X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FCodeGen%2FSelectionDAG%2FFunctionLoweringInfo.cpp;h=cc306cbf5ae427446e25bcebb780f5c39cfaa5b1;hb=8770f7af5f46c0d34a79cf0beeeef80b1a2ab690;hp=928e1ecd4cf4e39e0b73d39b2a2bbd5aeeaf96c9;hpb=03f09a3e329abcb35c1a5aa3a4546668b1af21ee;p=oota-llvm.git diff --git a/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp b/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp index 928e1ecd4cf..cc306cbf5ae 100644 --- a/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp +++ b/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp @@ -12,32 +12,38 @@ // //===----------------------------------------------------------------------===// -#define DEBUG_TYPE "function-lowering-info" #include "llvm/CodeGen/FunctionLoweringInfo.h" -#include "llvm/DerivedTypes.h" -#include "llvm/Function.h" -#include "llvm/Instructions.h" -#include "llvm/IntrinsicInst.h" -#include "llvm/LLVMContext.h" -#include "llvm/Module.h" +#include "llvm/ADT/PostOrderIterator.h" #include "llvm/CodeGen/Analysis.h" -#include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" -#include "llvm/Target/TargetRegisterInfo.h" -#include "llvm/Target/TargetData.h" -#include "llvm/Target/TargetFrameInfo.h" -#include "llvm/Target/TargetInstrInfo.h" -#include "llvm/Target/TargetLowering.h" -#include "llvm/Target/TargetOptions.h" +#include "llvm/CodeGen/WinEHFuncInfo.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfo.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Module.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetFrameLowering.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetLowering.h" +#include "llvm/Target/TargetOptions.h" +#include "llvm/Target/TargetRegisterInfo.h" +#include "llvm/Target/TargetSubtargetInfo.h" #include using namespace llvm; +#define DEBUG_TYPE "function-lowering-info" + /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by /// PHI nodes or outside of the basic block that defines it, or used by a /// switch or atomic instruction, which may expand to multiple basic blocks. @@ -45,83 +51,163 @@ static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { if (I->use_empty()) return false; if (isa(I)) return true; const BasicBlock *BB = I->getParent(); - for (Value::const_use_iterator UI = I->use_begin(), E = I->use_end(); - UI != E; ++UI) { - const User *U = *UI; + for (const User *U : I->users()) if (cast(U)->getParent() != BB || isa(U)) return true; - } + return false; } -/// isOnlyUsedInEntryBlock - If the specified argument is only used in the -/// entry block, return true. This includes arguments used by switches, since -/// the switch may expand into multiple basic blocks. -static bool isOnlyUsedInEntryBlock(const Argument *A, bool EnableFastISel) { - // With FastISel active, we may be splitting blocks, so force creation - // of virtual registers for all non-dead arguments. - if (EnableFastISel) - return A->use_empty(); - - const BasicBlock *Entry = A->getParent()->begin(); - for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); - UI != E; ++UI) { - const User *U = *UI; - if (cast(U)->getParent() != Entry || isa(U)) - return false; // Use not in entry block. +static ISD::NodeType getPreferredExtendForValue(const Value *V) { + // For the users of the source value being used for compare instruction, if + // the number of signed predicate is greater than unsigned predicate, we + // prefer to use SIGN_EXTEND. + // + // With this optimization, we would be able to reduce some redundant sign or + // zero extension instruction, and eventually more machine CSE opportunities + // can be exposed. + ISD::NodeType ExtendKind = ISD::ANY_EXTEND; + unsigned NumOfSigned = 0, NumOfUnsigned = 0; + for (const User *U : V->users()) { + if (const auto *CI = dyn_cast(U)) { + NumOfSigned += CI->isSigned(); + NumOfUnsigned += CI->isUnsigned(); + } } - return true; -} + if (NumOfSigned > NumOfUnsigned) + ExtendKind = ISD::SIGN_EXTEND; -FunctionLoweringInfo::FunctionLoweringInfo(const