X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FExecutionEngine%2FInterpreter%2FExecution.cpp;h=91c7c57f95b25f2db63c5cd65c74a39db4a6508b;hb=c00a43092ed960cdb28f4f3f00606f572869848d;hp=7d9d727e76674ecdd824cc7639af1e1a9bdd3d60;hpb=d5d96b9fcd779806555cf5db602f80d5a308a471;p=oota-llvm.git diff --git a/lib/ExecutionEngine/Interpreter/Execution.cpp b/lib/ExecutionEngine/Interpreter/Execution.cpp index 7d9d727e766..91c7c57f95b 100644 --- a/lib/ExecutionEngine/Interpreter/Execution.cpp +++ b/lib/ExecutionEngine/Interpreter/Execution.cpp @@ -1,100 +1,195 @@ //===-- Execution.cpp - Implement code to simulate the program ------------===// -// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// // This file contains the actual instruction interpreter. // //===----------------------------------------------------------------------===// +#define DEBUG_TYPE "interpreter" #include "Interpreter.h" -#include "ExecutionAnnotations.h" -#include "llvm/Module.h" -#include "llvm/Instructions.h" -#include "llvm/DerivedTypes.h" #include "llvm/Constants.h" -#include "llvm/Assembly/Writer.h" -#include "Support/CommandLine.h" -#include "Support/Statistic.h" -#include // For fmod - -Interpreter *TheEE = 0; - -namespace { - Statistic<> NumDynamicInsts("lli", "Number of dynamic instructions executed"); - - cl::opt - QuietMode("quiet", cl::desc("Do not emit any non-program output"), - cl::init(true)); - - cl::alias - QuietModeA("q", cl::desc("Alias for -quiet"), cl::aliasopt(QuietMode)); - - cl::opt - ArrayChecksEnabled("array-checks", cl::desc("Enable array bound checks")); -} +#include "llvm/DerivedTypes.h" +#include "llvm/Instructions.h" +#include "llvm/CodeGen/IntrinsicLowering.h" +#include "llvm/Support/GetElementPtrTypeIterator.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/MathExtras.h" +#include +using namespace llvm; -// Create a TargetData structure to handle memory addressing and size/alignment -// computations -// -CachedWriter CW; // Object to accelerate printing of LLVM +STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed"); +static Interpreter *TheEE = 0; //===----------------------------------------------------------------------===// // Value Manipulation code //===----------------------------------------------------------------------===// -static unsigned getOperandSlot(Value *V) { - SlotNumber *SN = (SlotNumber*)V->getAnnotation(SlotNumberAID); - assert(SN && "Operand does not have a slot number annotation!"); - return SN->SlotNum; +static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeMulInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeUDivInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeSDivInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeFDivInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeURemInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeSRemInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeFRemInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeAndInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeOrInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeXorInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1, + GenericValue Src2, const Type *Ty); +static GenericValue executeShlInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeLShrInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeAShrInst(GenericValue Src1, GenericValue Src2, + const Type *Ty); +static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2, + GenericValue Src3); + +GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE, + ExecutionContext &SF) { + switch (CE->getOpcode()) { + case Instruction::Trunc: + return executeTruncInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::ZExt: + return executeZExtInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::SExt: + return executeSExtInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::FPTrunc: + return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::FPExt: + return executeFPExtInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::UIToFP: + return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::SIToFP: + return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::FPToUI: + return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::FPToSI: + return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::PtrToInt: + return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::IntToPtr: + return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::BitCast: + return executeBitCastInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::GetElementPtr: + return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE), + gep_type_end(CE), SF); + case Instruction::Add: + return executeAddInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::Sub: + return executeSubInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::Mul: + return executeMulInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::SDiv: + return executeSDivInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::UDiv: + return executeUDivInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::FDiv: + return executeFDivInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::URem: + return executeURemInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::SRem: + return executeSRemInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::FRem: + return executeFRemInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::And: + return executeAndInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::Or: + return executeOrInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::Xor: + return executeXorInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::FCmp: + case Instruction::ICmp: + return executeCmpInst(CE->getPredicate(), + getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::Shl: + return executeShlInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::LShr: + return executeLShrInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::AShr: + return executeAShrInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::Select: + return executeSelectInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + getOperandValue(CE->getOperand(2), SF)); + default: + cerr << "Unhandled ConstantExpr: " << *CE << "\n"; + abort(); + return GenericValue(); + } } -// Operations used by constant expr implementations... -static GenericValue executeCastOperation(Value *Src, const Type *DestTy, - ExecutionContext &SF); -static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2, - const Type *Ty); - - GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) { if (ConstantExpr *CE = dyn_cast(V)) { - switch (CE->getOpcode()) { - case Instruction::Cast: - return executeCastOperation(CE->getOperand(0), CE->getType(), SF); - case Instruction::GetElementPtr: - return TheEE->executeGEPOperation(CE->getOperand(0), CE->op_begin()+1, - CE->op_end(), SF); - case Instruction::Add: - return executeAddInst(getOperandValue(CE->getOperand(0), SF), - getOperandValue(CE->getOperand(1), SF), - CE->getType()); - default: - std::cerr << "Unhandled ConstantExpr: " << CE << "\n"; - abort(); - return GenericValue(); - } + return getConstantExprValue(CE, SF); } else if (Constant *CPV = dyn_cast(V)) { - return TheEE->getConstantValue(CPV); + return getConstantValue(CPV); } else if (GlobalValue *GV = dyn_cast(V)) { - return PTOGV(TheEE->getPointerToGlobal(GV)); + return PTOGV(getPointerToGlobal(GV)); } else { - unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value - unsigned OpSlot = getOperandSlot(V); - assert(TyP < SF.Values.size() && - OpSlot < SF.Values[TyP].size() && "Value out of range!"); - return SF.Values[TyP][getOperandSlot(V)]; + return SF.Values[V]; } } static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) { - unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value - - //std::cout << "Setting value: " << &SF.Values[TyP][getOperandSlot(V)]<< "\n"; - SF.Values[TyP][getOperandSlot(V)] = Val; + SF.Values[V] = Val; } -//===----------------------------------------------------------------------===// -// Annotation Wrangling code -//===----------------------------------------------------------------------===// - void Interpreter::initializeExecutionEngine() { TheEE = this; } @@ -106,102 +201,154 @@ void Interpreter::initializeExecutionEngine() { #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \ case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; break -static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { - GenericValue Dest; - switch (Ty->getPrimitiveID()) { - IMPLEMENT_BINARY_OPERATOR(+, UByte); - IMPLEMENT_BINARY_OPERATOR(+, SByte); - IMPLEMENT_BINARY_OPERATOR(+, UShort); - IMPLEMENT_BINARY_OPERATOR(+, Short); - IMPLEMENT_BINARY_OPERATOR(+, UInt); - IMPLEMENT_BINARY_OPERATOR(+, Int); - IMPLEMENT_BINARY_OPERATOR(+, ULong); - IMPLEMENT_BINARY_OPERATOR(+, Long); +#define IMPLEMENT_INTEGER_BINOP(OP, TY) \ + case Type::IntegerTyID: { \ + unsigned BitWidth = cast(TY)->getBitWidth(); \ + if (BitWidth == 1) \ + Dest.Int1Val = Src1.Int1Val OP Src2.Int1Val; \ + else if (BitWidth <= 8) \ + Dest.Int8Val = Src1.Int8Val OP Src2.Int8Val; \ + else if (BitWidth <= 16) \ + Dest.Int16Val = Src1.Int16Val OP Src2.Int16Val; \ + else if (BitWidth <= 32) \ + Dest.Int32Val = Src1.Int32Val OP Src2.Int32Val; \ + else if (BitWidth <= 64) \ + Dest.Int64Val = Src1.Int64Val OP Src2.Int64Val; \ + else \ + cerr << "Integer types > 64 bits not supported: " << *Ty << "\n"; \ + maskToBitWidth(Dest, BitWidth); \ + break; \ + } + +#define IMPLEMENT_SIGNED_BINOP(OP, TY) \ + if (const IntegerType *ITy = dyn_cast(TY)) { \ + unsigned BitWidth = ITy->getBitWidth(); \ + if (BitWidth <= 8) \ + Dest.Int8Val = ((int8_t)Src1.Int8Val) OP ((int8_t)Src2.Int8Val); \ + else if (BitWidth <= 16) \ + Dest.Int16Val = ((int16_t)Src1.Int16Val) OP ((int16_t)Src2.Int16Val); \ + else if (BitWidth <= 32) \ + Dest.Int32Val = ((int32_t)Src1.Int32Val) OP ((int32_t)Src2.Int32Val); \ + else if (BitWidth <= 64) \ + Dest.Int64Val = ((int64_t)Src1.Int64Val) OP ((int64_t)Src2.Int64Val); \ + else { \ + cerr << "Integer types > 64 bits not supported: " << *Ty << "\n"; \ + abort(); \ + } \ + maskToBitWidth(Dest, BitWidth); \ + } else { \ + cerr << "Unhandled type for " #OP " operator: " << *Ty << "\n"; \ + abort(); \ + } + +#define IMPLEMENT_UNSIGNED_BINOP(OP, TY) \ + if (const IntegerType *ITy = dyn_cast(TY)) { \ + unsigned BitWidth = ITy->getBitWidth(); \ + if (BitWidth <= 8) \ + Dest.Int8Val = ((uint8_t)Src1.Int8Val) OP ((uint8_t)Src2.Int8Val); \ + else if (BitWidth <= 16) \ + Dest.Int16Val = ((uint16_t)Src1.Int16Val) OP ((uint16_t)Src2.Int16Val); \ + else if (BitWidth <= 32) \ + Dest.Int32Val = ((uint32_t)Src1.Int32Val) OP ((uint32_t)Src2.Int32Val); \ + else if (BitWidth <= 64) \ + Dest.Int64Val = ((uint64_t)Src1.Int64Val) OP ((uint64_t)Src2.Int64Val); \ + else { \ + cerr << "Integer types > 64 bits not supported: " << *Ty << "\n"; \ + abort(); \ + } \ + maskToBitWidth(Dest, BitWidth); \ + } else { \ + cerr << "Unhandled type for " #OP " operator: " << *Ty << "\n"; \ + abort(); \ + } + +static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_INTEGER_BINOP(+, Ty); IMPLEMENT_BINARY_OPERATOR(+, Float); IMPLEMENT_BINARY_OPERATOR(+, Double); default: - std::cout << "Unhandled type for Add instruction: " << *Ty << "\n"; + cerr << "Unhandled type for Add instruction: " << *Ty << "\n"; abort(); } return Dest; } -static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { GenericValue Dest; - switch (Ty->getPrimitiveID()) { - IMPLEMENT_BINARY_OPERATOR(-, UByte); - IMPLEMENT_BINARY_OPERATOR(-, SByte); - IMPLEMENT_BINARY_OPERATOR(-, UShort); - IMPLEMENT_BINARY_OPERATOR(-, Short); - IMPLEMENT_BINARY_OPERATOR(-, UInt); - IMPLEMENT_BINARY_OPERATOR(-, Int); - IMPLEMENT_BINARY_OPERATOR(-, ULong); - IMPLEMENT_BINARY_OPERATOR(-, Long); + switch (Ty->getTypeID()) { + IMPLEMENT_INTEGER_BINOP(-, Ty); IMPLEMENT_BINARY_OPERATOR(-, Float); IMPLEMENT_BINARY_OPERATOR(-, Double); default: - std::cout << "Unhandled type for Sub instruction: " << *Ty << "\n"; + cerr << "Unhandled type for Sub instruction: " << *Ty << "\n"; abort(); } return Dest; } -static GenericValue executeMulInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +static GenericValue executeMulInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { GenericValue Dest; - switch (Ty->getPrimitiveID()) { - IMPLEMENT_BINARY_OPERATOR(*, UByte); - IMPLEMENT_BINARY_OPERATOR(*, SByte); - IMPLEMENT_BINARY_OPERATOR(*, UShort); - IMPLEMENT_BINARY_OPERATOR(*, Short); - IMPLEMENT_BINARY_OPERATOR(*, UInt); - IMPLEMENT_BINARY_OPERATOR(*, Int); - IMPLEMENT_BINARY_OPERATOR(*, ULong); - IMPLEMENT_BINARY_OPERATOR(*, Long); + switch (Ty->getTypeID()) { + IMPLEMENT_INTEGER_BINOP(*, Ty); IMPLEMENT_BINARY_OPERATOR(*, Float); IMPLEMENT_BINARY_OPERATOR(*, Double); default: - std::cout << "Unhandled type for Mul instruction: " << Ty << "\n"; + cerr << "Unhandled type for Mul instruction: " << *Ty << "\n"; abort(); } return Dest; } -static GenericValue executeDivInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +static GenericValue executeUDivInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + IMPLEMENT_UNSIGNED_BINOP(/,Ty) + return Dest; +} + +static GenericValue executeSDivInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + IMPLEMENT_SIGNED_BINOP(/,Ty) + return Dest; +} + +static GenericValue executeFDivInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { GenericValue Dest; - switch (Ty->getPrimitiveID()) { - IMPLEMENT_BINARY_OPERATOR(/, UByte); - IMPLEMENT_BINARY_OPERATOR(/, SByte); - IMPLEMENT_BINARY_OPERATOR(/, UShort); - IMPLEMENT_BINARY_OPERATOR(/, Short); - IMPLEMENT_BINARY_OPERATOR(/, UInt); - IMPLEMENT_BINARY_OPERATOR(/, Int); - IMPLEMENT_BINARY_OPERATOR(/, ULong); - IMPLEMENT_BINARY_OPERATOR(/, Long); + switch (Ty->getTypeID()) { IMPLEMENT_BINARY_OPERATOR(/, Float); IMPLEMENT_BINARY_OPERATOR(/, Double); default: - std::cout << "Unhandled type for Div instruction: " << *Ty << "\n"; + cerr << "Unhandled type for FDiv instruction: " << *Ty << "\n"; abort(); } return Dest; } -static GenericValue executeRemInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +static GenericValue executeURemInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { GenericValue Dest; - switch (Ty->getPrimitiveID()) { - IMPLEMENT_BINARY_OPERATOR(%, UByte); - IMPLEMENT_BINARY_OPERATOR(%, SByte); - IMPLEMENT_BINARY_OPERATOR(%, UShort); - IMPLEMENT_BINARY_OPERATOR(%, Short); - IMPLEMENT_BINARY_OPERATOR(%, UInt); - IMPLEMENT_BINARY_OPERATOR(%, Int); - IMPLEMENT_BINARY_OPERATOR(%, ULong); - IMPLEMENT_BINARY_OPERATOR(%, Long); + IMPLEMENT_UNSIGNED_BINOP(%, Ty) + return Dest; +} + +static GenericValue executeSRemInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + IMPLEMENT_SIGNED_BINOP(%, Ty) + return Dest; +} + +static GenericValue executeFRemInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { case Type::FloatTyID: Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal); break; @@ -209,220 +356,476 @@ static GenericValue executeRemInst(GenericValue Src1, GenericValue Src2, Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal); break; default: - std::cout << "Unhandled type for Rem instruction: " << *Ty << "\n"; + cerr << "Unhandled type for Rem instruction: " << *Ty << "\n"; + abort(); + } + return Dest; +} + +static GenericValue executeAndInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + IMPLEMENT_UNSIGNED_BINOP(&, Ty) + return Dest; +} + +static GenericValue executeOrInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + IMPLEMENT_UNSIGNED_BINOP(|, Ty) + return Dest; +} + +static GenericValue executeXorInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + IMPLEMENT_UNSIGNED_BINOP(^, Ty) + return Dest; +} + +#define IMPLEMENT_SIGNED_ICMP(OP, TY) \ + case Type::IntegerTyID: { \ + unsigned BitWidth = cast(TY)->getBitWidth(); \ + if (BitWidth == 1) \ + Dest.Int1Val = ((int8_t)Src1.Int1Val) OP ((int8_t)Src2.Int1Val); \ + else if (BitWidth <= 8) \ + Dest.Int1Val = ((int8_t)Src1.Int8Val) OP ((int8_t)Src2.Int8Val); \ + else if (BitWidth <= 16) \ + Dest.Int1Val = ((int16_t)Src1.Int16Val) OP ((int16_t)Src2.Int16Val); \ + else if (BitWidth <= 32) \ + Dest.Int1Val = ((int32_t)Src1.Int32Val) OP ((int32_t)Src2.Int32Val); \ + else if (BitWidth <= 64) \ + Dest.Int1Val = ((int64_t)Src1.Int64Val) OP ((int64_t)Src2.Int64Val); \ + else { \ + cerr << "Integer types > 64 bits not supported: " << *Ty << "\n"; \ + abort(); \ + } \ + maskToBitWidth(Dest, BitWidth); \ + break; \ + } + +#define IMPLEMENT_UNSIGNED_ICMP(OP, TY) \ + case Type::IntegerTyID: { \ + unsigned BitWidth = cast(TY)->getBitWidth(); \ + if (BitWidth == 1) \ + Dest.Int1Val = ((uint8_t)Src1.Int1Val) OP ((uint8_t)Src2.Int1Val); \ + else if (BitWidth <= 8) \ + Dest.Int1Val = ((uint8_t)Src1.Int8Val) OP ((uint8_t)Src2.Int8Val); \ + else if (BitWidth <= 16) \ + Dest.Int1Val = ((uint16_t)Src1.Int16Val) OP ((uint16_t)Src2.Int16Val); \ + else if (BitWidth <= 32) \ + Dest.Int1Val = ((uint32_t)Src1.Int32Val) OP ((uint32_t)Src2.Int32Val); \ + else if (BitWidth <= 64) \ + Dest.Int1Val = ((uint64_t)Src1.Int64Val) OP ((uint64_t)Src2.Int64Val); \ + else { \ + cerr << "Integer types > 64 bits not supported: " << *Ty << "\n"; \ + abort(); \ + } \ + maskToBitWidth(Dest, BitWidth); \ + break; \ + } + +// Handle pointers specially because they must be compared with only as much +// width as the host has. We _do not_ want to be comparing 64 bit values when +// running on a 32-bit target, otherwise the upper 32 bits might mess up +// comparisons if they contain garbage. +#define IMPLEMENT_POINTER_ICMP(OP) \ + case Type::PointerTyID: \ + Dest.Int1Val = (void*)(intptr_t)Src1.PointerVal OP \ + (void*)(intptr_t)Src2.PointerVal; break + +static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_UNSIGNED_ICMP(==, Ty); + IMPLEMENT_POINTER_ICMP(==); + default: + cerr << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n"; abort(); } return Dest; } -static GenericValue executeAndInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { GenericValue Dest; - switch (Ty->getPrimitiveID()) { - IMPLEMENT_BINARY_OPERATOR(&, Bool); - IMPLEMENT_BINARY_OPERATOR(&, UByte); - IMPLEMENT_BINARY_OPERATOR(&, SByte); - IMPLEMENT_BINARY_OPERATOR(&, UShort); - IMPLEMENT_BINARY_OPERATOR(&, Short); - IMPLEMENT_BINARY_OPERATOR(&, UInt); - IMPLEMENT_BINARY_OPERATOR(&, Int); - IMPLEMENT_BINARY_OPERATOR(&, ULong); - IMPLEMENT_BINARY_OPERATOR(&, Long); + switch (Ty->getTypeID()) { + IMPLEMENT_UNSIGNED_ICMP(!=, Ty); + IMPLEMENT_POINTER_ICMP(!