X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FAnalysis%2FValueTracking.cpp;h=6409b85b1a0779acc68bb5b0e44e44163a587b24;hb=6054badbddce7b3a779aba0f7c553fe69c9a0abc;hp=b86bc378fa89db72cedbc7b569a8904caecd542a;hpb=dbaa2376f7b3c027e895ff4bee3ae08351f3ea88;p=oota-llvm.git diff --git a/lib/Analysis/ValueTracking.cpp b/lib/Analysis/ValueTracking.cpp index b86bc378fa8..8d39e4e542d 100644 --- a/lib/Analysis/ValueTracking.cpp +++ b/lib/Analysis/ValueTracking.cpp @@ -13,40 +13,223 @@ //===----------------------------------------------------------------------===// #include "llvm/Analysis/ValueTracking.h" +#include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallPtrSet.h" +#include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/InstructionSimplify.h" -#include "llvm/Constants.h" -#include "llvm/DataLayout.h" -#include "llvm/GlobalAlias.h" -#include "llvm/GlobalVariable.h" -#include "llvm/Instructions.h" -#include "llvm/IntrinsicInst.h" -#include "llvm/LLVMContext.h" -#include "llvm/Metadata.h" -#include "llvm/Operator.h" -#include "llvm/Support/ConstantRange.h" -#include "llvm/Support/GetElementPtrTypeIterator.h" +#include "llvm/Analysis/MemoryBuiltins.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/ConstantRange.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/Statepoint.h" +#include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" -#include "llvm/Support/PatternMatch.h" #include using namespace llvm; using namespace llvm::PatternMatch; const unsigned MaxDepth = 6; -/// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if -/// unknown returns 0). For vector types, returns the element type's bitwidth. -static unsigned getBitWidth(Type *Ty, const DataLayout *TD) { +/// Enable an experimental feature to leverage information about dominating +/// conditions to compute known bits. The individual options below control how +/// hard we search. The defaults are chosen to be fairly aggressive. If you +/// run into compile time problems when testing, scale them back and report +/// your findings. +static cl::opt EnableDomConditions("value-tracking-dom-conditions", + cl::Hidden, cl::init(false)); + +// This is expensive, so we only do it for the top level query value. +// (TODO: evaluate cost vs profit, consider higher thresholds) +static cl::opt DomConditionsMaxDepth("dom-conditions-max-depth", + cl::Hidden, cl::init(1)); + +/// How many dominating blocks should be scanned looking for dominating +/// conditions? +static cl::opt DomConditionsMaxDomBlocks("dom-conditions-dom-blocks", + cl::Hidden, + cl::init(20)); + +// Controls the number of uses of the value searched for possible +// dominating comparisons. +static cl::opt DomConditionsMaxUses("dom-conditions-max-uses", + cl::Hidden, cl::init(20)); + +// If true, don't consider only compares whose only use is a branch. +static cl::opt DomConditionsSingleCmpUse("dom-conditions-single-cmp-use", + cl::Hidden, cl::init(false)); + +/// Returns the bitwidth of the given scalar or pointer type (if unknown returns +/// 0). For vector types, returns the element type's bitwidth. +static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { if (unsigned BitWidth = Ty->getScalarSizeInBits()) return BitWidth; - assert(isa(Ty) && "Expected a pointer type!"); - return TD ? TD->getPointerSizeInBits() : 0; + + return DL.getPointerTypeSizeInBits(Ty); +} + +// Many of these functions have internal versions that take an assumption +// exclusion set. This is because of the potential for mutual recursion to +// cause computeKnownBits to repeatedly visit the same assume intrinsic. The +// classic case of this is assume(x = y), which will attempt to determine +// bits in x from bits in y, which will attempt to determine bits in y from +// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call +// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and +// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on. +typedef SmallPtrSet ExclInvsSet; + +namespace { +// Simplifying using an assume can only be done in a particular control-flow +// context (the context instruction provides that context). If an assume and +// the context instruction are not in the same block then the DT helps in +// figuring out if we can use it. +struct Query { + ExclInvsSet ExclInvs; + AssumptionCache *AC; + const Instruction *CxtI; + const DominatorTree *DT; + + Query(AssumptionCache *AC = nullptr, const Instruction *CxtI = nullptr, + const DominatorTree *DT = nullptr) + : AC(AC), CxtI(CxtI), DT(DT) {} + + Query(const Query &Q, const Value *NewExcl) + : ExclInvs(Q.ExclInvs), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT) { + ExclInvs.insert(NewExcl); + } +}; +} // end anonymous namespace + +// Given the provided Value and, potentially, a context instruction, return +// the preferred context instruction (if any). +static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { + // If we've been provided with a context instruction, then use that (provided + // it has been inserted). + if (CxtI && CxtI->getParent()) + return CxtI; + + // If the value is really an already-inserted instruction, then use that. + CxtI = dyn_cast(V); + if (CxtI && CxtI->getParent()) + return CxtI; + + return nullptr; +} + +static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, + const DataLayout &DL, unsigned Depth, + const Query &Q); + +void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, + const DataLayout &DL, unsigned Depth, + AssumptionCache *AC, const Instruction *CxtI, + const DominatorTree *DT) { + ::computeKnownBits(V, KnownZero, KnownOne, DL, Depth, + Query(AC, safeCxtI(V, CxtI), DT)); +} + +bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL, + AssumptionCache *AC, const Instruction *CxtI, + const DominatorTree *DT) { + assert(LHS->getType() == RHS->getType() && + "LHS and RHS should have the same type"); + assert(LHS->getType()->isIntOrIntVectorTy() && + "LHS and RHS should be integers"); + IntegerType *IT = cast(LHS->getType()->getScalarType()); + APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0); + APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0); + computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT); + computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT); + return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); +} + +static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, + const DataLayout &DL, unsigned Depth, + const Query &Q); + +void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, + const DataLayout &DL, unsigned Depth, + AssumptionCache *AC, const Instruction *CxtI, + const DominatorTree *DT) { + ::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth, + Query(AC, safeCxtI(V, CxtI), DT)); +} + +static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, + const Query &Q, const DataLayout &DL); + +bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero, + unsigned Depth, AssumptionCache *AC, + const Instruction *CxtI, + const DominatorTree *DT) { + return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, + Query(AC, safeCxtI(V, CxtI), DT), DL); } -static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, - APInt &KnownZero, APInt &KnownOne, - APInt &KnownZero2, APInt &KnownOne2, - const DataLayout *TD, unsigned Depth) { +static bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, + const Query &Q); + +bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, + AssumptionCache *AC, const Instruction *CxtI, + const DominatorTree *DT) { + return ::isKnownNonZero(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT)); +} + +bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth, + AssumptionCache *AC, const Instruction *CxtI, + const DominatorTree *DT) { + bool NonNegative, Negative; + ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); + return NonNegative; +} + +static bool isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL, + const Query &Q); + +bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL, + AssumptionCache *AC, const Instruction *CxtI, + const DominatorTree *DT) { + return ::isKnownNonEqual(V1, V2, DL, Query(AC, + safeCxtI(V1, safeCxtI(V2, CxtI)), + DT)); +} + +static bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, + unsigned Depth, const Query &Q); + +bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, + unsigned Depth, AssumptionCache *AC, + const Instruction *CxtI, const DominatorTree *DT) { + return ::MaskedValueIsZero(V, Mask, DL, Depth, + Query(AC, safeCxtI(V, CxtI), DT)); +} + +static unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, + unsigned Depth, const Query &Q); + +unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL, + unsigned Depth, AssumptionCache *AC, + const Instruction *CxtI, + const DominatorTree *DT) { + return ::ComputeNumSignBits(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT)); +} + +static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, + APInt &KnownZero, APInt &KnownOne, + APInt &KnownZero2, APInt &KnownOne2, + const DataLayout &DL, unsigned Depth, + const Query &Q) { if (!Add) { if (ConstantInt *CLHS = dyn_cast(Op0)) { // We know that the top bits of C-X are clear if X contains less bits @@ -57,8 +240,8 @@ static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); // NLZ can't be BitWidth with no sign bit APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); - llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1); - + computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q); + // If all of the MaskV bits are known to be zero, then we know the // output top bits are zero, because we now know that the output is // from [0-C]. @@ -73,71 +256,63 @@ static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, unsigned BitWidth = KnownZero.getBitWidth(); - // If one of the operands has trailing zeros, then the bits that the - // other operand has in those bit positions will be preserved in the - // result. For an add, this works with either operand. For a subtract, - // this only works if the known zeros are in the right operand. + // If an initial sequence of bits in the result is not needed, the + // corresponding bits in the operands are not needed. APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); - llvm::ComputeMaskedBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1); - assert((LHSKnownZero & LHSKnownOne) == 0 && - "Bits known to be one AND zero?"); - unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes(); - - llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1); - assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); - unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes(); - - // Determine which operand has more trailing zeros, and use that - // many bits from the other operand. - if (LHSKnownZeroOut > RHSKnownZeroOut) { - if (Add) { - APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut); - KnownZero |= KnownZero2 & Mask; - KnownOne |= KnownOne2 & Mask; - } else { - // If the known zeros are in the left operand for a subtract, - // fall back to the minimum known zeros in both operands. - KnownZero |= APInt::getLowBitsSet(BitWidth, - std::min(LHSKnownZeroOut, - RHSKnownZeroOut)); - } - } else if (RHSKnownZeroOut >= LHSKnownZeroOut) { - APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut); - KnownZero |= LHSKnownZero & Mask; - KnownOne |= LHSKnownOne & Mask; + computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, DL, Depth + 1, Q); + computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q); + + // Carry in a 1 for a subtract, rather than a 0. + APInt CarryIn(BitWidth, 0); + if (!Add) { + // Sum = LHS + ~RHS + 1 + std::swap(KnownZero2, KnownOne2); + CarryIn.setBit(0); } + APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; + APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; + + // Compute known bits of the carry. + APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); + APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; + + // Compute set of known bits (where all three relevant bits are known). + APInt LHSKnown = LHSKnownZero | LHSKnownOne; + APInt RHSKnown = KnownZero2 | KnownOne2; + APInt CarryKnown = CarryKnownZero | CarryKnownOne; + APInt Known = LHSKnown & RHSKnown & CarryKnown; + + assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && + "known bits of sum differ"); + + // Compute known bits of the result. + KnownZero = ~PossibleSumOne & Known; + KnownOne = PossibleSumOne & Known; + // Are we still trying to solve for the sign bit? - if (!KnownZero.isNegative() && !KnownOne.isNegative()) { + if (!Known.isNegative()) { if (NSW) { - if (Add) { - // Adding two positive numbers can't wrap into negative - if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) - KnownZero |= APInt::getSignBit(BitWidth); - // and adding two negative numbers can't wrap into positive. - else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) - KnownOne |= APInt::getSignBit(BitWidth); - } else { - // Subtracting a negative number from a positive one can't wrap - if (LHSKnownZero.isNegative() && KnownOne2.isNegative()) - KnownZero |= APInt::getSignBit(BitWidth); - // neither can subtracting a positive number from a negative one. - else if (LHSKnownOne.isNegative() && KnownZero2.isNegative()) - KnownOne |= APInt::getSignBit(BitWidth); - } + // Adding two non-negative numbers, or subtracting a negative number from + // a non-negative one, can't wrap into negative. + if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) + KnownZero |= APInt::getSignBit(BitWidth); + // Adding two negative numbers, or subtracting a non-negative number from + // a negative one, can't wrap into non-negative. + else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) + KnownOne |= APInt::getSignBit(BitWidth); } } } -static void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW, - APInt &KnownZero, APInt &KnownOne, - APInt &KnownZero2, APInt &KnownOne2, - const DataLayout *TD, unsigned Depth) { +static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW, + APInt &KnownZero, APInt &KnownOne, + APInt &KnownZero2, APInt &KnownOne2, + const DataLayout &DL, unsigned Depth, + const Query &Q) { unsigned BitWidth = KnownZero.getBitWidth(); - ComputeMaskedBits(Op1, KnownZero, KnownOne, TD, Depth+1); - ComputeMaskedBits(Op0, KnownZero2, KnownOne2, TD, Depth+1); - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); + computeKnownBits(Op1, KnownZero, KnownOne, DL, Depth + 1, Q); + computeKnownBits(Op0, KnownZero2, KnownOne2, DL, Depth + 1, Q); bool isKnownNegative = false; bool isKnownNonNegative = false; @@ -158,14 +333,14 @@ static void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW, // negative or zero. if (!isKnownNonNegative) isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && - isKnownNonZero(Op0, TD, Depth)) || + isKnownNonZero(Op0, DL, Depth, Q)) || (isKnownNegativeOp0 && isKnownNonNegativeOp1 && - isKnownNonZero(Op1, TD, Depth)); + isKnownNonZero(Op1, DL, Depth, Q)); } } // If low bits are zero in either operand, output low known-0 bits. - // Also compute a conserative estimate for high known-0 bits. + // Also compute a conservative estimate for high known-0 bits. // More trickiness is possible, but this is sufficient for the // interesting case of alignment computation. KnownOne.clearAllBits(); @@ -191,240 +366,798 @@ static void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW, KnownOne.setBit(BitWidth - 1); } -void llvm::computeMaskedBitsLoad(const MDNode &Ranges, APInt &KnownZero) { +void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, + APInt &KnownZero, + APInt &KnownOne) { unsigned BitWidth = KnownZero.getBitWidth(); unsigned NumRanges = Ranges.getNumOperands() / 2; assert(NumRanges >= 1); - // Use the high end of the ranges to find leading zeros. - unsigned MinLeadingZeros = BitWidth; + KnownZero.setAllBits(); + KnownOne.setAllBits(); + for (unsigned i = 0; i < NumRanges; ++i) { - ConstantInt *Lower = cast(Ranges.getOperand(2*i + 0)); - ConstantInt *Upper = cast(Ranges.getOperand(2*i + 1)); + ConstantInt *Lower = + mdconst::extract(Ranges.getOperand(2 * i + 0)); + ConstantInt *Upper = + mdconst::extract(Ranges.getOperand(2 * i + 1)); ConstantRange Range(Lower->getValue(), Upper->getValue()); - if (Range.isWrappedSet()) - MinLeadingZeros = 0; // -1 has no zeros - unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros(); - MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros); + + // The first CommonPrefixBits of all values in Range are equal. + unsigned CommonPrefixBits = + (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); + + APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); + KnownOne &= Range.getUnsignedMax() & Mask; + KnownZero &= ~Range.getUnsignedMax() & Mask; + } +} + +static bool isEphemeralValueOf(Instruction *I, const Value *E) { + SmallVector WorkSet(1, I); + SmallPtrSet Visited; + SmallPtrSet EphValues; + + // The instruction defining an assumption's condition itself is always + // considered ephemeral to that assumption (even if it has other + // non-ephemeral users). See r246696's test case for an example. + if (std::find(I->op_begin(), I->op_end(), E) != I->op_end()) + return true; + + while (!WorkSet.empty()) { + const Value *V = WorkSet.pop_back_val(); + if (!Visited.insert(V).second) + continue; + + // If all uses of this value are ephemeral, then so is this value. + if (std::all_of(V->user_begin(), V->user_end(), + [&](const User *U) { return EphValues.count(U); })) { + if (V == E) + return true; + + EphValues.insert(V); + if (const User *U = dyn_cast(V)) + for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); + J != JE; ++J) { + if (isSafeToSpeculativelyExecute(*J)) + WorkSet.push_back(*J); + } + } } - KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros); + return false; } -/// ComputeMaskedBits - Determine which of the bits are known to be either zero -/// or one and return them in the KnownZero/KnownOne bit sets. -/// -/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that -/// we cannot optimize based on the assumption that it is zero without changing -/// it to be an explicit zero. If we don't change it to zero, other code could -/// optimized based on the contradictory assumption that it is non-zero. -/// Because instcombine aggressively folds operations with undef args anyway, -/// this won't lose us code quality. -/// -/// This function is defined on values with integer type, values with pointer -/// type (but only if TD is non-null), and vectors of integers. In the case -/// where V is a vector, known zero, and known one values are the -/// same width as the vector element, and the bit is set only if it is true -/// for all of the elements in the vector. -void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne, - const DataLayout *TD, unsigned Depth) { - assert(V && "No Value?"); - assert(Depth <= MaxDepth && "Limit Search Depth"); - unsigned BitWidth = KnownZero.getBitWidth(); - assert((V->getType()->isIntOrIntVectorTy() || - V->getType()->getScalarType()->isPointerTy()) && - "Not integer or pointer type!"); - assert((!TD || - TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && - (!V->getType()->isIntOrIntVectorTy() || - V->getType()->getScalarSizeInBits() == BitWidth) && - KnownZero.getBitWidth() == BitWidth && - KnownOne.getBitWidth() == BitWidth && - "V, Mask, KnownOne and KnownZero should have same BitWidth"); +// Is this an intrinsic that cannot be speculated but also cannot trap? +static bool isAssumeLikeIntrinsic(const Instruction *I) { + if (const CallInst *CI = dyn_cast(I)) + if (Function *F = CI->getCalledFunction()) + switch (F->getIntrinsicID()) { + default: break; + // FIXME: This list is repeated from NoTTI::getIntrinsicCost. + case Intrinsic::assume: + case Intrinsic::dbg_declare: + case Intrinsic::dbg_value: + case Intrinsic::invariant_start: + case