TargetLowering &tli) - : TLI(tli) { + return ExtendKind; } -void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf) { +void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf, + SelectionDAG *DAG) { Fn = &fn; MF = &mf; + TLI = MF->getSubtarget().getTargetLowering(); RegInfo = &MF->getRegInfo(); + MachineModuleInfo &MMI = MF->getMMI(); // Check whether the function can return without sret-demotion. SmallVector Outs; - GetReturnInfo(Fn->getReturnType(), - Fn->getAttributes().getRetAttributes(), Outs, TLI); - CanLowerReturn = TLI.CanLowerReturn(Fn->getCallingConv(), Fn->isVarArg(), - Outs, Fn->getContext()); - - // Create a vreg for each argument register that is not dead and is used - // outside of the entry block for the function. - for (Function::const_arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end(); - AI != E; ++AI) - if (!isOnlyUsedInEntryBlock(AI, EnableFastISel)) - InitializeRegForValue(AI); + GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI, + mf.getDataLayout()); + CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF, + Fn->isVarArg(), Outs, Fn->getContext()); // Initialize the mapping of values to registers. This is only set up for // instruction values that are used outside of the block that defines // them. Function::const_iterator BB = Fn->begin(), EB = Fn->end(); - for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) - if (const AllocaInst *AI = dyn_cast(I)) - if (const ConstantInt *CUI = dyn_cast(AI->getArraySize())) { - const Type *Ty = AI->getAllocatedType(); - uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); - unsigned Align = - std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), - AI->getAlignment()); - - TySize *= CUI->getZExtValue(); // Get total allocated size. - if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. - StaticAllocaMap[AI] = - MF->getFrameInfo()->CreateStackObject(TySize, Align, false); + for (; BB != EB; ++BB) + for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); + I != E; ++I) { + if (const AllocaInst *AI = dyn_cast(I)) { + // Static allocas can be folded into the initial stack frame adjustment. + if (AI->isStaticAlloca()) { + const ConstantInt *CUI = cast(AI->getArraySize()); + Type *Ty = AI->getAllocatedType(); + uint64_t TySize = MF->getDataLayout().getTypeAllocSize(Ty); + unsigned Align = + std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment(Ty), + AI->getAlignment()); + + TySize *= CUI->getZExtValue(); // Get total allocated size. + if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. + + StaticAllocaMap[AI] = + MF->getFrameInfo()->CreateStackObject(TySize, Align, false, AI); + + } else { + unsigned Align = + std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment( + AI->getAllocatedType()), + AI->getAlignment()); + unsigned StackAlign = + MF->getSubtarget().getFrameLowering()->getStackAlignment(); + if (Align <= StackAlign) + Align = 0; + // Inform the Frame Information that we have variable-sized objects. + MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1, AI); + } } - for (; BB != EB; ++BB) - for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) + // Look for inline asm that clobbers the SP register. + if (isa(I) || isa(I)) { + ImmutableCallSite CS(I); + if (isa(CS.getCalledValue())) { + unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); + const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); + std::vector Ops = + TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, CS); + for (size_t I = 0, E = Ops.size(); I != E; ++I) { + TargetLowering::AsmOperandInfo &Op = Ops[I]; + if (Op.Type == InlineAsm::isClobber) { + // Clobbers don't have SDValue operands, hence SDValue(). + TLI->ComputeConstraintToUse(Op, SDValue(), DAG); + std::pair PhysReg = + TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode, + Op.ConstraintVT); + if (PhysReg.first == SP) + MF->getFrameInfo()->setHasOpaqueSPAdjustment(true); + } + } + } + } + + // Look