X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FCodeGen%2FVirtRegMap.cpp;h=f5258c34041729e5aa3d25d5dbe56f5080e92aa2;hb=ab08da75d70c76fd946483e29366264c92cc092b;hp=2c93e09e3f27dc9e01f61d22d2638403ac9f6b8f;hpb=cd3245ac45c595da96bb768a55cddc356dff55fe;p=oota-llvm.git diff --git a/lib/CodeGen/VirtRegMap.cpp b/lib/CodeGen/VirtRegMap.cpp index 2c93e09e3f2..f5258c34041 100644 --- a/lib/CodeGen/VirtRegMap.cpp +++ b/lib/CodeGen/VirtRegMap.cpp @@ -2,948 +2,431 @@ // // The LLVM Compiler Infrastructure // -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the VirtRegMap class. // -// It also contains implementations of the the Spiller interface, which, given a +// It also contains implementations of the Spiller interface, which, given a // virtual register map and a machine function, eliminates all virtual // references by replacing them with physical register references - adding spill // code as necessary. // //===----------------------------------------------------------------------===// -#define DEBUG_TYPE "spiller" -#include "VirtRegMap.h" -#include "llvm/Function.h" +#include "llvm/CodeGen/VirtRegMap.h" +#include "LiveDebugVariables.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SparseSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/LiveIntervalAnalysis.h" +#include "llvm/CodeGen/LiveStackAnalysis.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/SSARegMap.h" -#include "llvm/Target/TargetMachine.h" -#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/IR/Function.h" #include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" #include "llvm/Support/Compiler.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/ADT/STLExtras.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetRegisterInfo.h" +#include "llvm/Target/TargetSubtargetInfo.h" #include using namespace llvm; -STATISTIC(NumSpills, "Number of register spills"); -STATISTIC(NumStores, "Number of stores added"); -STATISTIC(NumLoads , "Number of loads added"); -STATISTIC(NumReused, "Number of values reused"); -STATISTIC(NumDSE , "Number of dead stores elided"); -STATISTIC(NumDCE , "Number of copies elided"); +#define DEBUG_TYPE "regalloc" -namespace { - enum SpillerName { simple, local }; - - static cl::opt - SpillerOpt("spiller", - cl::desc("Spiller to use: (default: local)"), - cl::Prefix, - cl::values(clEnumVal(simple, " simple spiller"), - clEnumVal(local, " local spiller"), - clEnumValEnd), - cl::init(local)); -} +STATISTIC(NumSpillSlots, "Number of spill slots allocated"); +STATISTIC(NumIdCopies, "Number of identity moves eliminated after rewriting"); //===----------------------------------------------------------------------===// // VirtRegMap implementation //===----------------------------------------------------------------------===// -VirtRegMap::VirtRegMap(MachineFunction &mf) - : TII(*mf.getTarget().getInstrInfo()), MF(mf), - Virt2PhysMap(NO_PHYS_REG), Virt2StackSlotMap(NO_STACK_SLOT) { +char VirtRegMap::ID = 0; + +INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false) + +bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) { + MRI = &mf.getRegInfo(); + TII = mf.getSubtarget().getInstrInfo(); + TRI = mf.getSubtarget().getRegisterInfo(); + MF = &mf; + + Virt2PhysMap.clear(); + Virt2StackSlotMap.clear(); + Virt2SplitMap.clear(); + grow(); + return false; } void VirtRegMap::grow() { - Virt2PhysMap.grow(MF.getSSARegMap()->getLastVirtReg()); - Virt2StackSlotMap.grow(MF.getSSARegMap()->getLastVirtReg()); + unsigned NumRegs = MF->getRegInfo().getNumVirtRegs(); + Virt2PhysMap.resize(NumRegs); + Virt2StackSlotMap.resize(NumRegs); + Virt2SplitMap.resize(NumRegs); +} + +unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) { + int SS = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(), + RC->getAlignment()); + ++NumSpillSlots; + return SS; +} + +bool VirtRegMap::hasPreferredPhys(unsigned VirtReg) { + unsigned Hint = MRI->getSimpleHint(VirtReg); + if (!Hint) + return 0; + if (TargetRegisterInfo::isVirtualRegister(Hint)) + Hint = getPhys(Hint); + return getPhys(VirtReg) == Hint; +} + +bool VirtRegMap::hasKnownPreference(unsigned VirtReg) { + std::pair Hint = MRI->getRegAllocationHint(VirtReg); + if (TargetRegisterInfo::isPhysicalRegister(Hint.second)) + return true; + if (TargetRegisterInfo::isVirtualRegister(Hint.second)) + return hasPhys(Hint.second); + return false; } int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) { - assert(MRegisterInfo::isVirtualRegister(virtReg)); + assert(TargetRegisterInfo::isVirtualRegister(virtReg)); assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT && "attempt to assign stack slot to already spilled register"); - const TargetRegisterClass* RC = MF.getSSARegMap()->getRegClass(virtReg); - int frameIndex = MF.getFrameInfo()->CreateStackObject(RC->getSize(), - RC->getAlignment()); - Virt2StackSlotMap[virtReg] = frameIndex; - ++NumSpills; - return frameIndex; + const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg); + return Virt2StackSlotMap[virtReg] = createSpillSlot(RC); } -void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int frameIndex) { - assert(MRegisterInfo::isVirtualRegister(virtReg)); +void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) { + assert(TargetRegisterInfo::isVirtualRegister(virtReg)); assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT && "attempt to assign stack slot to already spilled register"); - Virt2StackSlotMap[virtReg] = frameIndex; + assert((SS >= 0 || + (SS >= MF->getFrameInfo()->getObjectIndexBegin())) && + "illegal fixed frame index"); + Virt2StackSlotMap[virtReg] = SS; } -void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI, - unsigned OpNo, MachineInstr *NewMI) { - // Move previous memory references folded to new instruction. - MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI); - for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI), - E = MI2VirtMap.end(); I != E && I->first == OldMI; ) { - MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second)); - MI2VirtMap.erase(I++); - } - - ModRef MRInfo; - const TargetInstrDescriptor *TID = OldMI->getInstrDescriptor(); - if (TID->getOperandConstraint(OpNo, TOI::TIED_TO) != -1 || - TID->findTiedToSrcOperand(OpNo) != -1) { - // Folded a two-address operand. - MRInfo = isModRef; - } else if (OldMI->getOperand(OpNo).isDef()) { - MRInfo = isMod; - } else { - MRInfo = isRef; - } - - // add new memory reference - MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo))); -} - -void VirtRegMap::print(std::ostream &OS) const { - const MRegisterInfo* MRI = MF.getTarget().getRegisterInfo(); - +void VirtRegMap::print(raw_ostream &OS, const Module*) const { OS << "********** REGISTER MAP **********\n"; - for (unsigned i = MRegisterInfo::FirstVirtualRegister, - e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i) { - if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG) - OS << "[reg" << i << " -> " << MRI->getName(Virt2PhysMap[i]) << "]\n"; - + for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { + unsigned Reg = TargetRegisterInfo::index2VirtReg(i); + if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) { + OS << '[' << PrintReg(Reg, TRI) << " -> " + << PrintReg(Virt2PhysMap[Reg], TRI) << "] " + << MRI->getRegClass(Reg)->getName() << "\n"; + } } - for (unsigned i = MRegisterInfo::FirstVirtualRegister, - e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i) - if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT) - OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n"; + for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { + unsigned Reg = TargetRegisterInfo::index2VirtReg(i); + if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) { + OS << '[' << PrintReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg] + << "] " << MRI->getRegClass(Reg)->getName() << "\n"; + } + } OS << '\n'; } +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void VirtRegMap::dump() const { - print(DOUT); -} - - -//===----------------------------------------------------------------------===// -// Simple Spiller Implementation -//===----------------------------------------------------------------------===// - -Spiller::~Spiller() {} - -namespace { - struct VISIBILITY_HIDDEN SimpleSpiller : public Spiller { - bool runOnMachineFunction(MachineFunction& mf, VirtRegMap &VRM); - }; -} - -bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) { - DOUT << "********** REWRITE MACHINE CODE **********\n"; - DOUT << "********** Function: " << MF.getFunction()->getName() << '\n'; - const TargetMachine &TM = MF.getTarget(); - const MRegisterInfo &MRI = *TM.getRegisterInfo(); - bool *PhysRegsUsed = MF.getUsedPhysregs(); - - // LoadedRegs - Keep track of which vregs are loaded, so that we only load - // each vreg once (in the case where a spilled vreg is used by multiple - // operands). This is always smaller than the number of operands to the - // current machine instr, so it should be small. - std::vector LoadedRegs; - - for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); - MBBI != E; ++MBBI) { - DOUT << MBBI->getBasicBlock()->getName() << ":\n"; - MachineBasicBlock &MBB = *MBBI; - for (MachineBasicBlock::iterator MII = MBB.begin(), - E = MBB.end(); MII != E; ++MII) { - MachineInstr &MI = *MII; - for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { - MachineOperand &MO = MI.getOperand(i); - if (MO.isRegister() && MO.getReg()) - if (MRegisterInfo::isVirtualRegister(MO.getReg())) { - unsigned VirtReg = MO.getReg(); - unsigned PhysReg = VRM.getPhys(VirtReg); - if (VRM.hasStackSlot(VirtReg)) { - int StackSlot = VRM.getStackSlot(VirtReg); - const TargetRegisterClass* RC = - MF.getSSARegMap()->getRegClass(VirtReg); - - if (MO.isUse() && - std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg) - == LoadedRegs.end()) { - MRI.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC); - LoadedRegs.push_back(VirtReg); - ++NumLoads; - DOUT << '\t' << *prior(MII); - } - - if (MO.isDef()) { - MRI.storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC); - ++NumStores; - } - } - PhysRegsUsed[PhysReg] = true; - MI.getOperand(i).setReg(PhysReg); - } else { - PhysRegsUsed[MO.getReg()] = true; - } - } - - DOUT << '\t' << MI; - LoadedRegs.clear(); - } - } - return true; + print(dbgs()); } +#endif //===----------------------------------------------------------------------===// -// Local Spiller Implementation +// VirtRegRewriter //===----------------------------------------------------------------------===// - -namespace { - /// LocalSpiller - This spiller does a simple pass over the machine basic - /// block to attempt to keep spills in registers as much as possible for - /// blocks that have low register pressure (the vreg may be spilled due to - /// register pressure in other blocks). - class VISIBILITY_HIDDEN LocalSpiller : public Spiller { - const MRegisterInfo *MRI; - const TargetInstrInfo *TII; - public: - bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) { - MRI = MF.getTarget().getRegisterInfo(); - TII = MF.getTarget().getInstrInfo(); - DOUT << "\n**** Local spiller rewriting function '" - << MF.getFunction()->getName() << "':\n"; - - for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); - MBB != E; ++MBB) - RewriteMBB(*MBB, VRM); - return true; - } - private: - void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM); - void ClobberPhysReg(unsigned PR, std::map &SpillSlots, - std::multimap &PhysRegs); - void ClobberPhysRegOnly(unsigned PR, std::map &SpillSlots, - std::multimap &PhysRegs); - void ModifyStackSlot(int Slot, std::map &SpillSlots, - std::multimap &PhysRegs); - }; -} - -/// AvailableSpills - As the local spiller is scanning and rewriting an MBB from -/// top down, keep track of which spills slots are available