurrentInstruction(); -} - -void Interpreter::finish() { - if (ECStack.empty()) { - std::cout << "Error: no program running, cannot run!\n"; - return; - } - - unsigned StackSize = ECStack.size(); - bool HitBreakpoint = false; - while (ECStack.size() >= StackSize && !HitBreakpoint) { - // Run an instruction... - HitBreakpoint = executeInstruction(); - } - - if (HitBreakpoint) - std::cout << "Breakpoint hit!\n"; - - // Print the next instruction to execute... - printCurrentInstruction(); -} - - - -// printCurrentInstruction - Print out the instruction that the virtual PC is -// at, or fail silently if no program is running. -// -void Interpreter::printCurrentInstruction() { - if (!ECStack.empty()) { - if (ECStack.back().CurBB->begin() == ECStack.back().CurInst) // print label - WriteAsOperand(std::cout, ECStack.back().CurBB) << ":\n"; - - Instruction &I = *ECStack.back().CurInst; - InstNumber *IN = (InstNumber*)I.getAnnotation(SlotNumberAID); - assert(IN && "Instruction has no numbering annotation!"); - std::cout << "#" << IN->InstNum << I; + DOUT << "About to interpret: " << I; + visit(I); // Dispatch to one of the visit* methods... } } - -void Interpreter::printValue(const Type *Ty, GenericValue V) { - switch (Ty->getPrimitiveID()) { - case Type::BoolTyID: std::cout << (V.BoolVal?"true":"false"); break; - case Type::SByteTyID: - std::cout << (int)V.SByteVal << " '" << V.SByteVal << "'"; break; - case Type::UByteTyID: - std::cout << (unsigned)V.UByteVal << " '" << V.UByteVal << "'"; break; - case Type::ShortTyID: std::cout << V.ShortVal; break; - case Type::UShortTyID: std::cout << V.UShortVal; break; - case Type::IntTyID: std::cout << V.IntVal; break; - case Type::UIntTyID: std::cout << V.UIntVal; break; - case Type::LongTyID: std::cout << (long)V.LongVal; break; - case Type::ULongTyID: std::cout << (unsigned long)V.ULongVal; break; - case Type::FloatTyID: std::cout << V.FloatVal; break; - case Type::DoubleTyID: std::cout << V.DoubleVal; break; - case Type::PointerTyID:std::cout << (void*)GVTOP(V); break; - default: - std::cout << "- Don't know how to print value of this type!"; - break; - } -} - -void Interpreter::print(const Type *Ty, GenericValue V) { - CW << Ty << " "; - printValue(Ty, V); -} - -void Interpreter::print(const std::string &Name) { - Value *PickedVal = ChooseOneOption(Name, LookupMatchingNames(Name)); - if (!PickedVal) return; - - if (const Function *F = dyn_cast(PickedVal)) { - CW << F; // Print the function - } else if (const Type *Ty = dyn_cast(PickedVal)) { - CW << "type %" << Name << " = " << Ty->getDescription() << "\n"; - } else if (const BasicBlock *BB = dyn_cast(PickedVal)) { - CW << BB; // Print the basic block - } else { // Otherwise there should be an annotation for the slot# - print(PickedVal->getType(), - getOperandValue(PickedVal, ECStack[CurFrame])); - std::cout << "\n"; - } -} - -void Interpreter::infoValue(const std::string &Name) { - Value *PickedVal = ChooseOneOption(Name, LookupMatchingNames(Name)); - if (!PickedVal) return; - - std::cout << "Value: "; - print(PickedVal->getType(), - getOperandValue(PickedVal, ECStack[CurFrame])); - std::cout << "\n"; - printOperandInfo(PickedVal, ECStack[CurFrame]); -} - -// printStackFrame - Print information about the specified stack frame, or -1 -// for the default one. -// -void Interpreter::printStackFrame(int FrameNo) { - if (FrameNo == -1) FrameNo = CurFrame; - Function *F = ECStack[FrameNo].CurFunction; - const Type *RetTy = F->getReturnType(); - - CW << ((FrameNo == CurFrame) ? '>' : '-') << "#" << FrameNo << ". " - << (Value*)RetTy << " \"" << F->getName() << "\"("; - - unsigned i = 0; - for (Function::aiterator I = F->abegin(), E = F->aend(); I != E; ++I, ++i) { - if (i != 0) std::cout << ", "; - CW << *I << "="; - - printValue(I->getType(), getOperandValue(I, ECStack[FrameNo])); - } - - std::cout << ")\n"; - - if (FrameNo != int(ECStack.size()-1)) { - BasicBlock::iterator I = ECStack[FrameNo].CurInst; - CW << --I; - } else { - CW << *ECStack[FrameNo].CurInst; - } -} -