for calls to the @llvm.va_start intrinsic. We can omit some + // prologue boilerplate for variadic functions that don't examine their + // arguments. + if (const auto *II = dyn_cast(I)) { + if (II->getIntrinsicID() == Intrinsic::vastart) + MF->getFrameInfo()->setHasVAStart(true); + } + + // If we have a musttail call in a variadic funciton, we need to ensure we + // forward implicit register parameters. + if (const auto *CI = dyn_cast(I)) { + if (CI->isMustTailCall() && Fn->isVarArg()) + MF->getFrameInfo()->setHasMustTailInVarArgFunc(true); + } + + // Mark values used outside their block as exported, by allocating + // a virtual register for them. if (isUsedOutsideOfDefiningBlock(I)) if (!isa(I) || !StaticAllocaMap.count(cast(I))) InitializeRegForValue(I); + // Collect llvm.dbg.declare information. This is done now instead of + // during the initial isel pass through the IR so that it is done + // in a predictable order. + if (const DbgDeclareInst *DI = dyn_cast(I)) { + assert(DI->getVariable() && "Missing variable"); + assert(DI->getDebugLoc() && "Missing location"); + if (MMI.hasDebugInfo()) { + // Don't handle byval struct arguments or VLAs, for example. + // Non-byval arguments are handled here (they refer to the stack + // temporary alloca at this point). + const Value *Address = DI->getAddress(); + if (Address) { + if (const BitCastInst *BCI = dyn_cast(Address)) + Address = BCI->getOperand(0); + if (const AllocaInst *AI = dyn_cast(Address)) { + DenseMap::iterator SI = + StaticAllocaMap.find(AI); + if (SI != StaticAllocaMap.end()) { // Check for VLAs. + int FI = SI->second; + MMI.setVariableDbgInfo(DI->getVariable(), DI->getExpression(), + FI, DI->getDebugLoc()); + } + } + } + } + } + + // Decide the preferred extend type for a value. + PreferredExtendType[I] = getPreferredExtendForValue(I); + } + // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This // also creates the initial PHI MachineInstrs, though none of the input // operands are populated. @@ -142,16 +228,20 @@ void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf) { const PHINode *PN = dyn_cast(I); ++I) { if (PN->use_empty()) continue; + // Skip empty types + if (PN->getType()->isEmptyTy()) + continue; + DebugLoc DL = PN->getDebugLoc(); unsigned PHIReg = ValueMap[PN]; assert(PHIReg && "PHI node does not have an assigned virtual register!"); SmallVector ValueVTs; - ComputeValueVTs(TLI, PN->getType(), ValueVTs); + ComputeValueVTs(*TLI, MF->getDataLayout(), PN->getType(), ValueVTs); for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { EVT VT = ValueVTs[vti]; - unsigned NumRegisters = TLI.getNumRegisters(Fn->getContext(), VT); - const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); + unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); + const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); for (unsigned i = 0; i != NumRegisters; ++i) BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); PHIReg += NumRegisters; @@ -160,9 +250,80 @@ void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf) { } // Mark landing pad blocks. - for (BB = Fn->begin(); BB != EB; ++BB) - if (const InvokeInst *Invoke = dyn_cast(BB->getTerminator())) + SmallVector LPads; + for (BB = Fn->begin(); BB != EB; ++BB) { + if (const auto *Invoke = dyn_cast(BB->getTerminator())) MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad(); + if (BB->isLandingPad()) + LPads.push_back(BB->getLandingPadInst()); + } + + // If this is an MSVC EH personality, we need to do a bit more work. + EHPersonality Personality = EHPersonality::Unknown; + if (Fn->hasPersonalityFn()) + Personality = classifyEHPersonality(Fn->getPersonalityFn()); + if (!isMSVCEHPersonality(Personality)) + return; + + if (Personality == EHPersonality::MSVC_Win64SEH || + Personality == EHPersonality::MSVC_X86SEH) { + addSEHHandlersForLPads(LPads); + } + + WinEHFuncInfo &EHInfo = MMI.getWinEHFuncInfo(&fn); + if (Personality == EHPersonality::MSVC_CXX) { + const