X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FAnalysis%2FInstructionSimplify.cpp;h=f151a3a33b48504d461408f3451c81d7bfaf1ab4;hb=a44c501561b01de975728dc1f20ba0dc95da624b;hp=4cad81b1398482f8bd3d2a7cb0a4a0c7f5fc936e;hpb=7a2ed26563512149ea03e56d8ecd92c884c32f8f;p=oota-llvm.git diff --git a/lib/Analysis/InstructionSimplify.cpp b/lib/Analysis/InstructionSimplify.cpp index 4cad81b1398..f151a3a33b4 100644 --- a/lib/Analysis/InstructionSimplify.cpp +++ b/lib/Analysis/InstructionSimplify.cpp @@ -39,17 +39,22 @@ using namespace llvm::PatternMatch; enum { RecursionLimit = 3 }; STATISTIC(NumExpand, "Number of expansions"); -STATISTIC(NumFactor , "Number of factorizations"); STATISTIC(NumReassoc, "Number of reassociations"); +namespace { struct Query { const DataLayout *DL; const TargetLibraryInfo *TLI; const DominatorTree *DT; + AssumptionTracker *AT; + const Instruction *CxtI; Query(const DataLayout *DL, const TargetLibraryInfo *tli, - const DominatorTree *dt) : DL(DL), TLI(tli), DT(dt) {} + const DominatorTree *dt, AssumptionTracker *at = nullptr, + const Instruction *cxti = nullptr) + : DL(DL), TLI(tli), DT(dt), AT(at), CxtI(cxti) {} }; +} // end anonymous namespace static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned); static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &, @@ -183,78 +188,6 @@ static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS, return nullptr; } -/// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term -/// using the operation OpCodeToExtract. For example, when Opcode is Add and -/// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)". -/// Returns the simplified value, or null if no simplification was performed. -static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS, - unsigned OpcToExtract, const Query &Q, - unsigned MaxRecurse) { - Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract; - // Recursion is always used, so bail out at once if we already hit the limit. - if (!MaxRecurse--) - return nullptr; - - BinaryOperator *Op0 = dyn_cast(LHS); - BinaryOperator *Op1 = dyn_cast(RHS); - - if (!Op0 || Op0->getOpcode() != OpcodeToExtract || - !Op1 || Op1->getOpcode() != OpcodeToExtract) - return nullptr; - - // The expression has the form "(A op' B) op (C op' D)". - Value *A = Op0->getOperand(0), *B = Op0->getOperand(1); - Value *C = Op1->getOperand(0), *D = Op1->getOperand(1); - - // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)". - // Does the instruction have the form "(A op' B) op (A op' D)" or, in the - // commutative case, "(A op' B) op (C op' A)"? - if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) { - Value *DD = A == C ? D : C; - // Form "A op' (B op DD)" if it simplifies completely. - // Does "B op DD" simplify? - if (Value *V = SimplifyBinOp(Opcode, B, DD, Q, MaxRecurse)) { - // It does! Return "A op' V" if it simplifies or is already available. - // If V equals B then "A op' V" is just the LHS. If V equals DD then - // "A op' V" is just the RHS. - if (V == B || V == DD) { - ++NumFactor; - return V == B ? LHS : RHS; - } - // Otherwise return "A op' V" if it simplifies. - if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, Q, MaxRecurse)) { - ++NumFactor; - return W; - } - } - } - - // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)". - // Does the instruction have the form "(A op' B) op (C op' B)" or, in the - // commutative case, "(A op' B) op (B op' D)"? - if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) { - Value *CC = B == D ? C : D; - // Form "(A op CC) op' B" if it simplifies completely.. - // Does "A op CC" simplify? - if (Value *V = SimplifyBinOp(Opcode, A, CC, Q, MaxRecurse)) { - // It does! Return "V op' B" if it simplifies or is already available. - // If V equals A then "V op' B" is just the LHS. If V equals CC then - // "V op' B" is just the RHS. - if (V == A || V == CC) { - ++NumFactor; - return V == A ? LHS : RHS; - } - // Otherwise return "V op' B" if it simplifies. - if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, Q, MaxRecurse)) { - ++NumFactor; - return W; - } - } - } - - return nullptr; -} - /// SimplifyAssociativeBinOp - Generic simplifications for associative binary /// operations. Returns the