X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FCodeGen%2FScheduleDAGInstrs.cpp;h=34b8ab0b47f25341bb860b44b71b0c740680067c;hb=1b3f9198ab3880be34b6252423b9e388b5cd6a5e;hp=cfa639e940b42359533c20697ee310483cb42d7b;hpb=3f23744df4809eba94284e601e81489212c974d4;p=oota-llvm.git diff --git a/lib/CodeGen/ScheduleDAGInstrs.cpp b/lib/CodeGen/ScheduleDAGInstrs.cpp index cfa639e940b..34b8ab0b47f 100644 --- a/lib/CodeGen/ScheduleDAGInstrs.cpp +++ b/lib/CodeGen/ScheduleDAGInstrs.cpp @@ -13,66 +13,238 @@ //===----------------------------------------------------------------------===// #define DEBUG_TYPE "sched-instrs" -#include "llvm/CodeGen/MachineDominators.h" +#include "ScheduleDAGInstrs.h" +#include "llvm/Operator.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" -#include "llvm/CodeGen/ScheduleDAGInstrs.h" #include "llvm/CodeGen/PseudoSourceValue.h" +#include "llvm/MC/MCInstrItineraries.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetRegisterInfo.h" -#include "llvm/Target/TargetSubtarget.h" -#include "llvm/Support/Compiler.h" +#include "llvm/Target/TargetSubtargetInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/SmallSet.h" -#include using namespace llvm; -ScheduleDAGInstrs::ScheduleDAGInstrs(MachineBasicBlock *bb, - const TargetMachine &tm, +ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, const MachineLoopInfo &mli, const MachineDominatorTree &mdt) - : ScheduleDAG(0, bb, tm), MLI(mli), MDT(mdt) {} + : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()), + InstrItins(mf.getTarget().getInstrItineraryData()), + Defs(TRI->getNumRegs()), Uses(TRI->getNumRegs()), + LoopRegs(MLI, MDT), FirstDbgValue(0) { + DbgValues.clear(); +} + +/// Run - perform scheduling. +/// +void ScheduleDAGInstrs::Run(MachineBasicBlock *bb, + MachineBasicBlock::iterator begin, + MachineBasicBlock::iterator end, + unsigned endcount) { + BB = bb; + Begin = begin; + InsertPosIndex = endcount; + + ScheduleDAG::Run(bb, end); +} + +/// getUnderlyingObjectFromInt - This is the function that does the work of +/// looking through basic ptrtoint+arithmetic+inttoptr sequences. +static const Value *getUnderlyingObjectFromInt(const Value *V) { + do { + if (const Operator *U = dyn_cast(V)) { + // If we find a ptrtoint, we can transfer control back to the + // regular getUnderlyingObjectFromInt. + if (U->getOpcode() == Instruction::PtrToInt) + return U->getOperand(0); + // If we find an add of a constant or a multiplied value, it's + // likely that the other operand will lead us to the base + // object. We don't have to worry about the case where the + // object address is somehow being computed by the multiply, + // because our callers only care when the result is an + // identifibale object. + if (U->getOpcode() != Instruction::Add || + (!isa(U->getOperand(1)) && + Operator::getOpcode(U->getOperand(1)) != Instruction::Mul)) + return V; + V = U->getOperand(0); + } else { + return V; + } + assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); + } while (1); +} + +/// getUnderlyingObject - This is a wrapper around GetUnderlyingObject +/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences. +static const Value *getUnderlyingObject(const Value *V) { + // First just call Value::getUnderlyingObject to let it do what it does. + do { + V = GetUnderlyingObject(V); + // If it found an inttoptr, use special code to continue climing. + if (Operator::getOpcode(V) != Instruction::IntToPtr) + break; + const Value *O = getUnderlyingObjectFromInt(cast(V)->getOperand(0)); + // If that succeeded in finding a pointer, continue the search. + if (!O->getType()->isPointerTy()) + break; + V = O; + } while (1); + return V; +} + +/// getUnderlyingObjectForInstr - If this machine instr has memory reference +/// information and it can be tracked to a normal reference to a known +/// object, return the Value for that object. Otherwise return null. +static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI, + const MachineFrameInfo *MFI, + bool &MayAlias) { + MayAlias = true; + if (!MI->hasOneMemOperand() || + !