X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FAnalysis%2FScalarEvolution.cpp;h=9aefe8c33f7cbd7243b78b7638200c6e689aa61a;hb=7b9135922626f04652da8d8e5312fe9193d891d9;hp=064aafd01e4e0730f4862d194b11b8539d0858b4;hpb=d5a74a754d98e74f60f340f2589d9cb6b6662988;p=oota-llvm.git diff --git a/lib/Analysis/ScalarEvolution.cpp b/lib/Analysis/ScalarEvolution.cpp index 064aafd01e4..9aefe8c33f7 100644 --- a/lib/Analysis/ScalarEvolution.cpp +++ b/lib/Analysis/ScalarEvolution.cpp @@ -1,4 +1,4 @@ -//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// +//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// // // The LLVM Compiler Infrastructure // @@ -58,37 +58,41 @@ // //===----------------------------------------------------------------------===// -#define DEBUG_TYPE "scalar-evolution" #include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/ConstantRange.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/InstIterator.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" #include "llvm/IR/Operator.h" #include "llvm/Support/CommandLine.h" -#include "llvm/Support/ConstantRange.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/GetElementPtrTypeIterator.h" -#include "llvm/Support/InstIterator.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" -#include "llvm/Target/TargetLibraryInfo.h" #include using namespace llvm; +#define DEBUG_TYPE "scalar-evolution" + STATISTIC(NumArrayLenItCounts, "Number of trip counts computed with array length"); STATISTIC(NumTripCountsComputed, @@ -112,9 +116,10 @@ VerifySCEV("verify-scev", INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution", "Scalar Evolution Analysis", false, true) -INITIALIZE_PASS_DEPENDENCY(LoopInfo) +INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) +INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) -INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution", "Scalar Evolution Analysis", false, true) char ScalarEvolution::ID = 0; @@ -135,7 +140,7 @@ void SCEV::dump() const { #endif void SCEV::print(raw_ostream &OS) const { - switch (getSCEVType()) { + switch (static_cast(getSCEVType())) { case scConstant: cast(this)->getValue()->printAsOperand(OS, false); return; @@ -182,7 +187,7 @@ void SCEV::print(raw_ostream &OS) const { case scUMaxExpr: case scSMaxExpr: { const SCEVNAryExpr *NAry = cast(this); - const char *OpStr = 0; + const char *OpStr = nullptr; switch (NAry->getSCEVType()) { case scAddExpr: OpStr = " + "; break; case scMulExpr: OpStr = " * "; break; @@ -193,7 +198,7 @@ void SCEV::print(raw_ostream &OS) const { for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); I != E; ++I) { OS << **I; - if (llvm::next(I) != E) + if (std::next(I) != E) OS << OpStr; } OS << ")"; @@ -240,13 +245,12 @@ void SCEV::print(raw_ostream &OS) const { case scCouldNotCompute: OS << "***COULDNOTCOMPUTE***"; return; - default: break; } llvm_unreachable("Unknown SCEV kind!"); } Type *SCEV::getType() const { - switch (getSCEVType()) { + switch (static_cast(getSCEVType())) { case scConstant: return cast(this)->getType(); case scTruncate: @@ -266,9 +270,8 @@ Type *SCEV::getType() const { return cast(this)->getType(); case scCouldNotCompute: llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); - default: - llvm_unreachable("Unknown SCEV kind!"); } + llvm_unreachable("Unknown SCEV kind!"); } bool SCEV::isZero() const { @@ -314,14 +317,14 @@ const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { FoldingSetNodeID ID; ID.AddInteger(scConstant); ID.AddPointer(V); - void *IP = 0; + void *IP = nullptr; if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); UniqueSCEVs.InsertNode(S, IP); return S; } -const SCEV *ScalarEvolution::getConstant(const APInt& Val) { +const SCEV *ScalarEvolution::getConstant(const APInt &Val) { return getConstant(ConstantInt::get(getContext(), Val)); } @@ -367,7 +370,7 @@ void SCEVUnknown::deleted() { SE->UniqueSCEVs.RemoveNode(this); // Release the value. - setValPtr(0); + setValPtr(nullptr); } void SCEVUnknown::allUsesReplacedWith(Value *New) { @@ -481,7 +484,7 @@ namespace { // Aside from the getSCEVType() ordering, the particular ordering // isn't very important except that it's beneficial to be consistent, // so that (a + b) and (b + a) don't end up as different expressions. - switch (LType) { + switch (static_cast(LType)) { case scUnknown: { const SCEVUnknown *LU = cast(LHS); const SCEVUnknown *RU = cast(RHS); @@ -618,9 +621,10 @@ namespace { return compare(LC->getOperand(), RC->getOperand()); } - default: - llvm_unreachable("Unknown SCEV kind!"); + case scCouldNotCompute: + llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); } + llvm_unreachable("Unknown SCEV kind!"); } }; } @@ -671,7 +675,254 @@ static void GroupByComplexity(SmallVectorImpl &Ops, } } +namespace { +struct FindSCEVSize { + int Size; + FindSCEVSize() : Size(0) {} + + bool follow(const SCEV *S) { + ++Size; + // Keep looking at all operands of S. + return true; + } + bool isDone() const { + return false; + } +}; +} + +// Returns the size of the SCEV S. +static inline int sizeOfSCEV(const SCEV *S) { + FindSCEVSize F; + SCEVTraversal ST(F); + ST.visitAll(S); + return F.Size; +} + +namespace { +struct SCEVDivision : public SCEVVisitor { +public: + // Computes the Quotient and Remainder of the division of Numerator by + // Denominator. + static void divide(ScalarEvolution &SE, const SCEV *Numerator, + const SCEV *Denominator, const SCEV **Quotient, + const SCEV **Remainder) { + assert(Numerator && Denominator && "Uninitialized SCEV"); + + SCEVDivision D(SE, Numerator, Denominator); + + // Check for the trivial case here to avoid having to check for it in the + // rest of the code. + if (Numerator == Denominator) { + *Quotient = D.One; + *Remainder = D.Zero; + return; + } + + if (Numerator->isZero()) { + *Quotient = D.Zero; + *Remainder = D.Zero; + return; + } + + // Split the Denominator when it is a product. + if (const SCEVMulExpr *T = dyn_cast(Denominator)) { + const SCEV *Q, *R; + *Quotient = Numerator; + for (const SCEV *Op : T->operands()) { + divide(SE, *Quotient, Op, &Q, &R); + *Quotient = Q; + + // Bail out when the Numerator is not divisible by one of the terms of + // the Denominator. + if (!R->isZero()) { + *Quotient = D.Zero; + *Remainder = Numerator; + return; + } + } + *Remainder = D.Zero; + return; + } + + D.visit(Numerator); + *Quotient = D.Quotient; + *Remainder = D.Remainder; + } + + // Except in the trivial case described above, we do not know how to divide + // Expr by Denominator for the following functions with empty implementation. + void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} + void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} + void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} + void visitUDivExpr(const SCEVUDivExpr *Numerator) {} + void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} + void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} + void visitUnknown(const SCEVUnknown *Numerator) {} + void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} + + void visitConstant(const SCEVConstant *Numerator) { + if (const SCEVConstant *D = dyn_cast(Denominator)) { + APInt NumeratorVal = Numerator->getValue()->getValue(); + APInt DenominatorVal = D->getValue()->getValue(); + uint32_t NumeratorBW = NumeratorVal.getBitWidth(); + uint32_t DenominatorBW = DenominatorVal.getBitWidth(); + + if (NumeratorBW > DenominatorBW) + DenominatorVal = DenominatorVal.sext(NumeratorBW); + else if (NumeratorBW < DenominatorBW) + NumeratorVal = NumeratorVal.sext(DenominatorBW); + + APInt QuotientVal(NumeratorVal.getBitWidth(), 0); + APInt RemainderVal(NumeratorVal.getBitWidth(), 0); + APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); + Quotient = SE.getConstant(QuotientVal); + Remainder = SE.getConstant(RemainderVal); + return; + } + } + + void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { + const SCEV *StartQ, *StartR, *StepQ, *StepR; + assert(Numerator->isAffine() && "Numerator should be affine"); + divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); + divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); + Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), + Numerator->getNoWrapFlags()); + Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), + Numerator->getNoWrapFlags()); + } + + void visitAddExpr(const SCEVAddExpr *Numerator) { + SmallVector Qs, Rs; + Type *Ty = Denominator->getType(); + + for (const SCEV *Op : Numerator->operands()) { + const SCEV *Q, *R; + divide(SE, Op, Denominator, &Q, &R); + + // Bail out if types do not match. + if (Ty != Q->getType() || Ty != R->getType()) { + Quotient = Zero; + Remainder = Numerator; + return; + } + + Qs.push_back(Q); + Rs.push_back(R); + } + + if (Qs.size() == 1) { + Quotient = Qs[0]; + Remainder = Rs[0]; + return; + } + + Quotient = SE.getAddExpr(Qs); + Remainder = SE.getAddExpr(Rs); + } + + void visitMulExpr(const SCEVMulExpr *Numerator) { + SmallVector Qs; + Type *Ty = Denominator->getType(); + + bool FoundDenominatorTerm = false; + for (const SCEV *Op : Numerator->operands()) { + // Bail out if types do not match. + if (Ty != Op->getType()) { + Quotient = Zero; + Remainder = Numerator; + return; + } + + if (FoundDenominatorTerm) { + Qs.push_back(Op); + continue; + } + + // Check whether Denominator divides one of the product operands. + const SCEV *Q, *R; + divide(SE, Op, Denominator, &Q, &R); + if (!R->isZero()) { + Qs.push_back(Op); + continue; + } + + // Bail out if types do not match. + if (Ty != Q->getType()) { + Quotient = Zero; + Remainder = Numerator; + return; + } + + FoundDenominatorTerm = true; + Qs.push_back(Q); + } + + if (FoundDenominatorTerm) { + Remainder = Zero; + if (Qs.size() == 1) + Quotient = Qs[0]; + else + Quotient = SE.getMulExpr(Qs); + return; + } + + if (!isa(Denominator)) { + Quotient = Zero; + Remainder = Numerator; + return; + } + + // The Remainder is obtained by replacing Denominator by 0 in Numerator. + ValueToValueMap RewriteMap; + RewriteMap[cast(Denominator)->getValue()] = + cast(Zero)->getValue(); + Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); + + if (Remainder->isZero()) { + // The Quotient is obtained by replacing Denominator by 1 in Numerator. + RewriteMap[cast(Denominator)->getValue()] = + cast(One)->getValue(); + Quotient = + SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); + return; + } + + // Quotient is (Numerator - Remainder) divided by Denominator. + const SCEV *Q, *R; + const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); + if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) { + // This SCEV does not seem to simplify: fail the division here. + Quotient = Zero; + Remainder = Numerator; + return; + } + divide(SE, Diff, Denominator, &Q, &R); + assert(R == Zero && + "(Numerator - Remainder) should evenly divide Denominator"); + Quotient = Q; + } + +private: + SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, + const SCEV *Denominator) + : SE(S), Denominator(Denominator) { + Zero = SE.getConstant(Denominator->getType(), 0); + One = SE.getConstant(Denominator->getType(), 1); + + // By default, we don't know how to divide Expr by Denominator. + // Providing the default here simplifies the rest of the code. + Quotient = Zero; + Remainder = Numerator; + } + + ScalarEvolution &SE; + const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; +}; + +} //===----------------------------------------------------------------------===// // Simple SCEV method implementations @@ -830,7 +1081,7 @@ const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, ID.AddInteger(scTruncate); ID.AddPointer(Op); ID.AddPointer(Ty); - void *IP = 0; + void *IP = nullptr; if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; // Fold if the operand is constant. @@ -920,7 +1171,7 @@ const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, ID.AddInteger(scZeroExtend); ID.AddPointer(Op); ID.AddPointer(Ty); - void *IP = 0; + void *IP = nullptr; if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; // zext(trunc(x)) --> zext(x) or x or trunc(x) @@ -1073,7 +1324,7 @@ static const SCEV *getOverflowLimitForStep(const SCEV *Step, return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - SE->getSignedRange(Step).getSignedMin()); } - return 0; + return nullptr; } // The recurrence AR has been shown to have no signed wrap. Typically, if we can @@ -1092,19 +1343,18 @@ static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR, // Check for a simple looking step prior to loop entry. const SCEVAddExpr *SA = dyn_cast(Start); if (!SA) - return 0; + return nullptr; // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV // subtraction is expensive. For this purpose, perform a quick and dirty // difference, by checking for Step in the operand list. SmallVector DiffOps; - for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end(); - I != E; ++I) { - if (*I != Step) - DiffOps.push_back(*I); - } + for (const SCEV *Op : SA->operands()) + if (Op != Step) + DiffOps.push_back(Op); + if (DiffOps.size() == SA->getNumOperands()) - return 0; + return nullptr; // This is a postinc AR. Check for overflow on the preinc recurrence using the // same three conditions that getSignExtendedExpr checks. @@ -1114,7 +1364,24 @@ static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR, const SCEVAddRecExpr *PreAR = dyn_cast( SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); - if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW)) + // WARNING: FIXME: the optimization below assumes that a sign-overflowing nsw + // operation is undefined behavior. This is strictly more aggressive than the + // interpretation of nsw in other parts of LLVM (for instance, they may + // unconditionally hoist nsw arithmetic through control flow). This logic + // needs to be revisited once we have a consistent semantics for poison + // values. + // + // "{S,+,X} is " and "{S,+,X} is evaluated at least once" implies "S+X + // does not sign-overflow" (we'd have undefined behavior if it did). If + // `L->getExitingBlock() == L->getLoopLatch()` then `PreAR` (= {S,+,X}) + // is evaluated every-time `AR` (= {S+X,+,X}) is evaluated, and hence within + // `AR` we are safe to assume that "S+X" will not sign-overflow. + // + + BasicBlock *ExitingBlock = L->getExitingBlock(); + BasicBlock *LatchBlock = L->getLoopLatch(); + if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW) && + ExitingBlock != nullptr && ExitingBlock == LatchBlock) return PreStart; // 2. Direct overflow check on the step operation's expression. @@ -1140,7 +1407,7 @@ static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR, SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) { return PreStart; } - return 0; + return nullptr; } // Get the normalized sign-extended expression for this AddRec's Start. @@ -1182,7 +1449,7 @@ const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, ID.AddInteger(scSignExtend); ID.AddPointer(Op); ID.AddPointer(Ty); - void *IP = 0; + void *IP = nullptr; if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; // If the input value is provably positive, build a zext instead. @@ -1202,6 +1469,23 @@ const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, return getTruncateOrSignExtend(X, Ty); } + // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 + if (auto SA = dyn_cast(Op)) { + if (SA->getNumOperands() == 2) { + auto SC1 = dyn_cast(SA->getOperand(0)); + auto SMul = dyn_cast(SA->getOperand(1)); + if (SMul && SC1) { + if (auto SC2 = dyn_cast(SMul->getOperand(0))) { + const APInt &C1 = SC1->getValue()->getValue(); + const APInt &C2 = SC2->getValue()->getValue(); + if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && + C2.ugt(C1) && C2.isPowerOf2()) + return getAddExpr(getSignExtendExpr(SC1, Ty), + getSignExtendExpr(SMul, Ty)); + } + } + } + } // If the input value is a chrec scev, and we can prove that the value // did not overflow the old, smaller, value, we can sign extend all of the // operands (often constants). This allows analysis of something like @@ -1266,8 +1550,16 @@ const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, getMulExpr(WideMaxBECount, getZeroExtendExpr(Step, WideTy))); if (SAdd == OperandExtendedAdd) { - // Cache knowledge of AR NSW, which is propagated to this AddRec. - const_cast(AR)->setNoWrapFlags(SCEV::FlagNSW); + // If AR wraps around then + // + // abs(Step) * MaxBECount > unsigned-max(AR->getType()) + // => SAdd != OperandExtendedAdd + // + // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> + // (SAdd == OperandExtendedAdd => AR is NW) + + const_cast(AR)->setNoWrapFlags(SCEV::FlagNW); + // Return the expression with the addrec on the outside. return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), getZeroExtendExpr(Step, Ty), @@ -1293,6 +1585,22 @@ const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, L, AR->getNoWrapFlags()); } } + // If Start and Step are constants, check if we can apply this + // transformation: + // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 + auto SC1 = dyn_cast(Start); + auto SC2 = dyn_cast(Step); + if (SC1 && SC2) { + const APInt &C1 = SC1->getValue()->getValue(); + const APInt &C2 = SC2->getValue()->getValue(); + if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && + C2.isPowerOf2()) { + Start = getSignExtendExpr(Start, Ty); + const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step, + L, AR->getNoWrapFlags()); + return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); + } + } } // The cast wasn't folded; create an explicit cast node. @@ -1341,9 +1649,8 @@ const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, // Force the cast to be folded into the operands of an addrec. if (const SCEVAddRecExpr *AR = dyn_cast(Op)) { SmallVector Ops; - for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); - I != E; ++I) - Ops.push_back(getAnyExtendExpr(*I, Ty)); + for (const SCEV *Op : AR->operands()) + Ops.push_back(getAnyExtendExpr(Op, Ty)); return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); } @@ -1361,7 +1668,7 @@ const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, /// what it does, given a sequence of operands that would form an add /// expression like this: /// -/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) +/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) /// /// where A and B are constants, update the map with these values: /// @@ -1455,6 +1762,36 @@ namespace { }; } +// We're trying to construct a SCEV of type `Type' with `Ops' as operands and +// `OldFlags' as can't-wrap behavior. Infer a more aggressive set of +// can't-overflow flags for the operation if possible. +static SCEV::NoWrapFlags +StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, + const SmallVectorImpl &Ops, + SCEV::NoWrapFlags OldFlags) { + using namespace std::placeholders; + + bool CanAnalyze = + Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; + (void)CanAnalyze; + assert(CanAnalyze && "don't call from other places!"); + + int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; + SCEV::NoWrapFlags SignOrUnsignWrap = + ScalarEvolution::maskFlags(OldFlags, SignOrUnsignMask); + + // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. + auto IsKnownNonNegative = + std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1); + + if (SignOrUnsignWrap == SCEV::FlagNSW && + std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative)) + return ScalarEvolution::setFlags(OldFlags, + (SCEV::NoWrapFlags)SignOrUnsignMask); + + return OldFlags; +} + /// getAddExpr - Get a canonical add expression, or something simpler if /// possible. const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl &Ops, @@ -1470,20 +1807,7 @@ const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl &Ops, "SCEVAddExpr operand types don't match!"); #endif - // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. - // And vice-versa. - int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; - SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); - if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { - bool All = true; - for (SmallVectorImpl::const_iterator I = Ops.begin(), - E = Ops.end(); I != E; ++I) - if (!isKnownNonNegative(*I)) { - All = false; - break; - } - if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); - } + Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); // Sort by complexity, this groups all similar expression types together. GroupByComplexity(Ops, LI); @@ -1812,7 +2136,7 @@ const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl &Ops, ID.AddInteger(scAddExpr); for (unsigned i = 0, e = Ops.size(); i != e; ++i) ID.AddPointer(Ops[i]); - void *IP = 0; + void *IP = nullptr; SCEVAddExpr *S = static_cast(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); if (!S) { @@ -1858,6 +2182,25 @@ static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { return r; } +/// Determine if any of the operands in this SCEV are a constant or if +/// any of the add or multiply expressions in this SCEV contain a constant. +static bool containsConstantSomewhere(const SCEV *StartExpr) { + SmallVector Ops; + Ops.push_back(StartExpr); + while (!Ops.empty()) { + const SCEV *CurrentExpr = Ops.pop_back_val(); + if (isa(*CurrentExpr)) + return true; + + if (isa(*CurrentExpr) || isa(*CurrentExpr)) { + const auto *CurrentNAry = cast(CurrentExpr); + for (const SCEV *Operand : CurrentNAry->operands()) + Ops.push_back(Operand); + } + } + return false; +} + /// getMulExpr - Get a canonical multiply expression, or something simpler if /// possible. const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl &Ops, @@ -1873,20 +2216,7 @@ const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl &Ops, "SCEVMulExpr operand types don't match!"); #endif - // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. - // And vice-versa. - int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; - SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); - if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { - bool All = true; - for (SmallVectorImpl::const_iterator I = Ops.begin(), - E = Ops.end(); I != E; ++I) - if (!isKnownNonNegative(*I)) { - All = false; - break; - } - if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); - } + Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); // Sort by complexity, this groups all similar expression types together. GroupByComplexity(Ops, LI); @@ -1897,11 +2227,13 @@ const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl &Ops, // C1*(C2+V) -> C1*C2 + C1*V if (Ops.size() == 2) - if (const SCEVAddExpr *Add = dyn_cast(Ops[1])) - if (Add->getNumOperands() == 2 && - isa(Add->getOperand(0))) - return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), - getMulExpr(LHSC, Add->getOperand(1))); + if (const SCEVAddExpr *Add = dyn_cast(Ops[1])) + // If any of Add's ops are Adds or Muls with a constant, + // apply this transformation as well. + if (Add->getNumOperands() == 2) + if (containsConstantSomewhere(Add)) + return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), + getMulExpr(LHSC, Add->getOperand(1))); ++Idx; while (const SCEVConstant *RHSC = dyn_cast(Ops[Idx])) { @@ -2030,71 +2362,66 @@ const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl &Ops, // Okay, if there weren't any loop invariants to be folded, check to see if // there are multiple AddRec's with the same loop induction variable being // multiplied together. If so, we can fold them. + + // {A1,+,A2,+,...,+,An} * {B1,+,B2,+,...,+,Bn} + // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ + // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z + // ]]],+,...up to x=2n}. + // Note that the arguments to choose() are always integers with values + // known at compile time, never SCEV objects. + // + // The implementation avoids pointless extra computations when the two + // addrec's are of different length (mathematically, it's equivalent to + // an infinite stream of zeros on the right). + bool OpsModified = false; for (unsigned OtherIdx = Idx+1; - OtherIdx < Ops.size() && isa(Ops[OtherIdx]); + OtherIdx != Ops.size() && isa(Ops[OtherIdx]); ++OtherIdx) { - if (AddRecLoop != cast(Ops[OtherIdx])->getLoop()) + const SCEVAddRecExpr *OtherAddRec = + dyn_cast(Ops[OtherIdx]); + if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) continue; - // {A1,+,A2,+,...,+,An} * {B1,+,B2,+,...,+,Bn} - // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ - // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z - // ]]],+,...up to x=2n}. - // Note that the arguments to choose() are always integers with values - // known at compile time, never SCEV objects. - // - // The implementation avoids pointless extra computations when the two - // addrec's are of different length (mathematically, it's equivalent to - // an infinite stream of zeros on the right). - bool OpsModified = false; - for (; OtherIdx != Ops.size() && isa(Ops[OtherIdx]); - ++OtherIdx) { - const SCEVAddRecExpr *OtherAddRec = - dyn_cast(Ops[OtherIdx]); - if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) - continue; - - bool Overflow = false; - Type *Ty = AddRec->getType(); - bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; - SmallVector AddRecOps; - for (int x = 0, xe = AddRec->getNumOperands() + - OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { - const SCEV *Term = getConstant(Ty, 0); - for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { - uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); - for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), - ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); - z < ze && !Overflow; ++z) { - uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); - uint64_t Coeff; - if (LargerThan64Bits) - Coeff = umul_ov(Coeff1, Coeff2, Overflow); - else - Coeff = Coeff1*Coeff2; - const SCEV *CoeffTerm = getConstant(Ty, Coeff); - const SCEV *Term1 = AddRec->getOperand(y-z); - const SCEV *Term2 = OtherAddRec->getOperand(z); - Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); - } + bool Overflow = false; + Type *Ty = AddRec->getType(); + bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; + SmallVector AddRecOps; + for (int x = 0, xe = AddRec->getNumOperands() + + OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { + const SCEV *Term = getConstant(Ty, 0); + for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { + uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); + for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), + ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); + z < ze && !Overflow; ++z) { + uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); + uint64_t Coeff; + if (LargerThan64Bits) + Coeff = umul_ov(Coeff1, Coeff2, Overflow); + else + Coeff = Coeff1*Coeff2; + const SCEV *CoeffTerm = getConstant(Ty, Coeff); + const SCEV *Term1 = AddRec->getOperand(y-z); + const SCEV *Term2 = OtherAddRec->getOperand(z); + Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); } - AddRecOps.push_back(Term); - } - if (!Overflow) { - const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), - SCEV::FlagAnyWrap); - if (Ops.size() == 2) return NewAddRec; - Ops[Idx] = NewAddRec; - Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; - OpsModified = true; - AddRec = dyn_cast(NewAddRec); - if (!AddRec) - break; } + AddRecOps.push_back(Term); + } + if (!Overflow) { + const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), + SCEV::FlagAnyWrap); + if (Ops.size() == 2) return NewAddRec; + Ops[Idx] = NewAddRec; + Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; + OpsModified = true; + AddRec = dyn_cast(NewAddRec); + if (!AddRec) + break; } - if (OpsModified) - return getMulExpr(Ops); } + if (OpsModified) + return getMulExpr(Ops); // Otherwise couldn't fold anything into this recurrence. Move onto the // next one. @@ -2106,7 +2433,7 @@ const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl &Ops, ID.AddInteger(scMulExpr); for (unsigned i = 0, e = Ops.size(); i != e; ++i) ID.AddPointer(Ops[i]); - void *IP = 0; + void *IP = nullptr; SCEVMulExpr *S = static_cast(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); if (!S) { @@ -2231,7 +2558,7 @@ const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, ID.AddInteger(scUDivExpr); ID.AddPointer(LHS); ID.AddPointer(RHS); - void *IP = 0; + void *IP = nullptr; if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), LHS, RHS); @@ -2239,6 +2566,77 @@ const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, return S; } +static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { + APInt A = C1->getValue()->getValue().abs(); + APInt B = C2->getValue()->getValue().abs(); + uint32_t ABW = A.getBitWidth(); + uint32_t BBW = B.getBitWidth(); + + if (ABW > BBW) + B = B.zext(ABW); + else if (ABW < BBW) + A = A.zext(BBW); + + return APIntOps::GreatestCommonDivisor(A, B); +} + +/// getUDivExactExpr - Get a canonical unsigned division expression, or +/// something simpler if possible. There is no representation for an exact udiv +/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS. +/// We can't do this when it's not exact because the udiv may be clearing bits. +const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, + const SCEV *RHS) { + // TODO: we could try to find factors in all sorts of things, but for now we + // just deal with u/exact (multiply, constant). See SCEVDivision towards the + // end of this file for inspiration. + + const SCEVMulExpr *Mul = dyn_cast(LHS); + if (!Mul) + return getUDivExpr(LHS, RHS); + + if (const SCEVConstant *RHSCst = dyn_cast(RHS)) { + // If the mulexpr multiplies by a constant, then that constant must be the + // first element of the mulexpr. + if (const SCEVConstant *LHSCst = + dyn_cast(Mul->getOperand(0))) { + if (LHSCst == RHSCst) { + SmallVector Operands; + Operands.append(Mul->op_begin() + 1, Mul->op_end()); + return getMulExpr(Operands); + } + + // We can't just assume that LHSCst divides RHSCst cleanly, it could be + // that there's a factor provided by one of the other terms. We need to + // check. + APInt Factor = gcd(LHSCst, RHSCst); + if (!Factor.isIntN(1)) { + LHSCst = cast( + getConstant(LHSCst->getValue()->getValue().udiv(Factor))); + RHSCst = cast( + getConstant(RHSCst->getValue()->getValue().udiv(Factor))); + SmallVector Operands; + Operands.push_back(LHSCst); + Operands.append(Mul->op_begin() + 1, Mul->op_end()); + LHS = getMulExpr(Operands); + RHS = RHSCst; + Mul = dyn_cast(LHS); + if (!Mul) + return getUDivExactExpr(LHS, RHS); + } + } + } + + for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { + if (Mul->getOperand(i) == RHS) { + SmallVector Operands; + Operands.append(Mul->op_begin(), Mul->op_begin() + i); + Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); + return getMulExpr(Operands); + } + } + + return getUDivExpr(LHS, RHS); +} /// getAddRecExpr - Get an add recurrence expression for the specified loop. /// Simplify the expression