X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FExecutionEngine%2FExecutionEngine.cpp;h=6db3ef963ac62ce5d7ad0c3287ac75611e03c5f2;hb=b0bc6c361da9009e8414efde317d9bbff755f6c0;hp=ad8dcfb9236f66334271481155edbb4cbf18d08d;hpb=89687e3e4ac4aa602de7cce4a7fbc5f514e86615;p=oota-llvm.git diff --git a/lib/ExecutionEngine/ExecutionEngine.cpp b/lib/ExecutionEngine/ExecutionEngine.cpp index ad8dcfb9236..6db3ef963ac 100644 --- a/lib/ExecutionEngine/ExecutionEngine.cpp +++ b/lib/ExecutionEngine/ExecutionEngine.cpp @@ -13,16 +13,18 @@ //===----------------------------------------------------------------------===// #define DEBUG_TYPE "jit" +#include "llvm/ExecutionEngine/ExecutionEngine.h" + #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" -#include "llvm/ModuleProvider.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/Config/alloca.h" -#include "llvm/ExecutionEngine/ExecutionEngine.h" #include "llvm/ExecutionEngine/GenericValue.h" +#include "llvm/ADT/Statistic.h" #include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MutexGuard.h" +#include "llvm/Support/ValueHandle.h" +#include "llvm/Support/raw_ostream.h" #include "llvm/System/DynamicLibrary.h" #include "llvm/System/Host.h" #include "llvm/Target/TargetData.h" @@ -33,17 +35,29 @@ using namespace llvm; STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); STATISTIC(NumGlobals , "Number of global vars initialized"); -ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0; -ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0; +ExecutionEngine *(*ExecutionEngine::JITCtor)( + Module *M, + std::string *ErrorStr, + JITMemoryManager *JMM, + CodeGenOpt::Level OptLevel, + bool GVsWithCode, + CodeModel::Model CMM, + StringRef MArch, + StringRef MCPU, + const SmallVectorImpl& MAttrs) = 0; +ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M, + std::string *ErrorStr) = 0; ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0; -ExecutionEngine::ExecutionEngine(ModuleProvider *P) : LazyFunctionCreator(0) { - LazyCompilationDisabled = false; +ExecutionEngine::ExecutionEngine(Module *M) + : EEState(*this), + LazyFunctionCreator(0) { + CompilingLazily = false; GVCompilationDisabled = false; SymbolSearchingDisabled = false; - Modules.push_back(P); - assert(P && "ModuleProvider is null?"); + Modules.push_back(M); + assert(M && "Module is null?"); } ExecutionEngine::~ExecutionEngine() { @@ -54,24 +68,22 @@ ExecutionEngine::~ExecutionEngine() { char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) { const Type *ElTy = GV->getType()->getElementType(); - size_t GVSize = (size_t)getTargetData()->getABITypeSize(ElTy); + size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); return new char[GVSize]; } -/// removeModuleProvider - Remove a ModuleProvider from the list of modules. -/// Release module from ModuleProvider. -Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P, - std::string *ErrInfo) { - for(SmallVector::iterator I = Modules.begin(), +/// removeModule - Remove a Module from the list of modules. +bool ExecutionEngine::removeModule(Module *M) { + for(SmallVector::iterator I = Modules.begin(), E = Modules.end(); I != E; ++I) { - ModuleProvider *MP = *I; - if (MP == P) { + Module *Found = *I; + if (Found == M) { Modules.erase(I); - clearGlobalMappingsFromModule(MP->getModule()); - return MP->releaseModule(ErrInfo); + clearGlobalMappingsFromModule(M); + return true; } } - return NULL; + return false; } /// FindFunctionNamed - Search all of the active modules to find the one that @@ -79,13 +91,28 @@ Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P, /// general code. Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { for (unsigned i = 0, e = Modules.size(); i != e; ++i) { - if (Function *F = Modules[i]->getModule()->getFunction(FnName)) + if (Function *F = Modules[i]->getFunction(FnName)) return F; } return 0; } +void *ExecutionEngineState::RemoveMapping( + const MutexGuard &, const GlobalValue *ToUnmap) { + GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); + void *OldVal; + if (I == GlobalAddressMap.end()) + OldVal = 0; + else { + OldVal = I->second; + GlobalAddressMap.erase(I); + } + + GlobalAddressReverseMap.erase(OldVal); + return OldVal; +} + /// addGlobalMapping - Tell the execution engine that the specified global is /// at the specified location. This is used internally as functions are JIT'd /// and as global variables are laid out in memory. It can and should also be @@ -94,14 +121,16 @@ Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { MutexGuard locked(lock); - DOUT << "Map " << *GV << " to " << Addr << "\n"; - void *&CurVal = state.getGlobalAddressMap(locked)[GV]; + DEBUG(dbgs() << "JIT: Map \'" << GV->getName() + << "\' to [" << Addr << "]\n";); + void *&CurVal = EEState.getGlobalAddressMap(locked)[GV]; assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); CurVal = Addr; // If we are using the reverse mapping, add it too - if (!state.getGlobalAddressReverseMap(locked).empty()) { - const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; + if (!EEState.getGlobalAddressReverseMap(locked).empty()) { + AssertingVH &V = + EEState.getGlobalAddressReverseMap(locked)[Addr]; assert((V == 0 || GV == 0) && "GlobalMapping already established!"); V = GV; } @@ -112,8 +141,8 @@ void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { void ExecutionEngine::clearAllGlobalMappings() { MutexGuard locked(lock); - state.getGlobalAddressMap(locked).clear(); - state.getGlobalAddressReverseMap(locked).clear(); + EEState.getGlobalAddressMap(locked).clear(); + EEState.getGlobalAddressReverseMap(locked).clear(); } /// clearGlobalMappingsFromModule - Clear all global mappings that came from a @@ -122,13 +151,11 @@ void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { MutexGuard locked(lock); for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { - state.getGlobalAddressMap(locked).erase(FI); - state.getGlobalAddressReverseMap(locked).erase(FI); + EEState.RemoveMapping(locked, FI); } for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); GI != GE; ++GI) { - state.getGlobalAddressMap(locked).erase(GI); - state.getGlobalAddressReverseMap(locked).erase(GI); + EEState.RemoveMapping(locked, GI); } } @@ -138,34 +165,25 @@ void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { MutexGuard locked(lock); - std::map &Map = state.getGlobalAddressMap(locked); + ExecutionEngineState::GlobalAddressMapTy &Map = + EEState.getGlobalAddressMap(locked); // Deleting from the mapping? if (Addr == 0) { - std::map::iterator I = Map.find(GV); - void *OldVal; - if (I == Map.end()) - OldVal = 0; - else { - OldVal = I->second; - Map.erase(I); - } - - if (!state.getGlobalAddressReverseMap(locked).empty()) - state.getGlobalAddressReverseMap(locked).erase(Addr); - return OldVal; + return EEState.RemoveMapping(locked, GV); } void *&CurVal = Map[GV]; void *OldVal = CurVal; - if (CurVal && !state.getGlobalAddressReverseMap(locked).empty()) - state.getGlobalAddressReverseMap(locked).erase(CurVal); + if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty()) + EEState.getGlobalAddressReverseMap(locked).erase(CurVal); CurVal = Addr; // If we are using the reverse mapping, add it too - if (!state.getGlobalAddressReverseMap(locked).empty()) { - const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; + if (!EEState.getGlobalAddressReverseMap(locked).empty()) { + AssertingVH &V = + EEState.getGlobalAddressReverseMap(locked)[Addr]; assert((V == 0 || GV == 0) && "GlobalMapping already established!"); V = GV; } @@ -178,9 +196,9 @@ void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { MutexGuard locked(lock); - std::map::iterator I = - state.getGlobalAddressMap(locked).find(GV); - return I != state.getGlobalAddressMap(locked).end() ? I->second : 0; + ExecutionEngineState::GlobalAddressMapTy::iterator I = + EEState.getGlobalAddressMap(locked).find(GV); + return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0; } /// getGlobalValueAtAddress - Return the LLVM global value object that starts @@ -190,34 +208,34 @@ const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { MutexGuard locked(lock); // If we haven't computed the reverse mapping yet, do so first. - if (state.getGlobalAddressReverseMap(locked).empty()) { - for (std::map::iterator - I = state.getGlobalAddressMap(locked).begin(), - E = state.getGlobalAddressMap(locked).end(); I != E; ++I) - state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, + if (EEState.getGlobalAddressReverseMap(locked).empty()) { + for (ExecutionEngineState::GlobalAddressMapTy::iterator + I = EEState.getGlobalAddressMap(locked).begin(), + E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I) + EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, I->first)); } - std::map::iterator I = - state.getGlobalAddressReverseMap(locked).find(Addr); - return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0; + std::map >::iterator I = + EEState.getGlobalAddressReverseMap(locked).find(Addr); + return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0; } // CreateArgv - Turn a vector of strings into a nice argv style array of // pointers to null terminated strings. // -static void *CreateArgv(ExecutionEngine *EE, +static void *CreateArgv(LLVMContext &C, ExecutionEngine *EE, const std::vector &InputArgv) { unsigned PtrSize = EE->getTargetData()->getPointerSize(); char *Result = new char[(InputArgv.size()+1)*PtrSize]; - DOUT << "ARGV = " << (void*)Result << "\n"; - const Type *SBytePtr = PointerType::getUnqual(Type::Int8Ty); + DEBUG(dbgs() << "JIT: ARGV = " << (void*)Result << "\n"); + const Type *SBytePtr = Type::getInt8PtrTy(C); for (unsigned i = 0; i != InputArgv.size(); ++i) { unsigned Size = InputArgv[i].size()+1; char *Dest = new char[Size]; - DOUT << "ARGV[" << i << "] = " << (void*)Dest << "\n"; + DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"); std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); Dest[Size-1] = 0; @@ -238,7 +256,8 @@ static void *CreateArgv(ExecutionEngine *EE, /// runStaticConstructorsDestructors - This method is used to execute all of /// the static constructors or destructors for a module, depending on the /// value of isDtors. -void ExecutionEngine::runStaticConstructorsDestructors(Module *module, bool isDtors) { +void ExecutionEngine::runStaticConstructorsDestructors(Module *module, + bool isDtors) { const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; // Execute global ctors/dtors for each module in the program. @@ -249,7 +268,7 @@ void ExecutionEngine::runStaticConstructorsDestructors(Module *module, bool isDt // an old-style (llvmgcc3) static ctor with __main linked in and in use. If // this is the case, don't execute any of the global ctors, __main will do // it. - if (!GV || GV->isDeclaration() || GV->hasInternalLinkage()) return; + if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; // Should be an array of '{ int, void ()* }' structs. The first value is // the init priority, which we ignore. @@ -280,7 +299,7 @@ void ExecutionEngine::runStaticConstructorsDestructors(Module *module, bool isDt void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { // Execute global ctors/dtors for each module in the program. for (unsigned m = 0, e = Modules.size(); m != e; ++m) - runStaticConstructorsDestructors(Modules[m]->getModule(), isDtors); + runStaticConstructorsDestructors(Modules[m], isDtors); } #ifndef NDEBUG @@ -307,50 +326,46 @@ int ExecutionEngine::runFunctionAsMain(Function *Fn, // Check main() type unsigned NumArgs = Fn->getFunctionType()->getNumParams(); const FunctionType *FTy = Fn->getFunctionType(); - const Type* PPInt8Ty = - PointerType::getUnqual(PointerType::getUnqual(Type::Int8Ty)); + const Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); switch (NumArgs) { case 3: if (FTy->getParamType(2) != PPInt8Ty) { - cerr << "Invalid type for third argument of main() supplied\n"; - abort(); + llvm_report_error("Invalid type for