(*MI->memoperands_begin())->getValue() || + (*MI->memoperands_begin())->isVolatile()) + return 0; + + const Value *V = (*MI->memoperands_begin())->getValue(); + if (!V) + return 0; + + V = getUnderlyingObject(V); + if (const PseudoSourceValue *PSV = dyn_cast(V)) { + // For now, ignore PseudoSourceValues which may alias LLVM IR values + // because the code that uses this function has no way to cope with + // such aliases. + if (PSV->isAliased(MFI)) + return 0; + + MayAlias = PSV->mayAlias(MFI); + return V; + } + + if (isIdentifiedObject(V)) + return V; + + return 0; +} + +void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) { + LoopRegs.Deps.clear(); + if (MachineLoop *ML = MLI.getLoopFor(BB)) + if (BB == ML->getLoopLatch()) { + MachineBasicBlock *Header = ML->getHeader(); + for (MachineBasicBlock::livein_iterator I = Header->livein_begin(), + E = Header->livein_end(); I != E; ++I) + LoopLiveInRegs.insert(*I); + LoopRegs.VisitLoop(ML); + } +} + +/// AddSchedBarrierDeps - Add dependencies from instructions in the current +/// list of instructions being scheduled to scheduling barrier by adding +/// the exit SU to the register defs and use list. This is because we want to +/// make sure instructions which define registers that are either used by +/// the terminator or are live-out are properly scheduled. This is +/// especially important when the definition latency of the return value(s) +/// are too high to be hidden by the branch or when the liveout registers +/// used by instructions in the fallthrough block. +void ScheduleDAGInstrs::AddSchedBarrierDeps() { + MachineInstr *ExitMI = InsertPos != BB->end() ? &*InsertPos : 0; + ExitSU.setInstr(ExitMI); + bool AllDepKnown = ExitMI && + (ExitMI->getDesc().isCall() || ExitMI->getDesc().isBarrier()); + if (ExitMI && AllDepKnown) { + // If it's a call or a barrier, add dependencies on the defs and uses of + // instruction. + for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) { + const MachineOperand &MO = ExitMI->getOperand(i); + if (!MO.isReg() || MO.isDef()) continue; + unsigned Reg = MO.getReg(); + if (Reg == 0) continue; -void ScheduleDAGInstrs::BuildSchedUnits() { - SUnits.clear(); + assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!"); + Uses[Reg].push_back(&ExitSU); + } + } else { + // For others, e.g. fallthrough, conditional branch, assume the exit + // uses all the registers that are livein to the successor blocks. + SmallSet Seen; + for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), + SE = BB->succ_end(); SI != SE; ++SI) + for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), + E = (*SI)->livein_end(); I != E; ++I) { + unsigned Reg = *I; + if (Seen.insert(Reg)) + Uses[Reg].push_back(&ExitSU); + } + } +} + +void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) { + // We'll be allocating one SUnit for each instruction, plus one for + // the region exit node. SUnits.reserve(BB->size()); // We build scheduling units by walking a block's instruction list from bottom // to top. - // Remember where defs and uses of each physical register are as we procede. - std::vector Defs[TargetRegisterInfo::FirstVirtualRegister] = {}; - std::vector Uses[TargetRegisterInfo::FirstVirtualRegister] = {}; + // Remember where a generic side-effecting instruction is as we procede. + SUnit *BarrierChain = 0, *AliasChain = 0; - // Remember where unknown loads are after the most recent unknown store - // as we procede. - std::vector PendingLoads; + // Memory references to specific known memory locations are tracked + // so that they can be given more precise dependencies. We track + // separately the known memory locations that may alias and those + // that are known not to alias + std::map AliasMemDefs, NonAliasMemDefs; + std::map > AliasMemUses, NonAliasMemUses; - // Remember where a generic side-effecting instruction is as we procede. If - // ChainMMO is null, this is assumed to have arbitrary side-effects. If - // ChainMMO is non-null, then Chain makes only a single memory reference. - SUnit *Chain = 0; - MachineMemOperand *ChainMMO = 0; + // Check to see if the scheduler cares about latencies. + bool UnitLatencies = ForceUnitLatencies(); - // Memory references to specific known memory locations are tracked so that - // they can be given more precise dependencies. - std::map MemDefs; - std::map > MemUses; + // Ask the target if address-backscheduling is desirable, and if so how much. + const