in each register. -/// -/// Note that not all physregs are created equal here. In particular, some -/// physregs are reloads that we are allowed to clobber or ignore at any time. -/// Other physregs are values that the register allocated program is using that -/// we cannot CHANGE, but we can read if we like. We keep track of this on a -/// per-stack-slot basis as the low bit in the value of the SpillSlotsAvailable -/// entries. The predicate 'canClobberPhysReg()' checks this bit and -/// addAvailable sets it if. +// +// The VirtRegRewriter is the last of the register allocator passes. +// It rewrites virtual registers to physical registers as specified in the +// VirtRegMap analysis. It also updates live-in information on basic blocks +// according to LiveIntervals. +// namespace { -class VISIBILITY_HIDDEN AvailableSpills { - const MRegisterInfo *MRI; +class VirtRegRewriter : public MachineFunctionPass { + MachineFunction *MF; + const TargetMachine *TM; + const TargetRegisterInfo *TRI; const TargetInstrInfo *TII; - - // SpillSlotsAvailable - This map keeps track of all of the spilled virtual - // register values that are still available, due to being loaded or stored to, - // but not invalidated yet. - std::map SpillSlotsAvailable; - - // PhysRegsAvailable - This is the inverse of SpillSlotsAvailable, indicating - // which stack slot values are currently held by a physreg. This is used to - // invalidate entries in SpillSlotsAvailable when a physreg is modified. - std::multimap PhysRegsAvailable; - - void disallowClobberPhysRegOnly(unsigned PhysReg); - - void ClobberPhysRegOnly(unsigned PhysReg); + MachineRegisterInfo *MRI; + SlotIndexes *Indexes; + LiveIntervals *LIS; + VirtRegMap *VRM; + SparseSet PhysRegs; + + void rewrite(); + void addMBBLiveIns(); public: - AvailableSpills(const MRegisterInfo *mri, const TargetInstrInfo *tii) - : MRI(mri), TII(tii) { - } - - /// getSpillSlotPhysReg - If the specified stack slot is available in a - /// physical register, return that PhysReg, otherwise return 0. - unsigned getSpillSlotPhysReg(int Slot) const { - std::map::const_iterator I = SpillSlotsAvailable.find(Slot); - if (I != SpillSlotsAvailable.end()) - return I->second >> 1; // Remove the CanClobber bit. - return 0; - } - - const MRegisterInfo *getRegInfo() const { return MRI; } - - /// addAvailable - Mark that the specified stack slot is available in the - /// specified physreg. If CanClobber is true, the physreg can be modified at - /// any time without changing the semantics of the program. - void addAvailable(int Slot, unsigned Reg, bool CanClobber = true) { - // If this stack slot is thought to be available in some other physreg, - // remove its record. - ModifyStackSlot(Slot); - - PhysRegsAvailable.insert(std::make_pair(Reg, Slot)); - SpillSlotsAvailable[Slot] = (Reg << 1) | (unsigned)CanClobber; - - DOUT << "Remembering SS#" << Slot << " in physreg " - << MRI->getName(Reg) << "\n"; - } - - /// canClobberPhysReg - Return true if the spiller is allowed to change the - /// value of the specified stackslot register if it desires. The specified - /// stack slot must be available in a physreg for this query to make sense. - bool canClobberPhysReg(int Slot) const { - assert(SpillSlotsAvailable.count(Slot) && "Slot not available!"); - return SpillSlotsAvailable.find(Slot)->second & 1; - } - - /// disallowClobberPhysReg - Unset the CanClobber bit of the specified - /// stackslot register. The register is still available but is no longer - /// allowed to be modifed. - void disallowClobberPhysReg(unsigned PhysReg); - - /// ClobberPhysReg - This is called when the specified physreg changes - /// value. We use this to invalidate any info about stuff we thing lives in - /// it and any of its aliases. - void ClobberPhysReg(unsigned PhysReg); - - /// ModifyStackSlot - This method is called when the value in a stack slot - /// changes. This removes information about which register the previous value - /// for this slot lives in (as the previous value is dead now). - void ModifyStackSlot(int Slot); -}; -} + static char ID; + VirtRegRewriter() : MachineFunctionPass(ID) {} -/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified -/// stackslot register. The register is still available but is no longer -/// allowed to be modifed. -void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) { - std::multimap::iterator I = - PhysRegsAvailable.lower_bound(PhysReg); - while (I != PhysRegsAvailable.end() && I->first == PhysReg) { - int Slot = I->second; - I++; - assert((SpillSlotsAvailable[Slot] >> 1) == PhysReg && - "Bidirectional map mismatch!"); - SpillSlotsAvailable[Slot] &= ~1; - DOUT << "PhysReg " << MRI->getName(PhysReg) - << " copied, it is available for use but can no longer be modified\n"; - } -} + void getAnalysisUsage(AnalysisUsage &AU) const override; -/// disallowClobberPhysReg - Unset the CanClobber bit of the specified -/// stackslot register and its aliases. The register and its aliases may -/// still available but is no longer allowed to be modifed. -void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) { - for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS) - disallowClobberPhysRegOnly(*AS); - disallowClobberPhysRegOnly(PhysReg); -} - -/// ClobberPhysRegOnly - This is called when the specified physreg changes -/// value. We use this to invalidate any info about stuff we thing lives in it. -void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) { - std::multimap::iterator I = - PhysRegsAvailable.lower_bound(PhysReg); - while (I != PhysRegsAvailable.end() && I->first == PhysReg) { - int Slot = I->second; - PhysRegsAvailable.erase(I++); - assert((SpillSlotsAvailable[Slot] >> 1) == PhysReg && - "Bidirectional map mismatch!"); - SpillSlotsAvailable.erase(Slot); - DOUT << "PhysReg " << MRI->getName(PhysReg) - << " clobbered, invalidating