simpler value, or null if none was found. static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS, @@ -634,11 +567,6 @@ static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, MaxRecurse)) return V; - // Mul distributes over Add. Try some generic simplifications based on this. - if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul, - Q, MaxRecurse)) - return V; - // Threading Add over selects and phi nodes is pointless, so don't bother. // Threading over the select in "A + select(cond, B, C)" means evaluating // "A+B" and "A+C" and seeing if they are equal; but they are equal if and @@ -653,9 +581,10 @@ static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, const DataLayout *DL, const TargetLibraryInfo *TLI, - const DominatorTree *DT) { - return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query (DL, TLI, DT), - RecursionLimit); + const DominatorTree *DT, AssumptionTracker *AT, + const Instruction *CxtI) { + return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, + Query (DL, TLI, DT, AT, CxtI), RecursionLimit); } /// \brief Compute the base pointer and cumulative constant offsets for V. @@ -702,7 +631,7 @@ static Constant *stripAndComputeConstantOffsets(const DataLayout *DL, } assert(V->getType()->getScalarType()->isPointerTy() && "Unexpected operand type!"); - } while (Visited.insert(V)); + } while (Visited.insert(V).second); Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); if (V->getType()->isVectorTy()) @@ -754,16 +683,21 @@ static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, if (Op0 == Op1) return Constant::getNullValue(Op0->getType()); - // (X*2) - X -> X - // (X<<1) - X -> X - Value *X = nullptr; - if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) || - match(Op0, m_Shl(m_Specific(Op1), m_One()))) - return Op1; + // X - (0 - Y) -> X if the second sub is NUW. + // If Y != 0, 0 - Y is a poison value. + // If Y == 0, 0 - Y simplifies to 0. + if (BinaryOperator::isNeg(Op1)) { + if (const auto *BO = dyn_cast(Op1)) { + assert(BO->getOpcode() == Instruction::Sub && + "Expected a subtraction operator!"); + if (BO->hasNoUnsignedWrap()) + return Op0; + } + } // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. // For example, (X + Y) - Y -> X; (Y + X) - Y -> X - Value *Y = nullptr, *Z = Op1; + Value *X = nullptr, *Y = nullptr, *Z = Op1; if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z // See if "V === Y - Z" simplifies. if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) @@ -835,11 +769,6 @@ static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, if (Constant *Result = computePointerDifference(Q.DL, X, Y)) return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); - // Mul distributes over Sub. Try some generic simplifications based on this. - if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul, - Q, MaxRecurse)) - return V; - // i1 sub -> xor. if (MaxRecurse && Op0->getType()->isIntegerTy(1)) if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) @@ -859,9 +788,10 @@ static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, const DataLayout *DL, const TargetLibraryInfo *TLI, - const DominatorTree *DT) { - return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query (DL, TLI, DT), - RecursionLimit); + const DominatorTree *DT, AssumptionTracker *AT, + const Instruction *CxtI) { + return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, + Query (DL, TLI, DT, AT, CxtI), RecursionLimit); } /// Given operands for an FAdd, see if we can fold the result. If not, this @@ -1037,28 +967,37 @@ static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q, Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, const DataLayout *DL, const TargetLibraryInfo *TLI, - const DominatorTree *DT) { - return ::SimplifyFAddInst(Op0, Op1, FMF, Query (DL, TLI, DT), RecursionLimit); + const DominatorTree *DT, AssumptionTracker *AT, + const Instruction *CxtI) { + return ::SimplifyFAddInst(Op0, Op1, FMF, Query (DL, TLI, DT, AT, CxtI), + RecursionLimit); } Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, const DataLayout *DL, const TargetLibraryInfo *TLI, - const DominatorTree *DT) { - return ::SimplifyFSubInst(Op0, Op1, FMF, Query (DL, TLI, DT), RecursionLimit); + const