as much as possible. @@ -2284,20 +2682,7 @@ ScalarEvolution::getAddRecExpr(SmallVectorImpl &Operands, // meaningful BE count at this point (and if we don't, we'd be stuck // with a SCEVCouldNotCompute as the cached BE count). - // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. - // And vice-versa. - int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; - SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); - if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { - bool All = true; - for (SmallVectorImpl::const_iterator I = Operands.begin(), - E = Operands.end(); I != E; ++I) - if (!isKnownNonNegative(*I)) { - All = false; - break; - } - if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); - } + Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); // Canonicalize nested AddRecs in by nesting them in order of loop depth. if (const SCEVAddRecExpr *NestedAR = dyn_cast(Operands[0])) { @@ -2355,7 +2740,7 @@ ScalarEvolution::getAddRecExpr(SmallVectorImpl &Operands, for (unsigned i = 0, e = Operands.size(); i != e; ++i) ID.AddPointer(Operands[i]); ID.AddPointer(L); - void *IP = 0; + void *IP = nullptr; SCEVAddRecExpr *S = static_cast(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); if (!S) { @@ -2463,7 +2848,7 @@ ScalarEvolution::getSMaxExpr(SmallVectorImpl &Ops) { ID.AddInteger(scSMaxExpr); for (unsigned i = 0, e = Ops.size(); i != e; ++i) ID.AddPointer(Ops[i]); - void *IP = 0; + void *IP = nullptr; if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; const SCEV **O = SCEVAllocator.Allocate(Ops.size()); std::uninitialized_copy(Ops.begin(), Ops.end(), O); @@ -2567,7 +2952,7 @@ ScalarEvolution::getUMaxExpr(SmallVectorImpl &Ops) { ID.AddInteger(scUMaxExpr); for (unsigned i = 0, e = Ops.size(); i != e; ++i) ID.AddPointer(Ops[i]); - void *IP = 0; + void *IP = nullptr; if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; const SCEV **O = SCEVAllocator.Allocate(Ops.size()); std::uninitialized_copy(Ops.begin(), Ops.end(), O); @@ -2593,12 +2978,12 @@ const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { // If we have DataLayout, we can bypass creating a target-independent // constant expression and then folding it back into a ConstantInt. // This is just a compile-time optimization. - if (TD) - return getConstant(IntTy, TD->getTypeAllocSize(AllocTy)); + if (DL) + return getConstant(IntTy, DL->getTypeAllocSize(AllocTy)); Constant *C = ConstantExpr::getSizeOf(AllocTy); if (ConstantExpr *CE = dyn_cast(C)) - if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI)) + if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI)) C = Folded; Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); assert(Ty == IntTy && "Effective SCEV type doesn't match"); @@ -2611,14 +2996,14 @@ const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, // If we have DataLayout, we can bypass creating a target-independent // constant expression and then folding it back into a ConstantInt. // This is just a compile-time optimization. - if (TD) { + if (DL) { return getConstant(IntTy, - TD->getStructLayout(STy)->getElementOffset(FieldNo)); + DL->getStructLayout(STy)->getElementOffset(FieldNo)); } Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo); if (ConstantExpr *CE = dyn_cast(C)) - if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI)) + if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI)) C = Folded; Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); @@ -2634,7 +3019,7 @@ const SCEV *ScalarEvolution::getUnknown(Value *V) { FoldingSetNodeID ID; ID.AddInteger(scUnknown); ID.AddPointer(V); - void *IP = 0; + void *IP = nullptr; if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { assert(cast(S)->getValue() == V && "Stale SCEVUnknown in uniquing map!"); @@ -2666,8 +3051,8 @@ uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { assert(isSCEVable(Ty) && "Type is not SCEVable!"); // If we have a DataLayout, use it! - if (TD) - return TD->getTypeSizeInBits(Ty); + if (DL) + return DL->getTypeSizeInBits(Ty); // Integer types have fixed sizes. if (Ty->isIntegerTy()) @@ -2693,8 +3078,8 @@ Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { // The only other support type is pointer. assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); - if (TD) - return TD->getIntPtrType(Ty); + if (DL) + return DL->getIntPtrType(Ty); // Without DataLayout, conservatively assume pointers are 64-bit. return Type::getInt64Ty(getContext()); @@ -2713,7 +3098,7 @@ namespace { bool FindOne; FindInvalidSCEVUnknown() { FindOne = false; } bool follow(const SCEV *S) { - switch (S->getSCEVType()) { + switch (static_cast(S->getSCEVType())) { case scConstant: return false; case scUnknown: @@ -2794,8 +3179,9 @@ const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, if (LHS == RHS) return getConstant(LHS->getType(), 0); - // X - Y --> X + -Y - return getAddExpr(LHS, getNegativeSCEV(RHS), Flags); + // X - Y --> X + -Y. + // X -(nsw || nuw) Y --> X + -Y. + return getAddExpr(LHS, getNegativeSCEV(RHS)); } /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the @@ -2940,7 +3326,7 @@ const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { return getPointerBase(Cast->getOperand()); } else if (const SCEVNAryExpr *NAry = dyn_cast(V)) { - const SCEV *PtrOp = 0; + const SCEV *PtrOp = nullptr; for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); I != E; ++I) { if ((*I)->getType()->isPointerTy()) { @@ -2963,9 +3349,8 @@ static void PushDefUseChildren(Instruction *I, SmallVectorImpl &Worklist) { // Push the def-use children onto the Worklist stack. - for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); - UI != UE; ++UI) - Worklist.push_back(cast(*UI)); + for (User *U : I->users()) + Worklist.push_back(cast(U)); } /// ForgetSymbolicValue - This looks up computed SCEV values for all @@ -2981,7 +3366,8 @@ ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { Visited.insert(PN); while (!Worklist.empty()) { Instruction *I = Worklist.pop_back_val(); - if (!Visited.insert(I)) continue; + if (!Visited.insert(I).second) + continue; ValueExprMapType::iterator It = ValueExprMap.find_as(static_cast(I)); @@ -3021,20 +3407,20 @@ const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { // The loop may have multiple entrances or multiple exits; we can analyze // this phi as an addrec if it has a unique entry value and a unique // backedge value. - Value *BEValueV = 0, *StartValueV = 0; + Value *BEValueV = nullptr, *StartValueV = nullptr; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { Value *V = PN->getIncomingValue(i); if (L->contains(PN->getIncomingBlock(i))) { if (!BEValueV) { BEValueV = V; } else if (BEValueV != V) { - BEValueV = 0; + BEValueV = nullptr; break; } } else if (!StartValueV) { StartValueV = V; } else if (StartValueV != V) { - StartValueV = 0; + StartValueV = nullptr; break; } } @@ -3101,12 +3487,10 @@ const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) Flags = setFlags(Flags, SCEV::FlagNUW); } - } else if (const SubOperator *OBO = - dyn_cast(BEValueV)) { - if (OBO->hasNoUnsignedWrap()) - Flags = setFlags(Flags, SCEV::FlagNUW); - if (OBO->hasNoSignedWrap()) - Flags = setFlags(Flags, SCEV::FlagNSW); + + // We cannot transfer nuw and nsw flags from subtraction + // operations -- sub nuw X, Y is not the same as add nuw X, -Y + // for instance. } const SCEV *StartVal = getSCEV(StartValueV); @@ -3162,7 +3546,7 @@ const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { // PHI's incoming blocks are in a different loop, in which case doing so // risks breaking LCSSA form. Instcombine would normally zap these, but // it doesn't have DominatorTree information, so it may miss cases. - if (Value *V = SimplifyInstruction(PN, TD, TLI, DT)) + if (Value *V = SimplifyInstruction(PN, DL, TLI, DT, AC)) if (LI->replacementPreservesLCSSAForm(PN, V)) return getSCEV(V); @@ -3188,7 +3572,7 @@ const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { const SCEV *TotalOffset = getConstant(IntPtrTy, 0); gep_type_iterator GTI = gep_type_begin(GEP); - for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()), + for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()), E = GEP->op_end(); I != E; ++I) { Value *Index = *I; @@ -3294,7 +3678,7 @@ ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { // For a SCEVUnknown, ask ValueTracking. unsigned BitWidth = getTypeSizeInBits(U->getType()); APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); - ComputeMaskedBits(U->getValue(), Zeros, Ones); + computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AC, nullptr, DT); return Zeros.countTrailingOnes(); } @@ -3302,6 +3686,33 @@ ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { return 0; } +/// GetRangeFromMetadata - Helper method to assign a range to V from +/// metadata present in the IR. +static Optional GetRangeFromMetadata(Value *V) { + if (Instruction *I = dyn_cast(V)) { + if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) { + ConstantRange TotalRange( + cast(I->getType())->getBitWidth(), false); + + unsigned NumRanges = MD->getNumOperands() / 2; + assert(NumRanges >= 1); + + for (unsigned i = 0; i < NumRanges; ++i) { + ConstantInt *Lower = + mdconst::extract(MD->getOperand(2 * i + 0)); + ConstantInt *Upper = + mdconst::extract(MD->getOperand(2 * i + 1)); + ConstantRange Range(Lower->getValue(), Upper->getValue()); + TotalRange = TotalRange.unionWith(Range); + } + + return TotalRange; + } + } + + return None; +} + /// getUnsignedRange - Determine the unsigned range for a particular SCEV. /// ConstantRange @@ -3431,9 +3842,14 @@ ScalarEvolution::getUnsignedRange(const SCEV *S) { } if (const SCEVUnknown *U = dyn_cast(S)) { + // Check if the IR explicitly contains !range metadata. + Optional MDRange = GetRangeFromMetadata(U->getValue()); + if (MDRange.hasValue()) + ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); + // For a SCEVUnknown, ask ValueTracking. APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); - ComputeMaskedBits(U->getValue(), Zeros, Ones, TD); + computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AC, nullptr, DT); if (Ones == ~Zeros + 1) return setUnsignedRange(U, ConservativeResult); return setUnsignedRange(U, @@ -3582,10 +3998,15 @@ ScalarEvolution::getSignedRange(const SCEV *S) { } if (const SCEVUnknown *U = dyn_cast(S)) { + // Check if the IR explicitly contains !range metadata. + Optional MDRange = GetRangeFromMetadata(U->getValue()); + if (MDRange.hasValue()) + ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); + // For a SCEVUnknown, ask ValueTracking. - if (!U->getValue()->getType()->isIntegerTy() && !TD) + if (!U->getValue()->getType()->isIntegerTy() && !DL) return setSignedRange(U, ConservativeResult); - unsigned NS = ComputeNumSignBits(U->getValue(), TD); + unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, AC, nullptr, DT); if (NS <= 1) return setSignedRange(U, ConservativeResult); return setSignedRange(U, ConservativeResult.intersectWith( @@ -3686,20 +4107,28 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) { // Instcombine's ShrinkDemandedConstant may strip bits out of // constants, obscuring what would otherwise be a low-bits mask. - // Use ComputeMaskedBits to compute what ShrinkDemandedConstant + // Use computeKnownBits to compute what ShrinkDemandedConstant // knew about to reconstruct a low-bits mask value. unsigned LZ = A.countLeadingZeros(); + unsigned TZ = A.countTrailingZeros(); unsigned BitWidth = A.getBitWidth(); APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); - ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD); - - APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); - - if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) - return - getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), - IntegerType::get(getContext(), BitWidth - LZ)), - U->getType()); + computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL, 0, AC, + nullptr, DT); + + APInt EffectiveMask = + APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); + if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { + const SCEV *MulCount = getConstant( + ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ))); + return getMulExpr( + getZeroExtendExpr( + getTruncateExpr( + getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount), + IntegerType::get(getContext(), BitWidth - LZ - TZ)), + U->getType()), + MulCount); + } } break; @@ -3876,9 +4305,10 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) { case ICmpInst::ICMP_SGE: // a >s b ? a+x : b+x -> smax(a, b)+x // a >s b ? b+x : a+x -> smin(a, b)+x - if (LHS->getType() == U->getType()) { - const SCEV *LS = getSCEV(LHS); - const SCEV *RS = getSCEV(RHS); + if (getTypeSizeInBits(LHS->getType()) <= + getTypeSizeInBits(U->getType())) { + const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), U->getType()); + const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), U->getType()); const SCEV *LA = getSCEV(U->getOperand(1)); const SCEV *RA = getSCEV(U->getOperand(2)); const SCEV *LDiff = getMinusSCEV(LA, LS); @@ -3899,9 +4329,10 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) { case ICmpInst::ICMP_UGE: // a >u b ? a+x : b+x -> umax(a, b)+x // a >u b ? b+x : a+x -> umin(a, b)+x - if (LHS->getType() == U->getType()) { - const SCEV *LS = getSCEV(LHS); - const SCEV *RS = getSCEV(RHS); + if (getTypeSizeInBits(LHS->getType()) <= + getTypeSizeInBits(U->getType())) { + const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType()); + const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), U->getType()); const SCEV *LA = getSCEV(U->getOperand(1)); const SCEV *RA = getSCEV(U->getOperand(2)); const SCEV *LDiff = getMinusSCEV(LA, LS); @@ -3916,11 +4347,11 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) { break; case ICmpInst::ICMP_NE: // n != 0 ? n+x : 1+x -> umax(n, 1)+x - if (LHS->getType() == U->getType() && - isa(RHS) && - cast(RHS)->isZero()) { - const SCEV *One = getConstant(LHS->getType(), 1); - const SCEV *LS = getSCEV(LHS); + if (getTypeSizeInBits(LHS->getType()) <= + getTypeSizeInBits(U->getType()) && + isa(RHS) && cast(RHS)->isZero()) { + const SCEV *One = getConstant(U->getType(), 1); + const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType()); const SCEV *LA = getSCEV(U->getOperand(1)); const SCEV *RA = getSCEV(U->getOperand(2)); const SCEV *LDiff = getMinusSCEV(LA, LS); @@ -3931,11 +4362,11 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) { break; case ICmpInst::ICMP_EQ: // n == 0 ? 