SS#" << Slot << "\n"; - } + bool runOnMachineFunction(MachineFunction&) override; +}; +} // end anonymous namespace + +char &llvm::VirtRegRewriterID = VirtRegRewriter::ID; + +INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter", + "Virtual Register Rewriter", false, false) +INITIALIZE_PASS_DEPENDENCY(SlotIndexes) +INITIALIZE_PASS_DEPENDENCY(LiveIntervals) +INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) +INITIALIZE_PASS_DEPENDENCY(LiveStacks) +INITIALIZE_PASS_DEPENDENCY(VirtRegMap) +INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter", + "Virtual Register Rewriter", false, false) + +char VirtRegRewriter::ID = 0; + +void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesCFG(); + AU.addRequired(); + AU.addRequired(); + AU.addPreserved(); + AU.addRequired(); + AU.addRequired(); + AU.addPreserved(); + AU.addRequired(); + MachineFunctionPass::getAnalysisUsage(AU); } -/// ClobberPhysReg - This is called when the specified physreg changes -/// value. We use this to invalidate any info about stuff we thing lives in -/// it and any of its aliases. -void AvailableSpills::ClobberPhysReg(unsigned PhysReg) { - for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS) - ClobberPhysRegOnly(*AS); - ClobberPhysRegOnly(PhysReg); +bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) { + MF = &fn; + TM = &MF->getTarget(); + TRI = MF->getSubtarget().getRegisterInfo(); + TII = MF->getSubtarget().getInstrInfo(); + MRI = &MF->getRegInfo(); + Indexes = &getAnalysis(); + LIS = &getAnalysis(); + VRM = &getAnalysis(); + DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n" + << "********** Function: " + << MF->getName() << '\n'); + DEBUG(VRM->dump()); + + // Add kill flags while we still have virtual registers. + LIS->addKillFlags(VRM); + + // Live-in lists on basic blocks are required for physregs. + addMBBLiveIns(); + + // Rewrite virtual registers. + rewrite(); + + // Write out new DBG_VALUE instructions. + getAnalysis().emitDebugValues(VRM); + + // All machine operands and other references to virtual registers have been + // replaced. Remove the virtual registers and release all the transient data. + VRM->clearAllVirt(); + MRI->clearVirtRegs(); + return true; } -/// ModifyStackSlot - This method is called when the value in a stack slot -/// changes. This removes information about which register the previous value -/// for this slot lives in (as the previous value is dead now). -void AvailableSpills::ModifyStackSlot(int Slot) { - std::map::iterator It = SpillSlotsAvailable.find(Slot); - if (It == SpillSlotsAvailable.end()) return; - unsigned Reg = It->second >> 1; - SpillSlotsAvailable.erase(It); - - // This register may hold the value of multiple stack slots, only remove this - // stack slot from the set of values the register contains. - std::multimap::iterator I = PhysRegsAvailable.lower_bound(Reg); - for (; ; ++I) { - assert(I != PhysRegsAvailable.end() && I->first == Reg && - "Map inverse broken!"); - if (I->second == Slot) break; +// Compute MBB live-in lists from virtual register live ranges and their +// assignments. +void VirtRegRewriter::addMBBLiveIns() { + SmallVector LiveIn; + for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) { + unsigned VirtReg = TargetRegisterInfo::index2VirtReg(Idx); + if (MRI->reg_nodbg_empty(VirtReg)) + continue; + LiveInterval &LI = LIS->getInterval(VirtReg); + if (LI.empty() || LIS->intervalIsInOneMBB(LI)) + continue; + // This is a virtual register that is live across basic blocks. Its + // assigned PhysReg must be marked as live-in to those blocks. + unsigned PhysReg = VRM->getPhys(VirtReg); + assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Unmapped virtual register."); + + // Scan the segments of LI. + for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I != E; + ++I) { + if (!Indexes->findLiveInMBBs(I->start, I->end, LiveIn)) + continue; + for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) + if (!LiveIn[i]->isLiveIn(PhysReg)) + LiveIn[i]->addLiveIn(PhysReg); + LiveIn.clear(); + } } - PhysRegsAvailable.erase(I); } - - -// ReusedOp - For each reused operand, we keep track of a bit of information, in -// case we need to rollback upon processing a new operand. See comments below. -namespace { - struct ReusedOp { - // The MachineInstr operand that reused an available value. - unsigned Operand; - - // StackSlot - The spill slot of the value being reused. - unsigned StackSlot; - - // PhysRegReused - The physical register the value was available in. - unsigned PhysRegReused; - - // AssignedPhysReg - The physreg that was assigned for use by the reload. - unsigned AssignedPhysReg; - - // VirtReg - The virtual register itself. - unsigned VirtReg; - - ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr, - unsigned vreg) - : Operand(o), StackSlot(ss), PhysRegReused(prr), AssignedPhysReg(apr), - VirtReg(vreg) {} - }; - - /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that - /// is reused instead of reloaded. - class VISIBILITY_HIDDEN ReuseInfo { - MachineInstr &MI; - std::vector Reuses; - bool *PhysRegsClobbered; - public: - ReuseInfo(MachineInstr &mi, const MRegisterInfo *mri) : MI(mi) { - PhysRegsClobbered = new bool[mri->getNumRegs()]; - std::fill(PhysRegsClobbered, PhysRegsClobbered+mri->getNumRegs(), false); - } - ~ReuseInfo() { - delete[] PhysRegsClobbered; - } - - bool hasReuses() const { - return !Reuses.empty(); - } - - /// addReuse - If we choose to reuse a virtual register that is already - /// available instead of reloading it, remember that we did so. - void addReuse(unsigned OpNo, unsigned StackSlot, - unsigned PhysRegReused, unsigned AssignedPhysReg, - unsigned VirtReg) { - // If the reload is to the assigned register anyway, no undo will be - // required. - if (PhysRegReused == AssignedPhysReg) return; - - // Otherwise, remember