Intrinsic::invariant_end: + case Intrinsic::lifetime_start: + case Intrinsic::lifetime_end: + case Intrinsic::objectsize: + case Intrinsic::ptr_annotation: + case Intrinsic::var_annotation: + return true; + } - if (ConstantInt *CI = dyn_cast(V)) { - // We know all of the bits for a constant! - KnownOne = CI->getValue(); - KnownZero = ~KnownOne; - return; + return false; +} + +static bool isValidAssumeForContext(Value *V, const Query &Q) { + Instruction *Inv = cast(V); + + // There are two restrictions on the use of an assume: + // 1. The assume must dominate the context (or the control flow must + // reach the assume whenever it reaches the context). + // 2. The context must not be in the assume's set of ephemeral values + // (otherwise we will use the assume to prove that the condition + // feeding the assume is trivially true, thus causing the removal of + // the assume). + + if (Q.DT) { + if (Q.DT->dominates(Inv, Q.CxtI)) { + return true; + } else if (Inv->getParent() == Q.CxtI->getParent()) { + // The context comes first, but they're both in the same block. Make sure + // there is nothing in between that might interrupt the control flow. + for (BasicBlock::const_iterator I = + std::next(BasicBlock::const_iterator(Q.CxtI)), + IE(Inv); I != IE; ++I) + if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) + return false; + + return !isEphemeralValueOf(Inv, Q.CxtI); + } + + return false; } - // Null and aggregate-zero are all-zeros. - if (isa(V) || - isa(V)) { - KnownOne.clearAllBits(); - KnownZero = APInt::getAllOnesValue(BitWidth); - return; + + // When we don't have a DT, we do a limited search... + if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) { + return true; + } else if (Inv->getParent() == Q.CxtI->getParent()) { + // Search forward from the assume until we reach the context (or the end + // of the block); the common case is that the assume will come first. + for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)), + IE = Inv->getParent()->end(); I != IE; ++I) + if (&*I == Q.CxtI) + return true; + + // The context must come first... + for (BasicBlock::const_iterator I = + std::next(BasicBlock::const_iterator(Q.CxtI)), + IE(Inv); I != IE; ++I) + if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) + return false; + + return !isEphemeralValueOf(Inv, Q.CxtI); } - // Handle a constant vector by taking the intersection of the known bits of - // each element. There is no real need to handle ConstantVector here, because - // we don't handle undef in any particularly useful way. - if (ConstantDataSequential *CDS = dyn_cast(V)) { - // We know that CDS must be a vector of integers. Take the intersection of - // each element. - KnownZero.setAllBits(); KnownOne.setAllBits(); - APInt Elt(KnownZero.getBitWidth(), 0); - for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { - Elt = CDS->getElementAsInteger(i); - KnownZero &= ~Elt; - KnownOne &= Elt; - } + + return false; +} + +bool llvm::isValidAssumeForContext(const Instruction *I, + const Instruction *CxtI, + const DominatorTree *DT) { + return ::isValidAssumeForContext(const_cast(I), + Query(nullptr, CxtI, DT)); +} + +template +inline match_combine_or, + CmpClass_match> +m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { + return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L)); +} + +template +inline match_combine_or, + BinaryOp_match> +m_c_And(const LHS &L, const RHS &R) { + return m_CombineOr(m_And(L, R), m_And(R, L)); +} + +template +inline match_combine_or, + BinaryOp_match> +m_c_Or(const LHS &L, const RHS &R) { + return m_CombineOr(m_Or(L, R), m_Or(R, L)); +} + +template +inline match_combine_or, + BinaryOp_match> +m_c_Xor(const LHS &L, const RHS &R) { + return m_CombineOr(m_Xor(L, R), m_Xor(R, L)); +} + +/// Compute known bits in 'V' under the assumption that the condition 'Cmp' is +/// true (at the context instruction.) This is mostly a utility function for +/// the prototype dominating conditions reasoning below. +static void computeKnownBitsFromTrueCondition(Value *V, ICmpInst *Cmp, + APInt &KnownZero, + APInt &KnownOne, + const DataLayout &DL, + unsigned Depth, const Query &Q) { + Value *LHS = Cmp->getOperand(0); + Value *RHS = Cmp->getOperand(1); + // TODO: We could potentially be more aggressive here. This would be worth + // evaluating. If we can, explore commoning this code with the assume + // handling logic. + if (LHS != V && RHS != V) return; - } - - // The address of an aligned GlobalValue has trailing zeros. - if (GlobalValue *GV = dyn_cast(V)) { - unsigned Align = GV->getAlignment(); - if (Align == 0 && TD) { - if (GlobalVariable *GVar = dyn_cast(GV)) { - Type *ObjectType = GVar->getType()->getElementType(); - if (ObjectType->isSized()) { - // If the object is defined in the current Module, we'll be giving - // it the preferred alignment. Otherwise, we have to assume that it - // may only have the minimum ABI alignment. - if (!GVar->isDeclaration() && !GVar->isWeakForLinker()) - Align = TD->getPreferredAlignment(GVar); - else - Align = TD->getABITypeAlignment(ObjectType); - } + + const unsigned BitWidth = KnownZero.getBitWidth(); + + switch (Cmp->getPredicate()) { + default: + // We know nothing from this condition + break; + // TODO: implement unsigned bound from below (known one bits) + // TODO: common condition check implementations with assumes + // TODO: implement other patterns from assume (e.g. V & B == A) + case ICmpInst::ICMP_SGT: + if (LHS == V) { + APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); + computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); + if (KnownOneTemp.isAllOnesValue() || KnownZeroTemp.isNegative()) { + // We know that the sign bit is zero. + KnownZero |= APInt::getSignBit(BitWidth); } } - if (Align > 0) - KnownZero = APInt::getLowBitsSet(BitWidth, - CountTrailingZeros_32(Align)); - else - KnownZero.clearAllBits(); - KnownOne.clearAllBits(); + break; + case ICmpInst::ICMP_EQ: + { + APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); + if (LHS == V) + computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); + else if (RHS == V) + computeKnownBits(LHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); + else + llvm_unreachable("missing use?"); + KnownZero |= KnownZeroTemp; + KnownOne |= KnownOneTemp; + } + break; + case ICmpInst::ICMP_ULE: + if (LHS == V) { + APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); + computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); + // The known zero bits carry over + unsigned SignBits = KnownZeroTemp.countLeadingOnes(); + KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits); + } + break; + case ICmpInst::ICMP_ULT: + if (LHS == V) { + APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); + computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); + // Whatever high bits in rhs are zero are known to be zero (if rhs is a + // power of 2, then one more). + unsigned SignBits = KnownZeroTemp.countLeadingOnes(); + if (isKnownToBeAPowerOfTwo(RHS, false, Depth + 1, Query(Q, Cmp), DL)) + SignBits++; + KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits); + } + break; + }; +} + +/// Compute known bits in 'V' from conditions which are known to be true along +/// all paths leading to the context instruction. In particular, look for +/// cases where one branch of an interesting condition dominates the context +/// instruction. This does not do general dataflow. +/// NOTE: This code is EXPERIMENTAL and currently off by default. +static void computeKnownBitsFromDominatingCondition(Value *V, APInt &KnownZero, + APInt &KnownOne, + const DataLayout &DL, + unsigned Depth, + const Query &Q) { + // Need both the dominator tree and the query location to do anything useful + if (!Q.DT || !Q.CxtI) + return; + Instruction *Cxt = const_cast(Q.CxtI); + // The context instruction might be in a statically unreachable block. If + // so, asking dominator queries may yield suprising results. (e.g. the block + // may not have a dom tree node) + if (!Q.DT->isReachableFromEntry(Cxt->getParent())) return; + + // Avoid useless work + if (auto VI = dyn_cast(V)) + if (VI->getParent() == Cxt->getParent()) + return; + + // Note: We currently implement two options. It's not clear which of these + // will survive long term, we need data for that. + // Option 1 - Try walking the dominator tree looking for conditions which + // might apply. This works well for local conditions (loop guards, etc..), + // but not as well for things far from the context instruction (presuming a + // low max blocks explored). If we can set an high enough limit, this would + // be all we need. + // Option 2 - We restrict out search to those conditions which are uses of + // the value we're interested in. This is independent of dom structure, + // but is slightly less powerful without looking through lots of use chains. + // It does handle conditions far from the context instruction (e.g. early + // function exits on entry) really well though. + + // Option 1 - Search the dom tree + unsigned NumBlocksExplored = 0; + BasicBlock *Current = Cxt->getParent(); + while (true) { + // Stop searching if we've gone too far up the chain + if (NumBlocksExplored >= DomConditionsMaxDomBlocks) + break; + NumBlocksExplored++; + + if (!Q.DT->getNode(Current)->getIDom()) + break; + Current = Q.DT->getNode(Current)->getIDom()->getBlock(); + if (!Current) + // found function entry + break; + + BranchInst *BI = dyn_cast(Current->getTerminator()); + if (!BI || BI->isUnconditional()) + continue; + ICmpInst *Cmp = dyn_cast(BI->getCondition()); + if (!Cmp) + continue; + + // We're looking for conditions that are guaranteed to hold at the context + // instruction. Finding a condition where one path dominates the context + // isn't enough because both the true and false cases could merge before + // the context instruction we're actually interested in. Instead, we need + // to ensure that the taken *edge* dominates the context instruction. We + // know that the edge must be reachable since we started from a reachable + // block. + BasicBlock *BB0 = BI->getSuccessor(0); + BasicBlockEdge Edge(BI->getParent(), BB0); + if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent())) + continue; + + computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth, + Q); } - // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has - // the bits of its aliasee. - if (GlobalAlias *GA = dyn_cast(V)) { - if (GA->mayBeOverridden()) { - KnownZero.clearAllBits(); KnownOne.clearAllBits(); - } else { - ComputeMaskedBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1); + + // Option 2 - Search the other uses of V + unsigned NumUsesExplored = 0; + for (auto U : V->users()) { + // Avoid massive lists + if (NumUsesExplored >= DomConditionsMaxUses) + break; + NumUsesExplored++; + // Consider only compare instructions uniquely controlling a branch + ICmpInst *Cmp = dyn_cast(U); + if (!Cmp) + continue; + + if (DomConditionsSingleCmpUse && !Cmp->hasOneUse()) + continue; + + for (auto *CmpU : Cmp->users()) { + BranchInst *BI = dyn_cast(CmpU); + if (!BI || BI->isUnconditional()) + continue; + // We're looking for conditions that are guaranteed to hold at the + // context instruction. Finding a condition where one path dominates + // the context isn't enough because both the true and false cases could + // merge before the context instruction we're actually interested in. + // Instead, we need to ensure that the taken *edge* dominates the context + // instruction. + BasicBlock *BB0 = BI->getSuccessor(0); + BasicBlockEdge Edge(BI->getParent(), BB0); + if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent())) + continue; + + computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth, + Q); } - return; } - - if (Argument *A = dyn_cast(V)) { - unsigned Align = 0; +} - if (A->hasByValAttr()) { - // Get alignment information off byval arguments if specified in the IR. - Align = A->getParamAlignment(); - } else if (TD && A->hasStructRetAttr()) { - // An sret parameter has at least the ABI alignment of the return type. - Type *EltTy = cast(A->getType())->getElementType(); - if (EltTy->isSized()) - Align = TD->getABITypeAlignment(EltTy); +static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero, + APInt &KnownOne, const DataLayout &DL, + unsigned Depth, const Query &Q) { + // Use of assumptions is context-sensitive. If we don't have a context, we + // cannot use them! + if (!Q.AC || !Q.CxtI) + return; + + unsigned BitWidth = KnownZero.getBitWidth(); + + for (auto &AssumeVH : Q.AC->assumptions()) { + if (!AssumeVH) + continue; + CallInst *I = cast(AssumeVH); + assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && + "Got assumption for the wrong function!"); + if (Q.ExclInvs.count(I)) + continue; + + // Warning: This loop can end up being somewhat performance sensetive. + // We're running this loop for once for each value queried resulting in a + // runtime of ~O(#assumes * #values). + + assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && + "must be an assume intrinsic"); + + Value *Arg = I->getArgOperand(0); + + if (Arg == V && isValidAssumeForContext(I, Q)) { + assert(BitWidth == 1 && "assume operand is not i1?"); + KnownZero.clearAllBits(); + KnownOne.setAllBits(); + return; } - if (Align) - KnownZero = APInt::getLowBitsSet(BitWidth, CountTrailingZeros_32(Align)); + // The remaining tests are all recursive, so bail out if we hit the limit. + if (Depth == MaxDepth) + continue; + + Value *A, *B; + auto m_V = m_CombineOr(m_Specific(V), + m_CombineOr(m_PtrToInt(m_Specific(V)), + m_BitCast(m_Specific(V)))); + + CmpInst::Predicate Pred; + ConstantInt *C; + // assume(v = a) + if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && + Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); + KnownZero |= RHSKnownZero; + KnownOne |= RHSKnownOne; + // assume(v & b = a) + } else if (match(Arg, + m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && + Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); + APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); + computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I)); + + // For those bits in the mask that are known to be one, we can propagate + // known bits from the RHS to V. + KnownZero |= RHSKnownZero & MaskKnownOne; + KnownOne |= RHSKnownOne & MaskKnownOne; + // assume(~(v & b) = a) + } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), + m_Value(A))) && + Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); + APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); + computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I)); + + // For those bits in the mask that are known to be one, we can propagate + // inverted known bits from the RHS to V. + KnownZero |= RHSKnownOne & MaskKnownOne; + KnownOne |= RHSKnownZero & MaskKnownOne; + // assume(v | b = a) + } else if (match(Arg, + m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && + Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); + APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); + computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); + + // For those bits in B that are known to be zero, we can propagate known + // bits from the RHS to V. + KnownZero |= RHSKnownZero & BKnownZero; + KnownOne |= RHSKnownOne & BKnownZero; + // assume(~(v | b) = a) + } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), + m_Value(A))) && + Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); + APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); + computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); + + // For those bits in B that are known to be zero, we can propagate + // inverted known bits from the RHS to V. + KnownZero |= RHSKnownOne & BKnownZero; + KnownOne |= RHSKnownZero & BKnownZero; + // assume(v ^ b = a) + } else if (match(Arg, + m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && + Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); + APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); + computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); + + // For those bits in B that are known to be zero, we can propagate known + // bits from the RHS to V. For those bits in B that are known to be one, + // we can propagate inverted known bits from the RHS to V. + KnownZero |= RHSKnownZero & BKnownZero; + KnownOne |= RHSKnownOne & BKnownZero; + KnownZero |= RHSKnownOne & BKnownOne; + KnownOne |= RHSKnownZero & BKnownOne; + // assume(~(v ^ b) = a) + } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), + m_Value(A))) && + Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); + APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); + computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); + + // For those bits in B that are known to be zero, we can propagate + // inverted known bits from the RHS to V. For those bits in B that are + // known to be one, we can propagate known bits from the RHS to V. + KnownZero |= RHSKnownOne & BKnownZero; + KnownOne |= RHSKnownZero & BKnownZero; + KnownZero |= RHSKnownZero & BKnownOne; + KnownOne |= RHSKnownOne & BKnownOne; + // assume(v << c = a) + } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), + m_Value(A))) && + Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); + // For those bits in RHS that are known, we can propagate them to known + // bits in V shifted to the right by C. + KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); + KnownOne |= RHSKnownOne.lshr(C->getZExtValue()); + // assume(~(v << c) = a) + } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), + m_Value(A))) && + Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); + // For those bits in RHS that are known, we can propagate them inverted + // to known bits in V shifted to the right by C. + KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); + KnownOne |= RHSKnownZero.lshr(C->getZExtValue()); + // assume(v >> c = a) + } else if (match(Arg, + m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), + m_AShr(m_V, m_ConstantInt(C))), + m_Value(A))) && + Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); + // For those bits in RHS that are known, we can propagate them to known + // bits in V shifted to the right by C. + KnownZero |= RHSKnownZero << C->getZExtValue(); + KnownOne |= RHSKnownOne << C->getZExtValue(); + // assume(~(v >> c) = a) + } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( + m_LShr(m_V, m_ConstantInt(C)), + m_AShr(m_V, m_ConstantInt(C)))), + m_Value(A))) && + Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); + // For those bits in RHS that are known, we can propagate them inverted + // to known bits in V shifted to the right by C. + KnownZero |= RHSKnownOne << C->getZExtValue(); + KnownOne |= RHSKnownZero << C->getZExtValue(); + // assume(v >=_s c) where c is non-negative + } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && + Pred == ICmpInst::ICMP_SGE && isValidAssumeForContext(I, Q)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); + + if (RHSKnownZero.isNegative()) { + // We know that the sign bit is zero. + KnownZero |= APInt::getSignBit(BitWidth); + } + // assume(v >_s c) where c is at least -1. + } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && + Pred == ICmpInst::ICMP_SGT && isValidAssumeForContext(I, Q)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); + + if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { + // We know that the sign bit is zero. + KnownZero |= APInt::getSignBit(BitWidth); + } + // assume(v <=_s c) where c is negative + } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && + Pred == ICmpInst::ICMP_SLE && isValidAssumeForContext(I, Q)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); + + if (RHSKnownOne.isNegative()) { + // We know that the sign bit is one. + KnownOne |= APInt::getSignBit(BitWidth); + } + // assume(v <_s c) where c