=); default: - std::cout << "Unhandled type for And instruction: " << *Ty << "\n"; + cerr << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n"; abort(); } return Dest; } +static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_UNSIGNED_ICMP(<, Ty); + IMPLEMENT_POINTER_ICMP(<); + default: + cerr << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n"; + abort(); + } + return Dest; +} -static GenericValue executeOrInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2, + const Type *Ty) { GenericValue Dest; - switch (Ty->getPrimitiveID()) { - IMPLEMENT_BINARY_OPERATOR(|, Bool); - IMPLEMENT_BINARY_OPERATOR(|, UByte); - IMPLEMENT_BINARY_OPERATOR(|, SByte); - IMPLEMENT_BINARY_OPERATOR(|, UShort); - IMPLEMENT_BINARY_OPERATOR(|, Short); - IMPLEMENT_BINARY_OPERATOR(|, UInt); - IMPLEMENT_BINARY_OPERATOR(|, Int); - IMPLEMENT_BINARY_OPERATOR(|, ULong); - IMPLEMENT_BINARY_OPERATOR(|, Long); + switch (Ty->getTypeID()) { + IMPLEMENT_SIGNED_ICMP(<, Ty); + IMPLEMENT_POINTER_ICMP(<); default: - std::cout << "Unhandled type for Or instruction: " << *Ty << "\n"; + cerr << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n"; abort(); } return Dest; } +static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_UNSIGNED_ICMP(>, Ty); + IMPLEMENT_POINTER_ICMP(>); + default: + cerr << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n"; + abort(); + } + return Dest; +} -static GenericValue executeXorInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_SIGNED_ICMP(>, Ty); + IMPLEMENT_POINTER_ICMP(>); + default: + cerr << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n"; + abort(); + } + return Dest; +} + +static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { GenericValue Dest; - switch (Ty->getPrimitiveID()) { - IMPLEMENT_BINARY_OPERATOR(^, Bool); - IMPLEMENT_BINARY_OPERATOR(^, UByte); - IMPLEMENT_BINARY_OPERATOR(^, SByte); - IMPLEMENT_BINARY_OPERATOR(^, UShort); - IMPLEMENT_BINARY_OPERATOR(^, Short); - IMPLEMENT_BINARY_OPERATOR(^, UInt); - IMPLEMENT_BINARY_OPERATOR(^, Int); - IMPLEMENT_BINARY_OPERATOR(^, ULong); - IMPLEMENT_BINARY_OPERATOR(^, Long); + switch (Ty->getTypeID()) { + IMPLEMENT_UNSIGNED_ICMP(<=, Ty); + IMPLEMENT_POINTER_ICMP(<=); default: - std::cout << "Unhandled type for Xor instruction: " << *Ty << "\n"; + cerr << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n"; abort(); } return Dest; } +static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_SIGNED_ICMP(<=, Ty); + IMPLEMENT_POINTER_ICMP(<=); + default: + cerr << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n"; + abort(); + } + return Dest; +} -#define IMPLEMENT_SETCC(OP, TY) \ - case Type::TY##TyID: Dest.BoolVal = Src1.TY##Val OP Src2.TY##Val; break +static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_UNSIGNED_ICMP(>=,Ty); + IMPLEMENT_POINTER_ICMP(>=); + default: + cerr << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n"; + abort(); + } + return Dest; +} -// Handle pointers specially because they must be compared with only as much -// width as the host has. We _do not_ want to be comparing 64 bit values when -// running on a 32-bit target, otherwise the upper 32 bits might mess up -// comparisons if they contain garbage. -#define IMPLEMENT_POINTERSETCC(OP) \ - case Type::PointerTyID: \ - Dest.BoolVal = (void*)(intptr_t)Src1.PointerVal OP \ - (void*)(intptr_t)Src2.PointerVal; break +static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_SIGNED_ICMP(>=, Ty); + IMPLEMENT_POINTER_ICMP(>=); + default: + cerr << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n"; + abort(); + } + return Dest; +} + +void Interpreter::visitICmpInst(ICmpInst &I) { + ExecutionContext &SF = ECStack.back(); + const Type *Ty = I.getOperand(0)->getType(); + GenericValue Src1 = getOperandValue(I.getOperand(0), SF); + GenericValue Src2 = getOperandValue(I.getOperand(1), SF); + GenericValue R; // Result + + switch (I.getPredicate()) { + case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break; + case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break; + case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break; + case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break; + case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break; + case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break; + case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break; + case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break; + case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break; + case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break; + default: + cerr << "Don't know how to handle this ICmp predicate!\n-->" << I; + abort(); + } + + SetValue(&I, R, SF); +} -static GenericValue executeSetEQInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { - GenericValue Dest; - switch (Ty->getPrimitiveID()) { - IMPLEMENT_SETCC(==, UByte); - IMPLEMENT_SETCC(==, SByte); - IMPLEMENT_SETCC(==, UShort); - IMPLEMENT_SETCC(==, Short); - IMPLEMENT_SETCC(==, UInt); - IMPLEMENT_SETCC(==, Int); - IMPLEMENT_SETCC(==, ULong); - IMPLEMENT_SETCC(==, Long); - IMPLEMENT_SETCC(==, Float); - IMPLEMENT_SETCC(==, Double); - IMPLEMENT_POINTERSETCC(==); +#define IMPLEMENT_FCMP(OP, TY) \ + case Type::TY##TyID: Dest.Int1Val = Src1.TY##Val OP Src2.TY##Val; break + +static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_FCMP(==, Float); + IMPLEMENT_FCMP(==, Double); default: - std::cout << "Unhandled type for SetEQ instruction: " << *Ty << "\n"; + cerr << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n"; abort(); } return Dest; } -static GenericValue executeSetNEInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { GenericValue Dest; - switch (Ty->getPrimitiveID()) { - IMPLEMENT_SETCC(!=, UByte); - IMPLEMENT_SETCC(!=, SByte); - IMPLEMENT_SETCC(!=, UShort); - IMPLEMENT_SETCC(!=, Short); - IMPLEMENT_SETCC(!=, UInt); - IMPLEMENT_SETCC(!=, Int); - IMPLEMENT_SETCC(!=, ULong); - IMPLEMENT_SETCC(!=, Long); - IMPLEMENT_SETCC(!=, Float); - IMPLEMENT_SETCC(!=, Double); - IMPLEMENT_POINTERSETCC(!=); + switch (Ty->getTypeID()) { + IMPLEMENT_FCMP(!=, Float); + IMPLEMENT_FCMP(!=, Double); default: - std::cout << "Unhandled type for SetNE instruction: " << *Ty << "\n"; + cerr << "Unhandled type for FCmp NE instruction: " << *Ty << "\n"; abort(); } return Dest; } -static GenericValue executeSetLEInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { GenericValue Dest; - switch (Ty->getPrimitiveID()) { - IMPLEMENT_SETCC(<=, UByte); - IMPLEMENT_SETCC(<=, SByte); - IMPLEMENT_SETCC(<=, UShort); - IMPLEMENT_SETCC(<=, Short); - IMPLEMENT_SETCC(<=, UInt); - IMPLEMENT_SETCC(<=, Int); - IMPLEMENT_SETCC(<=, ULong); - IMPLEMENT_SETCC(<=, Long); - IMPLEMENT_SETCC(<=, Float); - IMPLEMENT_SETCC(<=, Double); - IMPLEMENT_POINTERSETCC(<=); + switch (Ty->getTypeID()) { + IMPLEMENT_FCMP(<=, Float); + IMPLEMENT_FCMP(<=, Double); default: - std::cout << "Unhandled type for SetLE instruction: " << Ty << "\n"; + cerr << "Unhandled type for FCmp LE instruction: " << *Ty << "\n"; abort(); } return Dest; } -static GenericValue executeSetGEInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { GenericValue Dest; - switch (Ty->getPrimitiveID()) { - IMPLEMENT_SETCC(>=, UByte); - IMPLEMENT_SETCC(>=, SByte); - IMPLEMENT_SETCC(>=, UShort); - IMPLEMENT_SETCC(>=, Short); - IMPLEMENT_SETCC(>=, UInt); - IMPLEMENT_SETCC(>=, Int); - IMPLEMENT_SETCC(>=, ULong); - IMPLEMENT_SETCC(>=, Long); - IMPLEMENT_SETCC(>=, Float); - IMPLEMENT_SETCC(>=, Double); - IMPLEMENT_POINTERSETCC(>=); + switch (Ty->getTypeID()) { + IMPLEMENT_FCMP(>=, Float); + IMPLEMENT_FCMP(>=, Double); default: - std::cout << "Unhandled type for SetGE instruction: " << *Ty << "\n"; + cerr << "Unhandled type for FCmp GE instruction: " << *Ty << "\n"; abort(); } return Dest; } -static GenericValue executeSetLTInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2, + const Type *Ty) { GenericValue Dest; - switch (Ty->getPrimitiveID()) { - IMPLEMENT_SETCC(<, UByte); - IMPLEMENT_SETCC(<, SByte); - IMPLEMENT_SETCC(<, UShort); - IMPLEMENT_SETCC(<, Short); - IMPLEMENT_SETCC(<, UInt); - IMPLEMENT_SETCC(<, Int); - IMPLEMENT_SETCC(<, ULong); - IMPLEMENT_SETCC(<, Long); - IMPLEMENT_SETCC(<, Float); - IMPLEMENT_SETCC(<, Double); - IMPLEMENT_POINTERSETCC(<); + switch (Ty->getTypeID()) { + IMPLEMENT_FCMP(<, Float); + IMPLEMENT_FCMP(<, Double); default: - std::cout << "Unhandled type for SetLT instruction: " << *Ty << "\n"; + cerr << "Unhandled type for FCmp LT instruction: " << *Ty << "\n"; abort(); } return Dest; } -static GenericValue executeSetGTInst(GenericValue Src1, GenericValue Src2, - const Type *Ty) { +static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2, + const Type *Ty) { GenericValue Dest; - switch (Ty->getPrimitiveID()) { - IMPLEMENT_SETCC(>, UByte); - IMPLEMENT_SETCC(>, SByte); - IMPLEMENT_SETCC(>, UShort); - IMPLEMENT_SETCC(>, Short); - IMPLEMENT_SETCC(>, UInt); - IMPLEMENT_SETCC(>, Int); - IMPLEMENT_SETCC(>, ULong); - IMPLEMENT_SETCC(>, Long); - IMPLEMENT_SETCC(>, Float); - IMPLEMENT_SETCC(>, Double); - IMPLEMENT_POINTERSETCC(>); + switch (Ty->getTypeID()) { + IMPLEMENT_FCMP(>, Float); + IMPLEMENT_FCMP(>, Double); default: - std::cout << "Unhandled type for SetGT instruction: " << *Ty << "\n"; + cerr << "Unhandled type for FCmp GT instruction: " << *Ty << "\n"; abort(); } return Dest; } +#define IMPLEMENT_UNORDERED(TY, X,Y) \ + if (TY == Type::FloatTy) \ + if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \ + Dest.Int1Val = true; \ + return Dest; \ + } \ + else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \ + Dest.Int1Val = true; \ + return Dest; \ + } + + +static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + IMPLEMENT_UNORDERED(Ty, Src1, Src2) + return executeFCMP_OEQ(Src1, Src2, Ty); +} + +static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + IMPLEMENT_UNORDERED(Ty, Src1, Src2) + return executeFCMP_ONE(Src1, Src2, Ty); +} + +static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + IMPLEMENT_UNORDERED(Ty, Src1, Src2) + return executeFCMP_OLE(Src1, Src2, Ty); +} + +static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + IMPLEMENT_UNORDERED(Ty, Src1, Src2) + return executeFCMP_OGE(Src1, Src2, Ty); +} + +static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + IMPLEMENT_UNORDERED(Ty, Src1, Src2) + return executeFCMP_OLT(Src1, Src2, Ty); +} + +static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + IMPLEMENT_UNORDERED(Ty, Src1, Src2) + return executeFCMP_OGT(Src1, Src2, Ty); +} + +static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + if (Ty == Type::FloatTy) + Dest.Int1Val = (Src1.FloatVal == Src1.FloatVal && + Src2.FloatVal == Src2.FloatVal); + else + Dest.Int1Val = (Src1.DoubleVal == Src1.DoubleVal && + Src2.DoubleVal == Src2.DoubleVal); + return Dest; +} + +static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + if (Ty == Type::FloatTy) + Dest.Int1Val = (Src1.FloatVal != Src1.FloatVal || + Src2.FloatVal != Src2.FloatVal); + else + Dest.Int1Val = (Src1.DoubleVal != Src1.DoubleVal || + Src2.DoubleVal != Src2.DoubleVal); + return Dest; +} + +void Interpreter::visitFCmpInst(FCmpInst &I) { + ExecutionContext &SF = ECStack.back(); + const Type *Ty = I.getOperand(0)->getType(); + GenericValue Src1 = getOperandValue(I.getOperand(0), SF); + GenericValue Src2 = getOperandValue(I.getOperand(1), SF); + GenericValue R; // Result + + switch (I.getPredicate()) { + case FCmpInst::FCMP_FALSE: R.Int1Val = false; break; + case FCmpInst::FCMP_TRUE: R.Int1Val = true; break; + case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break; + case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break; + case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break; + case FCmpInst::FCMP_OEQ: R = executeFCMP_OEQ(Src1, Src2, Ty); break; + case FCmpInst::FCMP_UNE: R = executeFCMP_UNE(Src1, Src2, Ty); break; + case FCmpInst::FCMP_ONE: R = executeFCMP_ONE(Src1, Src2, Ty); break; + case FCmpInst::FCMP_ULT: R = executeFCMP_ULT(Src1, Src2, Ty); break; + case FCmpInst::FCMP_OLT: R = executeFCMP_OLT(Src1, Src2, Ty); break; + case FCmpInst::FCMP_UGT: R = executeFCMP_UGT(Src1, Src2, Ty); break; + case FCmpInst::FCMP_OGT: R = executeFCMP_OGT(Src1, Src2, Ty); break; + case FCmpInst::FCMP_ULE: R = executeFCMP_ULE(Src1, Src2, Ty); break; + case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break; + case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break; + case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break; + default: + cerr << "Don't know how to handle this FCmp predicate!\n-->" << I; + abort(); + } + + SetValue(&I, R, SF); +} + +static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1, + GenericValue Src2, const Type *Ty) { + GenericValue Result; + switch (predicate) { + case ICmpInst::ICMP_EQ: return executeICMP_EQ(Src1, Src2, Ty); + case ICmpInst::ICMP_NE: return executeICMP_NE(Src1, Src2, Ty); + case ICmpInst::ICMP_UGT: return executeICMP_UGT(Src1, Src2, Ty); + case ICmpInst::ICMP_SGT: return executeICMP_SGT(Src1, Src2, Ty); + case ICmpInst::ICMP_ULT: return executeICMP_ULT(Src1, Src2, Ty); + case ICmpInst::ICMP_SLT: return executeICMP_SLT(Src1, Src2, Ty); + case ICmpInst::ICMP_UGE: return executeICMP_UGE(Src1, Src2, Ty); + case ICmpInst::ICMP_SGE: return executeICMP_SGE(Src1, Src2, Ty); + case ICmpInst::ICMP_ULE: return executeICMP_ULE(Src1, Src2, Ty); + case ICmpInst::ICMP_SLE: return executeICMP_SLE(Src1, Src2, Ty); + case FCmpInst::FCMP_ORD: return executeFCMP_ORD(Src1, Src2, Ty); + case FCmpInst::FCMP_UNO: return executeFCMP_UNO(Src1, Src2, Ty); + case FCmpInst::FCMP_OEQ: return executeFCMP_OEQ(Src1, Src2, Ty); + case FCmpInst::FCMP_UEQ: return executeFCMP_UEQ(Src1, Src2, Ty); + case FCmpInst::FCMP_ONE: return executeFCMP_ONE(Src1, Src2, Ty); + case FCmpInst::FCMP_UNE: return executeFCMP_UNE(Src1, Src2, Ty); + case FCmpInst::FCMP_OLT: return executeFCMP_OLT(Src1, Src2, Ty); + case FCmpInst::FCMP_ULT: return executeFCMP_ULT(Src1, Src2, Ty); + case FCmpInst::FCMP_OGT: return executeFCMP_OGT(Src1, Src2, Ty); + case FCmpInst::FCMP_UGT: return executeFCMP_UGT(Src1, Src2, Ty); + case FCmpInst::FCMP_OLE: return executeFCMP_OLE(Src1, Src2, Ty); + case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty); + case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty); + case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty); + case FCmpInst::FCMP_FALSE: { + GenericValue Result; + Result.Int1Val = false; + return Result; + } + case FCmpInst::FCMP_TRUE: { + GenericValue Result; + Result.Int1Val = true; + return Result; + } + default: + cerr << "Unhandled Cmp predicate\n"; + abort(); + } +} + void Interpreter::visitBinaryOperator(BinaryOperator &I) { ExecutionContext &SF = ECStack.back(); const Type *Ty = I.getOperand(0)->getType(); @@ -434,43 +837,87 @@ void Interpreter::visitBinaryOperator(BinaryOperator &I) { case Instruction::Add: R = executeAddInst (Src1, Src2, Ty); break; case Instruction::Sub: R = executeSubInst (Src1, Src2, Ty); break; case Instruction::Mul: R = executeMulInst (Src1, Src2, Ty); break; - case Instruction::Div: R = executeDivInst (Src1, Src2, Ty); break; - case Instruction::Rem: R = executeRemInst (Src1, Src2, Ty); break; + case Instruction::UDiv: R = executeUDivInst (Src1, Src2, Ty); break; + case Instruction::SDiv: R = executeSDivInst (Src1, Src2, Ty); break; + case Instruction::FDiv: R = executeFDivInst (Src1, Src2, Ty); break; + case Instruction::URem: R = executeURemInst (Src1, Src2, Ty); break; + case Instruction::SRem: R = executeSRemInst (Src1, Src2, Ty); break; + case Instruction::FRem: R = executeFRemInst (Src1, Src2, Ty); break; case Instruction::And: R = executeAndInst (Src1, Src2, Ty); break; case Instruction::Or: R = executeOrInst (Src1, Src2, Ty); break; case Instruction::Xor: R = executeXorInst (Src1, Src2, Ty); break; - case Instruction::SetEQ: R = executeSetEQInst(Src1, Src2, Ty); break; - case Instruction::SetNE: R = executeSetNEInst(Src1, Src2, Ty); break; - case Instruction::SetLE: R = executeSetLEInst(Src1, Src2, Ty); break; - case Instruction::SetGE: R = executeSetGEInst(Src1, Src2, Ty); break; - case Instruction::SetLT: R = executeSetLTInst(Src1, Src2, Ty); break; - case Instruction::SetGT: R = executeSetGTInst(Src1, Src2, Ty); break; default: - std::cout << "Don't know how to handle this binary operator!\n-->" << I; + cerr << "Don't know how to handle this binary operator!\n-->" << I; abort(); } SetValue(&I, R, SF); } +static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2, + GenericValue Src3) { + return Src1.Int1Val ? Src2 : Src3; +} + +void Interpreter::visitSelectInst(SelectInst &I) { + ExecutionContext &SF = ECStack.back(); + GenericValue Src1 = getOperandValue(I.getOperand(0), SF); + GenericValue Src2 = getOperandValue(I.getOperand(1), SF); + GenericValue Src3 = getOperandValue(I.getOperand(2), SF); + GenericValue R = executeSelectInst(Src1, Src2, Src3); + SetValue(&I, R, SF); +} + + //===----------------------------------------------------------------------===// // Terminator Instruction Implementations //===----------------------------------------------------------------------===// void Interpreter::exitCalled(GenericValue GV) { - if (!QuietMode) { - std::cout << "Program returned "; - print(Type::IntTy, GV); - std::cout << " via 'void exit(int)'\n"; - } + // runAtExitHandlers() assumes there are no stack frames, but + // if exit() was called, then it had a stack frame. Blow away + // the stack before interpreting atexit handlers. + ECStack.clear (); + runAtExitHandlers (); + exit (GV.Int32Val); +} + +/// Pop the last stack frame off of ECStack and then copy the result +/// back into the result variable if we are not returning void. The +/// result variable may be the ExitValue, or the Value of the calling +/// CallInst if there was a previous stack frame. This method may +/// invalidate any ECStack iterators you have. This method also takes +/// care of switching to the normal destination BB, if we are returning +/// from an invoke. +/// +void Interpreter::popStackAndReturnValueToCaller (const Type *RetTy, + GenericValue Result) { + // Pop the current stack frame. + ECStack.pop_back(); - ExitCode = GV.SByteVal; - ECStack.clear(); + if (ECStack.empty()) { // Finished main. Put result into exit code... + if (RetTy && RetTy->isInteger()) { // Nonvoid return type? + ExitValue = Result; // Capture the exit value of the program + } else { + memset(&ExitValue, 0, sizeof(ExitValue)); + } + } else { + // If we have a previous stack frame, and we have a previous call, + // fill in the return value... + ExecutionContext &CallingSF = ECStack.back(); + if (Instruction *I = CallingSF.Caller.getInstruction()) { + if (CallingSF.Caller.getType() != Type::VoidTy) // Save result... + SetValue(I, Result, CallingSF); + if (InvokeInst *II = dyn_cast (I)) + SwitchToNewBasicBlock (II->getNormalDest (), CallingSF); + CallingSF.Caller = CallSite(); // We returned from the call... + } + } } void Interpreter::visitReturnInst(ReturnInst &I) { ExecutionContext &SF = ECStack.back(); - const Type *RetTy = 0; + const Type *RetTy = Type::VoidTy; GenericValue Result; // Save away the return value... (if we are not 'ret void') @@ -479,46 +926,30 @@ void Interpreter::visitReturnInst(ReturnInst &I) { Result = getOperandValue(I.getReturnValue(), SF); } - // Save previously executing meth - const Function *M = ECStack.back().CurFunction; - - // Pop the current stack frame... this invalidates SF - ECStack.pop_back(); - - if (ECStack.empty()) { // Finished main. Put result into exit code... - if (RetTy) { // Nonvoid return type? - if (!QuietMode) { - CW << "Function " << M->getType() << " \"" << M->getName() - << "\" returned "; - print(RetTy, Result); - std::cout << "\n"; - } - - if (RetTy->isIntegral()) - ExitCode = Result.IntVal; // Capture the exit code of the program - } else { - ExitCode = 0; - } - return; - } + popStackAndReturnValueToCaller(RetTy, Result); +} - // If we have a previous stack frame, and we have a previous call, fill in - // the return value... - // - ExecutionContext &NewSF = ECStack.back(); - if (NewSF.Caller) { - if (NewSF.Caller->getType() != Type::VoidTy) // Save result... - SetValue(NewSF.Caller, Result, NewSF); +void Interpreter::visitUnwindInst(UnwindInst &I) { + // Unwind stack + Instruction *Inst; + do { + ECStack.pop_back (); + if (ECStack.empty ()) + abort (); + Inst = ECStack.back ().Caller.getInstruction (); + } while (!(Inst && isa (Inst))); + + // Return from invoke + ExecutionContext &InvokingSF = ECStack.back (); + InvokingSF.Caller = CallSite (); + + // Go to exceptional destination BB of invoke instruction + SwitchToNewBasicBlock(cast(Inst)->getUnwindDest(), InvokingSF); +} - NewSF.Caller = 0; // We returned from the call... - } else if (!QuietMode) { - // This must be a function that is executing because of a user 'call' - // instruction. - CW << "Function " << M->getType() << " \"" << M->getName() - << "\" returned "; - print(RetTy, Result); - std::cout << "\n"; - } +void Interpreter::visitUnreachableInst(UnreachableInst &I) { + cerr << "ERROR: Program executed an 'unreachable' instruction!\n"; + abort(); } void Interpreter::visitBranchInst(BranchInst &I) { @@ -528,8 +959,8 @@ void Interpreter::visitBranchInst(BranchInst &I) { Dest = I.getSuccessor(0); // Uncond branches have a fixed dest... if (!I.isUnconditional()) { Value *Cond = I.getCondition(); - if (getOperandValue(Cond, SF).BoolVal == 0) // If false cond... - Dest = I.getSuccessor(1); + if (getOperandValue(Cond, SF).Int1Val == 0) // If false cond... + Dest = I.getSuccessor(1); } SwitchToNewBasicBlock(Dest, SF); } @@ -542,12 +973,12 @@ void Interpreter::visitSwitchInst(SwitchInst &I) { // Check to see if any of the cases match... BasicBlock *Dest = 0; for (unsigned i = 2, e = I.getNumOperands(); i != e; i += 2) - if (executeSetEQInst(CondVal, - getOperandValue(I.getOperand(i), SF), ElTy).BoolVal) { + if (executeICMP_EQ(CondVal, + getOperandValue(I.getOperand(i), SF), ElTy).Int1Val) { Dest = cast(I.getOperand(i+1)); break; } - + if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default SwitchToNewBasicBlock(Dest, SF); } @@ -573,25 +1004,23 @@ void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){ std::vector ResultValues; for (; PHINode *PN = dyn_cast(SF.CurInst); ++SF.CurInst) { - if (Trace) CW << "Run:" << PN; - // Search for the value corresponding to this previous bb... int i = PN->getBasicBlockIndex(PrevBB); assert(i != -1 && "PHINode doesn't contain entry for predecessor??"); Value *IncomingValue = PN->getIncomingValue(i); - + // Save the incoming value for this PHI node... ResultValues.push_back(getOperandValue(IncomingValue, SF)); } // Now loop over all of the PHI nodes setting their values... SF.CurInst = SF.CurBB->begin(); - for (unsigned i = 0; PHINode *PN = dyn_cast(SF.CurInst); - ++SF.CurInst, ++i) + for (unsigned i = 0; isa(SF.CurInst); ++SF.CurInst, ++i) { + PHINode *PN = cast(SF.CurInst); SetValue(PN, ResultValues[i], SF); + } } - //===----------------------------------------------------------------------===// // Memory Instruction Implementations //===----------------------------------------------------------------------===// @@ -602,11 +1031,10 @@ void Interpreter::visitAllocationInst(AllocationInst &I) { const Type *Ty = I.getType()->getElementType(); // Type to be allocated // Get the number of elements being allocated by the array... - unsigned NumElements = getOperandValue(I.getOperand(0), SF).UIntVal; + unsigned NumElements = getOperandValue(I.getOperand(0), SF).Int32Val; // Allocate enough memory to hold the type... - // FIXME: Don't use CALLOC, use a tainted malloc. - void *Memory = calloc(NumElements, TD.getTypeSize(Ty)); + void *Memory = malloc(NumElements * (size_t)TD.getTypeSize(Ty)); GenericValue Result = PTOGV(Memory); assert(Result.PointerVal != 0 && "Null pointer returned by malloc!"); @@ -624,46 +1052,40 @@ void Interpreter::visitFreeInst(FreeInst &I) { free(GVTOP(Value)); // Free memory } - // getElementOffset - The workhorse for getelementptr. // -GenericValue Interpreter::executeGEPOperation(Value *Ptr, User::op_iterator I, - User::op_iterator E, - ExecutionContext &SF) { +GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I, + gep_type_iterator E, + ExecutionContext &SF) { assert(isa(Ptr->getType()) && "Cannot getElementOffset of a nonpointer type!"); PointerTy Total = 0; - const Type *Ty = Ptr->getType(); for (; I != E; ++I) { - if (const StructType *STy = dyn_cast(Ty)) { + if (const StructType *STy = dyn_cast(*I)) { const StructLayout *SLO = TD.getStructLayout(STy); - - // Indices must be ubyte constants... - const ConstantUInt *CPU = cast(*I); - assert(CPU->getType() == Type::UByteTy); - unsigned Index = CPU->getValue(); - - Total += SLO->MemberOffsets[Index]; - Ty = STy->getElementTypes()[Index]; - } else if (const SequentialType *ST = cast(Ty)) { + const ConstantInt *CPU = cast(I.getOperand()); + unsigned Index = unsigned(CPU->getZExtValue()); + + Total += (PointerTy)SLO->MemberOffsets[Index]; + } else { + const SequentialType *ST = cast(*I); // Get the index number for the array... which must be long type... - assert((*I)->getType() == Type::LongTy); - unsigned Idx = getOperandValue(*I, SF).LongVal; - if (const ArrayType *AT = dyn_cast(ST)) - if (Idx >= AT->getNumElements() && ArrayChecksEnabled) { - std::cerr << "Out of range memory access to element #" << Idx - << " of a " << AT->getNumElements() << " element array." - << " Subscript #" << *I << "\n"; - abort(); - } - - Ty = ST->getElementType(); - unsigned Size = TD.getTypeSize(Ty); - Total += Size*Idx; - } + GenericValue IdxGV = getOperandValue(I.getOperand(), SF); + + int64_t Idx; + unsigned BitWidth = + cast(I.getOperand()->getType())->getBitWidth(); + if (BitWidth == 32) + Idx = (int64_t)(int32_t)IdxGV.Int32Val; + else if (BitWidth == 64) + Idx = (int64_t)IdxGV.Int64Val; + else + assert(0 && "Invalid index type for getelementptr"); + Total += PointerTy(TD.getTypeSize(ST->getElementType())*Idx); + } } GenericValue Result; @@ -674,7 +1096,7 @@ GenericValue Interpreter::executeGEPOperation(Value *Ptr, User::op_iterator I, void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) { ExecutionContext &SF = ECStack.back(); SetValue(&I, TheEE->executeGEPOperation(I.getPointerOperand(), - I.idx_begin(), I.idx_end(), SF), SF); + gep_type_begin(I), gep_type_end(I), SF), SF); } void Interpreter::visitLoadInst(LoadInst &I) { @@ -693,48 +1115,152 @@ void Interpreter::visitStoreInst(StoreInst &I) { I.getOperand(0)->getType()); } - - //===----------------------------------------------------------------------===// // Miscellaneous Instruction Implementations //===----------------------------------------------------------------------===// -void Interpreter::visitCallInst(CallInst &I) { +void Interpreter::visitCallSite(CallSite CS) { ExecutionContext &SF = ECStack.back(); - SF.Caller = &I; + + // Check to see if this is an intrinsic function call... + if (Function *F = CS.getCalledFunction()) + if (F->isExternal ()) + switch (F->getIntrinsicID()) { + case Intrinsic::not_intrinsic: + break; + case Intrinsic::vastart: { // va_start + GenericValue ArgIndex; + ArgIndex.UIntPairVal.first = ECStack.size() - 1; + ArgIndex.UIntPairVal.second = 0; + SetValue(CS.getInstruction(), ArgIndex, SF); + return; + } + case Intrinsic::vaend: // va_end is a noop for the interpreter + return; + case Intrinsic::vacopy: // va_copy: dest = src + SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF); + return; + default: + // If it is an unknown intrinsic function, use the intrinsic lowering + // class to transform it into hopefully tasty LLVM code. + // + Instruction *Prev = CS.getInstruction()->getPrev(); + BasicBlock *Parent = CS.getInstruction()->getParent(); + IL->LowerIntrinsicCall(cast(CS.getInstruction())); + + // Restore the CurInst pointer to the first instruction newly inserted, if + // any. + if (!Prev) { + SF.CurInst = Parent->begin(); + } else { + SF.CurInst = Prev; + ++SF.CurInst; + } + return; + } + + SF.Caller = CS; std::vector ArgVals; - ArgVals.reserve(I.getNumOperands()-1); - for (unsigned i = 1; i < I.getNumOperands(); ++i) { - ArgVals.push_back(getOperandValue(I.getOperand(i), SF)); + const unsigned NumArgs = SF.Caller.arg_size(); + ArgVals.reserve(NumArgs); + for (CallSite::arg_iterator i = SF.Caller.arg_begin(), + e = SF.Caller.arg_end(); i != e; ++i) { + Value *V = *i; + ArgVals.push_back(getOperandValue(V, SF)); // Promote all integral types whose size is < sizeof(int) into ints. We do // this by zero or sign extending the value as appropriate according to the // source type. - if (I.getOperand(i)->getType()->isIntegral() && - I.getOperand(i)->getType()->getPrimitiveSize() < 4) { - const Type *Ty = I.getOperand(i)->getType(); - if (Ty == Type::ShortTy) - ArgVals.back().IntVal = ArgVals.back().ShortVal; - else if (Ty == Type::UShortTy) - ArgVals.back().UIntVal = ArgVals.back().UShortVal; - else if (Ty == Type::SByteTy) - ArgVals.back().IntVal = ArgVals.back().SByteVal; - else if (Ty == Type::UByteTy) - ArgVals.back().UIntVal = ArgVals.back().UByteVal; - else if (Ty == Type::BoolTy) - ArgVals.back().UIntVal = ArgVals.back().BoolVal; - else - assert(0 && "Unknown type!"); + const Type *Ty = V->getType(); + if (Ty->isInteger()) { + if (Ty->getPrimitiveSizeInBits() == 1) + ArgVals.back().Int32Val = ArgVals.back().Int1Val; + else if (Ty->getPrimitiveSizeInBits() <= 8) + ArgVals.back().Int32Val = ArgVals.back().Int8Val; + else if (Ty->getPrimitiveSizeInBits() <= 16) + ArgVals.back().Int32Val = ArgVals.back().Int16Val; } } - // To handle indirect calls, we must get the pointer value from the argument + // To handle indirect calls, we must get the pointer value from the argument // and treat it as a function pointer. - GenericValue SRC = getOperandValue(I.getCalledValue(), SF); + GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF); callFunction((Function*)GVTOP(SRC), ArgVals); } -#define IMPLEMENT_SHIFT(OP, TY) \ - case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.UByteVal; break +static GenericValue executeShlInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + if (const IntegerType *ITy = cast(Ty)) { + unsigned BitWidth = ITy->getBitWidth(); + if (BitWidth <= 8) + Dest.Int8Val = ((uint8_t)Src1.Int8Val) << ((uint32_t)Src2.Int8Val); + else if (BitWidth <= 16) + Dest.Int16Val = ((uint16_t)Src1.Int16Val) << ((uint32_t)Src2.Int8Val); + else if (BitWidth <= 32) + Dest.Int32Val = ((uint32_t)Src1.Int32Val) << ((uint32_t)Src2.Int8Val); + else if (BitWidth <= 64) + Dest.Int64Val = ((uint64_t)Src1.Int64Val) << ((uint32_t)Src2.Int8Val); + else { + cerr << "Integer types > 64 bits not supported: " << *Ty << "\n"; + abort(); + } + maskToBitWidth(Dest, BitWidth); + } else { + cerr << "Unhandled type for Shl instruction: " << *Ty << "\n"; + abort(); + } + return Dest; +} + +static GenericValue executeLShrInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + if (const IntegerType *ITy = cast(Ty)) { + unsigned BitWidth = ITy->getBitWidth(); + if (BitWidth <= 8) + Dest.Int8Val = ((uint8_t)Src1.Int8Val) >> ((uint32_t)Src2.Int8Val); + else if (BitWidth <= 16) + Dest.Int16Val = ((uint16_t)Src1.Int16Val) >> ((uint32_t)Src2.Int8Val); + else if (BitWidth <= 32) + Dest.Int32Val = ((uint32_t)Src1.Int32Val) >> ((uint32_t)Src2.Int8Val); + else if (BitWidth <= 64) + Dest.Int64Val = ((uint64_t)Src1.Int64Val) >> ((uint32_t)Src2.Int8Val); + else { + cerr << "Integer types > 64 bits not supported: " << *Ty << "\n"; + abort(); + } + maskToBitWidth(Dest, BitWidth); + } else { + cerr << "Unhandled type for LShr instruction: " << *Ty << "\n"; + abort(); + } + return Dest; +} + +static GenericValue executeAShrInst(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + if (const IntegerType *ITy = cast(Ty)) { + unsigned BitWidth = ITy->getBitWidth(); + if (BitWidth <= 8) + Dest.Int8Val = ((int8_t)Src1.Int8Val) >> ((int32_t)Src2.Int8Val); + else if (BitWidth <= 16) + Dest.Int16Val = ((int16_t)Src1.Int16Val) >> ((int32_t)Src2.Int8Val); + else if (BitWidth <= 32) + Dest.Int32Val = ((int32_t)Src1.Int32Val) >> ((int32_t)Src2.Int8Val); + else if (BitWidth <= 64) + Dest.Int64Val = ((int64_t)Src1.Int64Val) >> ((int32_t)Src2.Int8Val); + else { + cerr << "Integer types > 64 bits not supported: " << *Ty << "\n"; \ + abort(); + } + maskToBitWidth(Dest, BitWidth); + } else { + cerr << "Unhandled type for AShr instruction: " << *Ty << "\n"; + abort(); + } + return Dest; +} void Interpreter::visitShl(ShiftInst &I) { ExecutionContext &SF = ECStack.back(); @@ -742,281 +1268,489 @@ void Interpreter::visitShl(ShiftInst &I) { GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue Dest; + Dest = executeShlInst (Src1, Src2, Ty); + SetValue(&I, Dest, SF); +} - switch (Ty->getPrimitiveID()) { - IMPLEMENT_SHIFT(<<, UByte); - IMPLEMENT_SHIFT(<<, SByte); - IMPLEMENT_SHIFT(<<, UShort); - IMPLEMENT_SHIFT(<<, Short); - IMPLEMENT_SHIFT(<<, UInt); - IMPLEMENT_SHIFT(<<, Int); - IMPLEMENT_SHIFT(<<, ULong); - IMPLEMENT_SHIFT(<<, Long); - default: - std::cout << "Unhandled type for Shl instruction: " << *Ty << "\n"; - } +void Interpreter::visitLShr(ShiftInst &I) { + ExecutionContext &SF = ECStack.back(); + const Type *Ty = I.getOperand(0)->getType(); + GenericValue Src1 = getOperandValue(I.getOperand(0), SF); + GenericValue Src2 = getOperandValue(I.getOperand(1), SF); + GenericValue Dest; + Dest = executeLShrInst (Src1, Src2, Ty); SetValue(&I, Dest, SF); } -void Interpreter::visitShr(ShiftInst &I) { +void Interpreter::visitAShr(ShiftInst &I) { ExecutionContext &SF = ECStack.back(); const Type *Ty = I.getOperand(0)->getType(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue Dest; + Dest = executeAShrInst (Src1, Src2, Ty); + SetValue(&I, Dest, SF); +} - switch (Ty->getPrimitiveID()) { - IMPLEMENT_SHIFT(>>, UByte); - IMPLEMENT_SHIFT(>>, SByte); - IMPLEMENT_SHIFT(>>, UShort); - IMPLEMENT_SHIFT(>>, Short); - IMPLEMENT_SHIFT(>>, UInt); - IMPLEMENT_SHIFT(>>, Int); - IMPLEMENT_SHIFT(>>, ULong); - IMPLEMENT_SHIFT(>>, Long); - default: - std::cout << "Unhandled type for Shr instruction: " << *Ty << "\n"; - abort(); +#define INTEGER_ASSIGN(DEST, BITWIDTH, VAL) \ + { \ + uint64_t Mask = (1ull << BITWIDTH) - 1; \ + if (BITWIDTH == 1) { \ + Dest.Int1Val = (bool) (VAL & Mask); \ + } else if (BITWIDTH <= 8) { \ + Dest.Int8Val = (uint8_t) (VAL & Mask); \ + } else if (BITWIDTH <= 16) { \ + Dest.Int16Val = (uint16_t) (VAL & Mask); \ + } else if (BITWIDTH <= 32) { \ + Dest.Int32Val = (uint32_t) (VAL & Mask); \ + } else \ + Dest.Int64Val = (uint64_t) (VAL & Mask); \ } - SetValue(&I, Dest, SF); + +GenericValue Interpreter::executeTruncInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { + const Type *SrcTy = SrcVal->getType(); + GenericValue Dest, Src = getOperandValue(SrcVal, SF); + const IntegerType *DITy = cast(DstTy); + const IntegerType *SITy = cast(SrcTy); + unsigned DBitWidth = DITy->getBitWidth(); + unsigned SBitWidth = SITy->getBitWidth(); + assert(SBitWidth <= 64 && DBitWidth <= 64 && + "Integer types > 64 bits not supported"); + assert(SBitWidth > DBitWidth && "Invalid truncate"); + + // Mask the source value to its actual bit width. This ensures that any + // high order bits are cleared. + uint64_t Mask = (1ULL << DBitWidth) - 1; + uint64_t MaskedVal = 0; + if (SBitWidth <= 8) + MaskedVal = Src.Int8Val & Mask; + else if (SBitWidth <= 16) + MaskedVal = Src.Int16Val & Mask; + else if (SBitWidth <= 32) + MaskedVal = Src.Int32Val & Mask; + else + MaskedVal = Src.Int64Val & Mask; + + INTEGER_ASSIGN(Dest, DBitWidth, MaskedVal); + return Dest; +} + +GenericValue Interpreter::executeSExtInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { + const Type *SrcTy = SrcVal->getType(); + GenericValue Dest, Src = getOperandValue(SrcVal, SF); + const IntegerType *DITy = cast(DstTy); + const IntegerType *SITy = cast(SrcTy); + unsigned DBitWidth = DITy->getBitWidth(); + unsigned SBitWidth = SITy->getBitWidth(); + assert(SBitWidth <= 64 && DBitWidth <= 64 && + "Integer types > 64 bits not supported"); + assert(SBitWidth < DBitWidth && "Invalid sign extend"); + + // Normalize to a 64-bit value. + uint64_t Normalized = 0; + if (SBitWidth <= 8) + Normalized = Src.Int8Val; + else if (SBitWidth <= 16) + Normalized = Src.Int16Val; + else if (SBitWidth <= 32) + Normalized = Src.Int32Val; + else + Normalized = Src.Int64Val; + + // Now do the bit-accurate sign extension manually. + bool isSigned = (Normalized & (1 << (SBitWidth-1))) != 0; + if (isSigned) + Normalized |= ~SITy->getBitMask(); + + // Now that we have a sign extended value, assign it to the destination + INTEGER_ASSIGN(Dest, DBitWidth, Normalized); + return Dest; } -#define IMPLEMENT_CAST(DTY, DCTY, STY) \ - case Type::STY##TyID: Dest.DTY##Val = DCTY Src.STY##Val; break; - -#define IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY) \ - case Type::DESTTY##TyID: \ - switch (SrcTy->getPrimitiveID()) { \ - IMPLEMENT_CAST(DESTTY, DESTCTY, Bool); \ - IMPLEMENT_CAST(DESTTY, DESTCTY, UByte); \ - IMPLEMENT_CAST(DESTTY, DESTCTY, SByte); \ - IMPLEMENT_CAST(DESTTY, DESTCTY, UShort); \ - IMPLEMENT_CAST(DESTTY, DESTCTY, Short); \ - IMPLEMENT_CAST(DESTTY, DESTCTY, UInt); \ - IMPLEMENT_CAST(DESTTY, DESTCTY, Int); \ - IMPLEMENT_CAST(DESTTY, DESTCTY, ULong); \ - IMPLEMENT_CAST(DESTTY, DESTCTY, Long); \ - IMPLEMENT_CAST(DESTTY, DESTCTY, Pointer); - -#define IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY) \ - IMPLEMENT_CAST(DESTTY, DESTCTY, Float); \ - IMPLEMENT_CAST(DESTTY, DESTCTY, Double) - -#define IMPLEMENT_CAST_CASE_END() \ - default: std::cout << "Unhandled cast: " << SrcTy << " to " << Ty << "\n"; \ - abort(); \ - } \ - break - -#define IMPLEMENT_CAST_CASE(DESTTY, DESTCTY) \ - IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY); \ - IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY); \ - IMPLEMENT_CAST_CASE_END() - -GenericValue Interpreter::executeCastOperation(Value *SrcVal, const Type *Ty, - ExecutionContext &SF) { +GenericValue Interpreter::executeZExtInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { const Type *SrcTy = SrcVal->getType(); GenericValue Dest, Src = getOperandValue(SrcVal, SF); + const IntegerType *DITy = cast(DstTy); + const IntegerType *SITy = cast(SrcTy); + unsigned DBitWidth = DITy->getBitWidth(); + unsigned SBitWidth = SITy->getBitWidth(); + assert(SBitWidth <= 64 && DBitWidth <= 64 && + "Integer types > 64 bits not supported"); + assert(SBitWidth < DBitWidth && "Invalid sign extend"); + uint64_t Extended = 0; + if (SBitWidth == 1) + // For sign extension from bool, we must extend the source bits. + Extended = (uint64_t) (Src.Int1Val & 1); + else if (SBitWidth <= 8) + Extended = (uint64_t) (uint8_t)Src.Int8Val; + else if (SBitWidth <= 16) + Extended = (uint64_t) (uint16_t)Src.Int16Val; + else if (SBitWidth <= 32) + Extended = (uint64_t) (uint32_t)Src.Int32Val; + else + Extended = (uint64_t) Src.Int64Val; + + // Now that we have a sign extended value, assign it to the destination + INTEGER_ASSIGN(Dest, DBitWidth, Extended); + return Dest; +} - switch (Ty->getPrimitiveID()) { - IMPLEMENT_CAST_CASE(UByte , (unsigned char)); - IMPLEMENT_CAST_CASE(SByte , ( signed char)); - IMPLEMENT_CAST_CASE(UShort , (unsigned short)); - IMPLEMENT_CAST_CASE(Short , ( signed short)); - IMPLEMENT_CAST_CASE(UInt , (unsigned int )); - IMPLEMENT_CAST_CASE(Int , ( signed int )); - IMPLEMENT_CAST_CASE(ULong , (uint64_t)); - IMPLEMENT_CAST_CASE(Long , ( int64_t)); - IMPLEMENT_CAST_CASE(Pointer, (PointerTy)); - IMPLEMENT_CAST_CASE(Float , (float)); - IMPLEMENT_CAST_CASE(Double , (double)); - IMPLEMENT_CAST_CASE(Bool , (bool)); - default: - std::cout << "Unhandled dest type for cast instruction: " << *Ty << "\n"; - abort(); - } +GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { + const Type *SrcTy = SrcVal->getType(); + GenericValue Dest, Src = getOperandValue(SrcVal, SF); + assert(SrcTy == Type::DoubleTy && DstTy == Type::FloatTy && + "Invalid FPTrunc instruction"); + Dest.FloatVal = (float) Src.DoubleVal; + return Dest; +} + +GenericValue Interpreter::executeFPExtInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { + const Type *SrcTy = SrcVal->getType(); + GenericValue Dest, Src = getOperandValue(SrcVal, SF); + assert(SrcTy == Type::FloatTy && DstTy == Type::DoubleTy && + "Invalid FPTrunc instruction"); + Dest.DoubleVal = (double) Src.FloatVal; + return Dest; +} +GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { + const Type *SrcTy = SrcVal->getType(); + GenericValue Dest, Src = getOperandValue(SrcVal, SF); + const IntegerType *DITy = cast(DstTy); + unsigned DBitWidth = DITy->getBitWidth(); + assert(DBitWidth <= 64 && "Integer types > 64 bits not supported"); + assert(SrcTy->isFloatingPoint() && "Invalid FPToUI instruction"); + uint64_t Converted = 0; + if (SrcTy->getTypeID() == Type::FloatTyID) + Converted = (uint64_t) Src.FloatVal; + else + Converted = (uint64_t) Src.DoubleVal; + + INTEGER_ASSIGN(Dest, DBitWidth, Converted); return Dest; } +GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { + const Type *SrcTy = SrcVal->getType(); + GenericValue Dest, Src = getOperandValue(SrcVal, SF); + const IntegerType *DITy = cast(DstTy); + unsigned DBitWidth = DITy->getBitWidth(); + assert(DBitWidth <= 64 && "Integer types > 64 bits not supported"); + assert(SrcTy->isFloatingPoint() && "Invalid FPToSI instruction"); + int64_t Converted = 0; + if (SrcTy->getTypeID() == Type::FloatTyID) + Converted = (int64_t) Src.FloatVal; + else + Converted = (int64_t) Src.DoubleVal; + + INTEGER_ASSIGN(Dest, DBitWidth, Converted); + return Dest; +} -void Interpreter::visitCastInst(CastInst &I) { +GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { + const Type *SrcTy = SrcVal->getType(); + GenericValue Dest, Src = getOperandValue(SrcVal, SF); + const IntegerType *SITy = cast(SrcTy); + unsigned SBitWidth = SITy->getBitWidth(); + assert(SBitWidth <= 64 && "Integer types > 64 bits not supported"); + assert(DstTy->isFloatingPoint() && "Invalid UIToFP instruction"); + uint64_t Converted = 0; + if (SBitWidth == 1) + Converted = (uint64_t) Src.Int1Val; + else if (SBitWidth <= 8) + Converted = (uint64_t) Src.Int8Val; + else if (SBitWidth <= 16) + Converted = (uint64_t) Src.Int16Val; + else if (SBitWidth <= 32) + Converted = (uint64_t) Src.Int32Val; + else + Converted = (uint64_t) Src.Int64Val; + + if (DstTy->getTypeID() == Type::FloatTyID) + Dest.FloatVal = (float) Converted; + else + Dest.DoubleVal = (double) Converted; + return Dest; +} + +GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { + const Type *SrcTy = SrcVal->getType(); + GenericValue Dest, Src = getOperandValue(SrcVal, SF); + const IntegerType *SITy = cast(SrcTy); + unsigned SBitWidth = SITy->getBitWidth(); + assert(SBitWidth <= 64 && "Integer types > 64 bits not supported"); + assert(DstTy->isFloatingPoint() && "Invalid UIToFP instruction"); + int64_t Converted = 0; + if (SBitWidth == 1) + Converted = 0LL - Src.Int1Val; + else if (SBitWidth <= 8) + Converted = (int64_t) (int8_t)Src.Int8Val; + else if (SBitWidth <= 16) + Converted = (int64_t) (int16_t)Src.Int16Val; + else if (SBitWidth <= 32) + Converted = (int64_t) (int32_t)Src.Int32Val; + else + Converted = (int64_t) Src.Int64Val; + + if (DstTy->getTypeID() == Type::FloatTyID) + Dest.FloatVal = (float) Converted; + else + Dest.DoubleVal = (double) Converted; + return Dest; +} + +GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { + const Type *SrcTy = SrcVal->getType(); + GenericValue Dest, Src = getOperandValue(SrcVal, SF); + const IntegerType *DITy = cast(DstTy); + unsigned DBitWidth = DITy->getBitWidth(); + assert(DBitWidth <= 64 && "Integer types > 64 bits not supported"); + assert(isa(SrcTy) && "Invalid PtrToInt instruction"); + INTEGER_ASSIGN(Dest, DBitWidth, (intptr_t) Src.PointerVal); + return Dest; +} + +GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { + const Type *SrcTy = SrcVal->getType(); + GenericValue Dest, Src = getOperandValue(SrcVal, SF); + const IntegerType *SITy = cast(SrcTy); + unsigned SBitWidth = SITy->getBitWidth(); + assert(SBitWidth <= 64 && "Integer types > 64 bits not supported"); + assert(isa(DstTy) && "Invalid PtrToInt instruction"); + uint64_t Converted = 0; + if (SBitWidth == 1) + Converted = (uint64_t) Src.Int1Val; + else if (SBitWidth <= 8) + Converted = (uint64_t) Src.Int8Val; + else if (SBitWidth <= 16) + Converted = (uint64_t) Src.Int16Val; + else if (SBitWidth <= 32) + Converted = (uint64_t) Src.Int32Val; + else + Converted = (uint64_t) Src.Int64Val; + + Dest.PointerVal = (PointerTy) Converted; + return Dest; +} + +GenericValue Interpreter::executeBitCastInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { + + const Type *SrcTy = SrcVal->getType(); + GenericValue Dest, Src = getOperandValue(SrcVal, SF); + if (isa(DstTy)) { + assert(isa(SrcTy) && "Invalid BitCast"); + Dest.PointerVal = Src.PointerVal; + } else if (DstTy->isInteger()) { + const IntegerType *DITy = cast(DstTy); + unsigned DBitWidth = DITy->getBitWidth(); + if (SrcTy == Type::FloatTy) { + Dest.Int32Val = FloatToBits(Src.FloatVal); + } else if (SrcTy == Type::DoubleTy) { + Dest.Int64Val = DoubleToBits(Src.DoubleVal); + } else if (SrcTy->isInteger()) { + const IntegerType *SITy = cast(SrcTy); + unsigned SBitWidth = SITy->getBitWidth(); + assert(SBitWidth <= 64 && "Integer types > 64 bits not supported"); + assert(SBitWidth == DBitWidth && "Invalid BitCast"); + if (SBitWidth == 1) + Dest.Int1Val = Src.Int1Val; + else if (SBitWidth <= 8) + Dest.Int8Val = Src.Int8Val; + else if (SBitWidth <= 16) + Dest.Int16Val = Src.Int16Val; + else if (SBitWidth <= 32) + Dest.Int32Val = Src.Int32Val; + else + Dest.Int64Val = Src.Int64Val; + maskToBitWidth(Dest, DBitWidth); + } else + assert(0 && "Invalid BitCast"); + } else if (DstTy == Type::FloatTy) { + if (SrcTy->isInteger()) + Dest.FloatVal = BitsToFloat(Src.Int32Val); + else + Dest.FloatVal = Src.FloatVal; + } else if (DstTy == Type::DoubleTy) { + if (SrcTy->isInteger()) + Dest.DoubleVal = BitsToDouble(Src.Int64Val); + else + Dest.DoubleVal = Src.DoubleVal; + } else + assert(0 && "Invalid Bitcast"); + + return Dest; +} + +void Interpreter::visitTruncInst(TruncInst &I) { ExecutionContext &SF = ECStack.back(); - SetValue(&I, executeCastOperation(I.getOperand(0), I.getType(), SF), SF); + SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF); } -void Interpreter::visitVarArgInst(VarArgInst &I) { +void Interpreter::visitSExtInst(SExtInst &I) { ExecutionContext &SF = ECStack.back(); + SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF); +} - // Get the pointer to the valist element. LLI treats the valist in memory as - // an integer. - GenericValue VAListPtr = getOperandValue(I.getOperand(0), SF); +void