Function *WinEHParentFn = MMI.getWinEHParent(&fn); + calculateWinCXXEHStateNumbers(WinEHParentFn, EHInfo); + } + + // Copy the state numbers to LandingPadInfo for the current function, which + // could be a handler or the parent. This should happen for 32-bit SEH and + // C++ EH. + if (Personality == EHPersonality::MSVC_CXX || + Personality == EHPersonality::MSVC_X86SEH) { + for (const LandingPadInst *LP : LPads) { + MachineBasicBlock *LPadMBB = MBBMap[LP->getParent()]; + MMI.addWinEHState(LPadMBB, EHInfo.LandingPadStateMap[LP]); + } + } +} + +void FunctionLoweringInfo::addSEHHandlersForLPads( + ArrayRef LPads) { + MachineModuleInfo &MMI = MF->getMMI(); + + // Iterate over all landing pads with llvm.eh.actions calls. + for (const LandingPadInst *LP : LPads) { + const IntrinsicInst *ActionsCall = + dyn_cast(LP->getNextNode()); + if (!ActionsCall || + ActionsCall->getIntrinsicID() != Intrinsic::eh_actions) + continue; + + // Parse the llvm.eh.actions call we found. + MachineBasicBlock *LPadMBB = MBBMap[LP->getParent()]; + SmallVector, 4> Actions; + parseEHActions(ActionsCall, Actions); + + // Iterate EH actions from most to least precedence, which means + // iterating in reverse. + for (auto I = Actions.rbegin(), E = Actions.rend(); I != E; ++I) { + ActionHandler *Action = I->get(); + if (auto *CH = dyn_cast(Action)) { + const auto *Filter = + dyn_cast(CH->getSelector()->stripPointerCasts()); + assert((Filter || CH->getSelector()->isNullValue()) && + "expected function or catch-all"); + const auto *RecoverBA = + cast(CH->getHandlerBlockOrFunc()); + MMI.addSEHCatchHandler(LPadMBB, Filter, RecoverBA); + } else { + assert(isa(Action)); + const auto *Fini = cast(Action->getHandlerBlockOrFunc()); + MMI.addSEHCleanupHandler(LPadMBB, Fini); + } + } + } } /// clear - Clear out all the function-specific state. This returns this @@ -180,13 +341,19 @@ void FunctionLoweringInfo::clear() { CatchInfoFound.clear(); #endif LiveOutRegInfo.clear(); + VisitedBBs.clear(); ArgDbgValues.clear(); + ByValArgFrameIndexMap.clear(); RegFixups.clear(); + StatepointStackSlots.clear(); + StatepointRelocatedValues.clear(); + PreferredExtendType.clear(); } /// CreateReg - Allocate a single virtual register for the given type. -unsigned FunctionLoweringInfo::CreateReg(EVT VT) { - return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT)); +unsigned FunctionLoweringInfo::CreateReg(MVT VT) { + return RegInfo->createVirtualRegister( + MF->getSubtarget().getTargetLowering()->getRegClassFor(VT)); } /// CreateRegs - Allocate the appropriate number of virtual registers of @@ -196,16 +363,18 @@ unsigned FunctionLoweringInfo::CreateReg(EVT VT) { /// In the case that the given value has struct or array type, this function /// will assign registers for each member or element. /// -unsigned FunctionLoweringInfo::CreateRegs(const Type *Ty) { +unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) { + const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); + SmallVector ValueVTs; - ComputeValueVTs(TLI, Ty, ValueVTs); + ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); unsigned FirstReg = 0; for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { EVT ValueVT = ValueVTs[Value]; - EVT RegisterVT = TLI.getRegisterType(Ty->getContext(), ValueVT); + MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT); - unsigned NumRegs = TLI.getNumRegisters(Ty->getContext(), ValueVT); + unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT); for (unsigned i = 0; i != NumRegs; ++i) { unsigned R = CreateReg(RegisterVT); if (!FirstReg) FirstReg = R; @@ -214,70 +383,195 @@ unsigned FunctionLoweringInfo::CreateRegs(const Type *Ty) { return FirstReg; } -/// AddCatchInfo - Extract the personality and type infos from an eh.selector -/// call, and add them to the specified machine basic block. -void llvm::AddCatchInfo(const CallInst &I, MachineModuleInfo *MMI, - MachineBasicBlock *MBB) { - // Inform the MachineModuleInfo of