DominatorTree *DT, AssumptionTracker *AT, + const Instruction *CxtI) { + return ::SimplifyFSubInst(Op0, Op1, FMF, Query (DL, TLI, DT, AT, CxtI), + RecursionLimit); } Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, const DataLayout *DL, const TargetLibraryInfo *TLI, - const DominatorTree *DT) { - return ::SimplifyFMulInst(Op0, Op1, FMF, Query (DL, TLI, DT), RecursionLimit); + const DominatorTree *DT, + AssumptionTracker *AT, + const Instruction *CxtI) { + return ::SimplifyFMulInst(Op0, Op1, FMF, Query (DL, TLI, DT, AT, CxtI), + RecursionLimit); } Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout *DL, const TargetLibraryInfo *TLI, - const DominatorTree *DT) { - return ::SimplifyMulInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit); + const DominatorTree *DT, AssumptionTracker *AT, + const Instruction *CxtI) { + return ::SimplifyMulInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI), + RecursionLimit); } /// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can @@ -1118,6 +1057,16 @@ static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) return Constant::getNullValue(Op0->getType()); + // (X /u C1) /u C2 -> 0 if C1 * C2 overflow + ConstantInt *C1, *C2; + if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && + match(Op1, m_ConstantInt(C2))) { + bool Overflow; + C1->getValue().umul_ov(C2->getValue(), Overflow); + if (Overflow) + return Constant::getNullValue(Op0->getType()); + } + // If the operation is with the result of a select instruction, check whether // operating on either branch of the select always yields the same value. if (isa(Op0) || isa(Op1)) @@ -1145,8 +1094,11 @@ static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q, Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout *DL, const TargetLibraryInfo *TLI, - const DominatorTree *DT) { - return ::SimplifySDivInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit); + const DominatorTree *DT, + AssumptionTracker *AT, + const Instruction *CxtI) { + return ::SimplifySDivInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI), + RecursionLimit); } /// SimplifyUDivInst - Given operands for a UDiv, see if we can @@ -1161,8 +1113,11 @@ static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q, Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout *DL, const TargetLibraryInfo *TLI, - const DominatorTree *DT) { - return ::SimplifyUDivInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit); + const DominatorTree *DT, + AssumptionTracker *AT, + const Instruction *CxtI) { + return ::SimplifyUDivInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI), + RecursionLimit); } static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q, @@ -1180,8 +1135,11 @@ static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q, Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const DataLayout *DL, const TargetLibraryInfo *TLI, - const DominatorTree *DT) { - return ::SimplifyFDivInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit); + const DominatorTree *DT, + AssumptionTracker *AT, + const Instruction *CxtI) { + return ::SimplifyFDivInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI), + RecursionLimit); } /// SimplifyRem - Given operands for an SRem or URem, see if we can @@ -1223,6 +1181,13 @@ static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, if (Op0 == Op1) return Constant::getNullValue(Op0->getType()); + // (X % Y) % Y -> X % Y + if ((Opcode == Instruction::SRem && + match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || + (Opcode == Instruction::URem && + match(Op0, m_URem(m_Value(), m_Specific(Op1))))) + return Op0; + // If the operation is with the result of a select instruction, check whether // operating on either branch of the select always yields the same value. if (isa(Op0) || isa(Op1)) @@ -1250,8 +1215,11 @@ static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q, Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout *DL, const TargetLibraryInfo *TLI, - const DominatorTree *DT) { - return ::SimplifySRemInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit); + const DominatorTree *DT, + AssumptionTracker *AT, + const Instruction *CxtI) { + return ::SimplifySRemInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI), + RecursionLimit); } /// SimplifyURemInst - Given operands for a URem, see if we can @@ -1266,8 +1234,11 @@ static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q, Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout *DL, const TargetLibraryInfo *TLI, - const DominatorTree *DT) { - return ::SimplifyURemInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit); + const DominatorTree *DT, + AssumptionTracker *AT, + const Instruction *CxtI) { + return ::SimplifyURemInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI), + RecursionLimit); } static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &, @@ -1285,8 +1256,11 @@ static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &, Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const DataLayout *DL, const TargetLibraryInfo *TLI, - const DominatorTree *DT) { - return ::SimplifyFRemInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit); + const DominatorTree *DT, + AssumptionTracker *AT, + const Instruction *CxtI) { + return ::SimplifyFRemInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI), + RecursionLimit); } /// isUndefShift - Returns true if a shift by \c Amount always yields undef. @@ -1354,6 +1328,32 @@ static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1, return nullptr; } +/// \brief Given operands for an Shl, LShr or AShr, see if we can +/// fold the result. If not, this returns null. +static Value *SimplifyRightShift(unsigned Opcode, Value *Op0, Value *Op1, + bool isExact, const Query &Q, + unsigned MaxRecurse) { + if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) + return V; + + // X >> X -> 0 + if (Op0 == Op1) + return Constant::getNullValue(Op0->getType()); + + // The low bit cannot be shifted out of an exact shift if it is set. + if (isExact) { + unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); + APInt Op0KnownZero(BitWidth, 0); + APInt Op0KnownOne(BitWidth, 0); + computeKnownBits(Op0, Op0KnownZero, Op0KnownOne, Q.DL, /*Depth=*/0, Q.AT, Q.CxtI, + Q.DT); + if (Op0KnownOne[0]) + return Op0; + } + + return nullptr; +} + /// SimplifyShlInst - Given operands for an Shl, see if we can /// fold the result. If not, this returns null. static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, @@ -1374,8 +1374,9 @@ static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, const DataLayout *DL, const TargetLibraryInfo *TLI, - const DominatorTree *DT) { - return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query (DL, TLI, DT), + const DominatorTree *DT, AssumptionTracker *AT, + const Instruction *CxtI) { + return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query (DL, TLI, DT, AT, CxtI), RecursionLimit); } @@ -1383,12 +1384,9 @@ Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, /// fold the result. If not, this returns null. static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, const Query &Q, unsigned MaxRecurse) { - if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, Q, MaxRecurse)) - return V; - - // X >> X -> 0 - if (Op0 == Op1) - return Constant::getNullValue(Op0->getType()); + if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, + MaxRecurse)) + return V; // undef >>l X -> 0 if (match(Op0, m_Undef())) @@ -1396,8 +1394,7 @@ static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, // (X << A) >> A -> X Value *X; - if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) && - cast(Op0)->hasNoUnsignedWrap()) + if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) return X; return nullptr; @@ -1406,8 +1403,10 @@ static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, const DataLayout *DL, const TargetLibraryInfo *TLI, - const DominatorTree *DT) { - return ::SimplifyLShrInst(Op0, Op1, isExact, Query (DL, TLI, DT), + const DominatorTree *DT, + AssumptionTracker *AT, + const Instruction *CxtI) { + return ::SimplifyLShrInst(Op0, Op1, isExact, Query (DL, TLI, DT, AT, CxtI), RecursionLimit); } @@ -1415,13 +1414,10 @@ Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, /// fold the result. If not, this returns null. static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, const Query &Q, unsigned