this. - Reuses.push_back(ReusedOp(OpNo, StackSlot, PhysRegReused, - AssignedPhysReg, VirtReg)); - } - - void markClobbered(unsigned PhysReg) { - PhysRegsClobbered[PhysReg] = true; - } - - bool isClobbered(unsigned PhysReg) const { - return PhysRegsClobbered[PhysReg]; - } - - /// GetRegForReload - We are about to emit a reload into PhysReg. If there - /// is some other operand that is using the specified register, either pick - /// a new register to use, or evict the previous reload and use this reg. - unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI, - AvailableSpills &Spills, - std::map &MaybeDeadStores) { - if (Reuses.empty()) return PhysReg; // This is most often empty. - - for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) { - ReusedOp &Op = Reuses[ro]; - // If we find some other reuse that was supposed to use this register - // exactly for its reload, we can change this reload to use ITS reload - // register. - if (Op.PhysRegReused == PhysReg) { - // Yup, use the reload register that we didn't use before. - unsigned NewReg = Op.AssignedPhysReg; - return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores); - } else { - // Otherwise, we might also have a problem if a previously reused - // value aliases the new register. If so, codegen the previous reload - // and use this one. - unsigned PRRU = Op.PhysRegReused; - const MRegisterInfo *MRI = Spills.getRegInfo(); - if (MRI->areAliases(PRRU, PhysReg)) { - // Okay, we found out that an alias of a reused register - // was used. This isn't good because it means we have - // to undo a previous reuse. - MachineBasicBlock *MBB = MI->getParent(); - const TargetRegisterClass *AliasRC = - MBB->getParent()->getSSARegMap()->getRegClass(Op.VirtReg); - - // Copy Op out of the vector and remove it, we're going to insert an - // explicit load for it. - ReusedOp NewOp = Op; - Reuses.erase(Reuses.begin()+ro); - - // Ok, we're going to try to reload the assigned physreg into the - // slot that we were supposed to in the first place. However, that - // register could hold a reuse. Check to see if it conflicts or - // would prefer us to use a different register. - unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg, - MI, Spills, MaybeDeadStores); - - MRI->loadRegFromStackSlot(*MBB, MI, NewPhysReg, - NewOp.StackSlot, AliasRC); - Spills.ClobberPhysReg(NewPhysReg); - Spills.ClobberPhysReg(NewOp.PhysRegReused); - - // Any stores to this stack slot are not dead anymore. - MaybeDeadStores.erase(NewOp.StackSlot); - - MI->getOperand(NewOp.Operand).setReg(NewPhysReg); - - Spills.addAvailable(NewOp.StackSlot, NewPhysReg); - ++NumLoads; - DEBUG(MachineBasicBlock::iterator MII = MI; - DOUT << '\t' << *prior(MII)); - - DOUT << "Reuse undone!\n"; - --NumReused; - - // Finally, PhysReg is now available, go ahead and use it. - return PhysReg; - } +void VirtRegRewriter::rewrite() { + SmallVector SuperDeads; + SmallVector SuperDefs; + SmallVector SuperKills; + SmallPtrSet NoReturnInsts; + + // Here we have a SparseSet to hold which PhysRegs are actually encountered + // in the MF we are about to iterate over so that later when we call + // setPhysRegUsed, we are only doing it for physRegs that were actually found + // in the program and not for all of the possible physRegs for the given + // target architecture. If the target has a lot of physRegs, then for a small + // program there will be a significant compile time reduction here. + PhysRegs.clear(); + PhysRegs.setUniverse(TRI->getNumRegs()); + + // The function with uwtable should guarantee that the stack unwinder + // can unwind the stack to the previous frame. Thus, we can't apply the + // noreturn optimization if the caller function has uwtable attribute. + bool HasUWTable = MF->getFunction()->hasFnAttribute(Attribute::UWTable); + + for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end(); + MBBI != MBBE; ++MBBI) { + DEBUG(MBBI->print(dbgs(), Indexes)); + bool IsExitBB = MBBI->succ_empty(); + for (MachineBasicBlock::instr_iterator + MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) { + MachineInstr *MI = MII; + ++MII; + + // Check if this instruction is a call to a noreturn function. If this + // is a call to noreturn function and we don't need the stack unwinding + // functionality (i.e. this function does not have uwtable attribute and + // the callee function has the nounwind attribute), then we can ignore + // the definitions set by this instruction. + if (!HasUWTable && IsExitBB && MI->isCall()) { + for (MachineInstr::mop_iterator MOI = MI->operands_begin(), + MOE = MI->operands_end(); MOI != MOE; ++MOI) { + MachineOperand &MO = *MOI; + if (!MO.isGlobal()) + continue; + const Function *Func = dyn_cast(MO.getGlobal()); + if (!Func || !Func->hasFnAttribute(Attribute::NoReturn) || + // We need to keep correct unwind information + // even if the function will not return, since the + // runtime may need it. + !Func->hasFnAttribute(Attribute::NoUnwind)) + continue; + NoReturnInsts.insert(MI); + break; } } - return PhysReg; - } - }; -} + for (MachineInstr::mop_iterator MOI = MI->operands_begin(), + MOE = MI->operands_end(); MOI != MOE; ++MOI) { + MachineOperand &MO = *MOI; -/// rewriteMBB - Keep track of which spills are available even after the -/// register allocator is done with them. If possible, avoid reloading vregs. -void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) { - - DOUT << MBB.getBasicBlock()->getName() << ":\n"; - - // Spills - Keep track of which spilled values are available in physregs so - // that we can choose to reuse the physregs instead of emitting reloads. - AvailableSpills Spills(MRI, TII); - - // MaybeDeadStores - When we need to write a value back into a stack slot, - // keep track of the inserted store. If the stack slot value is never read - // (because the value was used from some available register, for example), and - // subsequently