X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FCodeGen%2FSelectionDAG%2FFunctionLoweringInfo.cpp;h=bb40326ba2d16308178755602ff925599b33feaa;hb=9dea1d0d01f611d15fe4963d2241bc10546a243f;hp=40391dd1e36457a01fdee71d43b8e22f33fc89f3;hpb=7451d3e09d26115195280ba36f686a0a90815089;p=oota-llvm.git diff --git a/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp b/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp index 40391dd1e36..bb40326ba2d 100644 --- a/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp +++ b/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp @@ -12,33 +12,38 @@ // //===----------------------------------------------------------------------===// -#define DEBUG_TYPE "function-lowering-info" -#include "FunctionLoweringInfo.h" -#include "llvm/DerivedTypes.h" -#include "llvm/Function.h" -#include "llvm/Instructions.h" -#include "llvm/IntrinsicInst.h" -#include "llvm/LLVMContext.h" -#include "llvm/Module.h" +#include "llvm/CodeGen/FunctionLoweringInfo.h" +#include "llvm/ADT/PostOrderIterator.h" #include "llvm/CodeGen/Analysis.h" -#include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" -#include "llvm/Target/TargetRegisterInfo.h" -#include "llvm/Target/TargetData.h" -#include "llvm/Target/TargetFrameInfo.h" -#include "llvm/Target/TargetInstrInfo.h" -#include "llvm/Target/TargetIntrinsicInfo.h" -#include "llvm/Target/TargetLowering.h" -#include "llvm/Target/TargetOptions.h" +#include "llvm/CodeGen/WinEHFuncInfo.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfo.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Module.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetFrameLowering.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetLowering.h" +#include "llvm/Target/TargetOptions.h" +#include "llvm/Target/TargetRegisterInfo.h" +#include "llvm/Target/TargetSubtargetInfo.h" #include using namespace llvm; +#define DEBUG_TYPE "function-lowering-info" + /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by /// PHI nodes or outside of the basic block that defines it, or used by a /// switch or atomic instruction, which may expand to multiple basic blocks. @@ -46,72 +51,183 @@ static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { if (I->use_empty()) return false; if (isa(I)) return true; const BasicBlock *BB = I->getParent(); - for (Value::const_use_iterator UI = I->use_begin(), E = I->use_end(); - UI != E; ++UI) - if (cast(*UI)->getParent() != BB || isa(*UI)) + for (const User *U : I->users()) + if (cast(U)->getParent() != BB || isa(U)) return true; + return false; } -/// isOnlyUsedInEntryBlock - If the specified argument is only used in the -/// entry block, return true. This includes arguments used by switches, since -/// the switch may expand into multiple basic blocks. -static bool isOnlyUsedInEntryBlock(const Argument *A, bool EnableFastISel) { - // With FastISel active, we may be splitting blocks, so force creation - // of virtual registers for all non-dead arguments. - if (EnableFastISel) - return A->use_empty(); - - const BasicBlock *Entry = A->getParent()->begin(); - for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); - UI != E; ++UI) - if (cast(*UI)->getParent() != Entry || isa(*UI)) - return false; // Use not in entry block. - return true; +static ISD::NodeType getPreferredExtendForValue(const Value *V) { + // For the users of the source value being used for compare instruction, if + // the number of signed predicate is greater than unsigned predicate, we + // prefer to use SIGN_EXTEND. + // + // With this optimization, we would be able to reduce some redundant sign or + // zero extension instruction, and eventually more machine CSE opportunities + // can be exposed. + ISD::NodeType ExtendKind = ISD::ANY_EXTEND; + unsigned NumOfSigned = 0, NumOfUnsigned = 0; + for (const User *U : V->users()) { + if (const auto *CI = dyn_cast(U)) { + NumOfSigned += CI->isSigned(); + NumOfUnsigned += CI->isUnsigned(); + } + } + if (NumOfSigned > NumOfUnsigned) + ExtendKind = ISD::SIGN_EXTEND; + + return ExtendKind; } -FunctionLoweringInfo::FunctionLoweringInfo(const TargetLowering &tli) - : TLI(tli) { +namespace { +struct WinEHNumbering { + WinEHNumbering(WinEHFuncInfo &FuncInfo) : FuncInfo(FuncInfo), NextState(0) {} + + WinEHFuncInfo &FuncInfo; + int NextState; + + SmallVector HandlerStack; + SmallPtrSet VisitedHandlers; + + int currentEHNumber() const { + return HandlerStack.empty() ? -1 : HandlerStack.back()->getEHState(); + } + + void createUnwindMapEntry(int ToState, ActionHandler *AH); + void createTryBlockMapEntry(int TryLow, int TryHigh, + ArrayRef Handlers); + void processCallSite(ArrayRef Actions, ImmutableCallSite CS); + void calculateStateNumbers(const Function &F); +}; } -void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf) { +void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf, + SelectionDAG *DAG) { Fn = &fn; MF = &mf; + TLI = MF->getSubtarget().getTargetLowering(); RegInfo = &MF->getRegInfo(); + MachineModuleInfo &MMI = MF->getMMI(); - // Create a vreg for each argument register that is not dead and is used - // outside of the entry block for the function. - for (Function::const_arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end(); - AI != E; ++AI) - if (!isOnlyUsedInEntryBlock(AI, EnableFastISel)) - InitializeRegForValue(AI); + // Check whether the function can return without sret-demotion. + SmallVector Outs; + GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI); + CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF, + Fn->isVarArg(), Outs, Fn->getContext()); // Initialize the mapping of values to registers. This is only set up for // instruction values that are used outside of the block that defines // them. Function::const_iterator BB = Fn->begin(), EB = Fn->end(); - for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) - if (const AllocaInst *AI = dyn_cast(I)) - if (const ConstantInt *CUI = dyn_cast(AI->getArraySize())) { - const Type *Ty = AI->getAllocatedType(); - uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); - unsigned Align = - std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), - AI->getAlignment()); - - TySize *= CUI->getZExtValue(); // Get total allocated size. - if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. - StaticAllocaMap[AI] = - MF->getFrameInfo()->CreateStackObject(TySize, Align, false); + for (; BB != EB; ++BB) + for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); + I != E; ++I) { + if (const AllocaInst *AI = dyn_cast(I)) { + // Static allocas can be folded into the initial stack frame adjustment. + if (AI->isStaticAlloca()) { + const ConstantInt *CUI = cast(AI->getArraySize()); + Type *Ty = AI->getAllocatedType(); + uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); + unsigned Align = + std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), + AI->getAlignment()); + + TySize *= CUI->getZExtValue(); // Get total allocated size. + if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. + + StaticAllocaMap[AI] = + MF->getFrameInfo()->CreateStackObject(TySize, Align, false, AI); + + } else { + unsigned Align = std::max( + (unsigned)TLI->getDataLayout()->getPrefTypeAlignment( + AI->getAllocatedType()), + AI->getAlignment()); + unsigned StackAlign = + MF->getSubtarget().getFrameLowering()->getStackAlignment(); + if (Align <= StackAlign) + Align = 0; + // Inform the Frame Information that we have variable-sized objects. + MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1, AI); + } } - for (; BB != EB; ++BB) - for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) + // Look for inline asm that clobbers the SP register. + if (isa(I) || isa(I)) { + ImmutableCallSite CS(I); + if (isa(CS.getCalledValue())) { + unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); + const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); + std::vector Ops = + TLI->ParseConstraints(TRI, CS); + for (size_t I = 0, E = Ops.size(); I != E; ++I) { + TargetLowering::AsmOperandInfo &Op = Ops[I]; + if (Op.Type == InlineAsm::isClobber) { + // Clobbers don't have SDValue operands, hence SDValue(). + TLI->ComputeConstraintToUse(Op, SDValue(), DAG); + std::pair PhysReg = + TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode, + Op.ConstraintVT); + if (PhysReg.first == SP) + MF->getFrameInfo()->setHasInlineAsmWithSPAdjust(true); + } + } + } + } + + // Look for calls to the @llvm.va_start intrinsic. We can omit some + // prologue boilerplate for variadic functions that don't examine their + // arguments. + if (const auto *II = dyn_cast(I)) { + if (II->getIntrinsicID() == Intrinsic::vastart) + MF->getFrameInfo()->setHasVAStart(true); + } + + // If we have a musttail call in a variadic funciton, we need to ensure we + // forward implicit register parameters. + if (const auto *CI = dyn_cast(I)) { + if (CI->isMustTailCall() && Fn->isVarArg()) + MF->getFrameInfo()->setHasMustTailInVarArgFunc(true); + } + + // Mark values used outside their block as exported, by allocating + // a virtual register for them. if (isUsedOutsideOfDefiningBlock(I)) if (!isa(I) || !StaticAllocaMap.count(cast(I))) InitializeRegForValue(I); + // Collect llvm.dbg.declare information. This is done now instead of + // during the initial isel pass through the IR so that it is done + // in a predictable order. + if (const DbgDeclareInst *DI = dyn_cast(I)) { + DIVariable DIVar = DI->getVariable(); + if (MMI.hasDebugInfo() && DIVar && DI->getDebugLoc()) { + // Don't handle byval struct arguments or VLAs, for example. + // Non-byval arguments are handled here (they refer to the stack + // temporary alloca at this point). + const Value *Address = DI->getAddress(); + if (Address) { + if (const BitCastInst *BCI = dyn_cast(Address)) + Address = BCI->getOperand(0); + if (const AllocaInst *AI = dyn_cast(Address)) { + DenseMap::iterator SI = + StaticAllocaMap.find(AI); + if (SI != StaticAllocaMap.end()) { // Check for VLAs. + int FI = SI->second; + MMI.setVariableDbgInfo(DI->getVariable(), DI->getExpression(), + FI, DI->getDebugLoc()); + } + } + } + } + } + + // Decide the preferred extend type for a value. + PreferredExtendType[I] = getPreferredExtendForValue(I); + } + // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This // also creates the initial PHI MachineInstrs, though none of the input // operands are populated. @@ -132,16 +248,20 @@ void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf) { const PHINode *PN = dyn_cast(I); ++I) { if (PN->use_empty()) continue; + // Skip empty types + if (PN->getType()->isEmptyTy()) + continue; + DebugLoc DL = PN->getDebugLoc(); unsigned PHIReg = ValueMap[PN]; assert(PHIReg && "PHI node does not have an assigned virtual register!"); SmallVector ValueVTs; - ComputeValueVTs(TLI, PN->getType(), ValueVTs); + ComputeValueVTs(*TLI, PN->getType(), ValueVTs); for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { EVT VT = ValueVTs[vti]; - unsigned NumRegisters = TLI.getNumRegisters(Fn->getContext(), VT); - const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); + unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); + const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); for (unsigned i = 0; i != NumRegisters; ++i) BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); PHIReg += NumRegisters; @@ -150,9 +270,230 @@ void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf) { } // Mark landing pad blocks. - for (BB = Fn->begin(); BB != EB; ++BB) - if (const InvokeInst *Invoke = dyn_cast(BB->getTerminator())) + const LandingPadInst *LP = nullptr; + for (BB = Fn->begin(); BB != EB; ++BB) { + if (const auto *Invoke = dyn_cast(BB->getTerminator())) MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad(); + if (BB->isLandingPad()) + LP = BB->getLandingPadInst(); + } + + // Calculate EH numbers for MSVC C++ EH and save SEH handlers if necessary. + EHPersonality Personality = EHPersonality::Unknown; + if (LP) + Personality = classifyEHPersonality(LP->getPersonalityFn()); + if (Personality == EHPersonality::MSVC_Win64SEH) { + addSEHHandlersForLPads(); + } else if (Personality == EHPersonality::MSVC_CXX) { + const Function *WinEHParentFn = MMI.getWinEHParent(&fn); + WinEHFuncInfo &FI = MMI.getWinEHFuncInfo(WinEHParentFn); + if (FI.LandingPadStateMap.empty()) { + WinEHNumbering Num(FI); + Num.calculateStateNumbers(*WinEHParentFn); + // Pop everything on the handler