third argument of main() supplied"); } // FALLS THROUGH case 2: if (FTy->getParamType(1) != PPInt8Ty) { - cerr << "Invalid type for second argument of main() supplied\n"; - abort(); + llvm_report_error("Invalid type for second argument of main() supplied"); } // FALLS THROUGH case 1: - if (FTy->getParamType(0) != Type::Int32Ty) { - cerr << "Invalid type for first argument of main() supplied\n"; - abort(); + if (!FTy->getParamType(0)->isIntegerTy(32)) { + llvm_report_error("Invalid type for first argument of main() supplied"); } // FALLS THROUGH case 0: - if (FTy->getReturnType() != Type::Int32Ty && - FTy->getReturnType() != Type::VoidTy) { - cerr << "Invalid return type of main() supplied\n"; - abort(); + if (!isa(FTy->getReturnType()) && + !FTy->getReturnType()->isVoidTy()) { + llvm_report_error("Invalid return type of main() supplied"); } break; default: - cerr << "Invalid number of arguments of main() supplied\n"; - abort(); + llvm_report_error("Invalid number of arguments of main() supplied"); } if (NumArgs) { GVArgs.push_back(GVArgc); // Arg #0 = argc. if (NumArgs > 1) { - GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv. + // Arg #1 = argv. + GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, argv))); assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && "argv[0] was null after CreateArgv"); if (NumArgs > 2) { std::vector EnvVars; for (unsigned i = 0; envp[i]; ++i) EnvVars.push_back(envp[i]); - GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp. + // Arg #2 = envp. + GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, EnvVars))); } } } @@ -361,30 +376,67 @@ int ExecutionEngine::runFunctionAsMain(Function *Fn, /// Interpreter or there's an error. If even an Interpreter cannot be created, /// NULL is returned. /// -ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, +ExecutionEngine *ExecutionEngine::create(Module *M, bool ForceInterpreter, std::string *ErrorStr, - bool Fast) { - ExecutionEngine *EE = 0; + CodeGenOpt::Level OptLevel, + bool GVsWithCode) { + return EngineBuilder(M) + .setEngineKind(ForceInterpreter + ? EngineKind::Interpreter + : EngineKind::JIT) + .setErrorStr(ErrorStr) + .setOptLevel(OptLevel) + .setAllocateGVsWithCode(GVsWithCode) + .create(); +} +ExecutionEngine *EngineBuilder::create() { // Make sure we can resolve symbols in the program as well. The zero arg // to the function tells DynamicLibrary to load the program, not a library. if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) return 0; - // Unless the interpreter was explicitly selected, try making a JIT. - if (!ForceInterpreter && JITCtor) - EE = JITCtor(MP, ErrorStr, Fast); + // If the user specified a memory manager but didn't specify which engine to + // create, we assume they only want the JIT, and we fail if they only want + // the interpreter. + if (JMM) { + if (WhichEngine & EngineKind::JIT) + WhichEngine = EngineKind::JIT; + else { + if (ErrorStr) + *ErrorStr = "Cannot create an interpreter with a memory manager."; + return 0; + } + } - // If we can't make a JIT, make an interpreter instead. - if (EE == 0 && InterpCtor) - EE = InterpCtor(MP, ErrorStr, Fast); + // Unless the interpreter was explicitly selected or the JIT is not linked, + // try making a JIT. + if (WhichEngine & EngineKind::JIT) { + if (ExecutionEngine::JITCtor) { + ExecutionEngine *EE = + ExecutionEngine::JITCtor(M, ErrorStr, JMM, OptLevel, + AllocateGVsWithCode, CMModel, + MArch, MCPU, MAttrs); + if (EE) return EE; + } + } - return EE; -} + // If we can't make a JIT and we didn't request one specifically, try making + // an interpreter instead. + if (WhichEngine & EngineKind::Interpreter) { + if (ExecutionEngine::InterpCtor) + return ExecutionEngine::InterpCtor(M, ErrorStr); + if (ErrorStr) + *ErrorStr = "Interpreter has not been linked in."; + return 0; + } -ExecutionEngine *ExecutionEngine::create(Module *M) { - return create(new ExistingModuleProvider(M)); + if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) { + if (ErrorStr) + *ErrorStr = "JIT has not been linked in."; + } + return 0; } /// getPointerToGlobal - This returns the address of the specified global @@ -395,7 +447,7 @@ void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { return getPointerToFunction(F); MutexGuard locked(lock); - void *p = state.getGlobalAddressMap(locked)[GV]; + void *p = EEState.getGlobalAddressMap(locked)[GV]; if (p) return p; @@ -404,8 +456,8 @@ void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { const_cast(dyn_cast(GV))) EmitGlobalVariable(GVar); else - assert(0 && "Global hasn't had an address allocated yet!"); - return state.getGlobalAddressMap(locked)[GV]; + llvm_unreachable("Global hasn't had an address allocated yet!"); + return EEState.getGlobalAddressMap(locked)[GV]; } /// This function converts a Constant* into a GenericValue. The interesting @@ -413,8 +465,22 @@ void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { /// @brief Get a GenericValue for a Constant* GenericValue ExecutionEngine::getConstantValue(const Constant *C) { // If its undefined, return the garbage. - if (isa(C)) - return GenericValue(); + if (isa(C)) { + GenericValue Result; + switch (C->getType()->getTypeID()) { + case Type::IntegerTyID: + case Type::X86_FP80TyID: + case Type::FP128TyID: + case Type::PPC_FP128TyID: + // Although the value is undefined, we still have to construct an APInt + // with the correct bit width. + Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); + break; + default: + break; + } + return Result; + } // If the value is a ConstantExpr if (const ConstantExpr *CE = dyn_cast(C)) { @@ -463,11 +529,11 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) { } case Instruction::UIToFP: { GenericValue GV = getConstantValue(Op0); - if (CE->getType() == Type::FloatTy) + if (CE->getType()->isFloatTy()) GV.FloatVal = float(GV.IntVal.roundToDouble()); - else if (CE->getType() == Type::DoubleTy) + else if (CE->getType()->isDoubleTy()) GV.DoubleVal = GV.IntVal.roundToDouble(); - else if (CE->getType() == Type::X86_FP80Ty) { + else if (CE->getType()->isX86_FP80Ty()) { const uint64_t zero[] = {0, 0}; APFloat apf = APFloat(APInt(80, 2, zero)); (void)apf.convertFromAPInt(GV.IntVal, @@ -479,11 +545,11 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) { } case Instruction::SIToFP: { GenericValue GV = getConstantValue(Op0); - if (CE->getType() == Type::FloatTy) + if (CE->getType()->isFloatTy()) GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); - else if (CE->getType() == Type::DoubleTy) + else if (CE->getType()->isDoubleTy()) GV.DoubleVal = GV.IntVal.signedRoundToDouble(); - else if (CE->getType() == Type::X86_FP80Ty) { + else if (CE->getType()->isX86_FP80Ty()) { const uint64_t zero[] = { 0, 0}; APFloat apf = APFloat(APInt(80, 2, zero)); (void)apf.convertFromAPInt(GV.IntVal, @@ -497,11 +563,11 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) { case Instruction::FPToSI: { GenericValue GV = getConstantValue(Op0); uint32_t BitWidth = cast(CE->getType())->getBitWidth(); - if (Op0->getType() == Type::FloatTy) + if (Op0->getType()->isFloatTy()) GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); - else if (Op0->getType() == Type::DoubleTy) + else if (Op0->getType()->isDoubleTy()) GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); - else if (Op0->getType() == Type::X86_FP80Ty) { + else if (Op0->getType()->isX86_FP80Ty()) { APFloat apf = APFloat(GV.IntVal); uint64_t v; bool ignored; @@ -531,20 +597,20 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) { GenericValue GV = getConstantValue(Op0); const Type* DestTy = CE->getType(); switch (Op0->getType()->getTypeID()) { - default: assert(0 && "Invalid bitcast operand"); + default: llvm_unreachable("Invalid bitcast operand"); case Type::IntegerTyID: - assert(DestTy->isFloatingPoint() && "invalid bitcast"); - if (DestTy == Type::FloatTy) + assert(DestTy->isFloatingPointTy() && "invalid bitcast"); + if (DestTy->isFloatTy()) GV.FloatVal = GV.IntVal.bitsToFloat(); - else if (DestTy == Type::DoubleTy) + else if (DestTy->isDoubleTy()) GV.DoubleVal = GV.IntVal.bitsToDouble(); break; case Type::FloatTyID: - assert(DestTy == Type::Int32Ty && "Invalid bitcast"); + assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); GV.IntVal.floatToBits(GV.FloatVal); break; case Type::DoubleTyID: - assert(DestTy == Type::Int64Ty && "Invalid bitcast"); + assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); GV.IntVal.doubleToBits(GV.DoubleVal); break; case Type::PointerTyID: @@ -554,8 +620,11 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) { return GV; } case Instruction::Add: + case Instruction::FAdd: case Instruction::Sub: + case Instruction::FSub: case Instruction::Mul: + case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::URem: @@ -567,10 +636,10 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) { GenericValue RHS = getConstantValue(CE->getOperand(1)); GenericValue GV; switch (CE->getOperand(0)->getType()->getTypeID()) { - default: assert(0 && "Bad add type!"); abort(); + default: llvm_unreachable("Bad add type!"); case Type::IntegerTyID: switch (CE->getOpcode()) { - default: assert(0 && "Invalid integer opcode"); + default: llvm_unreachable("Invalid integer opcode"); case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; @@ -585,12 +654,12 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) { break; case Type::FloatTyID: switch (CE->getOpcode()) { - default: assert(0 && "Invalid float opcode"); abort(); - case Instruction::Add: + default: llvm_unreachable("Invalid float opcode"); + case Instruction::FAdd: GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; - case Instruction::Sub: + case Instruction::FSub: GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; - case Instruction::Mul: + case Instruction::FMul: GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; case Instruction::FDiv: GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; @@ -600,12 +669,12 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) { break; case Type::DoubleTyID: switch (CE->getOpcode()) { - default: assert(0 && "Invalid double opcode"); abort(); - case Instruction::Add: + default: llvm_unreachable("Invalid double opcode"); + case Instruction::FAdd: GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; - case Instruction::Sub: + case Instruction::FSub: GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; - case Instruction::Mul: + case Instruction::FMul: GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; case Instruction::FDiv: GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; @@ -618,16 +687,16 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) { case Type::FP128TyID: { APFloat apfLHS = APFloat(LHS.IntVal); switch (CE->getOpcode()) { - default: assert(0 && "Invalid long double opcode"); abort(); - case Instruction::Add: + default: llvm_unreachable("Invalid long double opcode");llvm_unreachable(0); + case Instruction::FAdd: apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); GV.IntVal = apfLHS.bitcastToAPInt(); break; - case Instruction::Sub: + case Instruction::FSub: apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); GV.IntVal = apfLHS.bitcastToAPInt(); break; - case Instruction::Mul: + case Instruction::FMul: apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); GV.IntVal = apfLHS.bitcastToAPInt(); break; @@ -648,8 +717,10 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) { default: break; } - cerr << "ConstantExpr not handled: " << *CE << "\n"; - abort(); + std::string msg; + raw_string_ostream Msg(msg); + Msg << "ConstantExpr not handled: " << *CE; + llvm_report_error(Msg.str()); } GenericValue Result; @@ -673,14 +744,19 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) { Result.PointerVal = 0; else if (const Function *F = dyn_cast(C)) Result = PTOGV(getPointerToFunctionOrStub(const_cast(F))); - else if (const GlobalVariable* GV = dyn_cast(C)) + else if (const GlobalVariable *GV = dyn_cast(C)) Result = PTOGV(getOrEmitGlobalVariable(const_cast(GV))); + else if (const BlockAddress *BA = dyn_cast(C)) + Result = PTOGV(getPointerToBasicBlock(const_cast( + BA->getBasicBlock()))); else - assert(0 && "Unknown constant pointer type!"); + llvm_unreachable("Unknown constant pointer type!"); break; default: - cerr << "ERROR: Constant unimplemented for type: " << *C->getType() << "\n"; - abort(); + std::string msg; + raw_string_ostream Msg(msg); + Msg << "ERROR: Constant unimplemented for type: " << *C->getType(); + llvm_report_error(Msg.str()); } return Result; } @@ -692,7 +768,7 @@ static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); uint8_t *Src = (uint8_t *)IntVal.getRawData(); - if (sys::littleEndianHost()) + if (sys::isLittleEndianHost()) // Little-endian host - the source is ordered from LSB to MSB. Order the // destination from LSB to MSB: Do a straight copy. memcpy(Dst, Src, StoreBytes); @@ -729,17 +805,9 @@ void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, case Type::DoubleTyID: *((double*)Ptr) = Val.DoubleVal; break; - case Type::X86_FP80TyID: { - uint16_t *Dest = (uint16_t*)Ptr; - const uint16_t *Src = (uint16_t*)Val.IntVal.getRawData(); - // This is endian dependent, but it will only work on x86 anyway. - Dest[0] = Src[4]; - Dest[1] = Src[0]; - Dest[2] = Src[1]; - Dest[3] = Src[2]; - Dest[4] = Src[3]; - break; - } + case Type::X86_FP80TyID: + memcpy(Ptr, Val.IntVal.getRawData(), 10); + break; case Type::PointerTyID: // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. if (StoreBytes != sizeof(PointerTy)) @@ -748,10 +816,10 @@ void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, *((PointerTy*)Ptr) = Val.PointerVal; break; default: - cerr << "Cannot store value of type " << *Ty << "!\n"; + dbgs() << "Cannot store value of type " << *Ty << "!\n"; } - if (sys::littleEndianHost() != getTargetData()->isLittleEndian()) + if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) // Host and target are different endian - reverse the stored bytes. std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); } @@ -762,7 +830,7 @@ static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); uint8_t *Dst = (uint8_t *)IntVal.getRawData(); - if (sys::littleEndianHost()) + if (sys::isLittleEndianHost()) // Little-endian host - the destination must be ordered from LSB to MSB. // The source is ordered from LSB to MSB: Do a straight copy. memcpy(Dst, Src, LoadBytes); @@ -789,15 +857,6 @@ void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, const Type *Ty) { const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty); - if (sys::littleEndianHost() != getTargetData()->isLittleEndian()) { - // Host and target are different endian - reverse copy the stored - // bytes into a buffer, and load from that. - uint8_t *Src = (uint8_t*)Ptr; - uint8_t *Buf = (uint8_t*)alloca(LoadBytes); - std::reverse_copy(Src, Src + LoadBytes, Buf); - Ptr = (GenericValue*)Buf; - } - switch (Ty->getTypeID()) { case Type::IntegerTyID: // An APInt with all words initially zero. @@ -816,22 +875,16 @@ void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, case Type::X86_FP80TyID: { // This is endian dependent, but it will only work on x86 anyway. // FIXME: Will not trap if loading a signaling NaN. - uint16_t *p = (uint16_t*)Ptr; - union { - uint16_t x[8]; - uint64_t y[2]; - }; - x[0] = p[1]; - x[1] = p[2]; - x[2] = p[3]; - x[3] = p[4]; - x[4] = p[0]; + uint64_t y[2]; + memcpy(y, Ptr, 10); Result.IntVal = APInt(80, 2, y); break; } default: - cerr << "Cannot load value of type " << *Ty << "!