the personality for this landing pad. - const ConstantExpr *CE = cast(I.getArgOperand(1)); - assert(CE->getOpcode() == Instruction::BitCast && - isa(CE->getOperand(0)) && - "Personality should be a function"); - MMI->addPersonality(MBB, cast(CE->getOperand(0))); - - // Gather all the type infos for this landing pad and pass them along to - // MachineModuleInfo. - std::vector TyInfo; - unsigned N = I.getNumArgOperands(); - - for (unsigned i = N - 1; i > 1; --i) { - if (const ConstantInt *CI = dyn_cast(I.getArgOperand(i))) { - unsigned FilterLength = CI->getZExtValue(); - unsigned FirstCatch = i + FilterLength + !FilterLength; - assert(FirstCatch <= N && "Invalid filter length"); - - if (FirstCatch < N) { - TyInfo.reserve(N - FirstCatch); - for (unsigned j = FirstCatch; j < N; ++j) - TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); - MMI->addCatchTypeInfo(MBB, TyInfo); - TyInfo.clear(); - } +/// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the +/// register is a PHI destination and the PHI's LiveOutInfo is not valid. If +/// the register's LiveOutInfo is for a smaller bit width, it is extended to +/// the larger bit width by zero extension. The bit width must be no smaller +/// than the LiveOutInfo's existing bit width. +const FunctionLoweringInfo::LiveOutInfo * +FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) { + if (!LiveOutRegInfo.inBounds(Reg)) + return nullptr; - if (!FilterLength) { - // Cleanup. - MMI->addCleanup(MBB); - } else { - // Filter. - TyInfo.reserve(FilterLength - 1); - for (unsigned j = i + 1; j < FirstCatch; ++j) - TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); - MMI->addFilterTypeInfo(MBB, TyInfo); - TyInfo.clear(); - } + LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; + if (!LOI->IsValid) + return nullptr; + + if (BitWidth > LOI->KnownZero.getBitWidth()) { + LOI->NumSignBits = 1; + LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth); + LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth); + } + + return LOI; +} + +/// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination +/// register based on the LiveOutInfo of its operands. +void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { + Type *Ty = PN->getType(); + if (!Ty->isIntegerTy() || Ty->isVectorTy()) + return; + + SmallVector ValueVTs; + ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); + assert(ValueVTs.size() == 1 && + "PHIs with non-vector integer types should have a single VT."); + EVT IntVT = ValueVTs[0]; + + if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1) + return; + IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT); + unsigned BitWidth = IntVT.getSizeInBits(); + + unsigned DestReg = ValueMap[PN]; + if (!TargetRegisterInfo::isVirtualRegister(DestReg)) + return; + LiveOutRegInfo.grow(DestReg); + LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; + + Value *V = PN->getIncomingValue(0); + if (isa(V) || isa(V)) { + DestLOI.NumSignBits = 1; + APInt Zero(BitWidth, 0); + DestLOI.KnownZero = Zero; + DestLOI.KnownOne = Zero; + return; + } + + if (ConstantInt *CI = dyn_cast(V)) { + APInt Val = CI->getValue().zextOrTrunc(BitWidth); + DestLOI.NumSignBits = Val.getNumSignBits(); + DestLOI.KnownZero = ~Val; + DestLOI.KnownOne = Val; + } else { + assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" + "CopyToReg node was created."); + unsigned SrcReg = ValueMap[V]; + if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { + DestLOI.IsValid = false; + return; + } + const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); + if (!SrcLOI) { + DestLOI.IsValid = false; + return; + } + DestLOI = *SrcLOI; + } + + assert(DestLOI.KnownZero.getBitWidth() == BitWidth && + DestLOI.KnownOne.getBitWidth() == BitWidth && + "Masks should have the same bit width as the type."); + + for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { + Value *V = PN->getIncomingValue(i); + if (isa(V) || isa(V)) { + DestLOI.NumSignBits = 1; + APInt