Interpreter::visitZExtInst(ZExtInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF); +} - // Load the pointer - GenericValue VAList = - TheEE->LoadValueFromMemory((GenericValue *)GVTOP(VAListPtr), Type::UIntTy); +void Interpreter::visitFPTruncInst(FPTruncInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF); +} - unsigned Argument = VAList.IntVal++; +void Interpreter::visitFPExtInst(FPExtInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF); +} - // Update the valist to point to the next argument... - TheEE->StoreValueToMemory(VAList, (GenericValue *)GVTOP(VAListPtr), - Type::UIntTy); +void Interpreter::visitUIToFPInst(UIToFPInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF); +} - // Set the value... - assert(Argument < SF.VarArgs.size() && - "Accessing past the last vararg argument!"); - SetValue(&I, SF.VarArgs[Argument], SF); +void Interpreter::visitSIToFPInst(SIToFPInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF); } -//===----------------------------------------------------------------------===// -// Dispatch and Execution Code -//===----------------------------------------------------------------------===// +void Interpreter::visitFPToUIInst(FPToUIInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF); +} -FunctionInfo::FunctionInfo(Function *F) { - // Assign slot numbers to the function arguments... - for (Function::const_aiterator AI = F->abegin(), E = F->aend(); AI != E; ++AI) - AI->addAnnotation(new SlotNumber(getValueSlot(AI))); +void Interpreter::visitFPToSIInst(FPToSIInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF); +} - // Iterate over all of the instructions... - unsigned InstNum = 0; - for (Function::iterator BB = F->begin(), BBE = F->end(); BB != BBE; ++BB) - for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE; ++II) - // For each instruction... Add Annote - II->addAnnotation(new InstNumber(++InstNum, getValueSlot(II))); +void Interpreter::visitPtrToIntInst(PtrToIntInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF); } -unsigned FunctionInfo::getValueSlot(const Value *V) { - unsigned Plane = V->getType()->getUniqueID(); - if (Plane >= NumPlaneElements.size()) - NumPlaneElements.resize(Plane+1, 0); - return NumPlaneElements[Plane]++; +void Interpreter::visitIntToPtrInst(IntToPtrInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF); +} + +void Interpreter::visitBitCastInst(BitCastInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF); +} + +#define IMPLEMENT_VAARG(TY) \ + case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break + +void Interpreter::visitVAArgInst(VAArgInst &I) { + ExecutionContext &SF = ECStack.back(); + + // Get the incoming valist parameter. LLI treats the valist as a + // (ec-stack-depth var-arg-index) pair. + GenericValue VAList = getOperandValue(I.getOperand(0), SF); + GenericValue Dest; + GenericValue Src = ECStack[VAList.UIntPairVal.first] + .VarArgs[VAList.UIntPairVal.second]; + const Type *Ty = I.getType(); + switch (Ty->getTypeID()) { + case Type::IntegerTyID: { + unsigned BitWidth = cast(Ty)->getBitWidth(); + if (BitWidth == 1) + Dest.Int1Val = Src.Int1Val; + else if (BitWidth <= 8) + Dest.Int8Val = Src.Int8Val; + else if (BitWidth <= 16) + Dest.Int16Val = Src.Int16Val; + else if (BitWidth <= 32) + Dest.Int32Val = Src.Int32Val; + else if (BitWidth <= 64) + Dest.Int64Val = Src.Int64Val; + else + assert("Integer types > 64 bits not supported"); + maskToBitWidth(Dest, BitWidth); + } + IMPLEMENT_VAARG(Pointer); + IMPLEMENT_VAARG(Float); + IMPLEMENT_VAARG(Double); + default: + cerr << "Unhandled dest type for vaarg instruction: " << *Ty << "\n"; + abort(); + } + + // Set the Value of this Instruction. + SetValue(&I, Dest, SF); + + // Move the pointer to the next vararg. + ++VAList.UIntPairVal.second; } +//===----------------------------------------------------------------------===// +// Dispatch and Execution Code +//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // callFunction - Execute the specified function... // void Interpreter::callFunction(Function *F, const std::vector &ArgVals) { - assert((ECStack.empty() || ECStack.back().Caller == 0 || - ECStack.back().Caller->getNumOperands()-1 == ArgVals.size()) && - "Incorrect number of arguments passed into function call!"); - if (F->isExternal()) { - GenericValue Result = callExternalFunction(F, ArgVals); - const Type *RetTy = F->getReturnType(); - - // Copy the result back into the result variable if we are not returning - // void. - if (RetTy != Type::VoidTy) { - if (!ECStack.empty() && ECStack.back().Caller) { - ExecutionContext &SF = ECStack.back(); - SetValue(SF.Caller, Result, SF); - - SF.Caller = 0; // We returned from the call... - } else if (!QuietMode) { - // print it. - CW << "Function " << F->getType() << " \"" << F->getName() - << "\" returned "; - print(RetTy, Result); - std::cout << "\n"; - - if (RetTy->isIntegral()) - ExitCode = Result.IntVal; // Capture the exit code of the program - } - } - - return; - } - - // Process the function, assigning instruction numbers to the instructions in - // the function. Also calculate the number of values for each type slot - // active. - // - FunctionInfo *&FuncInfo = FunctionInfoMap[F]; - if (!FuncInfo) FuncInfo = new FunctionInfo(F); - + assert((ECStack.empty() || ECStack.back().Caller.getInstruction() == 0 || + ECStack.back().Caller.arg_size() == ArgVals.size()) && + "Incorrect number of arguments passed into function call!"); // Make a new stack frame... and fill it in. ECStack.push_back(ExecutionContext()); ExecutionContext &StackFrame = ECStack.back(); StackFrame.CurFunction = F; - StackFrame.CurBB = F->begin(); - StackFrame.CurInst = StackFrame.CurBB->begin(); - StackFrame.FuncInfo = FuncInfo; - // Initialize the values to nothing... - StackFrame.Values.resize(FuncInfo->NumPlaneElements.size()); - for (unsigned i = 0; i < FuncInfo->NumPlaneElements.size(); ++i) { - StackFrame.Values[i].resize(FuncInfo->NumPlaneElements[i]); - - // Taint the initial values of stuff - memset(&StackFrame.Values[i][0], 42, - FuncInfo->NumPlaneElements[i]*sizeof(GenericValue)); + // Special handling for external functions. + if (F->isExternal()) { + GenericValue Result = callExternalFunction (F, ArgVals); + // Simulate a 'ret' instruction of the appropriate type. + popStackAndReturnValueToCaller (F->getReturnType (), Result); + return; } + // Get pointers to first LLVM BB & Instruction in function. + StackFrame.CurBB = F->begin(); + StackFrame.CurInst = StackFrame.CurBB->begin(); // Run through the function arguments and initialize their values... - assert((ArgVals.size() == F->asize() || - (ArgVals.size() > F->asize() && F->getFunctionType()->isVarArg())) && + assert((ArgVals.size() == F->arg_size() || + (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&& "Invalid number of values passed to function invocation!"); // Handle non-varargs arguments... unsigned i = 0; - for (Function::aiterator AI = F->abegin(), E = F->aend(); AI != E; ++AI, ++i) + for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; ++AI, ++i) SetValue(AI, ArgVals[i], StackFrame); // Handle varargs arguments... StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end()); } -// executeInstruction - Interpret a single instruction & increment the "PC". -// -void Interpreter::executeInstruction() { - assert(!ECStack.empty() && "No program running, cannot execute inst!"); - - ExecutionContext &SF = ECStack.back(); // Current stack frame - Instruction &I = *SF.CurInst++; // Increment before execute - - if (Trace) CW << "Run:" << I; - - // Track the number of dynamic instructions executed. - ++NumDynamicInsts; - - visit(I); // Dispatch to one of the visit* methods... - - // Reset the current frame location to the top of stack - CurFrame = ECStack.size()-1; -} - void Interpreter::run() { while (!ECStack.empty()) { - // Run an instruction... - executeInstruction(); - } -} - -void Interpreter::printValue(const Type *Ty, GenericValue V) { - switch (Ty->getPrimitiveID()) { - case Type::BoolTyID: std::cout << (V.BoolVal?"true":"false"); break; - case Type::SByteTyID: - std::cout << (int)V.SByteVal << " '" << V.SByteVal << "'"; break; - case Type::UByteTyID: - std::cout << (unsigned)V.UByteVal << " '" << V.UByteVal << "'"; break; - case Type::ShortTyID: std::cout << V.ShortVal; break; - case Type::UShortTyID: std::cout << V.UShortVal; break; - case Type::IntTyID: std::cout << V.IntVal; break; - case Type::UIntTyID: std::cout << V.UIntVal; break; - case Type::LongTyID: std::cout << (long)V.LongVal; break; - case Type::ULongTyID: std::cout << (unsigned long)V.ULongVal; break; - case Type::FloatTyID: std::cout << V.FloatVal; break; - case Type::DoubleTyID: std::cout << V.DoubleVal; break; - case Type::PointerTyID:std::cout << (void*)GVTOP(V); break; - default: - std::cout << "- Don't know how to print value of this type!"; - break; - } -} + // Interpret a single instruction & increment the "PC". + ExecutionContext &SF = ECStack.back(); // Current stack frame + Instruction &I = *SF.CurInst++; // Increment before execute + + // Track the number of dynamic instructions executed. + ++NumDynamicInsts; -void Interpreter::print(const Type *Ty, GenericValue V) { - CW << Ty << " "; - printValue(Ty, V); + DOUT << "About to interpret: " << I; + visit(I); // Dispatch to one of the visit* methods... + } }