is non-positive + } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && + Pred == ICmpInst::ICMP_SLT && isValidAssumeForContext(I, Q)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); + + if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { + // We know that the sign bit is one. + KnownOne |= APInt::getSignBit(BitWidth); + } + // assume(v <=_u c) + } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && + Pred == ICmpInst::ICMP_ULE && isValidAssumeForContext(I, Q)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); + + // Whatever high bits in c are zero are known to be zero. + KnownZero |= + APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); + // assume(v <_u c) + } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && + Pred == ICmpInst::ICMP_ULT && isValidAssumeForContext(I, Q)) { + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); + + // Whatever high bits in c are zero are known to be zero (if c is a power + // of 2, then one more). + if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I), DL)) + KnownZero |= + APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1); + else + KnownZero |= + APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); + } + } +} + +// Compute known bits from a shift operator, including those with a +// non-constant shift amount. KnownZero and KnownOne are the outputs of this +// function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the +// same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific +// functors that, given the known-zero or known-one bits respectively, and a +// shift amount, compute the implied known-zero or known-one bits of the shift +// operator's result respectively for that shift amount. The results from calling +// KZF and KOF are conservatively combined for all permitted shift amounts. +template +static void computeKnownBitsFromShiftOperator(Operator *I, + APInt &KnownZero, APInt &KnownOne, + APInt &KnownZero2, APInt &KnownOne2, + const DataLayout &DL, unsigned Depth, const Query &Q, + KZFunctor KZF, KOFunctor KOF) { + unsigned BitWidth = KnownZero.getBitWidth(); + + if (auto *SA = dyn_cast(I->getOperand(1))) { + unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); + + computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); + KnownZero = KZF(KnownZero, ShiftAmt); + KnownOne = KOF(KnownOne, ShiftAmt); return; } - // Start out not knowing anything. - KnownZero.clearAllBits(); KnownOne.clearAllBits(); + computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q); - if (Depth == MaxDepth) - return; // Limit search depth. + // Note: We cannot use KnownZero.getLimitedValue() here, because if + // BitWidth > 64 and any upper bits are known, we'll end up returning the + // limit value (which implies all bits are known). + uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue(); + uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue(); - Operator *I = dyn_cast(V); - if (!I) return; + // It would be more-clearly correct to use the two temporaries for this + // calculation. Reusing the APInts here to prevent unnecessary allocations. + KnownZero.clearAllBits(), KnownOne.clearAllBits(); + + // If we know the shifter operand is nonzero, we can sometimes infer more + // known bits. However this is expensive to compute, so be lazy about it and + // only compute it when absolutely necessary. + Optional ShifterOperandIsNonZero; + + // Early exit if we can't constrain any well-defined shift amount. + if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) { + ShifterOperandIsNonZero = + isKnownNonZero(I->getOperand(1), DL, Depth + 1, Q); + if (!*ShifterOperandIsNonZero) + return; + } + + computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); + + KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); + for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { + // Combine the shifted known input bits only for those shift amounts + // compatible with its known constraints. + if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) + continue; + if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) + continue; + // If we know the shifter is nonzero, we may be able to infer more known + // bits. This check is sunk down as far as possible to avoid the expensive + // call to isKnownNonZero if the cheaper checks above fail. + if (ShiftAmt == 0) { + if (!ShifterOperandIsNonZero.hasValue()) + ShifterOperandIsNonZero = + isKnownNonZero(I->getOperand(1), DL, Depth + 1, Q); + if (*ShifterOperandIsNonZero) + continue; + } + + KnownZero &= KZF(KnownZero2, ShiftAmt); + KnownOne &= KOF(KnownOne2, ShiftAmt); + } + + // If there are no compatible shift amounts, then we've proven that the shift + // amount must be >= the BitWidth, and the result is undefined. We could + // return anything we'd like, but we need to make sure the sets of known bits + // stay disjoint (it should be better for some other code to actually + // propagate the undef than to pick a value here using known bits). + if ((KnownZero & KnownOne) != 0) + KnownZero.clearAllBits(), KnownOne.clearAllBits(); +} + +static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero, + APInt &KnownOne, const DataLayout &DL, + unsigned Depth, const Query &Q) { + unsigned BitWidth = KnownZero.getBitWidth(); APInt KnownZero2(KnownZero), KnownOne2(KnownOne); switch (I->getOpcode()) { default: break; case Instruction::Load: if (MDNode *MD = cast(I)->getMetadata(LLVMContext::MD_range)) - computeMaskedBitsLoad(*MD, KnownZero); - return; + computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); + break; case Instruction::And: { // If either the LHS or the RHS are Zero, the result is zero. - ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1); - ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); - + computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q); + computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); + // Output known-1 bits are only known if set in both the LHS & RHS. KnownOne &= KnownOne2; // Output known-0 are known to be clear if zero in either the LHS | RHS. KnownZero |= KnownZero2; - return; + + // and(x, add (x, -1)) is a common idiom that always clears the low bit; + // here we handle the more general case of adding any odd number by + // matching the form add(x, add(x, y)) where y is odd. + // TODO: This could be generalized to clearing any bit set in y where the + // following bit is known to be unset in y. + Value *Y = nullptr; + if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), + m_Value(Y))) || + match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), + m_Value(Y)))) { + APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0); + computeKnownBits(Y, KnownZero3, KnownOne3, DL, Depth + 1, Q); + if (KnownOne3.countTrailingOnes() > 0) + KnownZero |= APInt::getLowBitsSet(BitWidth, 1); + } + break; } case Instruction::Or: { - ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1); - ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); - + computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q); + computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); + // Output known-0 bits are only known if clear in both the LHS & RHS. KnownZero &= KnownZero2; // Output known-1 are known to be set if set in either the LHS | RHS. KnownOne |= KnownOne2; - return; + break; } case Instruction::Xor: { - ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1); - ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); - + computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q); + computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); + // Output known-0 bits are known if clear or set in both the LHS & RHS. APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); // Output known-1 are known to be set if set in only one of the LHS, RHS. KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); KnownZero = KnownZeroOut; - return; + break; } case Instruction::Mul: { bool NSW = cast(I)->hasNoSignedWrap(); - ComputeMaskedBitsMul(I->getOperand(0), I->getOperand(1), NSW, - KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth); + computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero, + KnownOne, KnownZero2, KnownOne2, DL, Depth, Q); break; } case Instruction::UDiv: { // For the purposes of computing leading zeros we can conservatively // treat a udiv as a logical right shift by the power of 2 known to // be less than the denominator. - ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); + computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); unsigned LeadZ = KnownZero2.countLeadingOnes(); KnownOne2.clearAllBits(); KnownZero2.clearAllBits(); - ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1); + computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q); unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); if (RHSUnknownLeadingOnes != BitWidth) LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); - return; + break; } case Instruction::Select: - ComputeMaskedBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1); - ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, - Depth+1); - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); + computeKnownBits(I->getOperand(2), KnownZero, KnownOne, DL, Depth + 1, Q); + computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q); // Only known if known in both the LHS and RHS. KnownOne &= KnownOne2; KnownZero &= KnownZero2; - return; + break; case Instruction::FPTrunc: case Instruction::FPExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::SIToFP: case Instruction::UIToFP: - return; // Can't work with floating point. + break; // Can't work with floating point. case Instruction::PtrToInt: case Instruction::IntToPtr: - // We can't handle these if we don't know the pointer size. - if (!TD) return; + case Instruction::AddrSpaceCast: // Pointers could be different sizes. // FALL THROUGH and handle them the same as zext/trunc. case Instruction::ZExt: case Instruction::Trunc: { @@ -433,38 +1166,38 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne, unsigned SrcBitWidth; // Note that we handle pointer operands here because of inttoptr/ptrtoint // which fall through here. - SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType()); + SrcBitWidth = DL.getTypeSizeInBits(SrcTy->getScalarType()); assert(SrcBitWidth && "SrcBitWidth can't be zero"); KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); - ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); + computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); KnownZero = KnownZero.zextOrTrunc(BitWidth); KnownOne = KnownOne.zextOrTrunc(BitWidth); // Any top bits are known to be zero. if (BitWidth > SrcBitWidth) KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); - return; + break; } case Instruction::BitCast: { Type *SrcTy = I->getOperand(0)->getType(); - if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && + if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() || + SrcTy->isFloatingPointTy()) && // TODO: For now, not handling conversions like: // (bitcast i64 %x to <2 x i32>) !I->getType()->isVectorTy()) { - ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); - return; + computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); + break; } break; } case Instruction::SExt: { // Compute the bits in the result that are not present in the input. unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); - + KnownZero = KnownZero.trunc(SrcBitWidth); KnownOne = KnownOne.trunc(SrcBitWidth); - ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); KnownZero = KnownZero.zext(BitWidth); KnownOne = KnownOne.zext(BitWidth); @@ -474,68 +1207,68 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne, KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); - return; + break; } - case Instruction::Shl: + case Instruction::Shl: { // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 - if (ConstantInt *SA = dyn_cast(I->getOperand(1))) { - uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); - ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - KnownZero <<= ShiftAmt; - KnownOne <<= ShiftAmt; - KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 - return; - } + auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { + return (KnownZero << ShiftAmt) | + APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0. + }; + + auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { + return KnownOne << ShiftAmt; + }; + + computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, + KnownZero2, KnownOne2, DL, Depth, Q, + KZF, KOF); break; - case Instruction::LShr: + } + case Instruction::LShr: { // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 - if (ConstantInt *SA = dyn_cast(I->getOperand(1))) { - // Compute the new bits that are at the top now. - uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); - - // Unsigned shift right. - ComputeMaskedBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1); - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); - KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); - // high bits known zero. - KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); - return; - } + auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { + return APIntOps::lshr(KnownZero, ShiftAmt) | + // High bits known zero. + APInt::getHighBitsSet(BitWidth, ShiftAmt); + }; + + auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { + return APIntOps::lshr(KnownOne, ShiftAmt); + }; + + computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, + KnownZero2, KnownOne2, DL, Depth, Q, + KZF, KOF); break; - case Instruction::AShr: + } + case Instruction::AShr: { // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 - if (ConstantInt *SA = dyn_cast(I->getOperand(1))) { - // Compute the new bits that are at the top now. - uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); - - // Signed shift right. - ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); - KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); - - APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); - if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero. - KnownZero |= HighBits; - else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one. - KnownOne |= HighBits; - return; - } + auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { + return APIntOps::ashr(KnownZero, ShiftAmt); + }; + + auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { + return APIntOps::ashr(KnownOne, ShiftAmt); + }; + + computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, + KnownZero2, KnownOne2, DL, Depth, Q, + KZF, KOF); break; + } case Instruction::Sub: { bool NSW = cast(I)->hasNoSignedWrap(); - ComputeMaskedBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, - KnownZero, KnownOne, KnownZero2, KnownOne2, TD, - Depth); + computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, + KnownZero, KnownOne, KnownZero2, KnownOne2, DL, + Depth, Q); break; } case Instruction::Add: { bool NSW = cast(I)->hasNoSignedWrap(); - ComputeMaskedBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, - KnownZero, KnownOne, KnownZero2, KnownOne2, TD, - Depth); + computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, + KnownZero, KnownOne, KnownZero2, KnownOne2, DL, + Depth, Q); break; } case Instruction::SRem: @@ -543,7 +1276,8 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne, APInt RA = Rem->getValue().abs(); if (RA.isPowerOf2()) { APInt LowBits = RA - 1; - ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); + computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, + Q); // The low bits of the first operand are unchanged by the srem. KnownZero = KnownZero2 & LowBits; @@ -559,7 +1293,7 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne, if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) KnownOne |= ~LowBits; - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); } } @@ -567,8 +1301,8 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne, // remainder is zero. if (KnownZero.isNonNegative()) { APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); - ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD, - Depth+1); + computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, DL, + Depth + 1, Q); // If it's known zero, our sign bit is also zero. if (LHSKnownZero.isNegative()) KnownZero.setBit(BitWidth - 1); @@ -580,9 +1314,8 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne, APInt RA = Rem->getValue(); if (RA.isPowerOf2()) { APInt LowBits = (RA - 1); - ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, - Depth+1); - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, + Q); KnownZero |= ~LowBits; KnownOne &= LowBits; break; @@ -591,8 +1324,8 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne, // Since the result is less than or equal to either operand, any leading // zero bits in either operand must also exist in the result. - ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); - ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1); + computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); + computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q); unsigned Leaders = std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes()); @@ -602,21 +1335,21 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne, } case Instruction::Alloca: { - AllocaInst *AI = cast(V); + AllocaInst *AI = cast(I); unsigned Align = AI->getAlignment(); - if (Align == 0 && TD) - Align = TD->getABITypeAlignment(AI->getType()->getElementType()); - + if (Align == 0) + Align = DL.getABITypeAlignment(AI->getType()->getElementType()); + if (Align > 0) - KnownZero = APInt::getLowBitsSet(BitWidth, CountTrailingZeros_32(Align)); + KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); break; } case Instruction::GetElementPtr: { // Analyze all of the subscripts of this getelementptr instruction // to determine if we can prove known low zero bits. APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); - ComputeMaskedBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD, - Depth+1); + computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, DL, + Depth + 1, Q); unsigned TrailZ = LocalKnownZero.countTrailingOnes(); gep_type_iterator GTI = gep_type_begin(I); @@ -624,26 +1357,38 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne, Value *Index = I->getOperand(i); if (StructType *STy = dyn_cast(*GTI)) { // Handle struct member offset arithmetic. - if (!TD) return; - const StructLayout *SL = TD->getStructLayout(STy); + + // Handle case when index is vector zeroinitializer + Constant *CIndex = cast(Index); + if (CIndex->isZeroValue()) + continue; + + if (CIndex->getType()->isVectorTy()) + Index = CIndex->getSplatValue(); + unsigned Idx = cast(Index)->getZExtValue(); + const StructLayout *SL = DL.getStructLayout(STy); uint64_t Offset = SL->getElementOffset(Idx); - TrailZ = std::min(TrailZ, - CountTrailingZeros_64(Offset)); + TrailZ = std::min(TrailZ, + countTrailingZeros(Offset)); } else { // Handle array index arithmetic. Type *IndexedTy = GTI.getIndexedType(); - if (!IndexedTy->isSized()) return; + if (!IndexedTy->isSized()) { + TrailZ = 0; + break; + } unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); - uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1; + uint64_t TypeSize = DL.getTypeAllocSize(IndexedTy); LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); - ComputeMaskedBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1); + computeKnownBits(Index, LocalKnownZero, LocalKnownOne, DL, Depth + 1, + Q); TrailZ = std::min(TrailZ, - unsigned(CountTrailingZeros_64(TypeSize) + + unsigned(countTrailingZeros(TypeSize) + LocalKnownZero.countTrailingOnes())); } } - + KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); break; } @@ -679,11 +1424,11 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne, break; // Ok, we have