MaxRecurse) { - if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, Q, MaxRecurse)) + if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, + MaxRecurse)) return V; - // X >> X -> 0 - if (Op0 == Op1) - return Constant::getNullValue(Op0->getType()); - // all ones >>a X -> all ones if (match(Op0, m_AllOnes())) return Op0; @@ -1432,21 +1428,75 @@ static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, // (X << A) >> A -> X Value *X; - if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) && - cast(Op0)->hasNoSignedWrap()) + if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) return X; + // Arithmetic shifting an all-sign-bit value is a no-op. + unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AT, Q.CxtI, Q.DT); + if (NumSignBits == Op0->getType()->getScalarSizeInBits()) + return Op0; + return nullptr; } Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, const DataLayout *DL, const TargetLibraryInfo *TLI, - const DominatorTree *DT) { - return ::SimplifyAShrInst(Op0, Op1, isExact, Query (DL, TLI, DT), + const DominatorTree *DT, + AssumptionTracker *AT, + const Instruction *CxtI) { + return ::SimplifyAShrInst(Op0, Op1, isExact, Query (DL, TLI, DT, AT, CxtI), RecursionLimit); } +// Simplify (and (icmp ...) (icmp ...)) to true when we can tell that the range +// of possible values cannot be satisfied. +static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) { + ICmpInst::Predicate Pred0, Pred1; + ConstantInt *CI1, *CI2; + Value *V; + if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)), + m_ConstantInt(CI2)))) + return nullptr; + + if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1)))) + return nullptr; + + Type *ITy = Op0->getType(); + + auto *AddInst = cast(Op0->getOperand(0)); + bool isNSW = AddInst->hasNoSignedWrap(); + bool isNUW = AddInst->hasNoUnsignedWrap(); + + const APInt &CI1V = CI1->getValue(); + const APInt &CI2V = CI2->getValue(); + const APInt Delta = CI2V - CI1V; + if (CI1V.isStrictlyPositive()) { + if (Delta == 2) { + if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) + return getFalse(ITy); + if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) + return getFalse(ITy); + } + if (Delta == 1) { + if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) + return getFalse(ITy); + if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) + return getFalse(ITy); + } + } + if (CI1V.getBoolValue() && isNUW) { + if (Delta == 2) + if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) + return getFalse(ITy); + if (Delta == 1) + if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) + return getFalse(ITy); + } + + return nullptr; +} + /// SimplifyAndInst - Given operands for an And, see if we can /// fold the result. If not, this returns null. static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q, @@ -1497,12 +1547,21 @@ static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q, // A & (-A) = A if A is a power of two or zero. if (match(Op0, m_Neg(m_Specific(Op1))) || match(Op1, m_Neg(m_Specific(Op0)))) { - if (isKnownToBeAPowerOfTwo(Op0, /*OrZero*/true)) + if (isKnownToBeAPowerOfTwo(Op0, /*OrZero*/true, 0, Q.AT, Q.CxtI, Q.DT)) return Op0; - if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/true)) + if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/true, 0, Q.AT, Q.CxtI, Q.DT)) return Op1; } + if (auto *ICILHS = dyn_cast(Op0)) { + if (auto *ICIRHS = dyn_cast(Op1)) { + if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS)) + return V; + if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS)) + return V; + } + } + // Try some generic simplifications for associative operations. if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, MaxRecurse)) @@ -1518,11 +1577,6 @@ static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q, Q, MaxRecurse)) return V; - // Or distributes over And. Try some generic simplifications based on this. - if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or, - Q, MaxRecurse)) - return V; - // If the operation is with the result of a select instruction, check whether // operating on either branch of the select always yields the same value. if (isa(Op0) || isa(Op1)) @@ -1542,8 +1596,58 @@ static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q, Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout *DL, const TargetLibraryInfo *TLI, - const DominatorTree *DT) { - return ::SimplifyAndInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit); + const DominatorTree *DT, AssumptionTracker *AT, + const Instruction *CxtI) { + return ::SimplifyAndInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI), + RecursionLimit); +} + +// Simplify (or (icmp ...) (icmp ...)) to true when we can tell that the union +// contains all possible values. +static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) { + ICmpInst::Predicate Pred0, Pred1; + ConstantInt *CI1, *CI2; + Value *V; + if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)), + m_ConstantInt(CI2)))) + return nullptr; + + if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1)))) + return nullptr; + + Type *ITy = Op0->getType(); + + auto *AddInst = cast(Op0->getOperand(0)); + bool isNSW = AddInst->hasNoSignedWrap(); + bool isNUW = AddInst->hasNoUnsignedWrap(); + + const APInt &CI1V = CI1->getValue(); + const APInt &CI2V = CI2->getValue(); + const APInt Delta = CI2V - CI1V; + if (CI1V.isStrictlyPositive()) { + if (Delta == 2) { + if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) + return getTrue(ITy); + if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) + return getTrue(ITy); + } + if (Delta == 1) { + if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) + return getTrue(ITy); + if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) + return getTrue(ITy); + } + } + if (CI1V.getBoolValue() && isNUW) { + if (Delta == 2) + if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) + return getTrue(ITy); + if (Delta == 1) + if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) + return getTrue(ITy); + } + + return nullptr; } /// SimplifyOrInst - Given operands for an Or, see if we can @@ -1603,6 +1707,15 @@ static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q, (A == Op0 || B == Op0)) return Constant::getAllOnesValue(Op0->getType()); + if (auto *ICILHS = dyn_cast(Op0)) { + if (auto *ICIRHS = dyn_cast(Op1)) { + if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS)) + return V; + if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS)) + return V; + } + } + // Try some generic simplifications for associative operations. if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, MaxRecurse)) @@ -1613,11 +1726,6 @@ static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q, MaxRecurse)) return V; - // And distributes over Or. Try some generic simplifications based on this. - if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And, - Q, MaxRecurse)) - return V; - // If the operation is with the result of a select instruction, check whether // operating on either branch of the select always yields the same value. if (isa(Op0) || isa(Op1)) @@ -1625,6 +1733,42 @@ static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q, MaxRecurse)) return V; + // (A & C)|(B & D) + Value *C = nullptr, *D = nullptr; + if (match(Op0, m_And(m_Value(A), m_Value(C))) && + match(Op1, m_And(m_Value(B), m_Value(D)))) { + ConstantInt *C1 = dyn_cast(C); + ConstantInt *C2 = dyn_cast(D); + if (C1 && C2 && (C1->getValue() == ~C2->getValue())) { + // (A & C1)|(B & C2) + // If we have: ((V + N) & C1) | (V & C2) + // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 + // replace with V+N. + Value *V1, *V2; + if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+ + match(A, m_Add(m_Value(V1), m_Value(V2)))) { + // Add commutes, try both ways. + if (V1 == B && MaskedValueIsZero(V2, C2->getValue(), Q.DL, + 0, Q.AT, Q.CxtI, Q.DT)) + return A; + if (V2 == B && MaskedValueIsZero(V1, C2->getValue(), Q.DL, + 0, Q.AT, Q.CxtI, Q.DT)) + return A; + } + // Or commutes, try both ways. + if ((C1->getValue() & (C1->getValue() + 1)) == 0 && + match(B, m_Add(m_Value(V1), m_Value(V2)))) { + // Add commutes, try both ways. + if (V1 == A && MaskedValueIsZero(V2, C1->getValue(), Q.DL, + 0, Q.AT, Q.CxtI, Q.DT)) + return B; + if (V2 == A && MaskedValueIsZero(V1, C1->getValue(), Q.DL, + 0, Q.AT, Q.CxtI, Q.DT)) + return B; + } + } + } + // If the operation is with the result of a phi instruction, check whether // operating on all incoming