Zero(BitWidth, 0); + DestLOI.KnownZero = Zero; + DestLOI.KnownOne = Zero; + return; + } - N = i; + if (ConstantInt *CI = dyn_cast(V)) { + APInt Val = CI->getValue().zextOrTrunc(BitWidth); + DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); + DestLOI.KnownZero &= ~Val; + DestLOI.KnownOne &= Val; + continue; } + + assert(ValueMap.count(V) && "V should have been placed in ValueMap when " + "its CopyToReg node was created."); + unsigned SrcReg = ValueMap[V]; + if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { + DestLOI.IsValid = false; + return; + } + const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); + if (!SrcLOI) { + DestLOI.IsValid = false; + return; + } + DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); + DestLOI.KnownZero &= SrcLOI->KnownZero; + DestLOI.KnownOne &= SrcLOI->KnownOne; } +} + +/// setArgumentFrameIndex - Record frame index for the byval +/// argument. This overrides previous frame index entry for this argument, +/// if any. +void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A, + int FI) { + ByValArgFrameIndexMap[A] = FI; +} + +/// getArgumentFrameIndex - Get frame index for the byval argument. +/// If the argument does not have any assigned frame index then 0 is +/// returned. +int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) { + DenseMap::iterator I = + ByValArgFrameIndexMap.find(A); + if (I != ByValArgFrameIndexMap.end()) + return I->second; + DEBUG(dbgs() << "Argument does not have assigned frame index!\n"); + return 0; +} - if (N > 2) { - TyInfo.reserve(N - 2); - for (unsigned j = 2; j < N; ++j) - TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); - MMI->addCatchTypeInfo(MBB, TyInfo); +/// ComputeUsesVAFloatArgument - Determine if any floating-point values are +/// being passed to this variadic function, and set the MachineModuleInfo's +/// usesVAFloatArgument flag if so. This flag is used to emit an undefined +/// reference to _fltused on Windows, which will link in MSVCRT's +/// floating-point support. +void llvm::ComputeUsesVAFloatArgument(const CallInst &I, + MachineModuleInfo *MMI) +{ + FunctionType *FT = cast( + I.getCalledValue()->getType()->getContainedType(0)); + if (FT->isVarArg() && !MMI->usesVAFloatArgument()) { + for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { + Type* T = I.getArgOperand(i)->getType(); + for (auto i : post_order(T)) { + if (i->isFloatingPointTy()) { + MMI->setUsesVAFloatArgument(true); + return; + } + } + } } } -void llvm::CopyCatchInfo(const BasicBlock *SrcBB, const BasicBlock *DestBB, - MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) { - for (BasicBlock::const_iterator I = SrcBB->begin(), E = --SrcBB->end(); - I != E; ++I) - if (const EHSelectorInst *EHSel = dyn_cast(I)) { - // Apply the catch info to DestBB. - AddCatchInfo(*EHSel, MMI, FLI.MBBMap[DestBB]); -#ifndef NDEBUG - if (!FLI.MBBMap[SrcBB]->isLandingPad()) - FLI.CatchInfoFound.insert(EHSel); -#endif +/// AddLandingPadInfo - Extract the exception handling information from the +/// landingpad instruction and add them to the specified machine module info. +void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI, + MachineBasicBlock *MBB) { + MMI.addPersonality( + MBB, + cast( + I.getParent()->getParent()->getPersonalityFn()->stripPointerCasts())); + + if (I.isCleanup()) + MMI.addCleanup(MBB); + + // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct, + // but we need to do it this way because of how the DWARF EH emitter + // processes the clauses. + for (unsigned i = I.getNumClauses(); i != 0; --i) { + Value *Val = I.getClause(i - 1); + if (I.isCatch(i - 1)) { + MMI.addCatchTypeInfo(MBB, + dyn_cast(Val->stripPointerCasts())); + } else { + // Add filters in a list. + Constant *CVal = cast(Val); + SmallVector FilterList; + for (User::op_iterator + II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) + FilterList.push_back(cast((*II)->stripPointerCasts())); + + MMI.addFilterTypeInfo(MBB, FilterList); } + } }