a PHI of the form L op= R. Check for low // zero bits. - ComputeMaskedBits(R, KnownZero2, KnownOne2, TD, Depth+1); + computeKnownBits(R, KnownZero2, KnownOne2, DL, Depth + 1, Q); // We need to take the minimum number of known bits APInt KnownZero3(KnownZero), KnownOne3(KnownOne); - ComputeMaskedBits(L, KnownZero3, KnownOne3, TD, Depth+1); + computeKnownBits(L, KnownZero3, KnownOne3, DL, Depth + 1, Q); KnownZero = APInt::getLowBitsSet(BitWidth, std::min(KnownZero2.countTrailingOnes(), @@ -695,7 +1440,7 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne, // Unreachable blocks may have zero-operand PHI nodes. if (P->getNumIncomingValues() == 0) - return; + break; // Otherwise take the unions of the known bit sets of the operands, // taking conservative care to avoid excessive recursion. @@ -706,16 +1451,16 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne, KnownZero = APInt::getAllOnesValue(BitWidth); KnownOne = APInt::getAllOnesValue(BitWidth); - for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) { + for (Value *IncValue : P->incoming_values()) { // Skip direct self references. - if (P->getIncomingValue(i) == P) continue; + if (IncValue == P) continue; KnownZero2 = APInt(BitWidth, 0); KnownOne2 = APInt(BitWidth, 0); // Recurse, but cap the recursion to one level, because we don't // want to waste time spinning around in loops. - ComputeMaskedBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD, - MaxDepth-1); + computeKnownBits(IncValue, KnownZero2, KnownOne2, DL, + MaxDepth - 1, Q); KnownZero &= KnownZero2; KnownOne &= KnownOne2; // If all bits have been ruled out, there's no need to check @@ -727,26 +1472,53 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne, break; } case Instruction::Call: + case Instruction::Invoke: + if (MDNode *MD = cast(I)->getMetadata(LLVMContext::MD_range)) + computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); + // If a range metadata is attached to this IntrinsicInst, intersect the + // explicit range specified by the metadata and the implicit range of + // the intrinsic. if (IntrinsicInst *II = dyn_cast(I)) { switch (II->getIntrinsicID()) { default: break; + case Intrinsic::bswap: + computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, + Depth + 1, Q); + KnownZero |= KnownZero2.byteSwap(); + KnownOne |= KnownOne2.byteSwap(); + break; case Intrinsic::ctlz: case Intrinsic::cttz: { unsigned LowBits = Log2_32(BitWidth)+1; // If this call is undefined for 0, the result will be less than 2^n. if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) LowBits -= 1; - KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); + KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); break; } case Intrinsic::ctpop: { - unsigned LowBits = Log2_32(BitWidth)+1; - KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); + computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, + Depth + 1, Q); + // We can bound the space the count needs. Also, bits known to be zero + // can't contribute to the population. + unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation(); + unsigned LeadingZeros = + APInt(BitWidth, BitsPossiblySet).countLeadingZeros(); + assert(LeadingZeros <= BitWidth); + KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros); + KnownOne &= ~KnownZero; + // TODO: we could bound KnownOne using the lower bound on the number + // of bits which might be set provided by popcnt KnownOne2. + break; + } + case Intrinsic::fabs: { + Type *Ty = II->getType(); + APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits()); + KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit); break; } - case Intrinsic::x86_sse42_crc32_64_8: case Intrinsic::x86_sse42_crc32_64_64: - KnownZero = APInt::getHighBitsSet(64, 32); + KnownZero |= APInt::getHighBitsSet(64, 32); break; } } @@ -760,21 +1532,21 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne, default: break; case Intrinsic::uadd_with_overflow: case Intrinsic::sadd_with_overflow: - ComputeMaskedBitsAddSub(true, II->getArgOperand(0), - II->getArgOperand(1), false, KnownZero, - KnownOne, KnownZero2, KnownOne2, TD, Depth); + computeKnownBitsAddSub(true, II->getArgOperand(0), + II->getArgOperand(1), false, KnownZero, + KnownOne, KnownZero2, KnownOne2, DL, Depth, Q); break; case Intrinsic::usub_with_overflow: case Intrinsic::ssub_with_overflow: - ComputeMaskedBitsAddSub(false, II->getArgOperand(0), - II->getArgOperand(1), false, KnownZero, - KnownOne, KnownZero2, KnownOne2, TD, Depth); + computeKnownBitsAddSub(false, II->getArgOperand(0), + II->getArgOperand(1), false, KnownZero, + KnownOne, KnownZero2, KnownOne2, DL, Depth, Q); break; case Intrinsic::umul_with_overflow: case Intrinsic::smul_with_overflow: - ComputeMaskedBitsMul(II->getArgOperand(0), II->getArgOperand(1), - false, KnownZero, KnownOne, - KnownZero2, KnownOne2, TD, Depth); + computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, + KnownZero, KnownOne, KnownZero2, KnownOne2, DL, + Depth, Q); break; } } @@ -782,11 +1554,154 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne, } } -/// ComputeSignBit - Determine whether the sign bit is known to be zero or -/// one. Convenience wrapper around ComputeMaskedBits. -void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, - const DataLayout *TD, unsigned Depth) { - unsigned BitWidth = getBitWidth(V->getType(), TD); +static unsigned getAlignment(const Value *V, const DataLayout &DL) { + unsigned Align = 0; + if (auto *GO = dyn_cast(V)) { + Align = GO->getAlignment(); + if (Align == 0) { + if (auto *GVar = dyn_cast(GO)) { + Type *ObjectType = GVar->getType()->getElementType(); + if (ObjectType->isSized()) { + // If the object is defined in the current Module, we'll be giving + // it the preferred alignment. Otherwise, we have to assume that it + // may only have the minimum ABI alignment. + if (GVar->isStrongDefinitionForLinker()) + Align = DL.getPreferredAlignment(GVar); + else + Align = DL.getABITypeAlignment(ObjectType); + } + } + } + } else if (const Argument *A = dyn_cast(V)) { + Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0; + + if (!Align && A->hasStructRetAttr()) { + // An sret parameter has at least the ABI alignment of the return type. + Type *EltTy = cast(A->getType())->getElementType(); + if (EltTy->isSized()) + Align = DL.getABITypeAlignment(EltTy); + } + } else if (const AllocaInst *AI = dyn_cast(V)) + Align = AI->getAlignment(); + else if (auto CS = ImmutableCallSite(V)) + Align = CS.getAttributes().getParamAlignment(AttributeSet::ReturnIndex); + else if (const LoadInst *LI = dyn_cast(V)) + if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) { + ConstantInt *CI = mdconst::extract(MD->getOperand(0)); + Align = CI->getLimitedValue(); + } + + return Align; +} + +/// Determine which bits of V are known to be either zero or one and return +/// them in the KnownZero/KnownOne bit sets. +/// +/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that +/// we cannot optimize based on the assumption that it is zero without changing +/// it to be an explicit zero. If we don't change it to zero, other code could +/// optimized based on the contradictory assumption that it is non-zero. +/// Because instcombine aggressively folds operations with undef args anyway, +/// this won't lose us code quality. +/// +/// This function is defined on values with integer type, values with pointer +/// type, and vectors of integers. In the case +/// where V is a vector, known zero, and known one values are the +/// same width as the vector element, and the bit is set only if it is true +/// for all of the elements in the vector. +void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, + const DataLayout &DL, unsigned Depth, const Query &Q) { + assert(V && "No Value?"); + assert(Depth <= MaxDepth && "Limit Search Depth"); + unsigned BitWidth = KnownZero.getBitWidth(); + + assert((V->getType()->isIntOrIntVectorTy() || + V->getType()->isFPOrFPVectorTy() || + V->getType()->getScalarType()->isPointerTy()) && + "Not integer, floating point, or pointer type!"); + assert((DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && + (!V->getType()->isIntOrIntVectorTy() || + V->getType()->getScalarSizeInBits() == BitWidth) && + KnownZero.getBitWidth() == BitWidth && + KnownOne.getBitWidth() == BitWidth && + "V, KnownOne and KnownZero should have same BitWidth"); + + if (ConstantInt *CI = dyn_cast(V)) { + // We know all of the bits for a constant! + KnownOne = CI->getValue(); + KnownZero = ~KnownOne; + return; + } + // Null and aggregate-zero are all-zeros. + if (isa(V) || + isa(V)) { + KnownOne.clearAllBits(); + KnownZero = APInt::getAllOnesValue(BitWidth); + return; + } + // Handle a constant vector by taking the intersection of the known bits of + // each element. There is no real need to handle ConstantVector here, because + // we don't handle undef in any particularly useful way. + if (ConstantDataSequential *CDS = dyn_cast(V)) { + // We know that CDS must be a vector of integers. Take the intersection of + // each element. + KnownZero.setAllBits(); KnownOne.setAllBits(); + APInt Elt(KnownZero.getBitWidth(), 0); + for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { + Elt = CDS->getElementAsInteger(i); + KnownZero &= ~Elt; + KnownOne &= Elt; + } + return; + } + + // Start out not knowing anything. + KnownZero.clearAllBits(); KnownOne.clearAllBits(); + + // Limit search depth. + // All recursive calls that increase depth must come after this. + if (Depth == MaxDepth) + return; + + // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has + // the bits of its aliasee. + if (GlobalAlias *GA = dyn_cast(V)) { + if (!GA->mayBeOverridden()) + computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, DL, Depth + 1, Q); + return; + } + + if (Operator *I = dyn_cast(V)) + computeKnownBitsFromOperator(I, KnownZero, KnownOne, DL, Depth, Q); + + // Aligned pointers have trailing zeros - refine KnownZero set + if (V->getType()->isPointerTy()) { + unsigned Align = getAlignment(V, DL); + if (Align) + KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); + } + + // computeKnownBitsFromAssume and computeKnownBitsFromDominatingCondition + // strictly refines KnownZero and KnownOne. Therefore, we run them after + // computeKnownBitsFromOperator. + + // Check whether a nearby assume intrinsic can determine some known bits. + computeKnownBitsFromAssume(V, KnownZero, KnownOne, DL, Depth, Q); + + // Check whether there's a dominating condition which implies something about + // this value at the given context. + if (EnableDomConditions && Depth <= DomConditionsMaxDepth) + computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, DL, Depth, + Q); + + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); +} + +/// Determine whether the sign bit is known to be zero or one. +/// Convenience wrapper around computeKnownBits. +void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, + const DataLayout &DL, unsigned Depth, const Query &Q) { + unsigned BitWidth = getBitWidth(V->getType(), DL); if (!BitWidth) { KnownZero = false; KnownOne = false; @@ -794,16 +1709,17 @@ void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, } APInt ZeroBits(BitWidth, 0); APInt OneBits(BitWidth, 0); - ComputeMaskedBits(V, ZeroBits, OneBits, TD, Depth); + computeKnownBits(V, ZeroBits, OneBits, DL, Depth, Q); KnownOne = OneBits[BitWidth - 1]; KnownZero = ZeroBits[BitWidth - 1]; } -/// isKnownToBeAPowerOfTwo - Return true if the given value is known to have exactly one +/// Return true if the given value is known to have exactly one /// bit set when defined. For vectors return true if every element is known to -/// be a power of two when defined. Supports values with integer or pointer +/// be a power of two when defined. Supports values with integer or pointer /// types and vectors of integers. -bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) { +bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, + const Query &Q, const DataLayout &DL) { if (Constant *C = dyn_cast(V)) { if (C->isNullValue()) return OrZero; @@ -826,23 +1742,23 @@ bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) { if (Depth++ == MaxDepth) return false; - Value *X = 0, *Y = 0; + Value *X = nullptr, *Y = nullptr; // A shift of a power of two is a power of two or zero. if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || match(V, m_Shr(m_Value(X), m_Value())))) - return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth); + return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL); if (ZExtInst *ZI = dyn_cast(V)) - return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth); + return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q, DL); if (SelectInst *SI = dyn_cast(V)) - return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth) && - isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth); + return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q, DL) && + isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q, DL); if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { // A power of two and'd with anything is a power of two or zero. - if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth) || - isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth)) + if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL) || + isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q, DL)) return true; // X & (-X) is always a power of two or zero. if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) @@ -850,12 +1766,44 @@ bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) { return false; } + // Adding a power-of-two or zero to the same power-of-two or zero yields + // either the original power-of-two, a larger power-of-two or zero. + if (match(V, m_Add(m_Value(X), m_Value(Y)))) { + OverflowingBinaryOperator *VOBO = cast(V); + if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { + if (match(X, m_And(m_Specific(Y), m_Value())) || + match(X, m_And(m_Value(), m_Specific(Y)))) + if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q, DL)) + return true; + if (match(Y, m_And(m_Specific(X), m_Value())) || + match(Y, m_And(m_Value(), m_Specific(X)))) + if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q, DL)) + return true; + + unsigned BitWidth = V->getType()->getScalarSizeInBits(); + APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); + computeKnownBits(X, LHSZeroBits, LHSOneBits, DL, Depth, Q); + + APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); + computeKnownBits(Y, RHSZeroBits, RHSOneBits, DL, Depth, Q); + // If i8 V is a power of two or zero: + // ZeroBits: 1 1 1 0 1 1 1 1 + // ~ZeroBits: 0 0 0 1 0 0 0 0 + if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) + // If OrZero isn't set, we cannot give back a zero result. + // Make sure either the LHS or RHS has a bit set. + if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) + return true; + } + } + // An exact divide or right shift can only shift off zero bits, so the result // is a power of two only if the first operand is a power of two and not // copying a sign bit (sdiv int_min, 2). if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { - return isKnownToBeAPowerOfTwo(cast(V)->getOperand(0), OrZero, Depth); + return isKnownToBeAPowerOfTwo(cast(V)->getOperand(0), OrZero, + Depth, Q, DL); } return false; @@ -867,8 +1815,8 @@ bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) { /// to be non-null. /// /// Currently this routine does not support vector GEPs. -static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL, - unsigned Depth) { +static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout &DL, + unsigned Depth, const Query &Q) { if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) return false; @@ -877,13 +1825,9 @@ static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL, // If the base pointer is non-null, we cannot walk to a null address with an // inbounds GEP in address space zero. - if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth)) + if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q)) return true; - // Past this, if we don't have DataLayout, we can't do much. - if (!DL) - return false; - // Walk the GEP operands and see if any operand introduces a non-zero offset. // If so, then the GEP cannot produce a null pointer, as doing so would // inherently violate the inbounds contract within address space zero. @@ -893,7 +1837,7 @@ static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL, if (StructType *STy = dyn_cast(*GTI)) { ConstantInt *OpC = cast(GTI.getOperand()); unsigned ElementIdx = OpC->getZExtValue(); - const StructLayout *SL = DL->getStructLayout(STy); + const StructLayout *SL = DL.getStructLayout(STy); uint64_t ElementOffset = SL->getElementOffset(ElementIdx); if (ElementOffset > 0) return true; @@ -901,7 +1845,7 @@ static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL, } // If we have a zero-sized type, the index doesn't matter. Keep looping. - if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0) + if (DL.getTypeAllocSize(GTI.getIndexedType()) == 0) continue; // Fast path the constant operand case both for efficiency and so we don't @@ -920,18 +1864,38 @@ static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL, if (Depth++ >= MaxDepth) continue; - if (isKnownNonZero(GTI.getOperand(), DL, Depth)) + if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q)) return true; } return false; } -/// isKnownNonZero - Return true if the given value is known to be non-zero -/// when defined. For vectors return true if every element is known to be -/// non-zero when defined. Supports values with integer or pointer type and -/// vectors of integers. -bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) { +/// Does the 'Range' metadata (which must be a valid MD_range operand list) +/// ensure that the value it's attached to is never Value? 