\n"; - abort(); + std::string msg; + raw_string_ostream Msg(msg); + Msg << "Cannot load value of type " << *Ty << "!"; + llvm_report_error(Msg.str()); } } @@ -839,22 +892,22 @@ void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, // specified memory location... // void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { - DOUT << "Initializing " << Addr; + DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); DEBUG(Init->dump()); if (isa(Init)) { return; } else if (const ConstantVector *CP = dyn_cast(Init)) { unsigned ElementSize = - getTargetData()->getABITypeSize(CP->getType()->getElementType()); + getTargetData()->getTypeAllocSize(CP->getType()->getElementType()); for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); return; } else if (isa(Init)) { - memset(Addr, 0, (size_t)getTargetData()->getABITypeSize(Init->getType())); + memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType())); return; } else if (const ConstantArray *CPA = dyn_cast(Init)) { unsigned ElementSize = - getTargetData()->getABITypeSize(CPA->getType()->getElementType()); + getTargetData()->getTypeAllocSize(CPA->getType()->getElementType()); for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); return; @@ -870,8 +923,8 @@ void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { return; } - cerr << "Bad Type: " << *Init->getType() << "\n"; - assert(0 && "Unknown constant type to initialize memory with!"); + dbgs() << "Bad Type: " << *Init->getType() << "\n"; + llvm_unreachable("Unknown constant type to initialize memory with!"); } /// EmitGlobals - Emit all of the global variables to memory, storing their @@ -889,11 +942,11 @@ void ExecutionEngine::emitGlobals() { if (Modules.size() != 1) { for (unsigned m = 0, e = Modules.size(); m != e; ++m) { - Module &M = *Modules[m]->getModule(); + Module &M = *Modules[m]; for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) { const GlobalValue *GV = I; - if (GV->hasInternalLinkage() || GV->isDeclaration() || + if (GV->hasLocalLinkage() || GV->isDeclaration() || GV->hasAppendingLinkage() || !GV->hasName()) continue;// Ignore external globals and globals with internal linkage. @@ -923,7 +976,7 @@ void ExecutionEngine::emitGlobals() { std::vector NonCanonicalGlobals; for (unsigned m = 0, e = Modules.size(); m != e; ++m) { - Module &M = *Modules[m]->getModule(); + Module &M = *Modules[m]; for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) { // In the multi-module case, see what this global maps to. @@ -944,12 +997,11 @@ void ExecutionEngine::emitGlobals() { // External variable reference. Try to use the dynamic loader to // get a pointer to it. if (void *SymAddr = - sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str())) + sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName())) addGlobalMapping(I, SymAddr); else { - cerr << "Could not resolve external global address: " - << I->getName() << "\n"; - abort(); + llvm_report_error("Could not resolve external global address: " + +I->getName()); } } } @@ -989,7 +1041,6 @@ void ExecutionEngine::emitGlobals() { // already in the map. void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { void *GA = getPointerToGlobalIfAvailable(GV); - DOUT << "Global '" << GV->getName() << "' -> " << GA << "\n"; if (GA == 0) { // If it's not already specified, allocate memory for the global. @@ -1002,7 +1053,27 @@ void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { InitializeMemory(GV->getInitializer(), GA); const Type *ElTy = GV->getType()->getElementType(); - size_t GVSize = (size_t)getTargetData()->getABITypeSize(ElTy); + size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); NumInitBytes += (unsigned)GVSize; ++NumGlobals; } + +ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) + : EE(EE), GlobalAddressMap(this) { +} + +sys::Mutex *ExecutionEngineState::AddressMapConfig::getMutex( + ExecutionEngineState *EES) { + return &EES->EE.lock; +} +void ExecutionEngineState::AddressMapConfig::onDelete( + ExecutionEngineState *EES, const GlobalValue *Old) { + void *OldVal = EES->GlobalAddressMap.lookup(Old); + EES->GlobalAddressReverseMap.erase(OldVal); +} + +void ExecutionEngineState::AddressMapConfig::onRAUW( + ExecutionEngineState *, const GlobalValue *, const GlobalValue *) { + assert(false && "The ExecutionEngine doesn't know how to handle a" + " RAUW on a value it has a global mapping for."); +}