1+x : n+x -> umax(n, 1)+x - if (LHS->getType() == U->getType() && - isa(RHS) && - cast(RHS)->isZero()) { - const SCEV *One = getConstant(LHS->getType(), 1); - const SCEV *LS = getSCEV(LHS); + if (getTypeSizeInBits(LHS->getType()) <= + getTypeSizeInBits(U->getType()) && + isa(RHS) && cast(RHS)->isZero()) { + const SCEV *One = getConstant(U->getType(), 1); + const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType()); const SCEV *LA = getSCEV(U->getOperand(1)); const SCEV *RA = getSCEV(U->getOperand(2)); const SCEV *LDiff = getMinusSCEV(LA, One); @@ -3962,6 +4393,14 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) { // Iteration Count Computation Code // +unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) { + if (BasicBlock *ExitingBB = L->getExitingBlock()) + return getSmallConstantTripCount(L, ExitingBB); + + // No trip count information for multiple exits. + return 0; +} + /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a /// normal unsigned value. Returns 0 if the trip count is unknown or not /// constant. Will also return 0 if the maximum trip count is very large (>= @@ -3972,19 +4411,13 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) { /// before taking the branch. For loops with multiple exits, it may not be the /// number times that the loop header executes because the loop may exit /// prematurely via another branch. -/// -/// FIXME: We conservatively call getBackedgeTakenCount(L) instead of -/// getExitCount(L, ExitingBlock) to compute a safe trip count considering all -/// loop exits. getExitCount() may return an exact count for this branch -/// assuming no-signed-wrap. The number of well-defined iterations may actually -/// be higher than this trip count if this exit test is skipped and the loop -/// exits via a different branch. Ideally, getExitCount() would know whether it -/// depends on a NSW assumption, and we would only fall back to a conservative -/// trip count in that case. -unsigned ScalarEvolution:: -getSmallConstantTripCount(Loop *L, BasicBlock * /*ExitingBlock*/) { +unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L, + BasicBlock *ExitingBlock) { + assert(ExitingBlock && "Must pass a non-null exiting block!"); + assert(L->isLoopExiting(ExitingBlock) && + "Exiting block must actually branch out of the loop!"); const SCEVConstant *ExitCount = - dyn_cast(getBackedgeTakenCount(L)); + dyn_cast(getExitCount(L, ExitingBlock)); if (!ExitCount) return 0; @@ -3998,6 +4431,14 @@ getSmallConstantTripCount(Loop *L, BasicBlock * /*ExitingBlock*/) { return ((unsigned)ExitConst->getZExtValue()) + 1; } +unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) { + if (BasicBlock *ExitingBB = L->getExitingBlock()) + return getSmallConstantTripMultiple(L, ExitingBB); + + // No trip multiple information for multiple exits. + return 0; +} + /// getSmallConstantTripMultiple - Returns the largest constant divisor of the /// trip count of this loop as a normal unsigned value, if possible. This /// means that the actual trip count is always a multiple of the returned @@ -4010,9 +4451,13 @@ getSmallConstantTripCount(Loop *L, BasicBlock * /*ExitingBlock*/) { /// /// As explained in the comments for getSmallConstantTripCount, this assumes /// that control exits the loop via ExitingBlock. -unsigned ScalarEvolution:: -getSmallConstantTripMultiple(Loop *L, BasicBlock * /*ExitingBlock*/) { - const SCEV *ExitCount = getBackedgeTakenCount(L); +unsigned +ScalarEvolution::getSmallConstantTripMultiple(Loop *L, + BasicBlock *ExitingBlock) { + assert(ExitingBlock && "Must pass a non-null exiting block!"); + assert(L->isLoopExiting(ExitingBlock) && + "Exiting block must actually branch out of the loop!"); + const SCEV *ExitCount = getExitCount(L, ExitingBlock); if (ExitCount == getCouldNotCompute()) return 1; @@ -4122,7 +4567,8 @@ ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { SmallPtrSet Visited; while (!Worklist.empty()) { Instruction *I = Worklist.pop_back_val(); - if (!Visited.insert(I)) continue; + if (!Visited.insert(I).second) + continue; ValueExprMapType::iterator It = ValueExprMap.find_as(static_cast(I)); @@ -4174,7 +4620,8 @@ void ScalarEvolution::forgetLoop(const Loop *L) { SmallPtrSet Visited; while (!Worklist.empty()) { Instruction *I = Worklist.pop_back_val(); - if (!Visited.insert(I)) continue; + if (!Visited.insert(I).second) + continue; ValueExprMapType::iterator It = ValueExprMap.find_as(static_cast(I)); @@ -4208,7 +4655,8 @@ void ScalarEvolution::forgetValue(Value *V) { SmallPtrSet Visited; while (!Worklist.empty()) { I = Worklist.pop_back_val(); - if (!Visited.insert(I)) continue; + if (!Visited.insert(I).second) + continue; ValueExprMapType::iterator It = ValueExprMap.find_as(static_cast(I)); @@ -4240,9 +4688,9 @@ ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); - const SCEV *BECount = 0; + const SCEV *BECount = nullptr; for (const ExitNotTakenInfo *ENT = &ExitNotTaken; - ENT != 0; ENT = ENT->getNextExit()) { + ENT != nullptr; ENT = ENT->getNextExit()) { assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); @@ -4260,7 +4708,7 @@ const SCEV * ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, ScalarEvolution *SE) const { for (const ExitNotTakenInfo *ENT = &ExitNotTaken; - ENT != 0; ENT = ENT->getNextExit()) { + ENT != nullptr; ENT = ENT->getNextExit()) { if (ENT->ExitingBlock == ExitingBlock) return ENT->ExactNotTaken; @@ -4283,7 +4731,7 @@ bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, return false; for (const ExitNotTakenInfo *ENT = &ExitNotTaken; - ENT != 0; ENT = ENT->getNextExit()) { + ENT != nullptr; ENT = ENT->getNextExit()) { if (ENT->ExactNotTaken != SE->getCouldNotCompute() && SE->hasOperand(ENT->ExactNotTaken, S)) { @@ -4322,8 +4770,8 @@ ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( /// clear - Invalidate this result and free the ExitNotTakenInfo array. void ScalarEvolution::BackedgeTakenInfo::clear() { - ExitNotTaken.ExitingBlock = 0; - ExitNotTaken.ExactNotTaken = 0; + ExitNotTaken.ExitingBlock = nullptr; + ExitNotTaken.ExactNotTaken = nullptr; delete[] ExitNotTaken.getNextExit(); } @@ -4334,38 +4782,55 @@ ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { SmallVector ExitingBlocks; L->getExitingBlocks(ExitingBlocks); - // Examine all exits and pick the most conservative values. - const SCEV *MaxBECount = getCouldNotCompute(); + SmallVector, 4> ExitCounts; bool CouldComputeBECount = true; BasicBlock *Latch = L->getLoopLatch(); // may be NULL. - const SCEV *LatchMaxCount = 0; - SmallVector, 4> ExitCounts; + const SCEV *MustExitMaxBECount = nullptr; + const SCEV *MayExitMaxBECount = nullptr; + + // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts + // and compute maxBECount. for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { - ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]); + BasicBlock *ExitBB = ExitingBlocks[i]; + ExitLimit EL = ComputeExitLimit(L, ExitBB); + + // 1. For each exit that can be computed, add an entry to ExitCounts. + // CouldComputeBECount is true only if all exits can be computed. if (EL.Exact == getCouldNotCompute()) // We couldn't compute an exact value for this exit, so // we won't be able to compute an exact value for the loop. CouldComputeBECount = false; else - ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact)); - - if (MaxBECount == getCouldNotCompute()) - MaxBECount = EL.Max; - else if (EL.Max != getCouldNotCompute()) { - // We cannot take the "min" MaxBECount, because non-unit stride loops may - // skip some loop tests. Taking the max over the exits is sufficiently - // conservative. TODO: We could do better taking into consideration - // non-latch exits that dominate the latch. - if (EL.MustExit && ExitingBlocks[i] == Latch) - LatchMaxCount = EL.Max; - else - MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max); + ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact)); + + // 2. Derive the loop's MaxBECount from each exit's max number of + // non-exiting iterations. Partition the loop exits into two kinds: + // LoopMustExits and LoopMayExits. + // + // If the exit dominates the loop latch, it is a LoopMustExit otherwise it + // is a LoopMayExit. If any computable LoopMustExit is found, then + // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise, + // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is + // considered greater than any computable EL.Max. + if (EL.Max != getCouldNotCompute() && Latch && + DT->dominates(ExitBB, Latch)) { + if (!MustExitMaxBECount) + MustExitMaxBECount = EL.Max; + else { + MustExitMaxBECount = + getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max); + } + } else if (MayExitMaxBECount != getCouldNotCompute()) { + if (!MayExitMaxBECount || EL.Max == getCouldNotCompute()) + MayExitMaxBECount = EL.Max; + else { + MayExitMaxBECount = + getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max); + } } } - // Be more precise in the easy case of a loop latch that must exit. - if (LatchMaxCount) { - MaxBECount = getUMinFromMismatchedTypes(MaxBECount, LatchMaxCount); - } + const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : + (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); } @@ -4375,12 +4840,19 @@ ScalarEvolution::ExitLimit ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { // Okay, we've chosen an exiting block. See what condition causes us to - // exit at this block. - // - // FIXME: we should be able to handle switch instructions (with a single exit) - BranchInst *ExitBr = dyn_cast(ExitingBlock->getTerminator()); - if (ExitBr == 0) return getCouldNotCompute(); - assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); + // exit at this block and remember the exit block and whether all other targets + // lead to the loop header. + bool MustExecuteLoopHeader = true; + BasicBlock *Exit = nullptr; + for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock); + SI != SE; ++SI) + if (!L->contains(*SI)) { + if (Exit) // Multiple exit successors. + return getCouldNotCompute(); + Exit = *SI; + } else if (*SI != L->getHeader()) { + MustExecuteLoopHeader = false; + } // At this point, we know we have a conditional branch that determines whether // the loop is exited. However, we don't know if the branch is executed each @@ -4399,13 +4871,11 @@ ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { // // More extensive analysis could be done to handle more cases here. // - if (ExitBr->getSuccessor(0) != L->getHeader() && - ExitBr->getSuccessor(1) != L->getHeader() && - ExitBr->getParent() != L->getHeader()) { + if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { // The simple checks failed, try climbing the unique predecessor chain // up to the header. bool Ok = false; - for (BasicBlock *BB = ExitBr->getParent(); BB; ) { + for (BasicBlock *BB = ExitingBlock; BB; ) { BasicBlock *Pred = BB->getUniquePredecessor(); if (!Pred) return getCouldNotCompute(); @@ -4429,39 +4899,48 @@ ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { return getCouldNotCompute(); } - // Proceed to the next level to examine the exit condition expression. - return ComputeExitLimitFromCond(L, ExitBr->getCondition(), - ExitBr->getSuccessor(0), - ExitBr->getSuccessor(1), - /*IsSubExpr=*/false); + bool IsOnlyExit = (L->getExitingBlock() != nullptr); + TerminatorInst *Term = ExitingBlock->getTerminator(); + if (BranchInst *BI = dyn_cast(Term)) { + assert(BI->isConditional() && "If unconditional, it can't be in loop!"); + // Proceed to the next level to examine the exit condition expression. + return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0), + BI->getSuccessor(1), + /*ControlsExit=*/IsOnlyExit); + } + + if (SwitchInst *SI = dyn_cast(Term)) + return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit, + /*ControlsExit=*/IsOnlyExit); + + return getCouldNotCompute(); } /// ComputeExitLimitFromCond - Compute the number of times the /// backedge of the specified loop will execute if its exit condition /// were a conditional branch of ExitCond, TBB, and FBB. /// -/// @param IsSubExpr is true if ExitCond does not directly control the exit -/// branch. In this case, we cannot assume that the loop only exits when the -/// condition is true and cannot infer that failing to meet the condition prior -/// to integer wraparound results in undefined behavior. +/// @param ControlsExit is true if ExitCond directly controls the exit +/// branch. In this case, we can assume that the loop exits only if the +/// condition is true and can infer that failing to meet the condition prior to +/// integer wraparound results in undefined behavior. ScalarEvolution::ExitLimit ScalarEvolution::ComputeExitLimitFromCond(const Loop *L, Value *ExitCond, BasicBlock *TBB, BasicBlock *FBB, - bool IsSubExpr) { + bool ControlsExit) { // Check if the controlling expression for this loop is an And or Or. if (BinaryOperator *BO = dyn_cast(ExitCond)) { if (BO->getOpcode() == Instruction::And) { // Recurse on the operands of the and. bool EitherMayExit = L->contains(TBB); ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, - IsSubExpr || EitherMayExit); + ControlsExit && !EitherMayExit); ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, - IsSubExpr || EitherMayExit); + ControlsExit && !EitherMayExit); const SCEV *BECount = getCouldNotCompute(); const SCEV *MaxBECount = getCouldNotCompute(); - bool MustExit = false; if (EitherMayExit) { // Both conditions must be true for the loop to continue executing. // Choose the less conservative count. @@ -4476,7 +4955,6 @@ ScalarEvolution::ComputeExitLimitFromCond(const Loop *L, MaxBECount = EL0.Max; else MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); - MustExit = EL0.MustExit || EL1.MustExit; } else { // Both conditions must be true at the same time for the loop to exit. // For now, be conservative. @@ -4485,21 +4963,19 @@ ScalarEvolution::ComputeExitLimitFromCond(const Loop *L, MaxBECount = EL0.Max; if (EL0.Exact == EL1.Exact) BECount = EL0.Exact; - MustExit = EL0.MustExit && EL1.MustExit; } - return ExitLimit(BECount, MaxBECount, MustExit); + return ExitLimit(BECount, MaxBECount); } if (BO->getOpcode() == Instruction::Or) { // Recurse on the operands of the or. bool EitherMayExit = L->contains(FBB); ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, - IsSubExpr || EitherMayExit); + ControlsExit && !EitherMayExit); ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, - IsSubExpr || EitherMayExit); + ControlsExit && !EitherMayExit); const SCEV *BECount = getCouldNotCompute(); const SCEV *MaxBECount = getCouldNotCompute(); - bool MustExit = false; if (EitherMayExit) { // Both conditions must be false for the loop to continue executing. // Choose the less conservative count. @@ -4514,7 +4990,6 @@ ScalarEvolution::ComputeExitLimitFromCond(const Loop *L, MaxBECount = EL0.Max; else MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); - MustExit = EL0.MustExit || EL1.MustExit; } else { // Both conditions must be false at the same time for the loop to exit. // For now, be conservative. @@ -4523,17 +4998,16 @@ ScalarEvolution::ComputeExitLimitFromCond(const Loop *L, MaxBECount = EL0.Max; if (EL0.Exact == EL1.Exact) BECount = EL0.Exact; - MustExit = EL0.MustExit && EL1.MustExit; } - return ExitLimit(BECount, MaxBECount, MustExit); + return ExitLimit(BECount, MaxBECount); } } // With an icmp, it may be feasible to compute an exact backedge-taken count. // Proceed to the next level to examine the icmp. if (ICmpInst *ExitCondICmp = dyn_cast(ExitCond)) - return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, IsSubExpr); + return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); // Check for a constant condition. These are normally stripped out by // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to @@ -4560,7 +5034,7 @@ ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L, ICmpInst *ExitCond, BasicBlock *TBB, BasicBlock *FBB, - bool IsSubExpr) { + bool ControlsExit) { // If the condition was exit on true, convert the condition to exit on false ICmpInst::Predicate Cond; @@ -4612,7 +5086,7 @@ ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L, switch (Cond) { case ICmpInst::ICMP_NE: { // while (X != Y) // Convert to: while (X-Y != 0) - ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr); + ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); if (EL.hasAnyInfo()) return EL; break; } @@ -4625,14 +5099,14 @@ ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L, case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_ULT: { // while (X < Y) bool IsSigned = Cond == ICmpInst::ICMP_SLT; - ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, IsSubExpr); + ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit); if (EL.hasAnyInfo()) return EL; break; } case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_UGT: { // while (X > Y) bool IsSigned = Cond == ICmpInst::ICMP_SGT; - ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, IsSubExpr); + ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit); if (EL.hasAnyInfo()) return EL; break; } @@ -4650,6 +5124,30 @@ ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L, return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); } +ScalarEvolution::ExitLimit +ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L, + SwitchInst *Switch, + BasicBlock *ExitingBlock, + bool ControlsExit) { + assert(!L->contains(ExitingBlock) && "Not an exiting block!"); + + // Give up if the exit is the default dest of a switch. + if (Switch->getDefaultDest() == ExitingBlock) + return getCouldNotCompute(); + + assert(L->contains(Switch->getDefaultDest()) && + "Default case must not exit the loop!"); + const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); + const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); + + // while (X != Y) --> while (X-Y != 0) + ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); + if (EL.hasAnyInfo()) + return EL; + + return getCouldNotCompute(); +} + static ConstantInt * EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, ScalarEvolution &SE) { @@ -4686,7 +5184,7 @@ ScalarEvolution::ComputeLoadConstantCompareExitLimit( return getCouldNotCompute(); // Okay, we allow one non-constant index into the GEP instruction. - Value *VarIdx = 0; + Value *VarIdx = nullptr; std::vector Indexes; unsigned VarIdxNum = 0; for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) @@ -4696,7 +5194,7 @@ ScalarEvolution::ComputeLoadConstantCompareExitLimit( if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. VarIdx = GEP->getOperand(i); VarIdxNum = i-2; - Indexes.push_back(0); + Indexes.push_back(nullptr); } // Loop-invariant loads may be a byproduct of loop optimization. Skip them. @@ -4727,7 +5225,7 @@ ScalarEvolution::ComputeLoadConstantCompareExitLimit( Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), Indexes); - if (Result == 0) break; // Cannot compute! + if (!Result) break; // Cannot compute! // Evaluate the condition for this iteration. Result = ConstantExpr::getICmp(predicate, Result, RHS); @@ -4788,14 +5286,14 @@ getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, // Otherwise, we can evaluate this instruction if all of its operands are // constant or derived from a PHI node themselves. - PHINode *PHI = 0; + PHINode *PHI = nullptr; for (Instruction::op_iterator OpI = UseInst->op_begin(), OpE = UseInst->op_end(); OpI != OpE; ++OpI) { if (isa(*OpI)) continue; Instruction *OpInst = dyn_cast(*OpI); - if (!OpInst || !canConstantEvolve(OpInst, L)) return 0; + if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; PHINode *P = dyn_cast(OpInst); if (!P) @@ -4809,8 +5307,10 @@ getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); PHIMap[OpInst] = P; } - if (P == 0) return 0; // Not evolving from PHI - if (PHI && PHI != P) return 0; // Evolving from multiple different PHIs. + if (!P) + return nullptr; // Not evolving from PHI + if (PHI && PHI != P) + return nullptr; // Evolving from multiple different PHIs. PHI = P; } // This is a expression evolving from a constant PHI! @@ -4824,7 +5324,7 @@ getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, /// constraints, return null. static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { Instruction *I = dyn_cast(V); - if (I == 0 || !canConstantEvolve(I, L)) return 0; + if (!I || !canConstantEvolve(I, L)) return nullptr; if (PHINode *PN = dyn_cast(I)) { return PN; @@ -4841,23 +5341,23 @@ static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { /// reason, return null. static Constant *EvaluateExpression(Value *V, const Loop *L, DenseMap &Vals, - const DataLayout *TD, + const DataLayout *DL, const TargetLibraryInfo *TLI) { // Convenient constant check, but redundant for recursive calls. if (Constant *C = dyn_cast(V)) return C; Instruction *I = dyn_cast(V); - if (!I) return 0; + if (!I) return nullptr; if (Constant *C = Vals.lookup(I)) return C; // An instruction inside the loop depends on a value outside the loop that we // weren't given a mapping for, or a value such as a call inside the loop. - if (!canConstantEvolve(I, L)) return 0; + if (!canConstantEvolve(I, L)) return nullptr; // An unmapped PHI can be due to a branch or another loop inside this loop, // or due to this not being the initial iteration through a loop where we // couldn't compute the evolution of this particular PHI last time. - if (isa(I)) return 0; + if (isa(I)) return nullptr; std::vector Operands(I->getNumOperands()); @@ -4865,23 +5365,23 @@ static Constant *EvaluateExpression(Value *V, const Loop *L, Instruction *Operand = dyn_cast(I->getOperand(i)); if (!Operand) { Operands[i] = dyn_cast(I->getOperand(i)); - if (!Operands[i]) return 0; + if (!Operands[i]) return nullptr; continue; } - Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI); + Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); Vals[Operand] = C; - if (!C) return 0; + if (!C) return nullptr; Operands[i] = C; } if (CmpInst *CI = dyn_cast(I)) return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], - Operands[1], TD, TLI); + Operands[1], DL, TLI); if (LoadInst *LI = dyn_cast(I)) { if (!LI->isVolatile()) - return ConstantFoldLoadFromConstPtr(Operands[0], TD); + return ConstantFoldLoadFromConstPtr(Operands[0], DL); } - return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD, + return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL, TLI); } @@ -4899,7 +5399,7 @@ ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, return I->second; if (BEs.ugt(MaxBruteForceIterations)) - return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. + return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; @@ -4911,22 +5411,22 @@ ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, // entry must be a constant (coming in from outside of the loop), and the // second must be derived from the same PHI. bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); - PHINode *PHI = 0; + PHINode *PHI = nullptr; for (BasicBlock::iterator I = Header->begin(); (PHI = dyn_cast(I)); ++I) { Constant *StartCST = dyn_cast(PHI->getIncomingValue(!SecondIsBackedge)); - if (StartCST == 0) continue; + if (!StartCST) continue; CurrentIterVals[PHI] = StartCST; } if (!CurrentIterVals.count(PN)) - return RetVal = 0; + return RetVal = nullptr; Value *BEValue = PN->getIncomingValue(SecondIsBackedge); // Execute the loop symbolically to determine the exit value. if (BEs.getActiveBits() >= 32) - return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! + return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! unsigned NumIterations = BEs.getZExtValue(); // must be in range unsigned IterationNum = 0; @@ -4937,10 +5437,10 @@ ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, // Compute the value of the PHIs for the next iteration. // EvaluateExpression adds non-phi values to the CurrentIterVals map. DenseMap NextIterVals; - Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, + Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI); - if (NextPHI == 0) - return 0; // Couldn't evaluate! + if (!NextPHI) + return nullptr; // Couldn't evaluate! NextIterVals[PN] = NextPHI; bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; @@ -4963,7 +5463,7 @@ ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, Constant *&NextPHI = NextIterVals[PHI]; if (!NextPHI) { // Not already computed. Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); - NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI); + NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI); } if (NextPHI != I->second) StoppedEvolving = false; @@ -4987,7 +5487,7 @@ const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) { PHINode *PN = getConstantEvolvingPHI(Cond, L); - if (PN == 0) return getCouldNotCompute(); + if (!PN) return getCouldNotCompute(); // If the loop is canonicalized, the PHI will have exactly two entries. // That's the only form we support here. @@ -5000,12 +5500,12 @@ const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L, // One entry must be a constant (coming in from outside of the loop), and the // second must be derived from the same PHI. bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); - PHINode *PHI = 0; + PHINode *PHI = nullptr; for (BasicBlock::iterator I = Header->begin(); (PHI = dyn_cast(I)); ++I) { Constant *StartCST = dyn_cast(PHI->getIncomingValue(!SecondIsBackedge)); - if (StartCST == 0) continue; + if (!StartCST) continue; CurrentIterVals[PHI] = StartCST; } if (!CurrentIterVals.count(PN)) @@ -5019,7 +5519,7 @@ const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L, for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ ConstantInt *CondVal = dyn_cast_or_null(EvaluateExpression(Cond, L, CurrentIterVals, - TD, TLI)); + DL, TLI)); // Couldn't symbolically evaluate. if (!CondVal) return getCouldNotCompute(); @@ -5049,7 +5549,7 @@ const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L, if (NextPHI) continue; // Already computed! Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); - NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI); + NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI); } CurrentIterVals.swap(NextIterVals); } @@ -5075,7 +5575,7 @@ const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { if (Values[u].first == L) return Values[u].second ? Values[u].second : V; } - Values.push_back(std::make_pair(L, static_cast(0))); + Values.push_back(std::make_pair(L, static_cast(nullptr))); // Otherwise compute it. const SCEV *C = computeSCEVAtScope(V, L); SmallVector, 2> &Values2 = ValuesAtScopes[V]; @@ -5093,8 +5593,7 @@ const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. /// Returns NULL if the SCEV isn't representable as a Constant. static Constant *BuildConstantFromSCEV(const SCEV *V) { - switch (V->getSCEVType()) { - default: // TODO: smax, umax. + switch (static_cast(V->getSCEVType())) { case scCouldNotCompute: case scAddRecExpr: break; @@ -5130,7 +5629,7 @@ static Constant *BuildConstantFromSCEV(const SCEV *V) { } for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); - if (!C2) return 0; + if (!C2) return nullptr; // First pointer! if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { @@ -5145,7 +5644,7 @@ static Constant *BuildConstantFromSCEV(const SCEV *V) { // Don't bother trying to sum two pointers. We probably can't // statically compute a load that results from it anyway. if (C2->getType()->isPointerTy()) - return 0; + return nullptr; if (PointerType *PTy = dyn_cast(C->getType())) { if (PTy->getElementType()->isStructTy()) @@ -5163,10 +5662,10 @@ static Constant *BuildConstantFromSCEV(const SCEV *V) { const SCEVMulExpr *SM = cast(V); if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { // Don't bother with pointers at all. - if (C->getType()->isPointerTy()) return 0; + if (C->getType()->isPointerTy()) return nullptr; for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); - if (!C2 || C2->getType()->isPointerTy()) return 0; + if (!C2 || C2->getType()->isPointerTy()) return nullptr; C = ConstantExpr::getMul(C, C2); } return C; @@ -5181,8 +5680,11 @@ static Constant *BuildConstantFromSCEV(const SCEV *V) { return ConstantExpr::getUDiv(LHS, RHS); break; } + case scSMaxExpr: + case scUMaxExpr: + break; // TODO: smax, umax. } - return 0; + return nullptr; } const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { @@ -5249,17 +5751,17 @@ const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { // Check to see if getSCEVAtScope actually made an improvement. if (MadeImprovement) { - Constant *C = 0; + Constant *C = nullptr; if (const CmpInst *CI = dyn_cast(I)) C = ConstantFoldCompareInstOperands(CI->getPredicate(), - Operands[0], Operands[1], TD, + Operands[0], Operands[1], DL, TLI); else if (const LoadInst *LI = dyn_cast(I)) { if (!LI->isVolatile()) - C = ConstantFoldLoadFromConstPtr(Operands[0], TD); + C = ConstantFoldLoadFromConstPtr(Operands[0], DL); } else C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), - Operands, TD, TLI); + Operands, DL, TLI); if (!C) return V; return getSCEV(C); } @@ -5512,7 +6014,7 @@ SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { /// effectively V != 0. We know and take advantage of the fact that this /// expression only being used in a comparison by zero context. ScalarEvolution::ExitLimit -ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) { +ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) { // If the value is a constant if (const SCEVConstant *C = dyn_cast(V)) { // If the value is already zero, the branch will execute zero times. @@ -5581,7 +6083,7 @@ ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) { // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. // We have not yet seen any such cases. const SCEVConstant *StepC = dyn_cast(Step); - if (StepC == 0 || StepC->getValue()->equalsInt(0)) + if (!StepC || StepC->getValue()->equalsInt(0)) return getCouldNotCompute(); // For positive steps (counting up until unsigned overflow): @@ -5606,28 +6108,34 @@ ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) { else MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() : -CR.getUnsignedMin()); - return ExitLimit(Distance, MaxBECount, /*MustExit=*/true); - } - - // If the recurrence is known not to wraparound, unsigned divide computes the - // back edge count. (Ideally we would have an "isexact" bit for udiv). We know - // that the value will either become zero (and thus the loop terminates), that - // the loop will terminate through some other exit condition first, or that - // the loop has undefined behavior. This means we can't "miss" the exit - // value, even with nonunit stride, and exit later via the same branch. Note - // that we can skip this exit if loop later exits via a different - // branch. Hence MustExit=false. - // - // This is only valid for expressions that directly compute the loop exit. It - // is invalid for subexpressions in which the loop may exit through this - // branch even if this subexpression is false. In that case, the trip count - // computed by this udiv could be smaller than the number of well-defined - // iterations. - if (!IsSubExpr && AddRec->getNoWrapFlags(SCEV::FlagNW)) { + return ExitLimit(Distance, MaxBECount); + } + + // As a special case, handle the instance where Step is a positive power of + // two. In this case, determining whether Step divides Distance evenly can be + // done by counting and comparing the number of trailing zeros of Step and + // Distance. + if (!CountDown) { + const APInt &StepV = StepC->getValue()->getValue(); + // StepV.isPowerOf2() returns true if StepV is an positive power of two. It + // also returns true if StepV is maximally negative (eg, INT_MIN), but that + // case is not handled as this code is guarded by !CountDown. + if (StepV.isPowerOf2() && + GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) + return getUDivExactExpr(Distance, Step); + } + + // If the condition