'RangeType' is +/// is the type of the value described by the range. +static bool rangeMetadataExcludesValue(MDNode* Ranges, + const APInt& Value) { + const unsigned NumRanges = Ranges->getNumOperands() / 2; + assert(NumRanges >= 1); + for (unsigned i = 0; i < NumRanges; ++i) { + ConstantInt *Lower = + mdconst::extract(Ranges->getOperand(2 * i + 0)); + ConstantInt *Upper = + mdconst::extract(Ranges->getOperand(2 * i + 1)); + ConstantRange Range(Lower->getValue(), Upper->getValue()); + if (Range.contains(Value)) + return false; + } + return true; +} + +/// Return true if the given value is known to be non-zero when defined. +/// For vectors return true if every element is known to be non-zero when +/// defined. Supports values with integer or pointer type and vectors of +/// integers. +bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, + const Query &Q) { if (Constant *C = dyn_cast(V)) { if (C->isNullValue()) return false; @@ -942,27 +1906,41 @@ bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) { return false; } + if (Instruction* I = dyn_cast(V)) { + if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { + // If the possible ranges don't contain zero, then the value is + // definitely non-zero. + if (IntegerType* Ty = dyn_cast(V->getType())) { + const APInt ZeroValue(Ty->getBitWidth(), 0); + if (rangeMetadataExcludesValue(Ranges, ZeroValue)) + return true; + } + } + } + // The remaining tests are all recursive, so bail out if we hit the limit. if (Depth++ >= MaxDepth) return false; // Check for pointer simplifications. if (V->getType()->isPointerTy()) { + if (isKnownNonNull(V)) + return true; if (GEPOperator *GEP = dyn_cast(V)) - if (isGEPKnownNonNull(GEP, TD, Depth)) + if (isGEPKnownNonNull(GEP, DL, Depth, Q)) return true; } - unsigned BitWidth = getBitWidth(V->getType(), TD); + unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), DL); // X | Y != 0 if X != 0 or Y != 0. - Value *X = 0, *Y = 0; + Value *X = nullptr, *Y = nullptr; if (match(V, m_Or(m_Value(X), m_Value(Y)))) - return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth); + return isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q); // ext X != 0 if X != 0. if (isa(V) || isa(V)) - return isKnownNonZero(cast(V)->getOperand(0), TD, Depth); + return isKnownNonZero(cast(V)->getOperand(0), DL, Depth, Q); // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined // if the lowest bit is shifted off the end. @@ -970,11 +1948,11 @@ bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) { // shl nuw can't remove any non-zero bits. OverflowingBinaryOperator *BO = cast(V); if (BO->hasNoUnsignedWrap()) - return isKnownNonZero(X, TD, Depth); + return isKnownNonZero(X, DL, Depth, Q); APInt KnownZero(BitWidth, 0); APInt KnownOne(BitWidth, 0); - ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth); + computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q); if (KnownOne[0]) return true; } @@ -984,28 +1962,45 @@ bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) { // shr exact can only shift out zero bits. PossiblyExactOperator *BO = cast(V); if (BO->isExact()) - return isKnownNonZero(X, TD, Depth); + return isKnownNonZero(X, DL, Depth, Q); bool XKnownNonNegative, XKnownNegative; - ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); + ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q); if (XKnownNegative) return true; + + // If the shifter operand is a constant, and all of the bits shifted + // out are known to be zero, and X is known non-zero then at least one + // non-zero bit must remain. + if (ConstantInt *Shift = dyn_cast(Y)) { + APInt KnownZero(BitWidth, 0); + APInt KnownOne(BitWidth, 0); + computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q); + + auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); + // Is there a known one in the portion not shifted out? + if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal) + return true; + // Are all the bits to be shifted out known zero? + if (KnownZero.countTrailingOnes() >= ShiftVal) + return isKnownNonZero(X, DL, Depth, Q); + } } // div exact can only produce a zero if the dividend is zero. else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { - return isKnownNonZero(X, TD, Depth); + return isKnownNonZero(X, DL, Depth, Q); } // X + Y. else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { bool XKnownNonNegative, XKnownNegative; bool YKnownNonNegative, YKnownNegative; - ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); - ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth); + ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q); + ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, DL, Depth, Q); // If X and Y are both non-negative (as signed values) then their sum is not // zero unless both X and Y are zero. if (XKnownNonNegative && YKnownNonNegative) - if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth)) + if (isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q)) return true; // If X and Y are both negative (as signed values) then their sum is not @@ -1016,20 +2011,22 @@ bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) { APInt Mask = APInt::getSignedMaxValue(BitWidth); // The sign bit of X is set. If some other bit is set then X is not equal // to INT_MIN. - ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth); + computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q); if ((KnownOne & Mask) != 0) return true; // The sign bit of Y is set. If some other bit is set then Y is not equal // to INT_MIN. - ComputeMaskedBits(Y, KnownZero, KnownOne, TD, Depth); + computeKnownBits(Y, KnownZero, KnownOne, DL, Depth, Q); if ((KnownOne & Mask) != 0) return true; } // The sum of a non-negative number and a power of two is not zero. - if (XKnownNonNegative && isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth)) + if (XKnownNonNegative && + isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q, DL)) return true; - if (YKnownNonNegative && isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth)) + if (YKnownNonNegative && + isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q, DL)) return true; } // X * Y. @@ -1038,76 +2035,188 @@ bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) { // If X and Y are non-zero then so is X * Y as long as the multiplication // does not overflow. if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && - isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth)) + isKnownNonZero(X, DL, Depth, Q) && isKnownNonZero(Y, DL, Depth, Q)) return true; } // (C ? X : Y) != 0 if X != 0 and Y != 0. else if (SelectInst *SI = dyn_cast(V)) { - if (isKnownNonZero(SI->getTrueValue(), TD, Depth) && - isKnownNonZero(SI->getFalseValue(), TD, Depth)) + if (isKnownNonZero(SI->getTrueValue(), DL, Depth, Q) && + isKnownNonZero(SI->getFalseValue(), DL, Depth, Q)) return true; } + // PHI + else if (PHINode *PN = dyn_cast(V)) { + // Try and detect a recurrence that monotonically increases from a + // starting value, as these are common as induction variables. + if (PN->getNumIncomingValues() == 2) { + Value *Start = PN->getIncomingValue(0); + Value *Induction = PN->getIncomingValue(1); + if (isa(Induction) && !isa(Start)) + std::swap(Start, Induction); + if (ConstantInt *C = dyn_cast(Start)) { + if (!C->isZero() && !C->isNegative()) { + ConstantInt *X; + if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || + match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && + !X->isNegative()) + return true; + } + } + } + } if (!BitWidth) return false; APInt KnownZero(BitWidth, 0); APInt KnownOne(BitWidth, 0); - ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth); + computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q); return KnownOne != 0; } -/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use -/// this predicate to simplify operations downstream. Mask is known to be zero -/// for bits that V cannot have. +/// Return true if V2 == V1 + X, where X is known non-zero. +static bool isAddOfNonZero(Value *V1, Value *V2, const DataLayout &DL, + const Query &Q) { + BinaryOperator *BO = dyn_cast(V1); + if (!BO || BO->getOpcode() != Instruction::Add) + return false; + Value *Op = nullptr; + if (V2 == BO->getOperand(0)) + Op = BO->getOperand(1); + else if (V2 == BO->getOperand(1)) + Op = BO->getOperand(0); + else + return false; + return isKnownNonZero(Op, DL, 0, Q); +} + +/// Return true if it is known that V1 != V2. +static bool isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL, + const Query &Q) { + if (V1->getType()->isVectorTy() || V1 == V2) + return false; + if (V1->getType() != V2->getType()) + // We can't look through casts yet. + return false; + if (isAddOfNonZero(V1, V2, DL, Q) || isAddOfNonZero(V2, V1, DL, Q)) + return true; + + if (IntegerType *Ty = dyn_cast(V1->getType())) { + // Are any known bits in V1 contradictory to known bits in V2? If V1 + // has a known zero where V2 has a known one, they must not be equal. + auto BitWidth = Ty->getBitWidth(); + APInt KnownZero1(BitWidth, 0); + APInt KnownOne1(BitWidth, 0); + computeKnownBits(V1, KnownZero1, KnownOne1, DL, 0, Q); + APInt KnownZero2(BitWidth, 0); + APInt KnownOne2(BitWidth, 0); + computeKnownBits(V2, KnownZero2, KnownOne2, DL, 0, Q); + + auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1); + if (OppositeBits.getBoolValue()) + return true; + } + return false; +} + +/// Return true if 'V & Mask' is known to be zero. We use this predicate to +/// simplify operations downstream. Mask is known to be zero for bits that V +/// cannot have. /// /// This function is defined on values with integer type, values with pointer -/// type (but only if TD is non-null), and vectors of integers. In the case +/// type, and vectors of integers. In the case /// where V is a vector, the mask, known zero, and known one values are the /// same width as the vector element, and the bit is set only if it is true /// for all of the elements in the vector. -bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, - const DataLayout *TD, unsigned Depth) { +bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, + unsigned Depth, const Query &Q) { APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); - ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth); - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q); return (KnownZero & Mask) == Mask; } -/// ComputeNumSignBits - Return the number of times the sign bit of the -/// register is replicated into the other bits. We know that at least 1 bit -/// is always equal to the sign bit (itself), but other cases can give us -/// information. For example, immediately after an "ashr X, 2", we know that -/// the top 3 bits are all equal to each other, so we return 3. +/// Return the number of times the sign bit of the register is replicated into +/// the other bits. We know that at least 1 bit is always equal to the sign bit +/// (itself), but other cases can give us information. For example, immediately +/// after an "ashr X, 2", we know that the top 3 bits are all equal to each +/// other, so we return 3. /// /// 'Op' must have a scalar integer type. /// -unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD, - unsigned Depth) { - assert((TD || V->getType()->isIntOrIntVectorTy()) && - "ComputeNumSignBits requires a DataLayout object to operate " - "on non-integer values!"); - Type *Ty = V->getType(); - unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) : - Ty->getScalarSizeInBits(); +unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, unsigned Depth, + const Query &Q) { + unsigned TyBits = DL.getTypeSizeInBits(V->getType()->getScalarType()); unsigned Tmp, Tmp2; unsigned FirstAnswer = 1; - // Note that ConstantInt is handled by the general ComputeMaskedBits case + // Note that ConstantInt is handled by the general computeKnownBits case // below. if (Depth == 6) return 1; // Limit search depth. - + Operator *U = dyn_cast(V); switch (Operator::getOpcode(V)) { default: break; case Instruction::SExt: Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); - return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp; - + return ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q) + Tmp; + + case Instruction::SDiv: { + const APInt *Denominator; + // sdiv X, C -> adds log(C) sign bits. + if (match(U->getOperand(1), m_APInt(Denominator))) { + + // Ignore non-positive denominator. + if (!Denominator->isStrictlyPositive()) + break; + + // Calculate the incoming numerator bits. + unsigned NumBits = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); + + // Add floor(log(C)) bits to the numerator bits. + return std::min(TyBits, NumBits + Denominator->logBase2()); + } + break; + } + + case Instruction::SRem: { + const APInt *Denominator; + // srem X, C -> we know that the result is within [-C+1,C) when C is a + // positive constant. This let us put a lower bound on the number of sign + // bits. + if (match(U->getOperand(1), m_APInt(Denominator))) { + + // Ignore non-positive denominator. + if (!Denominator->isStrictlyPositive()) + break; + + // Calculate the incoming numerator bits. SRem by a positive constant + // can't lower the number of sign bits. + unsigned NumrBits = + ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); + + // Calculate the leading sign bit constraints by examining the + // denominator. Given that the denominator is positive, there are two + // cases: + // + // 1. the numerator is positive. The result range is [0,C) and [0,C) u< + // (1 << ceilLogBase2(C)). + // + // 2. the numerator is negative. Then the result range is (-C,0] and + // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). + // + // Thus a lower bound on the number of sign bits is `TyBits - + // ceilLogBase2(C)`. + + unsigned ResBits = TyBits - Denominator->ceilLogBase2(); + return std::max(NumrBits, ResBits); + } + break; + } + case Instruction::AShr: { - Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); + Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); // ashr X, C -> adds C sign bits. Vectors too. const APInt *ShAmt; if (match(U->getOperand(1), m_APInt(ShAmt))) { @@ -1120,7 +2229,7 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD, const APInt *ShAmt; if (match(U->getOperand(1), m_APInt(ShAmt))) { // shl destroys sign bits. - Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); + Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); Tmp2 = ShAmt->getZExtValue(); if (Tmp2 >= TyBits || // Bad shift. Tmp2 >= Tmp) break; // Shifted all sign bits out. @@ -1132,89 +2241,94 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD, case Instruction::Or: case Instruction::Xor: // NOT is handled here. // Logical binary ops preserve the number of sign bits at the worst. - Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); + Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); if (Tmp != 1) { - Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); + Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); FirstAnswer = std::min(Tmp, Tmp2); // We computed what we know about the sign bits as our first // answer. Now proceed to the generic code that uses - // ComputeMaskedBits, and pick whichever answer is better. + // computeKnownBits, and pick whichever answer is better. } break; case Instruction::Select: - Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); + Tmp = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); if (Tmp == 1) return 1; // Early out. - Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1); + Tmp2 = ComputeNumSignBits(U->getOperand(2), DL, Depth + 1, Q); return std::min(Tmp, Tmp2); - + case Instruction::Add: // Add can have at most one carry bit. Thus we know that the output // is, at worst, one more bit than the inputs. - Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); + Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); if (Tmp == 1) return 1; // Early out. - + // Special case decrementing a value (ADD X, -1): - if (ConstantInt *CRHS = dyn_cast(U->getOperand(1))) + if (const auto *CRHS = dyn_cast(U->getOperand(1))) if (CRHS->isAllOnesValue()) { APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); - ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1); - + computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, + Q); + // If the input is known to be 0 or 1, the output is 0/-1, which is all // sign bits set. if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) return TyBits; - + // If we are subtracting one from a positive number, there is no carry // out of the result. if (KnownZero.isNegative()) return Tmp; } - - Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); + + Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); if (Tmp2 == 1) return 1; return std::min(Tmp, Tmp2)-1; - + case Instruction::Sub: - Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); + Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); if (Tmp2 == 1) return 1; - + // Handle NEG. - if (ConstantInt *CLHS = dyn_cast(U->getOperand(0))) + if (const auto *CLHS = dyn_cast(U->getOperand(0))) if (CLHS->isNullValue()) { APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); - ComputeMaskedBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1); + computeKnownBits(U->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, + Q); // If the input is known to be 0 or 1, the output is 0/-1, which is all // sign bits set. if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) return TyBits; - + // If the input is known to be positive (the sign bit is known clear), // the output of the NEG has the same number of sign bits as the input. if (KnownZero.isNegative()) return Tmp2; - + // Otherwise, we treat this like a SUB. } - + // Sub can have at most one carry bit. Thus we know that the output // is, at worst, one more bit than the inputs. - Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); + Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); if (Tmp == 1) return 1; // Early out. return std::min(Tmp, Tmp2)-1; - + case Instruction::PHI: { PHINode *PN = cast(U); + unsigned NumIncomingValues = PN->getNumIncomingValues(); // Don't analyze large in-degree PHIs. - if (PN->getNumIncomingValues() > 4) break; - + if (NumIncomingValues > 4) break; + // Unreachable blocks may have zero-operand PHI nodes. + if (NumIncomingValues == 0) break; + // Take the minimum of all incoming values. This can't infinitely loop // because of our depth threshold. - Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1); - for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { + Tmp = ComputeNumSignBits(PN->getIncomingValue(0), DL, Depth + 1, Q); + for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { if (Tmp == 1) return Tmp; - Tmp = std::min(Tmp, - ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1)); + Tmp = std::min( + Tmp, ComputeNumSignBits(PN->getIncomingValue(i), DL, Depth + 1, Q)); } return Tmp; } @@ -1224,13 +2338,13 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD, // case for targets like X86. break; } - + // Finally, if we can prove that the top bits of the result are 0's or 1's, // use this information. APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); APInt Mask; - ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth); - + computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q); + if (KnownZero.isNegative()) { // sign bit is 0 Mask = KnownZero; } else if (KnownOne.isNegative()) { // sign bit is 1; @@ -1239,7 +2353,7 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD, // Nothing known. return FirstAnswer; } - + // Okay, we know that the sign bit in Mask is set. Use CLZ to determine // the number of identical bits in the top of the input value. Mask = ~Mask; @@ -1249,9 +2363,9 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD, return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); } -/// ComputeMultiple - This function computes the integer multiple of Base that -/// equals V. If successful, it returns true and returns the multiple in -/// Multiple. If unsuccessful, it returns false. It looks +/// This function computes the integer multiple of Base that equals V. +/// If successful, it returns true and returns the multiple in +/// Multiple. If unsuccessful, it returns false. It looks /// through SExt instructions only if LookThroughSExt is true. bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, bool LookThroughSExt, unsigned Depth) { @@ -1267,7 +2381,7 @@ bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, if (Base == 0) return false; - + if (Base == 1) { Multiple = V; return true; @@ -1283,11 +2397,11 @@ bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, if (CI && CI->getZExtValue() % Base == 0) { Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); - return true; + return true; } - + if (Depth == MaxDepth) return false; // Limit search depth. - + Operator *I = dyn_cast(V); if (!I) return false; @@ -1315,17 +2429,17 @@ bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, Op1 = ConstantInt::get(V->getContext(), API); } - Value *Mul0 = NULL; + Value *Mul0 = nullptr; if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { if (Constant *Op1C = dyn_cast(Op1)) if (Constant *MulC = dyn_cast(Mul0)) { - if (Op1C->getType()->getPrimitiveSizeInBits() < + if (Op1C->getType()->getPrimitiveSizeInBits() < MulC->getType()->getPrimitiveSizeInBits()) Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); - if (Op1C->getType()->getPrimitiveSizeInBits() > + if (Op1C->getType()->getPrimitiveSizeInBits() > MulC->getType()->getPrimitiveSizeInBits()) MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); - + // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) Multiple = ConstantExpr::getMul(MulC, Op1C); return true; @@ -1339,17 +2453,17 @@ bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, } } - Value *Mul1 = NULL; + Value *Mul1 = nullptr; if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { if (Constant *Op0C = dyn_cast(Op0)) if (Constant *MulC = dyn_cast(Mul1)) { - if (Op0C->getType()->getPrimitiveSizeInBits() < + if (Op0C->getType()->getPrimitiveSizeInBits() < MulC->getType()->getPrimitiveSizeInBits()) Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); - if (Op0C->getType()->getPrimitiveSizeInBits() > + if (Op0C->getType()->getPrimitiveSizeInBits() > MulC->getType()->getPrimitiveSizeInBits()) MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); - + // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) Multiple = ConstantExpr::getMul(MulC, Op0C); return true; @@ -1369,8 +2483,8 @@ bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, return false; } -/// CannotBeNegativeZero - Return true if we can prove that the specified FP -/// value is never equal to -0.0. +/// Return true if we can prove that the specified FP value is never equal to +/// -0.0. /// /// NOTE: this function will need to be revisited when we support non-default /// rounding modes! @@ -1378,12 +2492,15 @@ bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { if (const ConstantFP *CFP = dyn_cast(V)) return !CFP->getValueAPF().isNegZero(); - + + // FIXME: Magic number! At the least, this should be given a name because it's + // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to + // expose it as a parameter, so it can be used for testing / experimenting. if (Depth == 6) - return 1; // Limit search depth. + return false; // Limit search depth. const Operator *I = dyn_cast(V); - if (I == 0) return false; + if (!I) return false; // Check if the nsz fast-math flag is set if (const FPMathOperator *FPO = dyn_cast(I)) @@ -1391,20 +2508,20 @@ bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { return true; // (add x, 0.0) is guaranteed to return +0.0, not -0.0. - if (I->getOpcode() == Instruction::FAdd && - isa(I->getOperand(1)) && - cast(I->getOperand(1))->isNullValue()) - return true; - + if (I->getOpcode() == Instruction::FAdd) + if (ConstantFP *CFP = dyn_cast(I->getOperand(1))) + if (CFP->isNullValue()) + return true; + // sitofp and uitofp turn into +0.0 for zero. if (isa(I) || isa(I)) return true; - + if (const IntrinsicInst *II = dyn_cast(I)) // sqrt(-0.0) = -0.0, no other negative results are possible. if (II->getIntrinsicID() == Intrinsic::sqrt) return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); - + if (const CallInst *CI = dyn_cast(I)) if (const Function *F = CI->getCalledFunction()) { if (F->isDeclaration()) { @@ -1419,26 +2536,82 @@ bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); } } - + return false; } -/// isBytewiseValue - If the specified value can be set by repeating the same -/// byte in memory, return the i8 value that it is represented with. This is -/// true for all i8 values obviously, but is also true for i32 0, i32 -1, -/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated -/// byte store (e.g. i16 0x1234), return null. -Value *llvm::isBytewiseValue(Value *V) { - // All byte-wide stores are splatable, even of arbitrary variables. - if (V->getType()->isIntegerTy(8)) return V; +bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) { + if (const ConstantFP *CFP = dyn_cast(V)) + return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero(); + + // FIXME: Magic number! At the least, this should be given a name because it's + // used similarly in CannotBeNegativeZero(). A better fix may be to + // expose it as a parameter, so it can be used for testing / experimenting. + if (Depth == 6) + return false; // Limit search depth. + + const Operator *I = dyn_cast(V); + if (!I) return false; + + switch (I->getOpcode()) { + default: break; + case Instruction::FMul: + // x*x is always non-negative or a NaN. + if (I->getOperand(0) == I->getOperand(1)) + return true; + // Fall through + case Instruction::FAdd: + case Instruction::FDiv: + case Instruction::FRem: + return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) && + CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1); + case Instruction::FPExt: + case Instruction::FPTrunc: + // Widening/narrowing never change sign. + return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1); + case Instruction::Call: + if (const IntrinsicInst *II = dyn_cast(I)) + switch (II->getIntrinsicID()) { + default: break; + case Intrinsic::exp: + case Intrinsic::exp2: + case Intrinsic::fabs: + case Intrinsic::sqrt: + return true; + case Intrinsic::powi: + if (ConstantInt *CI = dyn_cast(I->getOperand(1))) { + // powi(x,n) is non-negative if n is even. + if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0) + return true; + } + return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1); + case Intrinsic::fma: + case Intrinsic::fmuladd: + // x*x+y is non-negative if y is non-negative. + return I->getOperand(0) == I->getOperand(1) && + CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1); + } + break; + } + return false; +} + +/// If the specified value can be set by repeating the same byte in memory, +/// return the i8 value that it is represented with. This is +/// true for all i8 values obviously, but is also true for i32 0, i32 -1, +/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated +/// byte store (e.g. i16 0x1234), return null. +Value *llvm::isBytewiseValue(Value *V) { + // All byte-wide stores are splatable, even of arbitrary variables. + if (V->getType()->isIntegerTy(8)) return V; + + // Handle 'null' ConstantArrayZero etc. + if (Constant *C = dyn_cast(V)) + if (C->isNullValue()) + return Constant::getNullValue(Type::getInt8Ty(V->getContext())); - // Handle 'null' ConstantArrayZero etc. - if (Constant *C = dyn_cast(V)) - if (C->isNullValue()) - return Constant::getNullValue(Type::getInt8Ty(V->getContext())); - // Constant float and double values can be handled as integer values if the - // corresponding integer value is "byteable". An important case is 0.0. + // corresponding integer value is "byteable". An important case is 0.0. if (ConstantFP *CFP = dyn_cast(V)) { if (CFP->getType()->isFloatTy()) V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); @@ -1446,42 +2619,30 @@ Value *llvm::isBytewiseValue(Value *V) { V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); // Don't handle long double formats, which have strange constraints. } - - // We can handle constant integers that are power of two in size and a - // multiple of 8 bits. + + // We can handle constant integers that are multiple of 8 bits. if (ConstantInt *CI = dyn_cast(V)) { - unsigned Width = CI->getBitWidth(); - if (isPowerOf2_32(Width) && Width > 8) { - // We can handle this value if the recursive binary decomposition is the - // same at all levels. - APInt Val = CI->getValue(); - APInt Val2; - while (Val.getBitWidth() != 8) { - unsigned NextWidth = Val.getBitWidth()/2; - Val2 = Val.lshr(NextWidth); - Val2 = Val2.trunc(Val.getBitWidth()/2); - Val = Val.trunc(Val.getBitWidth()/2); - - // If the top/bottom halves aren't the same, reject it. - if (Val != Val2) - return 0; - } - return ConstantInt::get(V->getContext(), Val); + if (CI->getBitWidth() % 8 == 0) { + assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); + + if (!CI->getValue().isSplat(8)) + return nullptr; + return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); } } - + // A ConstantDataArray/Vector is splatable if all its members are equal and // also splatable. if (ConstantDataSequential *CA = dyn_cast(V)) { Value *Elt = CA->getElementAsConstant(0); Value *Val = isBytewiseValue(Elt); if (!Val) - return 0; - + return nullptr; + for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) if (CA->getElementAsConstant(I) != Elt) - return 0; - + return nullptr; + return Val; } @@ -1491,7 +2652,7 @@ Value *llvm::isBytewiseValue(Value *V) { // %c = or i16 %a, %b // but until there is an example that actually needs this, it doesn't seem // worth worrying about. - return 0; + return nullptr; } @@ -1502,10 +2663,10 @@ Value *llvm::isBytewiseValue(Value *V) { // struct. To is the result struct built so far, new insertvalue instructions // build on that. static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, - SmallVector &Idxs, + SmallVectorImpl &Idxs, unsigned IdxSkip, Instruction *InsertBefore) { - llvm::StructType *STy = llvm::dyn_cast(IndexedType); + llvm::StructType *STy = dyn_cast(IndexedType); if (STy) { // Save the original To argument so we can modify it Value *OrigTo = To; @@ -1536,12 +2697,12 @@ static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, // the struct's elements had a value that was inserted directly. In the latter // case, perhaps we can't determine each of the subelements individually, but // we might be able to find the complete struct somewhere. - + // Find the value that is at that particular spot Value *V = FindInsertedValue(From, Idxs); if (!V) - return NULL; + return nullptr; // Insert the value in the new (sub) aggregrate return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), @@ -1572,7 +2733,7 @@ static Value *BuildSubAggregate(Value *From, ArrayRef idx_range, return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); } -/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if +/// Given an aggregrate and an sequence of indices, see if /// the scalar value indexed is already around as a register, for example if it /// were inserted directly into the aggregrate. /// @@ -1592,10 +2753,10 @@ Value *llvm::FindInsertedValue(Value *V, ArrayRef idx_range, if (Constant *C = dyn_cast(V)) { C = C->getAggregateElement(idx_range[0]); - if (C == 0) return 0; + if (!C) return nullptr; return FindInsertedValue(C, idx_range.slice(1), InsertBefore); } - + if (InsertValueInst *I = dyn_cast(V)) { // Loop the indices for the insertvalue instruction in parallel with the // requested indices @@ -1605,7 +2766,7 @@ Value *llvm::FindInsertedValue(Value *V, ArrayRef idx_range, if (req_idx == idx_range.end()) { // We can't handle this without inserting insertvalues if (!InsertBefore) - return 0; + return nullptr; // The requested index identifies a part of a nested aggregate. Handle // this specially. For example, @@ -1620,9 +2781,9 @@ Value *llvm::FindInsertedValue(Value *V, ArrayRef idx_range, return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), InsertBefore); } - + // This insert value inserts something else than what we are looking for. - // See if the (aggregrate) value inserted into has the value we are + // See if the (aggregate) value inserted into has the value we are // looking for, then. if (*req_idx != *i) return FindInsertedValue(I->getAggregateOperand(), idx_range, @@ -1635,104 +2796,96 @@ Value *llvm::FindInsertedValue(Value *V, ArrayRef idx_range, makeArrayRef(req_idx, idx_range.end()), InsertBefore); } - + if (ExtractValueInst *I = dyn_cast(V)) { - // If we're extracting a value from an aggregrate that was extracted from + // If we're extracting a value from an aggregate that was extracted from // something else, we can extract from that something else directly instead. // However, we will need to chain I's indices with the requested indices. - - // Calculate the number of indices required + + // Calculate the number of indices required unsigned size = I->getNumIndices() + idx_range.size(); // Allocate some space to put the new indices in SmallVector Idxs; Idxs.reserve(size); // Add indices from the extract value instruction Idxs.append(I->idx_begin(), I->idx_end()); - + // Add requested indices Idxs.append(idx_range.begin(), idx_range.end()); - assert(Idxs.size() == size + assert(Idxs.size() == size && "Number of indices added not correct?"); - + return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); } // Otherwise, we don't know (such as, extracting from a function return value // or load instruction) - return 0; + return nullptr; } -/// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if -/// it can be expressed as a base pointer plus a constant offset. Return the -/// base and offset to the caller. +/// Analyze the specified pointer to see if it can be expressed as a base +/// pointer plus a constant offset. Return the base and offset to the caller. Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, - const DataLayout &TD) { - Operator *PtrOp = dyn_cast(Ptr); - if (PtrOp == 0 || Ptr->getType()->isVectorTy()) - return Ptr; - - // Just look through bitcasts. - if (PtrOp->getOpcode() == Instruction::BitCast) - return GetPointerBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD); - - // If this is a GEP with constant indices, we can look through it. - GEPOperator *GEP = dyn_cast(PtrOp); - if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr; - - gep_type_iterator GTI = gep_type_begin(GEP); - for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E; - ++I, ++GTI) { - ConstantInt *OpC = cast(*I); - if (OpC->isZero()) continue; - - // Handle a struct and array indices which add their offset to the pointer. - if (StructType *STy = dyn_cast(*GTI)) { - Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); + const DataLayout &DL) { + unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); + APInt ByteOffset(BitWidth, 0); + while (1) { + if (Ptr->getType()->isVectorTy()) + break; + + if (GEPOperator *GEP = dyn_cast(Ptr)) { + APInt GEPOffset(BitWidth, 0); + if (!GEP->accumulateConstantOffset(DL, GEPOffset)) + break; + + ByteOffset += GEPOffset; + + Ptr = GEP->getPointerOperand(); + } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || + Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { + Ptr = cast(Ptr)->getOperand(0); + } else if (GlobalAlias *GA = dyn_cast(Ptr)) { + if (GA->mayBeOverridden()) + break; + Ptr = GA->getAliasee(); } else { - uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()); - Offset += OpC->getSExtValue()*Size; + break; } } - - // Re-sign extend from the pointer size if needed to get overflow edge cases - // right. - unsigned PtrSize = TD.getPointerSizeInBits(); - if (PtrSize < 64) - Offset = SignExtend64(Offset, PtrSize); - - return GetPointerBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD); + Offset = ByteOffset.getSExtValue(); + return Ptr; } -/// getConstantStringInfo - This function computes the length of a -/// null-terminated C string pointed to by V. If successful, it returns true -/// and returns the string in Str. If unsuccessful, it returns false. +/// This function computes the length of a null-terminated C string pointed to +/// by V. If successful, it returns true and returns the string in Str. +/// If unsuccessful, it returns false. bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, uint64_t Offset, bool TrimAtNul) { assert(V); // Look through bitcast instructions and geps. V = V->stripPointerCasts(); - - // If the value is a GEP instructionor constant expression, treat it as an + + // If the value is a GEP instruction or constant expression, treat it as an // offset. if (const GEPOperator *GEP = dyn_cast(V)) { // Make sure the GEP has exactly three arguments. if (GEP->getNumOperands() != 3) return false; - + // Make sure the index-ee is a pointer to array of i8. PointerType *PT = cast(GEP->getOperand(0)->getType()); ArrayType *AT = dyn_cast(PT->getElementType()); - if (AT == 0 || !AT->getElementType()->isIntegerTy(8)) + if (!AT || !AT->getElementType()->isIntegerTy(8)) return false; - + // Check to make sure that the first operand of the GEP is an integer and // has value 0 so that we are sure we're indexing into the initializer. const ConstantInt *FirstIdx = dyn_cast(GEP->getOperand(1)); - if (FirstIdx == 0 || !FirstIdx->isZero()) + if (!FirstIdx || !FirstIdx->isZero()) return false; - + // If the second index isn't a ConstantInt, then this is a variable index // into the array. If this occurs, we can't say anything meaningful about // the string. @@ -1741,7 +2894,8 @@ bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, StartIdx = CI->getZExtValue(); else return false; - return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset); + return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, + TrimAtNul); } // The GEP instruction, constant or instruction, must reference a global @@ -1758,13 +2912,13 @@ bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, Str = ""; return true; } - + // Must be a Constant Array const ConstantDataArray *Array = dyn_cast(GV->getInitializer()); - if (Array == 0 || !Array->isString()) + if (!Array || !Array->isString()) return false; - + // Get the number of elements in the array uint64_t NumElts = Array->getType()->getArrayNumElements(); @@ -1773,10 +2927,10 @@ bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, if (Offset > NumElts) return false; - + // Skip over 'offset' bytes. Str = Str.substr(Offset); - + if (TrimAtNul) { // Trim off the \0 and anything after it. If the array is not nul // terminated, we just return the whole end of string. The client may know @@ -1790,22 +2944,22 @@ bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, // nodes. // TODO: See if we can integrate these two together. -/// GetStringLengthH - If we can compute the length of the string pointed to by +/// If we can compute the length of the string pointed to by /// the specified pointer, return 'len+1'. If we can't, return 0. -static uint64_t GetStringLengthH(Value *V, SmallPtrSet &PHIs) { +static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl &PHIs) { // Look through noop bitcast instructions. V = V->stripPointerCasts(); // If this is a PHI node, there are two cases: either we have already seen it // or we haven't. if (PHINode *PN = dyn_cast(V)) { - if (!PHIs.insert(PN)) + if (!PHIs.insert(PN).second) return ~0ULL; // already in the set. // If it was new, see if all the input strings are the same length. uint64_t LenSoFar = ~0ULL; - for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { - uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs); + for (Value *IncValue : PN->incoming_values()) { + uint64_t Len = GetStringLengthH(IncValue, PHIs); if (Len == 0) return 0; // Unknown length -> unknown. if (Len == ~0ULL) continue; @@ -1830,7 +2984,7 @@ static uint64_t GetStringLengthH(Value *V, SmallPtrSet &PHIs) { if (Len1 != Len2) return 0; return Len1; } - + // Otherwise, see if we can read the string. StringRef StrData; if (!getConstantStringInfo(V, StrData)) @@ -1839,7 +2993,7 @@ static uint64_t GetStringLengthH(Value *V, SmallPtrSet &PHIs) { return StrData.size()+1; } -/// GetStringLength - If we can compute the length of the string pointed to by +/// If we can compute the length of the string pointed to by /// the specified pointer, return 'len+1'. If we can't, return 0. uint64_t llvm::GetStringLength(Value *V) { if (!V->getType()->isPointerTy()) return 0; @@ -1851,14 +3005,41 @@ uint64_t llvm::GetStringLength(Value *V) { return Len == ~0ULL ? 