stored to, the original store is dead. This map keeps track - // of inserted stores that are not used. If we see a subsequent store to the - // same stack slot, the original store is deleted. - std::map MaybeDeadStores; - - bool *PhysRegsUsed = MBB.getParent()->getUsedPhysregs(); - - for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end(); - MII != E; ) { - MachineInstr &MI = *MII; - MachineBasicBlock::iterator NextMII = MII; ++NextMII; - - /// ReusedOperands - Keep track of operand reuse in case we need to undo - /// reuse. - ReuseInfo ReusedOperands(MI, MRI); - - // Loop over all of the implicit defs, clearing them from our available - // sets. - const TargetInstrDescriptor *TID = MI.getInstrDescriptor(); - const unsigned *ImpDef = TID->ImplicitDefs; - if (ImpDef) { - for ( ; *ImpDef; ++ImpDef) { - PhysRegsUsed[*ImpDef] = true; - ReusedOperands.markClobbered(*ImpDef); - Spills.ClobberPhysReg(*ImpDef); - } - } + // Make sure MRI knows about registers clobbered by regmasks. + if (MO.isRegMask()) + MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); - // Process all of the spilled uses and all non spilled reg references. - for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { - MachineOperand &MO = MI.getOperand(i); - if (!MO.isRegister() || MO.getReg() == 0) - continue; // Ignore non-register operands. - - if (MRegisterInfo::isPhysicalRegister(MO.getReg())) { - // Ignore physregs for spilling, but remember that it is used by this - // function. - PhysRegsUsed[MO.getReg()] = true; - ReusedOperands.markClobbered(MO.getReg()); - continue; - } - - assert(MRegisterInfo::isVirtualRegister(MO.getReg()) && - "Not a virtual or a physical register?"); - - unsigned VirtReg = MO.getReg(); - if (!VRM.hasStackSlot(VirtReg)) { - // This virtual register was assigned a physreg! - unsigned Phys = VRM.getPhys(VirtReg); - PhysRegsUsed[Phys] = true; - if (MO.isDef()) - ReusedOperands.markClobbered(Phys); - MI.getOperand(i).setReg(Phys); - continue; - } - - // This virtual register is now known to be a spilled value. - if (!MO.isUse()) - continue; // Handle defs in the loop below (handle use&def here though) - - int StackSlot = VRM.getStackSlot(VirtReg); - unsigned PhysReg; - - // Check to see if this stack slot is available. - if ((PhysReg = Spills.getSpillSlotPhysReg(StackSlot))) { - - // This spilled operand might be part of a two-address operand. If this - // is the case, then changing it will necessarily require changing the - // def part of the instruction as well. However, in some cases, we - // aren't allowed to modify the reused register. If none of these cases - // apply, reuse it. - bool CanReuse = true; - int ti = TID->getOperandConstraint(i, TOI::TIED_TO); - if (ti != -1 && - MI.getOperand(ti).isReg() && - MI.getOperand(ti).getReg() == VirtReg) { - // Okay, we have a two address operand. We can reuse this physreg as - // long as we are allowed to clobber the value and there is an earlier - // def that has already clobbered the physreg. - CanReuse = Spills.canClobberPhysReg(StackSlot) && - !ReusedOperands.isClobbered(PhysReg); - } - - if (CanReuse) { - // If this stack slot value is already available, reuse it! - DOUT << "Reusing SS#" << StackSlot << " from physreg " - << MRI->getName(PhysReg) << " for vreg" - << VirtReg <<" instead of reloading into physreg " - << MRI->getName(VRM.getPhys(VirtReg)) << "\n"; - MI.getOperand(i).setReg(PhysReg); - - // The only technical detail we have is that we don't know that - // PhysReg won't be clobbered by a reloaded stack slot that occurs - // later in the instruction. In particular, consider 'op V1, V2'. - // If V1 is available in physreg R0, we would choose to reuse it - // here, instead of reloading it into the register the allocator - // indicated (say R1). However, V2 might have to be reloaded - // later, and it might indicate that it needs to live in R0. When - // this occurs, we need to have information available that - // indicates it is safe to use R1 for the reload instead of R0. - // - // To further complicate matters, we might conflict with an alias, - // or R0 and R1 might not be compatible with each other. In this - // case, we actually insert a reload for V1 in R1, ensuring that - // we can get at R0 or its alias. - ReusedOperands.addReuse(i, StackSlot, PhysReg, - VRM.getPhys(VirtReg), VirtReg); - if (ti != -1) - // Only mark it clobbered if this is a use&def operand. - ReusedOperands.markClobbered(PhysReg); - ++NumReused; - continue; - } - - // Otherwise we have a situation where we have a two-address instruction - // whose mod/ref operand needs to be reloaded. This reload is already - // available in some register "PhysReg", but if we used PhysReg as the - // operand to our 2-addr instruction, the instruction would modify - // PhysReg. This isn't cool if something later uses PhysReg and expects - // to get its initial value. - // - // To avoid this problem, and to avoid doing a load right after a store, - // we emit a copy from PhysReg into the designated register for this - // operand. - unsigned DesignatedReg = VRM.getPhys(VirtReg); - assert(DesignatedReg && "Must map virtreg to physreg!"); - - // Note that, if we reused a register for a previous operand, the - // register we want to reload into might not actually be - // available. If this occurs, use the register indicated by the - // reuser. - if (ReusedOperands.hasReuses()) - DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI, - Spills, MaybeDeadStores); - - // If the mapped designated register is actually the physreg we have - // incoming, we don't need to inserted a dead copy. - if (DesignatedReg == PhysReg) { - // If this stack slot value is already available, reuse it! - DOUT << "Reusing SS#" << StackSlot << " from physreg " - << MRI->getName(PhysReg) << " for vreg" - << VirtReg - << " instead of reloading into same physreg.