stack. + Num.processCallSite(None, ImmutableCallSite()); + } + } +} + +void FunctionLoweringInfo::addSEHHandlersForLPads() { + MachineModuleInfo &MMI = MF->getMMI(); + + // Iterate over all landing pads with llvm.eh.actions calls. + for (const BasicBlock &BB : *Fn) { + const LandingPadInst *LP = BB.getLandingPadInst(); + if (!LP) + continue; + const IntrinsicInst *ActionsCall = + dyn_cast(LP->getNextNode()); + if (!ActionsCall || + ActionsCall->getIntrinsicID() != Intrinsic::eh_actions) + continue; + + // Parse the llvm.eh.actions call we found. + MachineBasicBlock *LPadMBB = MBBMap[LP->getParent()]; + SmallVector Actions; + parseEHActions(ActionsCall, Actions); + + // Iterate EH actions from most to least precedence, which means + // iterating in reverse. + for (auto I = Actions.rbegin(), E = Actions.rend(); I != E; ++I) { + ActionHandler *Action = *I; + if (auto *CH = dyn_cast(Action)) { + const auto *Filter = + dyn_cast(CH->getSelector()->stripPointerCasts()); + assert((Filter || CH->getSelector()->isNullValue()) && + "expected function or catch-all"); + const auto *RecoverBA = + cast(CH->getHandlerBlockOrFunc()); + MMI.addSEHCatchHandler(LPadMBB, Filter, RecoverBA); + } else { + assert(isa(Action)); + const auto *Fini = cast(Action->getHandlerBlockOrFunc()); + MMI.addSEHCleanupHandler(LPadMBB, Fini); + } + } + DeleteContainerPointers(Actions); + } +} + +void WinEHNumbering::createUnwindMapEntry(int ToState, ActionHandler *AH) { + WinEHUnwindMapEntry UME; + UME.ToState = ToState; + if (auto *CH = dyn_cast_or_null(AH)) + UME.Cleanup = cast(CH->getHandlerBlockOrFunc()); + else + UME.Cleanup = nullptr; + FuncInfo.UnwindMap.push_back(UME); +} + +void WinEHNumbering::createTryBlockMapEntry(int TryLow, int TryHigh, + ArrayRef Handlers) { + WinEHTryBlockMapEntry TBME; + TBME.TryLow = TryLow; + TBME.TryHigh = TryHigh; + assert(TBME.TryLow <= TBME.TryHigh); + for (CatchHandler *CH : Handlers) { + WinEHHandlerType HT; + if (CH->getSelector()->isNullValue()) { + HT.Adjectives = 0x40; + HT.TypeDescriptor = nullptr; + } else { + auto *GV = cast(CH->getSelector()->stripPointerCasts()); + // Selectors are always pointers to GlobalVariables with 'struct' type. + // The struct has two fields, adjectives and a type descriptor. + auto *CS = cast(GV->getInitializer()); + HT.Adjectives = + cast(CS->getAggregateElement(0U))->getZExtValue(); + HT.TypeDescriptor = + cast(CS->getAggregateElement(1)->stripPointerCasts()); + } + HT.Handler = cast(CH->getHandlerBlockOrFunc()); + HT.CatchObjRecoverIdx = CH->getExceptionVarIndex(); + TBME.HandlerArray.push_back(HT); + } + FuncInfo.TryBlockMap.push_back(TBME); +} + +static void print_name(const Value *V) { +#ifndef NDEBUG + if (!V) { + DEBUG(dbgs() << "null"); + return; + } + + if (const auto *F = dyn_cast(V)) + DEBUG(dbgs() << F->getName()); + else + DEBUG(V->dump()); +#endif +} + +void WinEHNumbering::processCallSite(ArrayRef Actions, + ImmutableCallSite CS) { + int FirstMismatch = 0; + for (int E = std::min(HandlerStack.size(), Actions.size()); FirstMismatch < E; + ++FirstMismatch) { + if (HandlerStack[FirstMismatch]->getHandlerBlockOrFunc() != + Actions[FirstMismatch]->getHandlerBlockOrFunc()) + break; + delete Actions[FirstMismatch]; + } + + bool EnteringScope = (int)Actions.size() > FirstMismatch; + + // Don't recurse while we are looping over the handler stack. Instead, defer + // the numbering of the catch handlers until we are done popping. + SmallVector PoppedCatches; + for (int I = HandlerStack.size() - 1; I >= FirstMismatch; --I) { + if (auto *CH = dyn_cast(HandlerStack.back())) { + PoppedCatches.push_back(CH); + } else { + // Delete cleanup handlers + delete HandlerStack.back(); + } + HandlerStack.pop_back(); + } + + // We need to create a new state number if we are exiting a try scope and we + // will not push any more actions. + int TryHigh = NextState - 1; + if (!EnteringScope && !PoppedCatches.empty()) { + createUnwindMapEntry(currentEHNumber(), nullptr); + ++NextState; + } + + int LastTryLowIdx = 0; + for (int I = 0, E = PoppedCatches.size(); I != E; ++I) { + CatchHandler *CH = PoppedCatches[I]; + if (I + 1 == E || CH->getEHState() != PoppedCatches[I + 1]->getEHState()) { + int TryLow = CH->getEHState(); + auto Handlers = + makeArrayRef(&PoppedCatches[LastTryLowIdx], I - LastTryLowIdx + 1); + createTryBlockMapEntry(TryLow, TryHigh, Handlers); + LastTryLowIdx = I + 1; + } + } + + for (CatchHandler *CH : PoppedCatches) { + if (auto *F = dyn_cast(CH->getHandlerBlockOrFunc())) + calculateStateNumbers(*F); + delete CH; + } + + bool LastActionWasCatch = false; + for (size_t I = FirstMismatch; I != Actions.size(); ++I) { + // We can reuse eh states when pushing two catches for the same invoke. + bool CurrActionIsCatch = isa(Actions[I]); + // FIXME: Reenable this optimization! + if (CurrActionIsCatch && LastActionWasCatch && false) { + Actions[I]->setEHState(currentEHNumber()); + } else { + createUnwindMapEntry(currentEHNumber(), Actions[I]); + Actions[I]->setEHState(NextState); + NextState++; + DEBUG(dbgs() << "Creating unwind map entry for: ("); + print_name(Actions[I]->getHandlerBlockOrFunc()); + DEBUG(dbgs() << ", " << currentEHNumber() << ")\n"); + } + HandlerStack.push_back(Actions[I]); + LastActionWasCatch = CurrActionIsCatch; + } + + DEBUG(dbgs() << "In EHState " << currentEHNumber() << " for CallSite: "); + print_name(CS ? CS.getCalledValue() : nullptr); + DEBUG(dbgs() << '\n'); +} + +void WinEHNumbering::calculateStateNumbers(const Function &F) { + auto I = VisitedHandlers.insert(&F); + if (!I.second) + return; // We've already visited this handler, don't renumber it. + + DEBUG(dbgs() << "Calculating state numbers for: " << F.getName() << '\n'); + SmallVector ActionList; + for (const BasicBlock &BB : F) { + for (const Instruction &I : BB) { + const auto *CI = dyn_cast(&I); + if (!CI || CI->doesNotThrow()) + continue; + processCallSite(None, CI); + } + const auto *II = dyn_cast(BB.getTerminator()); + if (!II) + continue; + const LandingPadInst *LPI = II->getLandingPadInst(); + auto *ActionsCall = dyn_cast(LPI->getNextNode()); + if (!ActionsCall) + continue; + assert(ActionsCall->getIntrinsicID() == Intrinsic::eh_actions); + parseEHActions(ActionsCall, ActionList); + processCallSite(ActionList, II); + ActionList.clear(); + FuncInfo.LandingPadStateMap[LPI] = currentEHNumber(); + } + + FuncInfo.CatchHandlerMaxState[&F] = NextState - 1; } /// clear - Clear out all the function-specific state. This returns this @@ -170,102 +511,234 @@ void FunctionLoweringInfo::clear() { CatchInfoFound.clear(); #endif LiveOutRegInfo.clear(); + VisitedBBs.clear(); ArgDbgValues.clear(); + ByValArgFrameIndexMap.clear(); + RegFixups.clear(); + StatepointStackSlots.clear(); + PreferredExtendType.clear(); } -unsigned FunctionLoweringInfo::MakeReg(EVT VT) { - return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT)); +/// CreateReg - Allocate a single virtual register for the given type. +unsigned FunctionLoweringInfo::CreateReg(MVT VT) { + return RegInfo->createVirtualRegister( + MF->getSubtarget().getTargetLowering()->getRegClassFor(VT)); } -/// CreateRegForValue - Allocate the appropriate number of virtual registers of +/// CreateRegs - Allocate the appropriate number of virtual registers of /// the correctly promoted or expanded types. Assign these registers /// consecutive vreg numbers and return the first assigned number. /// /// In the case that the given value has struct or array type, this function /// will assign registers for each member or element. /// -unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) { +unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) { + const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); + SmallVector ValueVTs; - ComputeValueVTs(TLI, V->getType(), ValueVTs); + ComputeValueVTs(*TLI, Ty, ValueVTs); unsigned FirstReg = 0; for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { EVT ValueVT = ValueVTs[Value]; - EVT RegisterVT = TLI.getRegisterType(V->getContext(), ValueVT); + MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT); - unsigned NumRegs = TLI.getNumRegisters(V->getContext(), ValueVT); + unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT); for (unsigned i = 0; i != NumRegs; ++i) { - unsigned R = MakeReg(RegisterVT); + unsigned R = CreateReg(RegisterVT); if (!FirstReg) FirstReg = R; } } return FirstReg; } -/// AddCatchInfo - Extract the personality and type infos from an eh.selector -/// call, and add them to the specified machine basic block. -void llvm::AddCatchInfo(const CallInst &I, MachineModuleInfo *MMI, - MachineBasicBlock *MBB) { - // Inform the MachineModuleInfo of the personality for this landing pad. - const ConstantExpr *CE = cast(I.getOperand(2)); - assert(CE->getOpcode() == Instruction::BitCast && - isa(CE->getOperand(0)) && - "Personality should be a function"); - MMI->addPersonality(MBB, cast(CE->getOperand(0))); - - // Gather all the type infos for this landing pad and pass them along to - // MachineModuleInfo. - std::vector TyInfo; - unsigned N = I.getNumOperands(); - - for (unsigned i = N - 1; i > 2; --i) { - if (const ConstantInt *CI = dyn_cast(I.getOperand(i))) { - unsigned FilterLength = CI->getZExtValue(); - unsigned FirstCatch = i + FilterLength + !FilterLength; - assert (FirstCatch <= N && "Invalid filter length"); - - if (FirstCatch < N) { - TyInfo.reserve(N - FirstCatch); - for (unsigned j = FirstCatch; j < N; ++j) - TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); - MMI->addCatchTypeInfo(MBB, TyInfo); - TyInfo.clear(); - } +/// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the +/// register is a PHI destination and the PHI's LiveOutInfo is not valid. If +/// the register's LiveOutInfo is for a smaller bit width, it is extended to +/// the larger bit width by zero extension. The bit width must be no smaller +/// than the LiveOutInfo's existing bit width. +const FunctionLoweringInfo::LiveOutInfo * +FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) { + if (!LiveOutRegInfo.inBounds(Reg)) + return nullptr; - if (!FilterLength) { - // Cleanup. - MMI->addCleanup(MBB); - } else { - // Filter. - TyInfo.reserve(FilterLength - 1); - for (unsigned j = i + 1; j < FirstCatch; ++j) - TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); - MMI->addFilterTypeInfo(MBB, TyInfo); - TyInfo.clear(); - } + LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; + if (!LOI->IsValid) + return nullptr; + + if (BitWidth > LOI->KnownZero.getBitWidth()) { + LOI->NumSignBits = 1; + LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth); + LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth); + } - N = i; + return LOI; +} + +/// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination +/// register based on the LiveOutInfo of its operands. +void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { + Type *Ty = PN->getType(); + if (!Ty->isIntegerTy() || Ty->isVectorTy()) + return; + + SmallVector ValueVTs; + ComputeValueVTs(*TLI, Ty, ValueVTs); + assert(ValueVTs.size() == 1 && + "PHIs with non-vector integer types should have a single VT."); + EVT IntVT = ValueVTs[0]; + + if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1) + return; + IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT); + unsigned BitWidth = IntVT.getSizeInBits(); + + unsigned DestReg = ValueMap[PN]; + if (!TargetRegisterInfo::isVirtualRegister(DestReg)) + return; + LiveOutRegInfo.grow(DestReg); + LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; + + Value *V = PN->getIncomingValue(0); + if (isa(V) || isa(V)) { + DestLOI.NumSignBits = 1; + APInt Zero(BitWidth, 0); + DestLOI.KnownZero = Zero; + DestLOI.KnownOne = Zero; + return; + } + + if (ConstantInt *CI = dyn_cast(V)) { + APInt Val = CI->getValue().zextOrTrunc(BitWidth); + DestLOI.NumSignBits = Val.getNumSignBits(); + DestLOI.KnownZero = ~Val; + DestLOI.KnownOne = Val; + } else { + assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" + "CopyToReg node was created."); + unsigned SrcReg = ValueMap[V]; + if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { + DestLOI.IsValid = false; + return; } + const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); + if (!SrcLOI) { + DestLOI.IsValid = false; + return; + } + DestLOI = *SrcLOI; } - if (N > 3) { - TyInfo.reserve(N - 3); - for (unsigned j = 3; j < N; ++j) - TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); - MMI->addCatchTypeInfo(MBB, TyInfo); + assert(DestLOI.KnownZero.getBitWidth() == BitWidth && + DestLOI.KnownOne.getBitWidth() == BitWidth && + "Masks should have the same bit width as the type."); + + for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { + Value *V = PN->getIncomingValue(i); + if (isa(V) || isa(V)) { + DestLOI.NumSignBits = 1; + APInt Zero(BitWidth, 0); + DestLOI.KnownZero = Zero; + DestLOI.KnownOne = Zero; + return; + } + + if (ConstantInt *CI = dyn_cast(V)) { + APInt Val = CI->getValue().zextOrTrunc(BitWidth); + DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); + DestLOI.KnownZero &= ~Val; + DestLOI.KnownOne &= Val; + continue; + } + + assert(ValueMap.count(V) && "V should have been placed in ValueMap when " + "its CopyToReg node was created."); + unsigned SrcReg = ValueMap[V]; + if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { + DestLOI.IsValid = false; + return; + } + const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); + if (!SrcLOI) { + DestLOI.IsValid = false; + return; + } + DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); + DestLOI.KnownZero &= SrcLOI->KnownZero; + DestLOI.KnownOne &= SrcLOI->KnownOne; } } -void llvm::CopyCatchInfo(const BasicBlock *SrcBB, const BasicBlock *DestBB, - MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) { - for (BasicBlock::const_iterator I = SrcBB->begin(), E = --SrcBB->end(); - I != E; ++I) - if (const EHSelectorInst *EHSel = dyn_cast(I)) { - // Apply the catch info to DestBB. - AddCatchInfo(*EHSel, MMI, FLI.MBBMap[DestBB]); -#ifndef NDEBUG - if (!FLI.MBBMap[SrcBB]->isLandingPad()) - FLI.CatchInfoFound.insert(EHSel); -#endif +/// setArgumentFrameIndex - Record frame index for the byval +/// argument. This overrides previous frame index entry for this argument, +/// if any. +void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A, + int FI) { + ByValArgFrameIndexMap[A] = FI; +} + +/// getArgumentFrameIndex - Get frame index for the byval argument. +/// If the argument does not have any assigned frame index then 0 is +/// returned. +int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) { + DenseMap::iterator I = + ByValArgFrameIndexMap.find(A); + if (I != ByValArgFrameIndexMap.end()) + return I->second; + DEBUG(dbgs() << "Argument does not have assigned frame index!\n"); + return 0; +} + +/// ComputeUsesVAFloatArgument - Determine if any floating-point values are +/// being passed to this variadic function, and set the MachineModuleInfo's +/// usesVAFloatArgument flag if so. This flag is used to emit an undefined +/// reference to _fltused on Windows, which will link in MSVCRT's +/// floating-point support. +void llvm::ComputeUsesVAFloatArgument(const CallInst &I, + MachineModuleInfo *MMI) +{ + FunctionType *FT = cast( + I.getCalledValue()->getType()->getContainedType(0)); + if (FT->isVarArg() && !MMI->usesVAFloatArgument()) { + for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { + Type* T = I.getArgOperand(i)->getType(); + for (auto i : post_order(T)) { + if (i->isFloatingPointTy()) { + MMI->setUsesVAFloatArgument(true); + return; + } + } } + } +} + +/// AddLandingPadInfo - Extract the exception handling information from the +/// landingpad instruction and add them to the specified machine module info. +void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI, + MachineBasicBlock *MBB) { + MMI.addPersonality(MBB, + cast(I.getPersonalityFn()->stripPointerCasts())); + + if (I.isCleanup()) + MMI.addCleanup(MBB); + + // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct, + // but we need to do it this way because of how the DWARF EH emitter + // processes the clauses. + for (unsigned i = I.getNumClauses(); i != 0; --i) { + Value *Val = I.getClause(i - 1); + if (I.isCatch(i - 1)) { + MMI.addCatchTypeInfo(MBB, + dyn_cast(Val->stripPointerCasts())); + } else { + // Add filters in a list. + Constant *CVal = cast(Val); + SmallVector FilterList; + for (User::op_iterator + II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) + FilterList.push_back(cast((*II)->stripPointerCasts())); + + MMI.addFilterTypeInfo(MBB, FilterList); + } + } }