1 : Len; } -Value * -llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) { +/// \brief \p PN defines a loop-variant pointer to an object. Check if the +/// previous iteration of the loop was referring to the same object as \p PN. +static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) { + // Find the loop-defined value. + Loop *L = LI->getLoopFor(PN->getParent()); + if (PN->getNumIncomingValues() != 2) + return true; + + // Find the value from previous iteration. + auto *PrevValue = dyn_cast(PN->getIncomingValue(0)); + if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) + PrevValue = dyn_cast(PN->getIncomingValue(1)); + if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) + return true; + + // If a new pointer is loaded in the loop, the pointer references a different + // object in every iteration. E.g.: + // for (i) + // int *p = a[i]; + // ... + if (auto *Load = dyn_cast(PrevValue)) + if (!L->isLoopInvariant(Load->getPointerOperand())) + return false; + return true; +} + +Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, + unsigned MaxLookup) { if (!V->getType()->isPointerTy()) return V; for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { if (GEPOperator *GEP = dyn_cast(V)) { V = GEP->getPointerOperand(); - } else if (Operator::getOpcode(V) == Instruction::BitCast) { + } else if (Operator::getOpcode(V) == Instruction::BitCast || + Operator::getOpcode(V) == Instruction::AddrSpaceCast) { V = cast(V)->getOperand(0); } else if (GlobalAlias *GA = dyn_cast(V)) { if (GA->mayBeOverridden()) @@ -1867,8 +3048,8 @@ llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) { } else { // See if InstructionSimplify knows any relevant tricks. if (Instruction *I = dyn_cast(V)) - // TODO: Acquire a DominatorTree and use it. - if (Value *Simplified = SimplifyInstruction(I, TD, 0)) { + // TODO: Acquire a DominatorTree and AssumptionCache and use them. + if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) { V = Simplified; continue; } @@ -1880,19 +3061,17 @@ llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) { return V; } -void -llvm::GetUnderlyingObjects(Value *V, - SmallVectorImpl &Objects, - const DataLayout *TD, - unsigned MaxLookup) { +void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl &Objects, + const DataLayout &DL, LoopInfo *LI, + unsigned MaxLookup) { SmallPtrSet Visited; SmallVector Worklist; Worklist.push_back(V); do { Value *P = Worklist.pop_back_val(); - P = GetUnderlyingObject(P, TD, MaxLookup); + P = GetUnderlyingObject(P, DL, MaxLookup); - if (!Visited.insert(P)) + if (!Visited.insert(P).second) continue; if (SelectInst *SI = dyn_cast(P)) { @@ -1902,8 +3081,20 @@ llvm::GetUnderlyingObjects(Value *V, } if (PHINode *PN = dyn_cast(P)) { - for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) - Worklist.push_back(PN->getIncomingValue(i)); + // If this PHI changes the underlying object in every iteration of the + // loop, don't look through it. Consider: + // int **A; + // for (i) { + // Prev = Curr; // Prev = PHI (Prev_0, Curr) + // Curr = A[i]; + // *Prev, *Curr; + // + // Prev is tracking Curr one iteration behind so they refer to different + // underlying objects. + if (!LI || !LI->isLoopHeader(PN->getParent()) || + isSameUnderlyingObjectInLoop(PN, LI)) + for (Value *IncValue : PN->incoming_values()) + Worklist.push_back(IncValue); continue; } @@ -1911,13 +3102,10 @@ llvm::GetUnderlyingObjects(Value *V, } while (!Worklist.empty()); } -/// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer -/// are lifetime markers. -/// +/// Return true if the only users of this pointer are lifetime markers. bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { - for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end(); - UI != UE; ++UI) { - const IntrinsicInst *II = dyn_cast(*UI); + for (const User *U : V->users()) { + const IntrinsicInst *II = dyn_cast(U); if (!II) return false; if (II->getIntrinsicID() != Intrinsic::lifetime_start && @@ -1927,8 +3115,212 @@ bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { return true; } +static bool isDereferenceableFromAttribute(const Value *BV, APInt Offset, + Type *Ty, const DataLayout &DL, + const Instruction *CtxI, + const DominatorTree *DT, + const TargetLibraryInfo *TLI) { + assert(Offset.isNonNegative() && "offset can't be negative"); + assert(Ty->isSized() && "must be sized"); + + APInt DerefBytes(Offset.getBitWidth(), 0); + bool CheckForNonNull = false; + if (const Argument *A = dyn_cast(BV)) { + DerefBytes = A->getDereferenceableBytes(); + if (!DerefBytes.getBoolValue()) { + DerefBytes = A->getDereferenceableOrNullBytes(); + CheckForNonNull = true; + } + } else if (auto CS = ImmutableCallSite(BV)) { + DerefBytes = CS.getDereferenceableBytes(0); + if (!DerefBytes.getBoolValue()) { + DerefBytes = CS.getDereferenceableOrNullBytes(0); + CheckForNonNull = true; + } + } else if (const LoadInst *LI = dyn_cast(BV)) { + if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) { + ConstantInt *CI = mdconst::extract(MD->getOperand(0)); + DerefBytes = CI->getLimitedValue(); + } + if (!DerefBytes.getBoolValue()) { + if (MDNode *MD = + LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { + ConstantInt *CI = mdconst::extract(MD->getOperand(0)); + DerefBytes = CI->getLimitedValue(); + } + CheckForNonNull = true; + } + } + + if (DerefBytes.getBoolValue()) + if (DerefBytes.uge(Offset + DL.getTypeStoreSize(Ty))) + if (!CheckForNonNull || isKnownNonNullAt(BV, CtxI, DT, TLI)) + return true; + + return false; +} + +static bool isDereferenceableFromAttribute(const Value *V, const DataLayout &DL, + const Instruction *CtxI, + const DominatorTree *DT, + const TargetLibraryInfo *TLI) { + Type *VTy = V->getType(); + Type *Ty = VTy->getPointerElementType(); + if (!Ty->isSized()) + return false; + + APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0); + return isDereferenceableFromAttribute(V, Offset, Ty, DL, CtxI, DT, TLI); +} + +static bool isAligned(const Value *Base, APInt Offset, unsigned Align, + const DataLayout &DL) { + APInt BaseAlign(Offset.getBitWidth(), getAlignment(Base, DL)); + + if (!BaseAlign) { + Type *Ty = Base->getType()->getPointerElementType(); + BaseAlign = DL.getABITypeAlignment(Ty); + } + + APInt Alignment(Offset.getBitWidth(), Align); + + assert(Alignment.isPowerOf2() && "must be a power of 2!"); + return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1)); +} + +static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) { + APInt Offset(DL.getTypeStoreSizeInBits(Base->getType()), 0); + return isAligned(Base, Offset, Align, DL); +} + +/// Test if V is always a pointer to allocated and suitably aligned memory for +/// a simple load or store. +static bool isDereferenceableAndAlignedPointer( + const Value *V, unsigned Align, const DataLayout &DL, + const Instruction *CtxI, const DominatorTree *DT, + const TargetLibraryInfo *TLI, SmallPtrSetImpl &Visited) { + // Note that it is not safe to speculate into a malloc'd region because + // malloc may return null. + + // These are obviously ok if aligned. + if (isa(V)) + return isAligned(V, Align, DL); + + // It's not always safe to follow a bitcast, for example: + // bitcast i8* (alloca i8) to i32* + // would result in a 4-byte load from a 1-byte alloca. However, + // if we're casting from a pointer from a type of larger size + // to a type of smaller size (or the same size), and the alignment + // is at least as large as for the resulting pointer type, then + // we can look through the bitcast. + if (const BitCastOperator *BC = dyn_cast(V)) { + Type *STy = BC->getSrcTy()->getPointerElementType(), + *DTy = BC->getDestTy()->getPointerElementType(); + if (STy->isSized() && DTy->isSized() && + (DL.getTypeStoreSize(STy) >= DL.getTypeStoreSize(DTy)) && + (DL.getABITypeAlignment(STy) >= DL.getABITypeAlignment(DTy))) + return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, DL, + CtxI, DT, TLI, Visited); + } + + // Global variables which can't collapse to null are ok. + if (const GlobalVariable *GV = dyn_cast(V)) + if (!GV->hasExternalWeakLinkage()) + return isAligned(V, Align, DL); + + // byval arguments are okay. + if (const Argument *A = dyn_cast(V)) + if (A->hasByValAttr()) + return isAligned(V, Align, DL); + + if (isDereferenceableFromAttribute(V, DL, CtxI, DT, TLI)) + return isAligned(V, Align, DL); + + // For GEPs, determine if the indexing lands within the allocated object. + if (const GEPOperator *GEP = dyn_cast(V)) { + Type *VTy = GEP->getType(); + Type *Ty = VTy->getPointerElementType(); + const Value *Base = GEP->getPointerOperand(); + + // Conservatively require that the base pointer be fully dereferenceable + // and aligned. + if (!Visited.insert(Base).second) + return false; + if (!isDereferenceableAndAlignedPointer(Base, Align, DL, CtxI, DT, TLI, + Visited)) + return false; + + APInt Offset(DL.getPointerTypeSizeInBits(VTy), 0); + if (!GEP->accumulateConstantOffset(DL, Offset)) + return false; + + // Check if the load is within the bounds of the underlying object + // and offset is aligned. + uint64_t LoadSize = DL.getTypeStoreSize(Ty); + Type *BaseType = Base->getType()->getPointerElementType(); + assert(isPowerOf2_32(Align) && "must be a power of 2!"); + return (Offset + LoadSize).ule(DL.getTypeAllocSize(BaseType)) && + !(Offset & APInt(Offset.getBitWidth(), Align-1)); + } + + // For gc.relocate, look through relocations + if (const IntrinsicInst *I = dyn_cast(V)) + if (I->getIntrinsicID() == Intrinsic::experimental_gc_relocate) { + GCRelocateOperands RelocateInst(I); + return isDereferenceableAndAlignedPointer( + RelocateInst.getDerivedPtr(), Align, DL, CtxI, DT, TLI, Visited); + } + + if (const AddrSpaceCastInst *ASC = dyn_cast(V)) + return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, DL, + CtxI, DT, TLI, Visited); + + // If we don't know, assume the worst. + return false; +} + +bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align, + const DataLayout &DL, + const Instruction *CtxI, + const DominatorTree *DT, + const TargetLibraryInfo *TLI) { + // When dereferenceability information is provided by a dereferenceable + // attribute, we know exactly how many bytes are dereferenceable. If we can + // determine the exact offset to the attributed variable, we can use that + // information here. + Type *VTy = V->getType(); + Type *Ty = VTy->getPointerElementType(); + + // Require ABI alignment for loads without alignment specification + if (Align == 0) + Align = DL.getABITypeAlignment(Ty); + + if (Ty->isSized()) { + APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0); + const Value *BV = V->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); + + if (Offset.isNonNegative()) + if (isDereferenceableFromAttribute(BV, Offset, Ty, DL, CtxI, DT, TLI) && + isAligned(BV, Offset, Align, DL)) + return true; + } + + SmallPtrSet Visited; + return ::isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT, TLI, + Visited); +} + +bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL, + const Instruction *CtxI, + const DominatorTree *DT, + const TargetLibraryInfo *TLI) { + return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT, TLI); +} + bool llvm::isSafeToSpeculativelyExecute(const Value *V, - const DataLayout *TD) { + const Instruction *CtxI, + const DominatorTree *DT, + const TargetLibraryInfo *TLI) { const Operator *Inst = dyn_cast(V); if (!Inst) return false; @@ -1942,60 +3334,85 @@ bool llvm::isSafeToSpeculativelyExecute(const Value *V, default: return true; case Instruction::UDiv: - case Instruction::URem: - // x / y is undefined if y == 0, but calcuations like x / 3 are safe. - return isKnownNonZero(Inst->getOperand(1), TD); + case Instruction::URem: { + // x / y is undefined if y == 0. + const APInt *V; + if (match(Inst->getOperand(1), m_APInt(V))) + return *V != 0; + return false; + } case Instruction::SDiv: case Instruction::SRem: { - Value *Op = Inst->getOperand(1); - // x / y is undefined if y == 0 - if (!isKnownNonZero(Op, TD)) + // x / y is undefined if y == 0 or x == INT_MIN and y == -1 + const APInt *Numerator, *Denominator; + if (!match(Inst->getOperand(1), m_APInt(Denominator))) return false; - // x / y might be undefined if y == -1 - unsigned BitWidth = getBitWidth(Op->getType(), TD); - if (BitWidth == 0) + // We cannot hoist this division if the denominator is 0. + if (*Denominator == 0) return false; - APInt KnownZero(BitWidth, 0); - APInt KnownOne(BitWidth, 0); - ComputeMaskedBits(Op, KnownZero, KnownOne, TD); - return !!KnownZero; + // It's safe to hoist if the denominator is not 0 or -1. + if (*Denominator != -1) + return true; + // At this point we know that the denominator is -1. It is safe to hoist as + // long we know that the numerator is not INT_MIN. + if (match(Inst->getOperand(0), m_APInt(Numerator))) + return !Numerator->isMinSignedValue(); + // The numerator *might* be MinSignedValue. + return false; } case Instruction::Load: { const LoadInst *LI = cast(Inst); - if (!LI->isUnordered()) + if (!LI->isUnordered() || + // Speculative load may create a race that did not exist in the source. + LI->getParent()->getParent()->hasFnAttribute( + Attribute::SanitizeThread) || + // Speculative load may load data from dirty regions. + LI->getParent()->getParent()->hasFnAttribute( + Attribute::SanitizeAddress)) return false; - return LI->getPointerOperand()->isDereferenceablePointer(); + const DataLayout &DL = LI->getModule()->getDataLayout(); + return isDereferenceableAndAlignedPointer( + LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI); } case Instruction::Call: { - if (const IntrinsicInst *II = dyn_cast(Inst)) { - switch (II->getIntrinsicID()) { - // These synthetic intrinsics have no side-effects, and just mark - // information about their operands. - // FIXME: There are other no-op synthetic instructions that potentially - // should be considered at least *safe* to speculate... - case Intrinsic::dbg_declare: - case Intrinsic::dbg_value: - return true; - - case Intrinsic::bswap: - case Intrinsic::ctlz: - case Intrinsic::ctpop: - case Intrinsic::cttz: - case Intrinsic::objectsize: - case Intrinsic::sadd_with_overflow: - case Intrinsic::smul_with_overflow: - case Intrinsic::ssub_with_overflow: - case Intrinsic::uadd_with_overflow: - case Intrinsic::umul_with_overflow: - case Intrinsic::usub_with_overflow: - return true; - // TODO: some fp intrinsics are marked as having the same error handling - // as libm. They're safe to speculate when they won't error. - // TODO: are convert_{from,to}_fp16 safe? - // TODO: can we list target-specific intrinsics here? - default: break; - } - } + if (const IntrinsicInst *II = dyn_cast(Inst)) { + switch (II->getIntrinsicID()) { + // These synthetic intrinsics have no side-effects and just mark + // information about their operands. + // FIXME: There are other no-op synthetic instructions that potentially + // should be considered at least *safe* to speculate... + case Intrinsic::dbg_declare: + case Intrinsic::dbg_value: + return true; + + case Intrinsic::bswap: + case Intrinsic::ctlz: + case Intrinsic::ctpop: + case Intrinsic::cttz: + case Intrinsic::objectsize: + case Intrinsic::sadd_with_overflow: + case Intrinsic::smul_with_overflow: + case Intrinsic::ssub_with_overflow: + case Intrinsic::uadd_with_overflow: + case Intrinsic::umul_with_overflow: + case Intrinsic::usub_with_overflow: + return true; + // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set + // errno like libm sqrt would. + case Intrinsic::sqrt: + case Intrinsic::fma: + case Intrinsic::fmuladd: + case Intrinsic::fabs: + case Intrinsic::minnum: + case Intrinsic::maxnum: + return true; + // TODO: some fp intrinsics are marked as having the same error handling + // as libm. They're safe to speculate when they won't error. + // TODO: are convert_{from,to}_fp16 safe? + // TODO: can we list target-specific intrinsics here? + default: break; + } + } return false; // The called function could have undefined behavior or // side-effects, even if marked readnone nounwind. } @@ -2010,10 +3427,773 @@ bool llvm::isSafeToSpeculativelyExecute(const Value *V, case Instruction::Switch: case Instruction::Unreachable: case Instruction::Fence: - case Instruction::LandingPad: case Instruction::AtomicRMW: case Instruction::AtomicCmpXchg: + case Instruction::LandingPad: case Instruction::Resume: + case Instruction::CatchPad: + case Instruction::CatchEndPad: + case Instruction::CatchRet: + case Instruction::CleanupPad: + case Instruction::CleanupEndPad: + case Instruction::CleanupRet: + case Instruction::TerminatePad: return false; // Misc instructions which have effects } } + +bool llvm::mayBeMemoryDependent(const Instruction &I) { + return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); +} + +/// Return true if we know that the specified value is never null. +bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) { + assert(V->getType()->isPointerTy() && "V must be pointer type"); + + // Alloca never returns null, malloc might. + if (isa(V)) return true; + + // A byval, inalloca, or nonnull argument is never null. + if (const Argument *A = dyn_cast(V)) + return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); + + // A global variable in address space 0 is non null unless extern weak. + // Other address spaces may have null as a valid address for a global, + // so we can't assume anything. + if (const GlobalValue *GV = dyn_cast(V)) + return !GV->hasExternalWeakLinkage() && + GV->getType()->getAddressSpace() == 0; + + // A Load tagged w/nonnull metadata is never null. + if (const LoadInst *LI = dyn_cast(V)) + return LI->getMetadata(LLVMContext::MD_nonnull); + + if (auto CS = ImmutableCallSite(V)) + if (CS.isReturnNonNull()) + return true; + + // operator new never returns null. + if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true)) + return true; + + return false; +} + +static bool isKnownNonNullFromDominatingCondition(const Value *V, + const Instruction *CtxI, + const DominatorTree *DT) { + assert(V->getType()->isPointerTy() && "V must be pointer type"); + + unsigned NumUsesExplored = 0; + for (auto U : V->users()) { + // Avoid massive lists + if (NumUsesExplored >= DomConditionsMaxUses) + break; + NumUsesExplored++; + // Consider only compare instructions uniquely controlling a branch + const ICmpInst *Cmp = dyn_cast(U); + if (!Cmp) + continue; + + if (DomConditionsSingleCmpUse && !Cmp->hasOneUse()) + continue; + + for (auto *CmpU : Cmp->users()) { + const BranchInst *BI = dyn_cast(CmpU); + if (!BI) + continue; + + assert(BI->isConditional() && "uses a comparison!"); + + BasicBlock *NonNullSuccessor = nullptr; + CmpInst::Predicate Pred; + + if (match(const_cast(Cmp), + m_c_ICmp(Pred, m_Specific(V), m_Zero()))) { + if (Pred == ICmpInst::ICMP_EQ) + NonNullSuccessor = BI->getSuccessor(1); + else if (Pred == ICmpInst::ICMP_NE) + NonNullSuccessor = BI->getSuccessor(0); + } + + if (NonNullSuccessor) { + BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); + if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) + return true; + } + } + } + + return false; +} + +bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, + const DominatorTree *DT, const TargetLibraryInfo *TLI) { + if (isKnownNonNull(V, TLI)) + return true; + + return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false; +} + +OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS, + const DataLayout &DL, + AssumptionCache *AC, + const Instruction *CxtI, + const DominatorTree *DT) { + // Multiplying n * m significant bits yields a result of n + m significant + // bits. If the total number of significant bits does not exceed the + // result bit width (minus 1), there is no overflow. + // This means if we have enough leading zero bits in the operands + // we can guarantee that the result does not overflow. + // Ref: "Hacker's Delight" by Henry Warren + unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); + APInt LHSKnownZero(BitWidth, 0); + APInt LHSKnownOne(BitWidth, 0); + APInt RHSKnownZero(BitWidth, 0); + APInt RHSKnownOne(BitWidth, 0); + computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI, + DT); + computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI, + DT); + // Note that underestimating the number of zero bits gives a more + // conservative answer. + unsigned ZeroBits = LHSKnownZero.countLeadingOnes() + + RHSKnownZero.countLeadingOnes(); + // First handle the easy case: if we have enough zero bits there's + // definitely no overflow. + if (ZeroBits >= BitWidth) + return OverflowResult::NeverOverflows; + + // Get the largest possible values for each operand. + APInt LHSMax = ~LHSKnownZero; + APInt RHSMax = ~RHSKnownZero; + + // We know the multiply operation doesn't overflow if the maximum values for + // each operand will not overflow after we multiply them together. + bool MaxOverflow; + LHSMax.umul_ov(RHSMax, MaxOverflow); + if (!MaxOverflow) + return OverflowResult::NeverOverflows; + + // We