TargetSubtargetInfo &ST = TM.getSubtarget(); + unsigned SpecialAddressLatency = ST.getSpecialAddressLatency(); - // Terminators can perform control transfers, we we need to make sure that - // all the work of the block is done before the terminator. - SUnit *Terminator = 0; + // Remove any stale debug info; sometimes BuildSchedGraph is called again + // without emitting the info from the previous call. + DbgValues.clear(); + FirstDbgValue = NULL; - // Check to see if the scheduler cares about latencies. - bool UnitLatencies = ForceUnitLatencies(); + // Model data dependencies between instructions being scheduled and the + // ExitSU. + AddSchedBarrierDeps(); - for (MachineBasicBlock::iterator MII = BB->end(), MIE = BB->begin(); + for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) { + assert(Defs[i].empty() && "Only BuildGraph should push/pop Defs"); + } + + // Walk the list of instructions, from bottom moving up. + MachineInstr *PrevMI = NULL; + for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin; MII != MIE; --MII) { MachineInstr *MI = prior(MII); - const TargetInstrDesc &TID = MI->getDesc(); + if (MI && PrevMI) { + DbgValues.push_back(std::make_pair(PrevMI, MI)); + PrevMI = NULL; + } + + if (MI->isDebugValue()) { + PrevMI = MI; + continue; + } + + const MCInstrDesc &MCID = MI->getDesc(); + assert(!MCID.isTerminator() && !MI->isLabel() && + "Cannot schedule terminators or labels!"); + // Create the SUnit for this MI. SUnit *SU = NewSUnit(MI); + SU->isCall = MCID.isCall(); + SU->isCommutable = MCID.isCommutable(); // Assign the Latency field of SU using target-provided information. if (UnitLatencies) @@ -88,27 +260,37 @@ void ScheduleDAGInstrs::BuildSchedUnits() { if (Reg == 0) continue; assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!"); + std::vector &UseList = Uses[Reg]; + // Defs are push in the order they are visited and never reordered. std::vector &DefList = Defs[Reg]; - // Optionally add output and anti dependencies. - // TODO: Using a latency of 1 here assumes there's no cost for - // reusing registers. + // Optionally add output and anti dependencies. For anti + // dependencies we use a latency of 0 because for a multi-issue + // target we want to allow the defining instruction to issue + // in the same cycle as the using instruction. + // TODO: Using a latency of 1 here for output dependencies assumes + // there's no cost for reusing registers. SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; + unsigned AOLatency = (Kind == SDep::Anti) ? 0 : 1; for (unsigned i = 0, e = DefList.size(); i != e; ++i) { SUnit *DefSU = DefList[i]; + if (DefSU == &ExitSU) + continue; if (DefSU != SU && (Kind != SDep::Output || !MO.isDead() || !DefSU->getInstr()->registerDefIsDead(Reg))) - DefSU->addPred(SDep(SU, Kind, /*Latency=*/1, /*Reg=*/Reg)); + DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/Reg)); } for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { - std::vector &DefList = Defs[*Alias]; - for (unsigned i = 0, e = DefList.size(); i != e; ++i) { - SUnit *DefSU = DefList[i]; + std::vector &MemDefList = Defs[*Alias]; + for (unsigned i = 0, e = MemDefList.size(); i != e; ++i) { + SUnit *DefSU = MemDefList[i]; + if (DefSU == &ExitSU) + continue; if (DefSU != SU && (Kind != SDep::Output || !MO.isDead() || - !DefSU->getInstr()->registerDefIsDead(Reg))) - DefSU->addPred(SDep(SU, Kind, /*Latency=*/1, /*Reg=*/ *Alias)); + !DefSU->getInstr()->registerDefIsDead(*Alias))) + DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/ *Alias)); } } @@ -117,22 +299,109 @@ void ScheduleDAGInstrs::BuildSchedUnits() { unsigned DataLatency = SU->Latency; for (unsigned i = 0, e = UseList.size(); i != e; ++i) { SUnit *UseSU = UseList[i]; - if (UseSU != SU) { - UseSU->addPred(SDep(SU, SDep::Data, DataLatency, Reg)); + if (UseSU == SU) + continue; + unsigned LDataLatency = DataLatency; + // Optionally add in a special extra latency for nodes that + // feed addresses. + // TODO: Do this for register aliases too. + // TODO: Perhaps we should get rid of + // SpecialAddressLatency and just move this into + // adjustSchedDependency for the targets that care about it. + if (SpecialAddressLatency != 0 && !UnitLatencies && + UseSU != &ExitSU) { + MachineInstr *UseMI = UseSU->getInstr(); + const MCInstrDesc &UseMCID = UseMI->getDesc(); + int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg); + assert(RegUseIndex >= 0 && "UseMI doesn's use register!"); + if (RegUseIndex >= 0 && + (UseMCID.mayLoad() || UseMCID.mayStore()) && + (unsigned)RegUseIndex < UseMCID.getNumOperands() && + UseMCID.OpInfo[RegUseIndex].isLookupPtrRegClass()) + LDataLatency += SpecialAddressLatency; + } + // Adjust the dependence latency using operand def/use + // information (if any), and then allow the target to + // perform its own adjustments. + const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg); + if (!UnitLatencies) { + ComputeOperandLatency(SU, UseSU, const_cast(dep)); + ST.adjustSchedDependency(SU, UseSU, const_cast(dep)); } + UseSU->addPred(dep); } for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { std::vector &UseList = Uses[*Alias]; for (unsigned i = 0, e = UseList.size(); i != e; ++i) { SUnit *UseSU = UseList[i]; - if (UseSU != SU) - UseSU->addPred(SDep(SU, SDep::Data, DataLatency, *Alias)); + if (UseSU == SU) + continue; + const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias); + if (!UnitLatencies) { + ComputeOperandLatency(SU, UseSU, const_cast(dep)); + ST.adjustSchedDependency(SU, UseSU, const_cast(dep)); + } + UseSU->addPred(dep); + } + } + + // If a def is going to wrap back around to the top of the loop, + // backschedule it. + if (!UnitLatencies && DefList.empty()) { + LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg); + if (I != LoopRegs.Deps.end()) { + const MachineOperand *UseMO = I->second.first; + unsigned Count = I->second.second; + const MachineInstr *UseMI = UseMO->getParent(); + unsigned UseMOIdx = UseMO - &UseMI->getOperand(0); + const MCInstrDesc &UseMCID = UseMI->getDesc(); + // TODO: If we knew the total depth of the region here, we could + // handle the case where the whole loop is inside the region but + // is large enough that the isScheduleHigh trick isn't needed. + if (UseMOIdx < UseMCID.getNumOperands()) { + // Currently, we only support scheduling regions consisting of + // single basic blocks. Check to see if the instruction is in + // the same region by checking to see if it has the same parent. + if (UseMI->getParent() != MI->getParent()) { + unsigned Latency = SU->Latency; + if (UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) + Latency += SpecialAddressLatency; + // This is a wild guess as to the portion of the latency which + // will be overlapped by work done outside the current + // scheduling region. + Latency -= std::min(Latency, Count); + // Add the artificial edge. + ExitSU.addPred(SDep(SU, SDep::Order, Latency, + /*Reg=*/0, /*isNormalMemory=*/false, + /*isMustAlias=*/false, + /*isArtificial=*/true)); + } else if (SpecialAddressLatency > 0 && + UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) { + // The entire loop body is within the current scheduling region + // and the latency of this operation is assumed to be greater + // than the latency of the loop. + // TODO: Recursively mark data-edge predecessors as + // isScheduleHigh too. + SU->isScheduleHigh = true; + } + } + LoopRegs.Deps.erase(I); } } UseList.clear(); if (!MO.isDead()) DefList.clear(); + + // Calls will not be reordered because of chain dependencies (see + // below). Since call operands are dead, calls may continue to be added + // to the DefList making dependence checking quadratic in the size of + // the block. Instead, we leave only one call at the back of the + // DefList. + if (SU->isCall) { + while (!DefList.empty() && DefList.back()->isCall) + DefList.pop_back(); + } DefList.push_back(SU); } else { UseList.push_back(SU); @@ -140,129 +409,235 @@ void ScheduleDAGInstrs::BuildSchedUnits() { } // Add chain dependencies. + // Chain dependencies used to enforce memory order should have + // latency of 0 (except for true dependency of Store followed by + // aliased Load... we estimate that with a single cycle of latency + // assuming the hardware will bypass) // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable // after stack slots are lowered to actual addresses. // TODO: Use an AliasAnalysis and do real alias-analysis queries, and // produce more precise dependence information. - if (TID.isCall() || TID.isReturn() || TID.isBranch() || - TID.hasUnmodeledSideEffects()) { - new_chain: - // This is the conservative case. Add dependencies on all memory - // references. - if (Chain) - Chain->addPred(SDep(SU, SDep::Order, SU->Latency)); - Chain = SU; +#define STORE_LOAD_LATENCY 1 + unsigned TrueMemOrderLatency = 0; + if (MCID.isCall() || MI->hasUnmodeledSideEffects() || + (MI->hasVolatileMemoryRef() && + (!MCID.mayLoad() || !MI->isInvariantLoad(AA)))) { + // Be conservative with these and add dependencies on all memory + // references, even those that are known to not alias. + for (std::map::iterator I = + NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) { + I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); + } + for (std::map >::iterator I = + NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) { + for (unsigned i = 0, e = I->second.size(); i != e; ++i) + I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency)); + } + NonAliasMemDefs.clear(); + NonAliasMemUses.clear(); + // Add SU to the barrier chain. + if (BarrierChain) + BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); + BarrierChain = SU; + + // fall-through + new_alias_chain: + // Chain all possibly aliasing memory references though SU. + if (AliasChain) + AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); + AliasChain = SU; for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) - PendingLoads[k]->addPred(SDep(SU, SDep::Order, SU->Latency)); - PendingLoads.clear(); - for (std::map::iterator I = MemDefs.begin(), - E = MemDefs.end(); I != E; ++I) { - I->second->addPred(SDep(SU, SDep::Order, SU->Latency)); - I->second = SU; + PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency)); + for (std::map::iterator I = AliasMemDefs.begin(), + E = AliasMemDefs.end(); I != E; ++I) { + I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); } for (std::map >::iterator I = - MemUses.begin(), E = MemUses.end(); I != E; ++I) { + AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) { for (unsigned i = 0, e = I->second.size(); i != e; ++i) - I->second[i]->addPred(SDep(SU, SDep::Order, SU->Latency)); - I->second.clear(); + I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency)); } - // See if it is known to just have a single memory reference. - MachineInstr *ChainMI = Chain->getInstr(); - const TargetInstrDesc &ChainTID = ChainMI->getDesc(); - if (!ChainTID.isCall() && !ChainTID.isReturn() && !ChainTID.isBranch() && - !ChainTID.hasUnmodeledSideEffects() && - ChainMI->hasOneMemOperand() && - !ChainMI->memoperands_begin()->isVolatile() && - ChainMI->memoperands_begin()->getValue()) - // We know that the Chain accesses one specific memory location. - ChainMMO = &*ChainMI->memoperands_begin(); - else - // Unknown memory accesses. Assume the worst. - ChainMMO = 0; - } else if (TID.mayStore()) { - if (MI->hasOneMemOperand() && - MI->memoperands_begin()->getValue() && - !MI->memoperands_begin()->isVolatile() && - isa(MI->memoperands_begin()->getValue())) { + PendingLoads.clear(); + AliasMemDefs.clear(); + AliasMemUses.clear(); + } else if (MCID.mayStore()) { + bool MayAlias = true; + TrueMemOrderLatency = STORE_LOAD_LATENCY; + if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) { // A store to a specific PseudoSourceValue. Add precise dependencies. - const Value *V = MI->memoperands_begin()->getValue(); - // Handle the def in MemDefs, if there is one. - std::map::iterator I = MemDefs.find(V); - if (I != MemDefs.end()) { - I->second->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0, + // Record the def in MemDefs, first adding a dep if there is + // an existing def. + std::map::iterator I = + ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); + std::map::iterator IE = + ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); + if (I != IE) { + I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0, /*isNormalMemory=*/true)); I->second = SU; } else { - MemDefs[V] = SU; + if (MayAlias) + AliasMemDefs[V] = SU; + else + NonAliasMemDefs[V] = SU; } // Handle the uses in MemUses, if there are any. std::map >::iterator J = - MemUses.find(V); - if (J != MemUses.end()) { + ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V)); + std::map >::iterator JE = + ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end()); + if (J != JE) { for (unsigned i = 0, e = J->second.size(); i != e; ++i) - J->second[i]->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0, - /*isNormalMemory=*/true)); + J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency, + /*Reg=*/0, /*isNormalMemory=*/true)); J->second.clear(); } - // Add a general dependence too, if needed. - if (Chain) - Chain->addPred(SDep(SU, SDep::Order, SU->Latency)); - } else + if (MayAlias) { + // Add dependencies from all the PendingLoads, i.e. loads + // with no underlying object. + for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) + PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency)); + // Add dependence on alias chain, if needed. + if (AliasChain) + AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); + } + // Add dependence on barrier chain, if needed. + if (BarrierChain) + BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); + } else { // Treat all other stores conservatively. - goto new_chain; - } else if (TID.mayLoad()) { - if (TII->isInvariantLoad(MI)) { + goto new_alias_chain; + } + + if (!ExitSU.isPred(SU)) + // Push store's up a bit to avoid them getting in between cmp + // and branches. + ExitSU.addPred(SDep(SU, SDep::Order, 0, + /*Reg=*/0, /*isNormalMemory=*/false, + /*isMustAlias=*/false, + /*isArtificial=*/true)); + } else if (MCID.mayLoad()) { + bool MayAlias = true; + TrueMemOrderLatency = 0; + if (MI->isInvariantLoad(AA)) { // Invariant load, no chain dependencies needed! - } else if (MI->hasOneMemOperand() && - MI->memoperands_begin()->getValue() && - !MI->memoperands_begin()->isVolatile() && - isa(MI->memoperands_begin()->getValue())) { - // A load from a specific PseudoSourceValue. Add precise dependencies. - const Value *V = MI->memoperands_begin()->getValue(); - std::map::iterator I = MemDefs.find(V); - if (I != MemDefs.end()) - I->second->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0, - /*isNormalMemory=*/true)); - MemUses[V].push_back(SU); - - // Add a general dependence too, if needed. - if (Chain && (!ChainMMO || - (ChainMMO->isStore() || ChainMMO->isVolatile()))) - Chain->addPred(SDep(SU, SDep::Order, SU->Latency)); - } else if (MI->hasVolatileMemoryRef()) { - // Treat volatile loads conservatively. Note that this includes - // cases where memoperand information is unavailable. - goto new_chain; } else { - // A normal load. Just depend on the general chain. - if (Chain) - Chain->addPred(SDep(SU, SDep::Order, SU->Latency)); - PendingLoads.push_back(SU); + if (const Value *V = + getUnderlyingObjectForInstr(MI, MFI, MayAlias)) { + // A load from a specific PseudoSourceValue. Add precise dependencies. + std::map::iterator I = + ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); + std::map::iterator IE = + ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); + if (I != IE) + I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0, + /*isNormalMemory=*/true)); + if (MayAlias) + AliasMemUses[V].push_back(SU); + else + NonAliasMemUses[V].push_back(SU); + } else { + // A load with no underlying object. Depend on all + // potentially aliasing stores. + for (std::map::iterator I = + AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) + I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); + + PendingLoads.push_back(SU); + MayAlias = true; + } + + // Add dependencies on alias and barrier chains, if needed. + if (MayAlias && AliasChain) + AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); + if (BarrierChain) + BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); } } + } + if (PrevMI) + FirstDbgValue = PrevMI; - // Add chain edges from the terminator to ensure that all the work of the - // block is completed before any control transfers. - if (Terminator && SU->Succs.empty()) - Terminator->addPred(SDep(SU, SDep::Order, SU->Latency)); - if (TID.isTerminator() || MI->isLabel()) - Terminator = SU; + for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) { + Defs[i].clear(); + Uses[i].clear(); } + PendingLoads.clear(); } -void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) { - const InstrItineraryData &InstrItins = TM.getInstrItineraryData(); +void ScheduleDAGInstrs::FinishBlock() { + // Nothing