\n"; - MI.getOperand(i).setReg(PhysReg); - ReusedOperands.markClobbered(PhysReg); - ++NumReused; - continue; - } - - const TargetRegisterClass* RC = - MBB.getParent()->getSSARegMap()->getRegClass(VirtReg); - - PhysRegsUsed[DesignatedReg] = true; - ReusedOperands.markClobbered(DesignatedReg); - MRI->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC); - - // This invalidates DesignatedReg. - Spills.ClobberPhysReg(DesignatedReg); - - Spills.addAvailable(StackSlot, DesignatedReg); - MI.getOperand(i).setReg(DesignatedReg); - DOUT << '\t' << *prior(MII); - ++NumReused; - continue; - } - - // Otherwise, reload it and remember that we have it. - PhysReg = VRM.getPhys(VirtReg); - assert(PhysReg && "Must map virtreg to physreg!"); - const TargetRegisterClass* RC = - MBB.getParent()->getSSARegMap()->getRegClass(VirtReg); - - // Note that, if we reused a register for a previous operand, the - // register we want to reload into might not actually be - // available. If this occurs, use the register indicated by the - // reuser. - if (ReusedOperands.hasReuses()) - PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI, - Spills, MaybeDeadStores); - - PhysRegsUsed[PhysReg] = true; - ReusedOperands.markClobbered(PhysReg); - MRI->loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC); - // This invalidates PhysReg. - Spills.ClobberPhysReg(PhysReg); - - // Any stores to this stack slot are not dead anymore. - MaybeDeadStores.erase(StackSlot); - Spills.addAvailable(StackSlot, PhysReg); - ++NumLoads; - MI.getOperand(i).setReg(PhysReg); - DOUT << '\t' << *prior(MII); - } + // If we encounter a VirtReg or PhysReg then get at the PhysReg and add + // it to the physreg bitset. Later we use only the PhysRegs that were + // actually encountered in the MF to populate the MRI's used physregs. + if (MO.isReg() && MO.getReg()) + PhysRegs.insert( + TargetRegisterInfo::isVirtualRegister(MO.getReg()) ? + VRM->getPhys(MO.getReg()) : + MO.getReg()); - DOUT << '\t' << MI; - - // If we have folded references to memory operands, make sure we clear all - // physical registers that may contain the value of the spilled virtual - // register - VirtRegMap::MI2VirtMapTy::const_iterator I, End; - for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) { - DOUT << "Folded vreg: " << I->second.first << " MR: " - << I->second.second; - unsigned VirtReg = I->second.first; - VirtRegMap::ModRef MR = I->second.second; - if (!VRM.hasStackSlot(VirtReg)) { - DOUT << ": No stack slot!\n"; - continue; - } - int SS = VRM.getStackSlot(VirtReg); - DOUT << " - StackSlot: " << SS << "\n"; - - // If this folded instruction is just a use, check to see if it's a - // straight load from the virt reg slot. - if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) { - int FrameIdx; - if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) { - if (FrameIdx == SS) { - // If this spill slot is available, turn it into a copy (or nothing) - // instead of leaving it as a load! - if (unsigned InReg = Spills.getSpillSlotPhysReg(SS)) { - DOUT << "Promoted Load To Copy: " << MI; - MachineFunction &MF = *MBB.getParent(); - if (DestReg != InReg) { - MRI->copyRegToReg(MBB, &MI, DestReg, InReg, - MF.getSSARegMap()->getRegClass(VirtReg)); - // Revisit the copy so we make sure to notice the effects of the - // operation on the destreg (either needing to RA it if it's - // virtual or needing to clobber any values if it's physical). - NextMII = &MI; - --NextMII; // backtrack to the copy. - } - VRM.RemoveFromFoldedVirtMap(&MI); - MBB.erase(&MI); - goto ProcessNextInst; - } + if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) + continue; + unsigned VirtReg = MO.getReg(); + unsigned PhysReg = VRM->getPhys(VirtReg); + assert(PhysReg != VirtRegMap::NO_PHYS_REG && + "Instruction uses unmapped VirtReg"); + assert(!MRI->isReserved(PhysReg) && "Reserved register assignment"); + + // Preserve semantics of sub-register operands. + if (MO.getSubReg()) { + // A virtual register kill refers to the whole register, so we may + // have to add operands for the super-register. A + // partial redef always kills and redefines the super-register. + if (MO.readsReg() && (MO.isDef() || MO.isKill())) + SuperKills.push_back(PhysReg); + + if (MO.isDef()) { + // The flag only makes sense for sub-register defs, and + // we are substituting a full physreg. An operand + // from the SuperKills list will represent the partial read of the + // super-register. + MO.setIsUndef(false); + + // Also add implicit defs for the super-register. + if (MO.isDead()) + SuperDeads.push_back(PhysReg); + else + SuperDefs.push_back(PhysReg); } - } - } - // If this reference is not a use, any previous store is now dead. - // Otherwise, the store to this stack slot is not dead anymore. - std::map::iterator MDSI = MaybeDeadStores.find(SS); - if (MDSI != MaybeDeadStores.end()) { - if (MR & VirtRegMap::isRef) // Previous store is not dead. - MaybeDeadStores.erase(MDSI); - else { - // If we get here, the store is dead, nuke it now. - assert(VirtRegMap::isMod && "Can't be modref!"); - DOUT << "Removed dead store:\t" << *MDSI->second; - MBB.erase(MDSI->second); - VRM.RemoveFromFoldedVirtMap(MDSI->second); - MaybeDeadStores.erase(MDSI); - ++NumDSE; + // PhysReg operands cannot have subregister indexes. + PhysReg = TRI->getSubReg(PhysReg, MO.getSubReg()); + assert(PhysReg && "Invalid SubReg for physical register"); + MO.setSubReg(0); } + // Rewrite. Note we could have used MachineOperand::substPhysReg(), but + // we need the inlining here. + MO.setReg(PhysReg); } - // If the spill slot value is available, and this is a new definition of - // the value, the value is not available anymore. - if (MR & VirtRegMap::isMod) { - // Notice that the value in this stack slot has been modified. - Spills.ModifyStackSlot(SS); - - // If this is *just* a mod of the value, check to see if this is just a - // store to the spill slot (i.e. the spill got merged into the copy). If - // so, realize that the vreg is available now, and add the store to the - // MaybeDeadStore info. - int StackSlot; - if (!