controls loop exit (the loop exits only if the expression + // is true) and the addition is no-wrap we can use unsigned divide to + // compute the backedge count. In this case, the step may not divide the + // distance, but we don't care because if the condition is "missed" the loop + // will have undefined behavior due to wrapping. + if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) { const SCEV *Exact = - getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); - return ExitLimit(Exact, Exact, /*MustExit=*/false); + getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); + return ExitLimit(Exact, Exact); } + // Then, try to solve the above equation provided that Start is constant. if (const SCEVConstant *StartC = dyn_cast(Start)) return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), @@ -6010,18 +6518,30 @@ bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, // If LHS or RHS is an addrec, check to see if the condition is true in // every iteration of the loop. - if (const SCEVAddRecExpr *AR = dyn_cast(LHS)) - if (isLoopEntryGuardedByCond( - AR->getLoop(), Pred, AR->getStart(), RHS) && - isLoopBackedgeGuardedByCond( - AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS)) - return true; - if (const SCEVAddRecExpr *AR = dyn_cast(RHS)) - if (isLoopEntryGuardedByCond( - AR->getLoop(), Pred, LHS, AR->getStart()) && - isLoopBackedgeGuardedByCond( - AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this))) - return true; + // If LHS and RHS are both addrec, both conditions must be true in + // every iteration of the loop. + const SCEVAddRecExpr *LAR = dyn_cast(LHS); + const SCEVAddRecExpr *RAR = dyn_cast(RHS); + bool LeftGuarded = false; + bool RightGuarded = false; + if (LAR) { + const Loop *L = LAR->getLoop(); + if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && + isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { + if (!RAR) return true; + LeftGuarded = true; + } + } + if (RAR) { + const Loop *L = RAR->getLoop(); + if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && + isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { + if (!LAR) return true; + RightGuarded = true; + } + } + if (LeftGuarded && RightGuarded) + return true; // Otherwise see what can be done with known constant ranges. return isKnownPredicateWithRanges(Pred, LHS, RHS); @@ -6039,7 +6559,6 @@ ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); case ICmpInst::ICMP_SGT: - Pred = ICmpInst::ICMP_SLT; std::swap(LHS, RHS); case ICmpInst::ICMP_SLT: { ConstantRange LHSRange = getSignedRange(LHS); @@ -6051,7 +6570,6 @@ ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, break; } case ICmpInst::ICMP_SGE: - Pred = ICmpInst::ICMP_SLE; std::swap(LHS, RHS); case ICmpInst::ICMP_SLE: { ConstantRange LHSRange = getSignedRange(LHS); @@ -6063,7 +6581,6 @@ ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, break; } case ICmpInst::ICMP_UGT: - Pred = ICmpInst::ICMP_ULT; std::swap(LHS, RHS); case ICmpInst::ICMP_ULT: { ConstantRange LHSRange = getUnsignedRange(LHS); @@ -6075,7 +6592,6 @@ ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, break; } case ICmpInst::ICMP_UGE: - Pred = ICmpInst::ICMP_ULE; std::swap(LHS, RHS); case ICmpInst::ICMP_ULE: { ConstantRange LHSRange = getUnsignedRange(LHS); @@ -6116,19 +6632,33 @@ ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, // (interprocedural conditions notwithstanding). if (!L) return true; + if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; + BasicBlock *Latch = L->getLoopLatch(); if (!Latch) return false; BranchInst *LoopContinuePredicate = dyn_cast(Latch->getTerminator()); - if (!LoopContinuePredicate || - LoopContinuePredicate->isUnconditional()) - return false; + if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && + isImpliedCond(Pred, LHS, RHS, + LoopContinuePredicate->getCondition(), + LoopContinuePredicate->getSuccessor(0) != L->getHeader())) + return true; - return isImpliedCond(Pred, LHS, RHS, - LoopContinuePredicate->getCondition(), - LoopContinuePredicate->getSuccessor(0) != L->getHeader()); + // Check conditions due to any @llvm.assume intrinsics. + for (auto &AssumeVH : AC->assumptions()) { + if (!AssumeVH) + continue; + auto *CI = cast(AssumeVH); + if (!DT->dominates(CI, Latch->getTerminator())) + continue; + + if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) + return true; + } + + return false; } /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected @@ -6142,6 +6672,8 @@ ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, // (interprocedural conditions notwithstanding). if (!L) return false; + if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; + // Starting at the loop predecessor, climb up the predecessor chain, as long // as there are predecessors that can be found that have unique successors // leading to the original header. @@ -6162,6 +6694,18 @@ ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, return true; } + // Check conditions due to any @llvm.assume intrinsics. + for (auto &AssumeVH : AC->assumptions()) { + if (!AssumeVH) + continue; + auto *CI = cast(AssumeVH); + if (!DT->dominates(CI, L->getHeader())) + continue; + + if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) + return true; + } + return false; } @@ -6276,6 +6820,66 @@ bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, RHS, LHS, FoundLHS, FoundRHS); } + // Check if we can make progress by sharpening ranges. + if (FoundPred == ICmpInst::ICMP_NE && + (isa(FoundLHS) || isa(FoundRHS))) { + + const SCEVConstant *C = nullptr; + const SCEV *V = nullptr; + + if (isa(FoundLHS)) { + C = cast(FoundLHS); + V = FoundRHS; + } else { + C = cast(FoundRHS); + V = FoundLHS; + } + + // The guarding predicate tells us that C != V. If the known range + // of V is [C, t), we can sharpen the range to [C + 1, t). The + // range we consider has to correspond to same signedness as the + // predicate we're interested in folding. + + APInt Min = ICmpInst::isSigned(Pred) ? + getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); + + if (Min == C->getValue()->getValue()) { + // Given (V >= Min && V != Min) we conclude V >= (Min + 1). + // This is true even if (Min + 1) wraps around -- in case of + // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). + + APInt SharperMin = Min + 1; + + switch (Pred) { + case ICmpInst::ICMP_SGE: + case ICmpInst::ICMP_UGE: + // We know V `Pred` SharperMin. If this implies LHS `Pred` + // RHS, we're done. + if (isImpliedCondOperands(Pred, LHS, RHS, V, + getConstant(SharperMin))) + return true; + + case ICmpInst::ICMP_SGT: + case ICmpInst::ICMP_UGT: + // We know from the range information that (V `Pred` Min || + // V == Min). We know from the guarding condition that !(V + // == Min). This gives us + // + // V `Pred` Min || V == Min && !(V == Min) + // => V `Pred` Min + // + // If V `Pred` Min implies LHS `Pred` RHS, we're done. + + if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) + return true; + + default: + // No change + break; + } + } + } + // Check whether the actual condition is beyond sufficient. if (FoundPred == ICmpInst::ICMP_EQ) if (ICmpInst::isTrueWhenEqual(Pred)) @@ -6305,6 +6909,85 @@ bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, getNotSCEV(FoundLHS)); } + +/// If Expr computes ~A, return A else return nullptr +static const SCEV *MatchNotExpr(const SCEV *Expr) { + const SCEVAddExpr *Add = dyn_cast(Expr); + if (!Add || Add->getNumOperands() != 2) return nullptr; + + const SCEVConstant *AddLHS = dyn_cast(Add->getOperand(0)); + if (!(AddLHS && AddLHS->getValue()->getValue().isAllOnesValue())) + return nullptr; + + const SCEVMulExpr *AddRHS = dyn_cast(Add->getOperand(1)); + if (!AddRHS || AddRHS->getNumOperands() != 2) return nullptr; + + const SCEVConstant *MulLHS = dyn_cast(AddRHS->getOperand(0)); + if (!(MulLHS && MulLHS->getValue()->getValue().isAllOnesValue())) + return nullptr; + + return AddRHS->getOperand(1); +} + + +/// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? +template +static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, + const SCEV *Candidate) { + const MaxExprType *MaxExpr = dyn_cast(MaybeMaxExpr); + if (!MaxExpr) return false; + + auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate); + return It != MaxExpr->op_end(); +} + + +/// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? +template +static bool IsMinConsistingOf(ScalarEvolution &SE, + const SCEV *MaybeMinExpr, + const SCEV *Candidate) { + const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); + if (!MaybeMaxExpr) + return false; + + return IsMaxConsistingOf(MaybeMaxExpr, SE.getNotSCEV(Candidate)); +} + + +/// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max +/// expression? +static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, + ICmpInst::Predicate Pred, + const SCEV *LHS, const SCEV *RHS) { + switch (Pred) { + default: + return false; + + case ICmpInst::ICMP_SGE: + std::swap(LHS, RHS); + // fall through + case ICmpInst::ICMP_SLE: + return + // min(A, ...) <= A + IsMinConsistingOf(SE, LHS, RHS) || + // A <= max(A, ...) + IsMaxConsistingOf(RHS, LHS); + + case ICmpInst::ICMP_UGE: + std::swap(LHS, RHS); + // fall through + case ICmpInst::ICMP_ULE: + return + // min(A, ...) <= A + IsMinConsistingOf(SE, LHS, RHS) || + // A <= max(A, ...) + IsMaxConsistingOf(RHS, LHS); + } + + llvm_unreachable("covered switch fell through?!"); +} + /// isImpliedCondOperandsHelper - Test whether the condition described by /// Pred, LHS, and RHS is true whenever the condition described by Pred, /// FoundLHS, and FoundRHS is true. @@ -6313,6 +6996,12 @@ ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const SCEV *FoundLHS, const SCEV *FoundRHS) { + auto IsKnownPredicateFull = + [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { + return isKnownPredicateWithRanges(Pred, LHS, RHS) || + IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS); + }; + switch (Pred) { default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); case ICmpInst::ICMP_EQ: @@ -6322,26 +7011,26 @@ ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, break; case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: - if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) && - isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS)) + if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) && + IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS)) return true; break; case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_SGE: - if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) && - isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS)) + if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) && + IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS)) return true; break; case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: - if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) && - isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS)) + if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) && + IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS)) return true; break; case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_UGE: - if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) && - isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS)) + if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) && + IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS)) return true; break; } @@ -6349,8 +7038,8 @@ ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, return false; } -// Verify if an linear IV with positive stride can overflow when in a -// less-than comparison, knowing the invariant term of the comparison, the +// Verify if an linear IV with positive stride can overflow when in a +// less-than comparison, knowing the invariant term of the comparison, the // stride and the knowledge of NSW/NUW flags on the recurrence. bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, bool IsSigned, bool NoWrap) { @@ -6378,7 +7067,7 @@ bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); } -// Verify if an linear IV with negative stride can overflow when in a +// Verify if an linear IV with negative stride can overflow when in a // greater-than comparison, knowing the invariant term of the comparison, // the stride and the knowledge of NSW/NUW flags on the recurrence. bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, @@ -6409,7 +7098,7 @@ bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, // Compute the backedge taken count knowing the interval difference, the // stride and presence of the equality in the comparison. -const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, +const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, bool Equality) { const SCEV *One = getConstant(Step->getType(), 1); Delta = Equality ? getAddExpr(Delta, Step) @@ -6421,13 +7110,13 @@ const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, /// specified less-than comparison will execute. If not computable, return /// CouldNotCompute. /// -/// @param IsSubExpr is true when the LHS < RHS condition does not directly -/// control the branch. In this case, we can only compute an iteration count for -/// a subexpression that cannot overflow before evaluating true. +/// @param ControlsExit is true when the LHS < RHS condition directly controls +/// the branch (loops exits only if condition is true). In this case, we can use +/// NoWrapFlags to skip overflow checks. ScalarEvolution::ExitLimit ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L, bool IsSigned, - bool IsSubExpr) { + bool ControlsExit) { // We handle only IV < Invariant if (!isLoopInvariant(RHS, L)) return getCouldNotCompute(); @@ -6438,7 +7127,7 @@ ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, if (!IV || IV->getLoop() != L || !IV->isAffine()) return getCouldNotCompute(); - bool NoWrap = !IsSubExpr && + bool NoWrap = ControlsExit && IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); const SCEV *Stride = IV->getStepRecurrence(*this); @@ -6449,7 +7138,7 @@ ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, // Avoid proven overflow cases: this will ensure that the backedge taken count // will not generate any unsigned overflow. Relaxed no-overflow conditions - // exploit NoWrapFlags, allowing to optimize in presence of undefined + // exploit NoWrapFlags, allowing to optimize in presence of undefined // behaviors like the case of C language. if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) return getCouldNotCompute(); @@ -6458,9 +7147,19 @@ ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, : ICmpInst::ICMP_ULT; const SCEV *Start = IV->getStart(); const SCEV *End = RHS; - if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) - End = IsSigned ? getSMaxExpr(RHS, Start) - : getUMaxExpr(RHS, Start); + if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) { + const SCEV *Diff = getMinusSCEV(RHS, Start); + // If we have NoWrap set, then we can assume that the increment won't + // overflow, in which case if RHS - Start is a constant, we don't need to + // do a max operation since we can just figure it out statically + if (NoWrap && isa(Diff)) { + APInt D = dyn_cast(Diff)->getValue()->getValue(); + if (D.isNegative()) + End = Start; + } else + End = IsSigned ? getSMaxExpr(RHS, Start) + : getUMaxExpr(RHS, Start); + } const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); @@ -6481,7 +7180,7 @@ ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); - const SCEV *MaxBECount = getCouldNotCompute(); + const SCEV *MaxBECount; if (isa(BECount)) MaxBECount = BECount; else @@ -6491,13 +7190,13 @@ ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, if (isa(MaxBECount)) MaxBECount = BECount; - return ExitLimit(BECount, MaxBECount, /*MustExit=*/true); + return ExitLimit(BECount, MaxBECount); } ScalarEvolution::ExitLimit ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, const Loop *L, bool IsSigned, - bool IsSubExpr) { + bool ControlsExit) { // We handle only IV > Invariant if (!isLoopInvariant(RHS, L)) return getCouldNotCompute(); @@ -6508,7 +7207,7 @@ ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, if (!IV || IV->getLoop() != L || !IV->isAffine()) return getCouldNotCompute(); - bool NoWrap = !IsSubExpr && + bool NoWrap = ControlsExit && IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); @@ -6519,7 +7218,7 @@ ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, // Avoid proven overflow cases: this will ensure that the backedge taken count // will not generate any unsigned overflow. Relaxed no-overflow conditions - // exploit NoWrapFlags, allowing to optimize in presence of undefined + // exploit NoWrapFlags, allowing to optimize in presence of undefined // behaviors like the case of C language. if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) return getCouldNotCompute(); @@ -6529,9 +7228,19 @@ ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, const SCEV *Start = IV->getStart(); const SCEV *End = RHS; - if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) - End = IsSigned ? getSMinExpr(RHS, Start) - : getUMinExpr(RHS, Start); + if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { + const SCEV *Diff = getMinusSCEV(RHS, Start); + // If we have NoWrap set, then we can assume that the increment won't + // overflow, in which case if RHS - Start is a constant, we don't need to + // do a max operation since we can just figure it out statically + if (NoWrap && isa(Diff)) { + APInt D = dyn_cast(Diff)->getValue()->getValue(); + if (!D.isNegative()) + End = Start; + } else + End = IsSigned ? getSMinExpr(RHS, Start) + : getUMinExpr(RHS, Start); + } const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); @@ -6557,13 +7266,13 @@ ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, if (isa(BECount)) MaxBECount = BECount; else - MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), + MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), getConstant(MinStride), false); if (isa(MaxBECount)) MaxBECount = BECount; - return ExitLimit(BECount, MaxBECount, /*MustExit=*/true); + return ExitLimit(BECount, MaxBECount); } /// getNumIterationsInRange - Return the number of iterations of this loop that @@ -6692,395 +7401,354 @@ const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, return SE.getCouldNotCompute(); } -static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { - APInt A = C1->getValue()->getValue().abs(); - APInt B = C2->getValue()->getValue().abs(); - uint32_t ABW = A.getBitWidth(); - uint32_t BBW = B.getBitWidth(); - - if (ABW > BBW) - B = B.zext(ABW); - else if (ABW < BBW) - A = A.zext(BBW); - - return APIntOps::GreatestCommonDivisor(A, B); -} - -static const APInt srem(const SCEVConstant *C1, const SCEVConstant *C2) { - APInt A = C1->getValue()->getValue(); - APInt B = C2->getValue()->getValue(); - uint32_t ABW = A.getBitWidth(); - uint32_t BBW = B.getBitWidth(); +namespace { +struct FindUndefs { + bool Found; + FindUndefs() : Found(false) {} - if (ABW > BBW) - B = B.sext(ABW); - else if (ABW < BBW) - A = A.sext(BBW); + bool follow(const SCEV *S) { + if (const SCEVUnknown *C = dyn_cast(S)) { + if (isa(C->getValue())) + Found = true; + } else if (const SCEVConstant *C = dyn_cast(S)) { + if (isa(C->getValue())) + Found = true; + } - return APIntOps::srem(A, B); + // Keep looking if we haven't found it yet. + return !Found; + } + bool isDone() const { + // Stop recursion if we have found an undef. + return Found; + } +}; } -static const APInt sdiv(const SCEVConstant *C1, const SCEVConstant *C2) { - APInt A = C1->getValue()->getValue(); - APInt B = C2->getValue()->getValue(); - uint32_t ABW = A.getBitWidth(); - uint32_t BBW = B.getBitWidth(); - - if (ABW > BBW) - B = B.sext(ABW); - else if (ABW < BBW) - A = A.sext(BBW); +// Return true when S contains at least an undef value. +static inline bool +containsUndefs(const SCEV *S) { + FindUndefs F; + SCEVTraversal ST(F); + ST.visitAll(S); - return APIntOps::sdiv(A, B); + return F.Found; } namespace { -struct SCEVGCD : public SCEVVisitor { -public: - // Pattern match Step into Start. When Step is a multiply expression, find - // the largest subexpression of Step that appears in Start. When Start is an - // add expression, try to match Step in the subexpressions of Start, non - // matching subexpressions are returned under Remainder. - static const SCEV *findGCD(ScalarEvolution &SE, const SCEV *Start, - const SCEV *Step, const SCEV **Remainder) { - assert(Remainder && "Remainder should not be NULL"); - SCEVGCD R(SE, Step, SE.getConstant(Step->getType(), 0)); - const SCEV *Res = R.visit(Start); - *Remainder = R.Remainder; - return Res; - } +// Collect all steps of SCEV expressions. +struct SCEVCollectStrides { + ScalarEvolution &SE; + SmallVectorImpl &Strides; - SCEVGCD(ScalarEvolution &S, const SCEV *G, const SCEV *R) - : SE(S), GCD(G), Remainder(R) { - Zero = SE.getConstant(GCD->getType(), 0); - One = SE.getConstant(GCD->getType(), 1); - } + SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl &S) + : SE(SE), Strides(S) {} - const SCEV *visitConstant(const SCEVConstant *Constant) { - if (GCD == Constant || Constant == Zero) - return GCD; + bool follow(const SCEV *S) { + if (const SCEVAddRecExpr *AR = dyn_cast(S)) + Strides.push_back(AR->getStepRecurrence(SE)); + return true; + } + bool isDone() const { return false; } +}; - if (const SCEVConstant *CGCD = dyn_cast(GCD)) { - const SCEV *Res = SE.getConstant(gcd(Constant, CGCD)); - if (Res != One) - return Res; +// Collect all SCEVUnknown and SCEVMulExpr expressions. +struct SCEVCollectTerms { + SmallVectorImpl &Terms; - Remainder = SE.getConstant(srem(Constant, CGCD)); - Constant = cast(SE.getMinusSCEV(Constant, Remainder)); - Res = SE.getConstant(gcd(Constant, CGCD)); - return Res; - } + SCEVCollectTerms(SmallVectorImpl &T) + : Terms(T) {} - // When GCD is not a constant, it could be that the GCD is an Add, Mul, - // AddRec, etc., in which case we want to find out how many times the - // Constant divides the GCD: we then return that as the new GCD. - const SCEV *Rem = Zero; - const SCEV *Res = findGCD(SE, GCD, Constant, &Rem); + bool follow(const SCEV *S) { + if (isa(S) || isa(S)) { + if (!containsUndefs(S)) + Terms.push_back(S); - if (Res == One || Rem != Zero) { - Remainder = Constant; - return One; + // Stop recursion: once we collected a term, do not walk its operands. + return false; } - assert(isa(Res) && "Res should be a constant"); - Remainder = SE.getConstant(srem(Constant, cast(Res))); - return Res; + // Keep looking. + return true; } + bool isDone() const { return false; } +}; +} - const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) { - if (GCD != Expr) - Remainder = Expr; - return GCD; - } +/// Find parametric terms in this SCEVAddRecExpr. +void SCEVAddRecExpr::collectParametricTerms( + ScalarEvolution &SE, SmallVectorImpl &Terms) const { + SmallVector Strides; + SCEVCollectStrides StrideCollector(SE, Strides); + visitAll(this, StrideCollector); - const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { - if (GCD != Expr) - Remainder = Expr; - return GCD; - } + DEBUG({ + dbgs() << "Strides:\n"; + for (const SCEV *S : Strides) + dbgs() << *S << "\n"; + }); - const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { - if (GCD != Expr) - Remainder = Expr; - return GCD; + for (const SCEV *S : Strides) { + SCEVCollectTerms TermCollector(Terms); + visitAll(S, TermCollector); } - const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { - if (GCD == Expr) - return GCD; + DEBUG({ + dbgs() << "Terms:\n"; + for (const SCEV *T : Terms) + dbgs() << *T << "\n"; + }); +} + +static bool findArrayDimensionsRec(ScalarEvolution &SE, + SmallVectorImpl &Terms, + SmallVectorImpl &Sizes) { + int Last = Terms.size() - 1; + const SCEV *Step = Terms[Last]; - for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { - const SCEV *Rem = Zero; - const SCEV *Res = findGCD(SE, Expr->getOperand(e - 1 - i), GCD, &Rem); + // End of recursion. + if (Last == 0) { + if (const SCEVMulExpr *M = dyn_cast(Step)) { + SmallVector Qs; + for (const SCEV *Op : M->operands()) + if (!isa(Op)) + Qs.push_back(Op); - // FIXME: There may be ambiguous situations: for instance, - // GCD(-4 + (3 * %m), 2 * %m) where 2 divides -4 and %m divides (3 * %m). - // The order in which the AddExpr is traversed computes a different GCD - // and Remainder. - if (Res != One) - GCD = Res; - if (Rem != Zero) - Remainder = SE.getAddExpr(Remainder, Rem); + Step = SE.getMulExpr(Qs); } - return GCD; + Sizes.push_back(Step); + return true; } - const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { - if (GCD == Expr) - return GCD; - - for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { - if (Expr->getOperand(i) == GCD) - return GCD; - } + for (const SCEV *&Term : Terms) { + // Normalize the terms before the next call to findArrayDimensionsRec. + const SCEV *Q, *R; + SCEVDivision::divide(SE, Term, Step, &Q, &R); - // If we have not returned yet, it means that GCD is not part of Expr. - const SCEV *PartialGCD = One; - for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { - const SCEV *Rem = Zero; - const SCEV *Res = findGCD(SE, Expr->getOperand(i), GCD, &Rem); - if (Rem != Zero) - // GCD does not divide Expr->getOperand(i). - continue; - - if (Res == GCD) - return GCD; - PartialGCD = SE.getMulExpr(PartialGCD, Res); - if (PartialGCD == GCD) - return GCD; - } - - if (PartialGCD != One) - return PartialGCD; - - Remainder = Expr; - const SCEVMulExpr *Mul = dyn_cast(GCD); - if (!Mul) - return PartialGCD; - - // When the GCD is a multiply expression, try to decompose it: - // this occurs when Step does not divide the Start expression - // as in: {(-4 + (3 * %m)),+,(2 * %m)} - for (int i = 0, e = Mul->getNumOperands(); i < e; ++i) { - const SCEV *Rem = Zero; - const SCEV *Res = findGCD(SE, Expr, Mul->getOperand(i), &Rem); - if (Rem == Zero) { - Remainder = Rem; - return Res; - } - } + // Bail out when GCD does not evenly divide one of the terms. + if (!R->isZero()) + return false; - return PartialGCD; + Term = Q; } - const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) { - if (GCD != Expr) - Remainder = Expr; - return GCD; - } + // Remove all SCEVConstants. + Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) { + return isa(E); + }), + Terms.end()); - const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { - if (GCD == Expr) - return GCD; + if (Terms.size() > 0) + if (!findArrayDimensionsRec(SE, Terms, Sizes)) + return false; - if (!Expr->isAffine()) { - Remainder = Expr; - return GCD; - } + Sizes.push_back(Step); + return true; +} - const SCEV *Rem = Zero; - const SCEV *Res = findGCD(SE, Expr->getOperand(0), GCD, &Rem); - if (Rem != Zero) - Remainder = SE.getAddExpr(Remainder, Rem); +namespace { +struct FindParameter { + bool FoundParameter; + FindParameter() : FoundParameter(false) {} - Rem = Zero; - Res = findGCD(SE, Expr->getOperand(1), Res, &Rem); - if (Rem != Zero) { - Remainder = Expr; - return GCD; + bool follow(const SCEV *S) { + if (isa(S)) { + FoundParameter = true; + // Stop recursion: we found a parameter. + return false; } - - return Res; + // Keep looking. + return true; } - - const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) { - if (GCD != Expr) - Remainder = Expr; - return GCD; + bool isDone() const { + // Stop recursion if we have found a parameter. + return FoundParameter; } +}; +} - const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) { - if (GCD != Expr) - Remainder = Expr; - return GCD; - } +// Returns true when S contains at least a SCEVUnknown parameter. +static inline bool +containsParameters(const SCEV *S) { + FindParameter F; + SCEVTraversal ST(F); + ST.visitAll(S); - const SCEV *visitUnknown(const SCEVUnknown *Expr) { - if (GCD != Expr) - Remainder = Expr; - return GCD; - } + return F.FoundParameter; +} - const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { - return One; - } +// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. +static inline bool +containsParameters(SmallVectorImpl &Terms) { + for (const SCEV *T : Terms) + if (containsParameters(T)) + return true; + return false; +} -private: - ScalarEvolution &SE; - const SCEV *GCD, *Remainder, *Zero, *One; -}; +// Return the number of product terms in S. +static inline int numberOfTerms(const SCEV *S) { + if (const SCEVMulExpr *Expr = dyn_cast(S)) + return Expr->getNumOperands(); + return 1; +} -struct SCEVDivision : public SCEVVisitor { -public: - // Remove from Start all multiples of Step. - static const SCEV *divide(ScalarEvolution &SE, const SCEV *Start, - const SCEV *Step) { - SCEVDivision D(SE, Step); - const SCEV *Rem = D.Zero; - (void)Rem; - // The division is guaranteed to succeed: Step should divide Start with no - // remainder. - assert(Step == SCEVGCD::findGCD(SE, Start, Step, &Rem) && Rem == D.Zero && - "Step should divide Start with no remainder."); - return D.visit(Start); - } +static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { + if (isa(T)) + return nullptr; - SCEVDivision(ScalarEvolution &S, const SCEV *G) : SE(S), GCD(G) { - Zero = SE.getConstant(GCD->getType(), 0); - One = SE.getConstant(GCD->getType(), 1); - } + if (isa(T)) + return T; - const SCEV *visitConstant(const SCEVConstant *Constant) { - if (GCD == Constant) - return One; + if (const SCEVMulExpr *M = dyn_cast(T)) { + SmallVector Factors; + for (const SCEV *Op : M->operands()) + if (!isa(Op)) + Factors.push_back(Op); - if (const SCEVConstant *CGCD = dyn_cast(GCD)) - return SE.getConstant(sdiv(Constant, CGCD)); - return Constant; + return SE.getMulExpr(Factors); } - const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) { - if (GCD == Expr) - return One; - return Expr; - } + return T; +} - const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { - if (GCD == Expr) - return One; - return Expr; - } +/// Return the size of an element read or written by Inst. +const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { + Type *Ty; + if (StoreInst *Store = dyn_cast(Inst)) + Ty = Store->getValueOperand()->getType(); + else if (LoadInst *Load = dyn_cast(Inst)) + Ty = Load->getType(); + else + return nullptr; - const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { - if (GCD == Expr) - return One; - return Expr; - } + Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); + return getSizeOfExpr(ETy, Ty); +} - const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { - if (GCD == Expr) - return One; +/// Second step of delinearization: compute the array dimensions Sizes from the +/// set of Terms extracted from the memory access function of this SCEVAddRec. +void ScalarEvolution::findArrayDimensions(SmallVectorImpl &Terms, + SmallVectorImpl &Sizes, + const SCEV *ElementSize) const { - SmallVector Operands; - for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) - Operands.push_back(divide(SE, Expr->getOperand(i), GCD)); + if (Terms.size() < 1 || !ElementSize) + return; - if (Operands.size() == 1) - return Operands[0]; - return SE.getAddExpr(Operands); - } + // Early return when Terms do not contain parameters: we do not delinearize + // non parametric SCEVs. + if (!containsParameters(Terms)) + return; - const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { - if (GCD == Expr) - return One; + DEBUG({ + dbgs() << "Terms:\n"; + for (const SCEV *T : Terms) + dbgs() << *T << "\n"; + }); - bool FoundGCDTerm = false; - for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) - if (Expr->getOperand(i) == GCD) - FoundGCDTerm = true; + // Remove duplicates. + std::sort(Terms.begin(), Terms.end()); + Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); - SmallVector Operands; - if (FoundGCDTerm) { - FoundGCDTerm = false; - for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { - if (FoundGCDTerm) - Operands.push_back(Expr->getOperand(i)); - else if (Expr->getOperand(i) == GCD) - FoundGCDTerm = true; - else - Operands.push_back(Expr->getOperand(i)); - } - } else { - FoundGCDTerm = false; - const SCEV *PartialGCD = One; - for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { - if (PartialGCD == GCD) { - Operands.push_back(Expr->getOperand(i)); - continue; - } + // Put larger terms first. + std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { + return numberOfTerms(LHS) > numberOfTerms(RHS); + }); - const SCEV *Rem = Zero; - const SCEV *Res = SCEVGCD::findGCD(SE, Expr->getOperand(i), GCD, &Rem); - if (Rem == Zero) { - PartialGCD = SE.getMulExpr(PartialGCD, Res); - Operands.push_back(divide(SE, Expr->getOperand(i), GCD)); - } else { - Operands.push_back(Expr->getOperand(i)); - } - } - } + ScalarEvolution &SE = *const_cast(this); - if (Operands.size() == 1) - return Operands[0]; - return SE.getMulExpr(Operands); + // Divide all terms by the element size. + for (const SCEV *&Term : Terms) { + const SCEV *Q, *R; + SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); + Term = Q; } - const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) { - if (GCD == Expr) - return One; - return Expr; + SmallVector NewTerms; + + // Remove constant factors. + for (const SCEV *T : Terms) + if (const SCEV *NewT = removeConstantFactors(SE, T)) + NewTerms.push_back(NewT); + + DEBUG({ + dbgs() << "Terms after sorting:\n"; + for (const SCEV *T : NewTerms) + dbgs() << *T << "\n"; + }); + + if (NewTerms.empty() || + !findArrayDimensionsRec(SE, NewTerms, Sizes)) { + Sizes.clear(); + return; } - const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { - if (GCD == Expr) - return One; + // The last element to be pushed into Sizes is the size of an element. + Sizes.push_back(ElementSize); - assert(Expr->isAffine() && "Expr should be affine"); + DEBUG({ + dbgs() << "Sizes:\n"; + for (const SCEV *S : Sizes) + dbgs() << *S << "\n"; + }); +} - const SCEV *Start = divide(SE, Expr->getStart(), GCD); - const SCEV *Step = divide(SE, Expr->getStepRecurrence(SE), GCD); +/// Third step of delinearization: compute the access functions for the +/// Subscripts based on the dimensions in Sizes. +void SCEVAddRecExpr::computeAccessFunctions( + ScalarEvolution &SE, SmallVectorImpl &Subscripts, + SmallVectorImpl &Sizes) const { - return SE.getAddRecExpr(Start, Step, Expr->getLoop(), - Expr->getNoWrapFlags()); - } + // Early exit in case this SCEV is not an affine multivariate function. + if (Sizes.empty() || !this->isAffine()) + return; - const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) { - if (GCD == Expr) - return One; - return Expr; - } + const SCEV *Res = this; + int Last = Sizes.size() - 1; + for (int i = Last; i >= 0; i--) { + const SCEV *Q, *R; + SCEVDivision::divide(SE, Res, Sizes[i], &Q, &R); + + DEBUG({ + dbgs() << "Res: " << *Res << "\n"; + dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; + dbgs() << "Res divided by Sizes[i]:\n"; + dbgs() << "Quotient: " << *Q << "\n"; + dbgs() << "Remainder: " << *R << "\n"; + }); + + Res = Q; + + // Do not record the last subscript corresponding to the size of elements in + // the array. + if (i == Last) { + + // Bail out if the remainder is too complex. + if (isa(R)) { + Subscripts.clear(); + Sizes.clear(); + return; + } - const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) { - if (GCD == Expr) - return One; - return Expr; - } + continue; + } - const SCEV *visitUnknown(const SCEVUnknown *Expr) { - if (GCD == Expr) - return One; - return Expr; + // Record the access function for the current subscript. + Subscripts.push_back(R); } - const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { - return Expr; - } + // Also push in last position the remainder of the last division: it will be + // the access function of the innermost dimension. + Subscripts.push_back(Res); -private: - ScalarEvolution &SE; - const SCEV *GCD, *Zero, *One; -}; + std::reverse(Subscripts.begin(), Subscripts.end()); + + DEBUG({ + dbgs() << "Subscripts:\n"; + for (const SCEV *S : Subscripts) + dbgs() << *S << "\n"; + }); } /// Splits the SCEV into two vectors of SCEVs representing the subscripts and @@ -7132,93 +7800,40 @@ private: /// asking for the SCEV of the memory access with respect to all enclosing /// loops, calling SCEV->delinearize on that and printing the results. -const SCEV * -SCEVAddRecExpr::delinearize(ScalarEvolution &SE, - SmallVectorImpl &Subscripts, - SmallVectorImpl &Sizes) const { - // Early exit in case this SCEV is not an affine multivariate function. - if (!this->isAffine()) - return this; - - const SCEV *Start = this->getStart(); - const SCEV *Step = this->getStepRecurrence(SE); - - // Build the SCEV representation of the cannonical induction variable in the - // loop of this SCEV. - const SCEV *Zero = SE.getConstant(this->getType(), 0); - const SCEV *One = SE.getConstant(this->getType(), 1); - const SCEV *IV = - SE.getAddRecExpr(Zero, One, this->getLoop(), this->getNoWrapFlags()); - - DEBUG(dbgs() << "(delinearize: " << *this << "\n"); - - // Currently we fail to delinearize when the stride of this SCEV is 1. We - // could decide to not fail in this case: we could just return 1 for the size - // of the subscript, and this same SCEV for the access function. - if (Step == One) { - DEBUG(dbgs() << "failed to delinearize " << *this << "\n)\n"); - return this; - } - - // Find the GCD and Remainder of the Start and Step coefficients of this SCEV. - const SCEV *Remainder = NULL; - const SCEV *GCD = SCEVGCD::findGCD(SE, Start, Step, &Remainder); - - DEBUG(dbgs() << "GCD: " << *GCD << "\n"); - DEBUG(dbgs() << "Remainder: " << *Remainder << "\n"); - - // Same remark as above: we currently fail the delinearization, although we - // can very well handle this special case. - if (GCD == One) { - DEBUG(dbgs() << "failed to delinearize " << *this << "\n)\n"); - return this; - } - - // As findGCD computed Remainder, GCD divides "Start - Remainder." The - // Quotient is then this SCEV without Remainder, scaled down by the GCD. The - // Quotient is what will be used in the next subscript delinearization. - const SCEV *Quotient = - SCEVDivision::divide(SE, SE.getMinusSCEV(Start, Remainder), GCD); - DEBUG(dbgs() << "Quotient: " << *Quotient << "\n"); - - const SCEV *Rem; - if (const SCEVAddRecExpr *AR = dyn_cast(Quotient)) - // Recursively call delinearize on the Quotient until there are no more - // multiples that can be recognized. - Rem = AR->delinearize(SE, Subscripts, Sizes); - else - Rem = Quotient; +void SCEVAddRecExpr::delinearize(ScalarEvolution &SE, + SmallVectorImpl &Subscripts, + SmallVectorImpl &Sizes, + const SCEV *ElementSize) const { + // First step: collect parametric terms. + SmallVector Terms; + collectParametricTerms(SE, Terms); - // Scale up the cannonical induction variable IV by whatever remains from the - // Step after division by the GCD: the GCD is the size of all the sub-array. - if (Step != GCD) { - Step = SCEVDivision::divide(SE, Step, GCD); - IV = SE.getMulExpr(IV, Step); - } - // The access function in the current subscript is computed as the cannonical - // induction variable IV (potentially scaled up by the step) and offset by - // Rem, the offset of delinearization in the sub-array. - const SCEV *Index = SE.getAddExpr(IV, Rem); + if (Terms.empty()) + return; - // Record the access function and the size of the current subscript. - Subscripts.push_back(Index); - Sizes.push_back(GCD); + // Second step: find subscript sizes. + SE.findArrayDimensions(Terms, Sizes, ElementSize); -#ifndef NDEBUG - int Size = Sizes.size(); - DEBUG(dbgs() << "succeeded to delinearize " << *this << "\n"); - DEBUG(dbgs() << "ArrayDecl[UnknownSize]"); - for (int i = 0; i < Size - 1; i++) - DEBUG(dbgs() << "[" << *Sizes[i] << "]"); - DEBUG(dbgs() << " with elements of " << *Sizes[Size - 1] << " bytes.\n"); - - DEBUG(dbgs() << "ArrayRef"); - for (int i = 0; i < Size; i++) - DEBUG(dbgs() << "[" << *Subscripts[i] << "]"); - DEBUG(dbgs() << "\n)\n"); -#endif + if (Sizes.empty()) + return; + + // Third step: compute the access functions for each subscript. + computeAccessFunctions(SE, Subscripts, Sizes); + + if (Subscripts.empty()) + return; - return Remainder; + DEBUG({ + dbgs() << "succeeded to delinearize " << *this << "\n"; + dbgs() << "ArrayDecl[UnknownSize]"; + for (const SCEV *S : Sizes) + dbgs() << "[" << *S << "]"; + + dbgs() << "\nArrayRef"; + for (const SCEV *S : Subscripts) + dbgs() << "[" << *S << "]"; + dbgs() << "\n"; + }); } //===----------------------------------------------------------------------===// @@ -7240,25 +7855,20 @@ void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { // so that future queries will recompute the expressions using the new // value. Value *Old = getValPtr(); - SmallVector Worklist; + SmallVector Worklist(Old->user_begin(), Old->user_end()); SmallPtrSet Visited; - for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); - UI != UE; ++UI) - Worklist.push_back(*UI); while (!Worklist.empty()) { User *U = Worklist.pop_back_val(); // Deleting the Old value will cause this to dangle. Postpone // that until everything else is done. if (U == Old) continue; - if (!Visited.insert(U)) + if (!Visited.insert(U).second) continue; if (PHINode *PN = dyn_cast(U)) SE->ConstantEvolutionLoopExitValue.erase(PN); SE->ValueExprMap.erase(U); - for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); - UI != UE; ++UI) - Worklist.push_back(*UI); + Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); } // Delete the Old value. if (PHINode *PN = dyn_cast(Old)) @@ -7275,15 +7885,18 @@ ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) //===----------------------------------------------------------------------===// ScalarEvolution::ScalarEvolution() - : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), FirstUnknown(0) { + : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64), + BlockDispositions(64), FirstUnknown(nullptr) { initializeScalarEvolutionPass(*PassRegistry::getPassRegistry()); } bool ScalarEvolution::runOnFunction(Function &F) { this->F = &F; - LI = &getAnalysis(); - TD = getAnalysisIfAvailable(); - TLI = &getAnalysis(); + AC = &getAnalysis().getAssumptionCache(F); + LI = &getAnalysis().getLoopInfo(); + DataLayoutPass *DLP = getAnalysisIfAvailable(); + DL = DLP ? &DLP->getDataLayout() : nullptr; + TLI = &getAnalysis().getTLI(); DT = &getAnalysis().getDomTree(); return false; } @@ -7293,7 +7906,7 @@ void ScalarEvolution::releaseMemory() { // destructors, so that they release their references to their values. for (SCEVUnknown *U = FirstUnknown; U; U = U->Next) U->~SCEVUnknown(); - FirstUnknown = 0; + FirstUnknown = nullptr; ValueExprMap.clear(); @@ -7320,9 +7933,10 @@ void ScalarEvolution::releaseMemory() { void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); - AU.addRequiredTransitive(); + AU.addRequired(); + AU.addRequiredTransitive(); AU.addRequiredTransitive(); - AU.addRequired(); + AU.addRequired(); } bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { @@ -7413,17 +8027,17 @@ void ScalarEvolution::print(raw_ostream &OS, const Module *) const { ScalarEvolution::LoopDisposition ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { - SmallVector, 2> &Values = LoopDispositions[S]; - for (unsigned u = 0; u < Values.size(); u++) { - if (Values[u].first == L) - return Values[u].second; + auto &Values = LoopDispositions[S]; + for (auto &V : Values) { + if (V.getPointer() == L) + return V.getInt(); } - Values.push_back(std::make_pair(L, LoopVariant)); + Values.emplace_back(L, LoopVariant); LoopDisposition D = computeLoopDisposition(S, L); - SmallVector, 2> &Values2 = LoopDispositions[S]; - for (unsigned u = Values2.size(); u > 0; u--) { - if (Values2[u - 1].first == L) { - Values2[u - 1].second = D; + auto &Values2 = LoopDispositions[S]; + for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { + if (V.getPointer() == L) { + V.setInt(D); break; } } @@ -7432,7 +8046,7 @@ ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { ScalarEvolution::LoopDisposition ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { - switch (S->getSCEVType()) { + switch (static_cast(S->getSCEVType())) { case scConstant: return LoopInvariant; case scTruncate: @@ -7505,8 +8119,8 @@ ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { return LoopInvariant; case scCouldNotCompute: llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); - default: llvm_unreachable("Unknown SCEV kind!"); } + llvm_unreachable("Unknown SCEV kind!"); } bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { @@ -7519,17 +8133,17 @@ bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { ScalarEvolution::BlockDisposition ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { - SmallVector, 2> &Values = BlockDispositions[S]; - for (unsigned u = 0; u < Values.size(); u++) { - if (Values[u].first == BB) - return Values[u].second; + auto &Values = BlockDispositions[S]; + for (auto &V : Values) { + if (V.getPointer() == BB) + return V.getInt(); } - Values.push_back(std::make_pair(BB, DoesNotDominateBlock)); + Values.emplace_back(BB, DoesNotDominateBlock); BlockDisposition D = computeBlockDisposition(S, BB); - SmallVector, 2> &Values2 = BlockDispositions[S]; - for (unsigned u = Values2.size(); u > 0; u--) { - if (Values2[u - 1].first == BB) { - Values2[u - 1].second = D; + auto &Values2 = BlockDispositions[S]; + for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { + if (V.getPointer() == BB) { + V.setInt(D); break; } } @@ -7538,7 +8152,7 @@ ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { ScalarEvolution::BlockDisposition ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { - switch (S->getSCEVType()) { + switch (static_cast(S->getSCEVType())) { case scConstant: return ProperlyDominatesBlock; case scTruncate: @@ -7595,9 +8209,8 @@ ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { return ProperlyDominatesBlock; case scCouldNotCompute: llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); - default: - llvm_unreachable("Unknown SCEV kind!"); } + llvm_unreachable("Unknown SCEV kind!"); } bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { @@ -7652,7 +8265,7 @@ void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { typedef DenseMap VerifyMap; -/// replaceSubString - Replaces all occurences of From in Str with To. +/// replaceSubString - Replaces all occurrences of From in Str with To. static void replaceSubString(std::string &Str, StringRef From, StringRef To) { size_t Pos = 0; while ((Pos = Str.find(From, Pos)) != std::string::npos) {