know it always overflows if multiplying the smallest possible values for + // the operands also results in overflow. + bool MinOverflow; + LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow); + if (MinOverflow) + return OverflowResult::AlwaysOverflows; + + return OverflowResult::MayOverflow; +} + +OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS, + const DataLayout &DL, + AssumptionCache *AC, + const Instruction *CxtI, + const DominatorTree *DT) { + bool LHSKnownNonNegative, LHSKnownNegative; + ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, + AC, CxtI, DT); + if (LHSKnownNonNegative || LHSKnownNegative) { + bool RHSKnownNonNegative, RHSKnownNegative; + ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, + AC, CxtI, DT); + + if (LHSKnownNegative && RHSKnownNegative) { + // The sign bit is set in both cases: this MUST overflow. + // Create a simple add instruction, and insert it into the struct. + return OverflowResult::AlwaysOverflows; + } + + if (LHSKnownNonNegative && RHSKnownNonNegative) { + // The sign bit is clear in both cases: this CANNOT overflow. + // Create a simple add instruction, and insert it into the struct. + return OverflowResult::NeverOverflows; + } + } + + return OverflowResult::MayOverflow; +} + +static OverflowResult computeOverflowForSignedAdd( + Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL, + AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) { + if (Add && Add->hasNoSignedWrap()) { + return OverflowResult::NeverOverflows; + } + + bool LHSKnownNonNegative, LHSKnownNegative; + bool RHSKnownNonNegative, RHSKnownNegative; + ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, + AC, CxtI, DT); + ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, + AC, CxtI, DT); + + if ((LHSKnownNonNegative && RHSKnownNegative) || + (LHSKnownNegative && RHSKnownNonNegative)) { + // The sign bits are opposite: this CANNOT overflow. + return OverflowResult::NeverOverflows; + } + + // The remaining code needs Add to be available. Early returns if not so. + if (!Add) + return OverflowResult::MayOverflow; + + // If the sign of Add is the same as at least one of the operands, this add + // CANNOT overflow. This is particularly useful when the sum is + // @llvm.assume'ed non-negative rather than proved so from analyzing its + // operands. + bool LHSOrRHSKnownNonNegative = + (LHSKnownNonNegative || RHSKnownNonNegative); + bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative); + if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { + bool AddKnownNonNegative, AddKnownNegative; + ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL, + /*Depth=*/0, AC, CxtI, DT); + if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) || + (AddKnownNegative && LHSOrRHSKnownNegative)) { + return OverflowResult::NeverOverflows; + } + } + + return OverflowResult::MayOverflow; +} + +OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add, + const DataLayout &DL, + AssumptionCache *AC, + const Instruction *CxtI, + const DominatorTree *DT) { + return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), + Add, DL, AC, CxtI, DT); +} + +OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS, + const DataLayout &DL, + AssumptionCache *AC, + const Instruction *CxtI, + const DominatorTree *DT) { + return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); +} + +bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { + // FIXME: This conservative implementation can be relaxed. E.g. most + // atomic operations are guaranteed to terminate on most platforms + // and most functions terminate. + + return !I->isAtomic() && // atomics may never succeed on some platforms + !isa(I) && // could throw and might not terminate + !isa(I) && // might not terminate and could throw to + // non-successor (see bug 24185 for details). + !isa(I) && // has no successors + !isa(I); // has no successors +} + +bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, + const Loop *L) { + // The loop header is guaranteed to be executed for every iteration. + // + // FIXME: Relax this constraint to cover all basic blocks that are + // guaranteed to be executed at every iteration. + if (I->getParent() != L->getHeader()) return false; + + for (const Instruction &LI : *L->getHeader()) { + if (&LI == I) return true; + if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; + } + llvm_unreachable("Instruction not contained in its own parent basic block."); +} + +bool llvm::propagatesFullPoison(const Instruction *I) { + switch (I->getOpcode()) { + case Instruction::Add: + case Instruction::Sub: + case Instruction::Xor: + case Instruction::Trunc: + case Instruction::BitCast: + case Instruction::AddrSpaceCast: + // These operations all propagate poison unconditionally. Note that poison + // is not any particular value, so xor or subtraction of poison with + // itself still yields poison, not zero. + return true; + + case Instruction::AShr: + case Instruction::SExt: + // For these operations, one bit of the input is replicated across + // multiple output bits. A replicated poison bit is still poison. + return true; + + case Instruction::Shl: { + // Left shift *by* a poison value is poison. The number of + // positions to shift is unsigned, so no negative values are + // possible there. Left shift by zero places preserves poison. So + // it only remains to consider left shift of poison by a positive + // number of places. + // + // A left shift by a positive number of places leaves the lowest order bit + // non-poisoned. However, if such a shift has a no-wrap flag, then we can + // make the poison operand violate that flag, yielding a fresh full-poison + // value. + auto *OBO = cast(I); + return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap(); + } + + case Instruction::Mul: { + // A multiplication by zero yields a non-poison zero result, so we need to + // rule out zero as an operand. Conservatively, multiplication by a + // non-zero constant is not multiplication by zero. + // + // Multiplication by a non-zero constant can leave some bits + // non-poisoned. For example, a multiplication by 2 leaves the lowest + // order bit unpoisoned. So we need to consider that. + // + // Multiplication by 1 preserves poison. If the multiplication has a + // no-wrap flag, then we can make the poison operand violate that flag + // when multiplied by any integer other than 0 and 1. + auto *OBO = cast(I); + if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) { + for (Value *V : OBO->operands()) { + if (auto *CI = dyn_cast(V)) { + // A ConstantInt cannot yield poison, so we can assume that it is + // the other operand that is poison. + return !CI->isZero(); + } + } + } + return false; + } + + case Instruction::GetElementPtr: + // A GEP implicitly represents a sequence of additions, subtractions, + // truncations, sign extensions and multiplications. The multiplications + // are by the non-zero sizes of some set of types, so we do not have to be + // concerned with multiplication by zero. If the GEP is in-bounds, then + // these operations are implicitly no-signed-wrap so poison is propagated + // by the arguments above for Add, Sub, Trunc, SExt and Mul. + return cast(I)->isInBounds(); + + default: + return false; + } +} + +const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { + switch (I->getOpcode()) { + case Instruction::Store: + return cast(I)->getPointerOperand(); + + case Instruction::Load: + return cast(I)->getPointerOperand(); + + case Instruction::AtomicCmpXchg: + return cast(I)->getPointerOperand(); + + case Instruction::AtomicRMW: + return cast(I)->getPointerOperand(); + + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::URem: + case Instruction::SRem: + return I->getOperand(1); + + default: + return nullptr; + } +} + +bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) { + // We currently only look for uses of poison values within the same basic + // block, as that makes it easier to guarantee that the uses will be + // executed given that PoisonI is executed. + // + // FIXME: Expand this to consider uses beyond the same basic block. To do + // this, look out for the distinction between post-dominance and strong + // post-dominance. + const BasicBlock *BB = PoisonI->getParent(); + + // Set of instructions that we have proved will yield poison if PoisonI + // does. + SmallSet YieldsPoison; + YieldsPoison.insert(PoisonI); + + for (BasicBlock::const_iterator I = PoisonI->getIterator(), E = BB->end(); + I != E; ++I) { + if (&*I != PoisonI) { + const Value *NotPoison = getGuaranteedNonFullPoisonOp(&*I); + if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) return true; + if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) + return false; + } + + // Mark poison that propagates from I through uses of I. + if (YieldsPoison.count(&*I)) { + for (const User *User : I->users()) { + const Instruction *UserI = cast(User); + if (UserI->getParent() == BB && propagatesFullPoison(UserI)) + YieldsPoison.insert(User); + } + } + } + return false; +} + +static bool isKnownNonNaN(Value *V, FastMathFlags FMF) { + if (FMF.noNaNs()) + return true; + + if (auto *C = dyn_cast(V)) + return !C->isNaN(); + return false; +} + +static bool isKnownNonZero(Value *V) { + if (auto *C = dyn_cast(V)) + return !C->isZero(); + return false; +} + +static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, + FastMathFlags FMF, + Value *CmpLHS, Value *CmpRHS, + Value *TrueVal, Value *FalseVal, + Value *&LHS, Value *&RHS) { + LHS = CmpLHS; + RHS = CmpRHS; + + // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may + // return inconsistent results between implementations. + // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 + // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) + // Therefore we behave conservatively and only proceed if at least one of the + // operands is known to not be zero, or if we don't care about signed zeroes. + switch (Pred) { + default: break; + case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: + case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: + if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && + !isKnownNonZero(CmpRHS)) + return {SPF_UNKNOWN, SPNB_NA, false}; + } + + SelectPatternNaNBehavior NaNBehavior = SPNB_NA; + bool Ordered = false; + + // When given one NaN and one non-NaN input: + // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. + // - A simple C99 (a < b ? a : b) construction will return 'b' (as the + // ordered comparison fails), which could be NaN or non-NaN. + // so here we discover exactly what NaN behavior is required/accepted. + if (CmpInst::isFPPredicate(Pred)) { + bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); + bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); + + if (LHSSafe && RHSSafe) { + // Both operands are known non-NaN. + NaNBehavior = SPNB_RETURNS_ANY; + } else if (CmpInst::isOrdered(Pred)) { + // An ordered comparison will return false when given a NaN, so it + // returns the RHS. + Ordered = true; + if (LHSSafe) + // LHS is non-NaN, so if RHS is NaN then NaN will be returned. + NaNBehavior = SPNB_RETURNS_NAN; + else if (RHSSafe) + NaNBehavior = SPNB_RETURNS_OTHER; + else + // Completely unsafe. + return {SPF_UNKNOWN, SPNB_NA, false}; + } else { + Ordered = false; + // An unordered comparison will return true when given a NaN, so it + // returns the LHS. + if (LHSSafe) + // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. + NaNBehavior = SPNB_RETURNS_OTHER; + else if (RHSSafe) + NaNBehavior = SPNB_RETURNS_NAN; + else + // Completely unsafe. + return {SPF_UNKNOWN, SPNB_NA, false}; + } + } + + if (TrueVal == CmpRHS && FalseVal == CmpLHS) { + std::swap(CmpLHS, CmpRHS); + Pred = CmpInst::getSwappedPredicate(Pred); + if (NaNBehavior == SPNB_RETURNS_NAN) + NaNBehavior = SPNB_RETURNS_OTHER; + else if (NaNBehavior == SPNB_RETURNS_OTHER) + NaNBehavior = SPNB_RETURNS_NAN; + Ordered = !Ordered; + } + + // ([if]cmp X, Y) ? X : Y + if (TrueVal == CmpLHS && FalseVal == CmpRHS) { + switch (Pred) { + default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. + case ICmpInst::ICMP_UGT: + case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; + case ICmpInst::ICMP_SGT: + case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; + case ICmpInst::ICMP_ULT: + case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; + case ICmpInst::ICMP_SLT: + case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; + case FCmpInst::FCMP_UGT: + case FCmpInst::FCMP_UGE: + case FCmpInst::FCMP_OGT: + case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; + case FCmpInst::FCMP_ULT: + case FCmpInst::FCMP_ULE: + case FCmpInst::FCMP_OLT: + case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; + } + } + + if (ConstantInt *C1 = dyn_cast(CmpRHS)) { + if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || + (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { + + // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X + // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X + if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) { + return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; + } + + // ABS(X) ==> (X (X isZero() || C1->isOne())) { + return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; + } + } + + // Y >s C ? ~Y : ~C == ~Y (FalseVal)) { + if (C1->getType() == C2->getType() && ~C1->getValue() == C2->getValue() && + (match(TrueVal, m_Not(m_Specific(CmpLHS))) || + match(CmpLHS, m_Not(m_Specific(TrueVal))))) { + LHS = TrueVal; + RHS = FalseVal; + return {SPF_SMIN, SPNB_NA, false}; + } + } + } + + // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5) + + return {SPF_UNKNOWN, SPNB_NA, false}; +} + +static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, + Instruction::CastOps *CastOp) { + CastInst *CI = dyn_cast(V1); + Constant *C = dyn_cast(V2); + CastInst *CI2 = dyn_cast(V2); + if (!CI) + return nullptr; + *CastOp = CI->getOpcode(); + + if (CI2) { + // If V1 and V2 are both the same cast from the same type, we can look + // through V1. + if (CI2->getOpcode() == CI->getOpcode() && + CI2->getSrcTy() == CI->getSrcTy()) + return CI2->getOperand(0); + return nullptr; + } else if (!C) { + return nullptr; + } + + if (isa(CI) && CmpI->isSigned()) { + Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy()); + // This is only valid if the truncated value can be sign-extended + // back to the original value. + if (ConstantExpr::getSExt(T, C->getType()) == C) + return T; + return nullptr; + } + if (isa(CI) && CmpI->isUnsigned()) + return ConstantExpr::getTrunc(C, CI->getSrcTy()); + + if (isa(CI)) + return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned()); + + if (isa(CI)) + return ConstantExpr::getUIToFP(C, CI->getSrcTy(), true); + + if (isa(CI)) + return ConstantExpr::getSIToFP(C, CI->getSrcTy(), true); + + if (isa(CI)) + return ConstantExpr::getFPToUI(C, CI->getSrcTy(), true); + + if (isa(CI)) + return ConstantExpr::getFPToSI(C, CI->getSrcTy(), true); + + if (isa(CI)) + return ConstantExpr::getFPExtend(C, CI->getSrcTy(), true); + + if (isa(CI)) + return ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true); + + return nullptr; +} + +SelectPatternResult llvm::matchSelectPattern(Value *V, + Value *&LHS, Value *&RHS, + Instruction::CastOps *CastOp) { + SelectInst *SI = dyn_cast(V); + if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; + + CmpInst *CmpI = dyn_cast(SI->getCondition()); + if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; + + CmpInst::Predicate Pred = CmpI->getPredicate(); + Value *CmpLHS = CmpI->getOperand(0); + Value *CmpRHS = CmpI->getOperand(1); + Value *TrueVal = SI->getTrueValue(); + Value *FalseVal = SI->getFalseValue(); + FastMathFlags FMF; + if (isa(CmpI)) + FMF = CmpI->getFastMathFlags(); + + // Bail out early. + if (CmpI->isEquality()) + return {SPF_UNKNOWN, SPNB_NA, false}; + + // Deal with type mismatches. + if (CastOp && CmpLHS->getType() != TrueVal->getType()) { + if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) + return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, + cast(TrueVal)->getOperand(0), C, + LHS, RHS); + if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) + return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, + C, cast(FalseVal)->getOperand(0), + LHS, RHS); + } + return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, + LHS, RHS); +} + +ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) { + const unsigned NumRanges = Ranges.getNumOperands() / 2; + assert(NumRanges >= 1 && "Must have at least one range!"); + assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs"); + + auto *FirstLow = mdconst::extract(Ranges.getOperand(0)); + auto *FirstHigh = mdconst::extract(Ranges.getOperand(1)); + + ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue()); + + for (unsigned i = 1; i < NumRanges; ++i) { + auto *Low = mdconst::extract(Ranges.getOperand(2 * i + 0)); + auto *High = mdconst::extract(Ranges.getOperand(2 * i + 1)); + + // Note: unionWith will potentially create a range that contains values not + // contained in any of the original N ranges. + CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue())); + } + + return CR; +} + +/// Return true if "icmp Pred LHS RHS" is always true. +static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS, + const DataLayout &DL, unsigned Depth, + AssumptionCache *AC, const Instruction *CxtI, + const DominatorTree *DT) { + if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) + return true; + + switch (Pred) { + default: + return false; + + case CmpInst::ICMP_SLT: + case CmpInst::ICMP_SLE: { + ConstantInt *CI; + + // LHS s< LHS +_{nsw} C if C > 0 + // LHS s<= LHS +_{nsw} C if C >= 0 + if (match(RHS, m_NSWAdd(m_Specific(LHS), m_ConstantInt(CI)))) { + if (Pred == CmpInst::ICMP_SLT) + return CI->getValue().isStrictlyPositive(); + return !CI->isNegative(); + } + return false; + } + + case CmpInst::ICMP_ULT: + case CmpInst::ICMP_ULE: { + ConstantInt *CI; + + // LHS u< LHS +_{nuw} C if C != 0 + // LHS u<= LHS +_{nuw} C + if (match(RHS, m_NUWAdd(m_Specific(LHS), m_ConstantInt(CI)))) { + if (Pred == CmpInst::ICMP_ULT) + return !CI->isZero(); + return true; + } + return false; + } + } +} + +/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred +/// ALHS ARHS" is true. +static bool isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS, + Value *ARHS, Value *BLHS, Value *BRHS, + const DataLayout &DL, unsigned Depth, + AssumptionCache *AC, const Instruction *CxtI, + const DominatorTree *DT) { + switch (Pred) { + default: + return false; + + case CmpInst::ICMP_SLT: + case CmpInst::ICMP_SLE: + return isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI, + DT) && + isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, + DT); + + case CmpInst::ICMP_ULT: + case CmpInst::ICMP_ULE: + return isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI, + DT) && + isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, + DT); + } +} + +bool llvm::isImpliedCondition(Value *LHS, Value *RHS, const DataLayout &DL, + unsigned Depth, AssumptionCache *AC, + const Instruction *CxtI, + const DominatorTree *DT) { + assert(LHS->getType() == RHS->getType() && "mismatched type"); + Type *OpTy = LHS->getType(); + assert(OpTy->getScalarType()->isIntegerTy(1)); + + // LHS ==> RHS by definition + if (LHS == RHS) return true; + + if (OpTy->isVectorTy()) + // TODO: extending the code below to handle vectors + return false; + assert(OpTy->isIntegerTy(1) && "implied by above"); + + ICmpInst::Predicate APred, BPred; + Value *ALHS, *ARHS; + Value *BLHS, *BRHS; + + if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) || + !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS)))) + return false; + + if (APred == BPred) + return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC, + CxtI, DT); + + return false; +}