(MR & VirtRegMap::isRef)) { - if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) { - assert(MRegisterInfo::isPhysicalRegister(SrcReg) && - "Src hasn't been allocated yet?"); - // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark - // this as a potentially dead store in case there is a subsequent - // store into the stack slot without a read from it. - MaybeDeadStores[StackSlot] = &MI; - - // If the stack slot value was previously available in some other - // register, change it now. Otherwise, make the register available, - // in PhysReg. - Spills.addAvailable(StackSlot, SrcReg, false /*don't clobber*/); - } - } - } - } + // Add any missing super-register kills after rewriting the whole + // instruction. + while (!SuperKills.empty()) + MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true); - // Process all of the spilled defs. - for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { - MachineOperand &MO = MI.getOperand(i); - if (MO.isRegister() && MO.getReg() && MO.isDef()) { - unsigned VirtReg = MO.getReg(); + while (!SuperDeads.empty()) + MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true); - if (!MRegisterInfo::isVirtualRegister(VirtReg)) { - // Check to see if this is a noop copy. If so, eliminate the - // instruction before considering the dest reg to be changed. - unsigned Src, Dst; - if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) { - ++NumDCE; - DOUT << "Removing now-noop copy: " << MI; - MBB.erase(&MI); - VRM.RemoveFromFoldedVirtMap(&MI); - Spills.disallowClobberPhysReg(VirtReg); - goto ProcessNextInst; - } - - // If it's not a no-op copy, it clobbers the value in the destreg. - Spills.ClobberPhysReg(VirtReg); - ReusedOperands.markClobbered(VirtReg); - - // Check to see if this instruction is a load from a stack slot into - // a register. If so, this provides the stack slot value in the reg. - int FrameIdx; - if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) { - assert(DestReg == VirtReg && "Unknown load situation!"); - - // Otherwise, if it wasn't available, remember that it is now! - Spills.addAvailable(FrameIdx, DestReg); - goto ProcessNextInst; - } - - continue; - } + while (!SuperDefs.empty()) + MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI); - // The only vregs left are stack slot definitions. - int StackSlot = VRM.getStackSlot(VirtReg); - const TargetRegisterClass *RC = - MBB.getParent()->getSSARegMap()->getRegClass(VirtReg); - - // If this def is part of a two-address operand, make sure to execute - // the store from the correct physical register. - unsigned PhysReg; - int TiedOp = MI.getInstrDescriptor()->findTiedToSrcOperand(i); - if (TiedOp != -1) - PhysReg = MI.getOperand(TiedOp).getReg(); - else { - PhysReg = VRM.getPhys(VirtReg); - if (ReusedOperands.isClobbered(PhysReg)) { - // Another def has taken the assigned physreg. It must have been a - // use&def which got it due to reuse. Undo the reuse! - PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI, - Spills, MaybeDeadStores); - } - } + DEBUG(dbgs() << "> " << *MI); - PhysRegsUsed[PhysReg] = true; - ReusedOperands.markClobbered(PhysReg); - MRI->storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC); - DOUT << "Store:\t" << *next(MII); - MI.getOperand(i).setReg(PhysReg); - - // Check to see if this is a noop copy. If so, eliminate the - // instruction before considering the dest reg to be changed. - { - unsigned Src, Dst; - if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) { - ++NumDCE; - DOUT << "Removing now-noop copy: " << MI; - MBB.erase(&MI); - VRM.RemoveFromFoldedVirtMap(&MI); - goto ProcessNextInst; - } - } - - // If there is a dead store to this stack slot, nuke it now. - MachineInstr *&LastStore = MaybeDeadStores[StackSlot]; - if (LastStore) { - DOUT << "Removed dead store:\t" << *LastStore; - ++NumDSE; - MBB.erase(LastStore); - VRM.RemoveFromFoldedVirtMap(LastStore); + // Finally, remove any identity copies. + if (MI->isIdentityCopy()) { + ++NumIdCopies; + if (MI->getNumOperands() == 2) { + DEBUG(dbgs() << "Deleting identity copy.\n"); + if (Indexes) + Indexes->removeMachineInstrFromMaps(MI); + // It's safe to erase MI because MII has already been incremented. + MI->eraseFromParent(); + } else { + // Transform identity copy to a KILL to deal with subregisters. + MI->setDesc(TII->get(TargetOpcode::KILL)); + DEBUG(dbgs() << "Identity copy: " << *MI); } - LastStore = next(MII); - - // If the stack slot value was previously available in some other - // register, change it now. Otherwise, make the register available, - // in PhysReg. - Spills.ModifyStackSlot(StackSlot); - Spills.ClobberPhysReg(PhysReg); - Spills.addAvailable(StackSlot, PhysReg); - ++NumStores; } } - ProcessNextInst: - MII = NextMII; } -} - - -llvm::Spiller* llvm::createSpiller() { - switch (SpillerOpt) { - default: assert(0 && "Unreachable!"); - case local: - return new LocalSpiller(); - case simple: - return new SimpleSpiller(); + // Tell MRI about physical registers in use. + if (NoReturnInsts.empty()) { + for (SparseSet::iterator + RegI = PhysRegs.begin(), E = PhysRegs.end(); RegI != E; ++RegI) + if (!MRI->reg_nodbg_empty(*RegI)) + MRI->setPhysRegUsed(*RegI); + } else { + for (SparseSet::iterator + I = PhysRegs.begin(), E = PhysRegs.end(); I != E; ++I) { + unsigned Reg = *I; + if (MRI->reg_nodbg_empty(Reg)) + continue; + // Check if this register has a use that will impact the rest of the + // code. Uses in debug and noreturn instructions do not impact the + // generated code. + for (MachineInstr &It : MRI->reg_nodbg_instructions(Reg)) { + if (!NoReturnInsts.count(&It)) { + MRI->setPhysRegUsed(Reg); + break; + } + } + } } } +