to do. +} - // Compute the latency for the node. We use the sum of the latencies for - // all nodes flagged together into this SUnit. - SU->Latency = - InstrItins.getLatency(SU->getInstr()->getDesc().getSchedClass()); +void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) { + // Compute the latency for the node. + if (!InstrItins || InstrItins->isEmpty()) { + SU->Latency = 1; - // Simplistic target-independent heuristic: assume that loads take - // extra time. - if (InstrItins.isEmpty()) + // Simplistic target-independent heuristic: assume that loads take + // extra time. if (SU->getInstr()->getDesc().mayLoad()) SU->Latency += 2; + } else { + SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr()); + } +} + +void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use, + SDep& dep) const { + if (!InstrItins || InstrItins->isEmpty()) + return; + + // For a data dependency with a known register... + if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0)) + return; + + const unsigned Reg = dep.getReg(); + + // ... find the definition of the register in the defining + // instruction + MachineInstr *DefMI = Def->getInstr(); + int DefIdx = DefMI->findRegisterDefOperandIdx(Reg); + if (DefIdx != -1) { + const MachineOperand &MO = DefMI->getOperand(DefIdx); + if (MO.isReg() && MO.isImplicit() && + DefIdx >= (int)DefMI->getDesc().getNumOperands()) { + // This is an implicit def, getOperandLatency() won't return the correct + // latency. e.g. + // %D6, %D7 = VLD1q16 %R2, 0, ..., %Q3 + // %Q1 = VMULv8i16 %Q1, %Q3, ... + // What we want is to compute latency between def of %D6/%D7 and use of + // %Q3 instead. + DefIdx = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI); + } + MachineInstr *UseMI = Use->getInstr(); + // For all uses of the register, calculate the maxmimum latency + int Latency = -1; + if (UseMI) { + for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) { + const MachineOperand &MO = UseMI->getOperand(i); + if (!MO.isReg() || !MO.isUse()) + continue; + unsigned MOReg = MO.getReg(); + if (MOReg != Reg) + continue; + + int UseCycle = TII->getOperandLatency(InstrItins, DefMI, DefIdx, + UseMI, i); + Latency = std::max(Latency, UseCycle); + } + } else { + // UseMI is null, then it must be a scheduling barrier. + if (!InstrItins || InstrItins->isEmpty()) + return; + unsigned DefClass = DefMI->getDesc().getSchedClass(); + Latency = InstrItins->getOperandCycle(DefClass, DefIdx); + } + + // If we found a latency, then replace the existing dependence latency. + if (Latency >= 0) + dep.setLatency(Latency); + } } void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { @@ -272,7 +647,12 @@ void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { std::string s; raw_string_ostream oss(s); - SU->getInstr()->print(oss); + if (SU == &EntrySU) + oss << ""; + else if (SU == &ExitSU) + oss << ""; + else + SU->getInstr()->print(oss); return oss.str(); } @@ -280,19 +660,39 @@ std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() { // For MachineInstr-based scheduling, we're rescheduling the instructions in // the block, so start by removing them from the block. - while (!BB->empty()) - BB->remove(BB->begin()); + while (Begin != InsertPos) { + MachineBasicBlock::iterator I = Begin; + ++Begin; + BB->remove(I); + } + // If first instruction was a DBG_VALUE then put it back. + if (FirstDbgValue) + BB->insert(InsertPos, FirstDbgValue); + + // Then re-insert them according to the given schedule. for (unsigned i = 0, e = Sequence.size(); i != e; i++) { - SUnit *SU = Sequence[i]; - if (!SU) { + if (SUnit *SU = Sequence[i]) + BB->insert(InsertPos, SU->getInstr()); + else // Null SUnit* is a noop. EmitNoop(); - continue; - } - - BB->push_back(SU->getInstr()); } + // Update the Begin iterator, as the first instruction in the block + // may have been scheduled later. + if (!Sequence.empty()) + Begin = Sequence[0]->getInstr(); + + // Reinsert any remaining debug_values. + for (std::vector >::iterator + DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { + std::pair P = *prior(DI); + MachineInstr *DbgValue = P.first; + MachineInstr *OrigPrivMI = P.second; + BB->insertAfter(OrigPrivMI, DbgValue); + } + DbgValues.clear(); + FirstDbgValue = NULL; return BB; }