values of the phi always yields the same value. if (isa(Op0) || isa(Op1)) @@ -1636,8 +1780,10 @@ static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q, Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout *DL, const TargetLibraryInfo *TLI, - const DominatorTree *DT) { - return ::SimplifyOrInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit); + const DominatorTree *DT, AssumptionTracker *AT, + const Instruction *CxtI) { + return ::SimplifyOrInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI), + RecursionLimit); } /// SimplifyXorInst - Given operands for a Xor, see if we can @@ -1677,11 +1823,6 @@ static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q, MaxRecurse)) return V; - // And distributes over Xor. Try some generic simplifications based on this. - if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And, - Q, MaxRecurse)) - return V; - // Threading Xor over selects and phi nodes is pointless, so don't bother. // Threading over the select in "A ^ select(cond, B, C)" means evaluating // "A^B" and "A^C" and seeing if they are equal; but they are equal if and @@ -1696,8 +1837,10 @@ static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q, Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout *DL, const TargetLibraryInfo *TLI, - const DominatorTree *DT) { - return ::SimplifyXorInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit); + const DominatorTree *DT, AssumptionTracker *AT, + const Instruction *CxtI) { + return ::SimplifyXorInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI), + RecursionLimit); } static Type *GetCompareTy(Value *Op) { @@ -1951,40 +2094,46 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, return getTrue(ITy); case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE: - if (isKnownNonZero(LHS, Q.DL)) + if (isKnownNonZero(LHS, Q.DL, 0, Q.AT, Q.CxtI, Q.DT)) return getFalse(ITy); break; case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGT: - if (isKnownNonZero(LHS, Q.DL)) + if (isKnownNonZero(LHS, Q.DL, 0, Q.AT, Q.CxtI, Q.DT)) return getTrue(ITy); break; case ICmpInst::ICMP_SLT: - ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL); + ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, + 0, Q.AT, Q.CxtI, Q.DT); if (LHSKnownNegative) return getTrue(ITy); if (LHSKnownNonNegative) return getFalse(ITy); break; case ICmpInst::ICMP_SLE: - ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL); + ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, + 0, Q.AT, Q.CxtI, Q.DT); if (LHSKnownNegative) return getTrue(ITy); - if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL)) + if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL, + 0, Q.AT, Q.CxtI, Q.DT)) return getFalse(ITy); break; case ICmpInst::ICMP_SGE: - ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL); + ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, + 0, Q.AT, Q.CxtI, Q.DT); if (LHSKnownNegative) return getFalse(ITy); if (LHSKnownNonNegative) return getTrue(ITy); break; case ICmpInst::ICMP_SGT: - ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL); + ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, + 0, Q.AT, Q.CxtI, Q.DT); if (LHSKnownNegative) return getFalse(ITy); - if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL)) + if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL, + 0, Q.AT, Q.CxtI, Q.DT)) return getTrue(ITy); break; } @@ -2001,7 +2150,7 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, // Many binary operators with constant RHS have easy to compute constant // range. Use them to check whether the comparison is a tautology. - uint32_t Width = CI->getBitWidth(); + unsigned Width = CI->getBitWidth(); APInt Lower = APInt(Width, 0); APInt Upper = APInt(Width, 0); ConstantInt *CI2; @@ -2021,23 +2170,62 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, if (!CI2->isZero()) Upper = NegOne.udiv(CI2->getValue()) + 1; } else if (match(LHS, m_SDiv(m_ConstantInt(CI2), m_Value()))) { - // 'sdiv CI2, x' produces [-|CI2|, |CI2|]. - Upper = CI2->getValue().abs() + 1; - Lower = (-Upper) + 1; + if (CI2->isMinSignedValue()) { + // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. + Lower = CI2->getValue(); + Upper = Lower.lshr(1) + 1; + } else { + // 'sdiv CI2, x' produces [-|CI2|, |CI2|]. + Upper = CI2->getValue().abs() + 1; + Lower = (-Upper) + 1; + } } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) { - // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2]. APInt IntMin = APInt::getSignedMinValue(Width); APInt IntMax = APInt::getSignedMaxValue(Width); - APInt Val = CI2->getValue().abs(); - if (!Val.isMinValue()) { + APInt Val = CI2->getValue(); + if (Val.isAllOnesValue()) { + // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] + // where CI2 != -1 and CI2 != 0 and CI2 != 1 + Lower = IntMin + 1; + Upper = IntMax + 1; + } else if (Val.countLeadingZeros() < Width - 1) { + // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2] + // where CI2 != -1 and CI2 != 0 and CI2 != 1 Lower = IntMin.sdiv(Val); - Upper = IntMax.sdiv(Val) + 1; + Upper = IntMax.sdiv(Val); + if (Lower.sgt(Upper)) + std::swap(Lower, Upper); + Upper = Upper + 1; + assert(Upper != Lower && "Upper part of range has wrapped!"); + } + } else if (match(LHS, m_NUWShl(m_ConstantInt(CI2), m_Value()))) { + // 'shl nuw CI2, x' produces [CI2, CI2 << CLZ(CI2)] + Lower = CI2->getValue(); + Upper = Lower.shl(Lower.countLeadingZeros()) + 1; + } else if (match(LHS, m_NSWShl(m_ConstantInt(CI2), m_Value()))) { + if (CI2->isNegative()) { + // 'shl nsw CI2, x' produces [CI2 << CLO(CI2)-1, CI2] + unsigned ShiftAmount = CI2->getValue().countLeadingOnes() - 1; + Lower = CI2->getValue().shl(ShiftAmount); + Upper = CI2->getValue() + 1; + } else { + // 'shl nsw CI2, x' produces [CI2, CI2 << CLZ(CI2)-1] + unsigned ShiftAmount = CI2->getValue().countLeadingZeros() - 1; + Lower = CI2->getValue(); + Upper = CI2->getValue().shl(ShiftAmount) + 1; } } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) { // 'lshr x, CI2' produces [0, UINT_MAX >> CI2]. APInt NegOne = APInt::getAllOnesValue(Width); if (CI2->getValue().ult(Width)) Upper = NegOne.lshr(CI2->getValue()) + 1; + } else if (match(LHS, m_LShr(m_ConstantInt(CI2), m_Value()))) { + // 'lshr CI2, x' produces [CI2 >> (Width-1), CI2]. + unsigned ShiftAmount = Width - 1; + if (!CI2->isZero() && cast(LHS)->isExact()) + ShiftAmount = CI2->getValue().countTrailingZeros(); + Lower = CI2->getValue().lshr(ShiftAmount); + Upper = CI2->getValue() + 1; } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) { // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2]. APInt IntMin = APInt::getSignedMinValue(Width); @@ -2046,6 +2234,19 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, Lower = IntMin.ashr(CI2->getValue()); Upper = IntMax.ashr(CI2->getValue()) + 1; } + } else if (match(LHS, m_AShr(m_ConstantInt(CI2), m_Value()))) { + unsigned ShiftAmount = Width - 1; + if (!CI2->isZero() && cast(LHS)->isExact()) + ShiftAmount = CI2->getValue().countTrailingZeros(); + if (CI2->isNegative()) { + // 'ashr CI2, x' produces [CI2, CI2 >> (Width-1)] + Lower = CI2->getValue(); + Upper = CI2->getValue().ashr(ShiftAmount) + 1; + } else { + // 'ashr CI2, x' produces [CI2 >> (Width-1), CI2] + Lower = CI2->getValue().ashr(ShiftAmount); + Upper = CI2->getValue() + 1; + } } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) { // 'or x, CI2' produces [CI2, UINT_MAX]. Lower = CI2->getValue(); @@ -2314,7 +2515,8 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, break; case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_SGE: - ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL); + ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, + 0, Q.AT, Q.CxtI, Q.DT); if (!KnownNonNegative) break; // fall-through @@ -2324,7 +2526,8 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, return getFalse(ITy); case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: - ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL); + ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, + 0, Q.AT, Q.CxtI, Q.DT); if (!KnownNonNegative) break; // fall-through @@ -2343,7 +2546,8 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, break; case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_SGE: - ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL); + ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, + 0, Q.AT, Q.CxtI, Q.DT); if (!KnownNonNegative) break; // fall-through @@ -2353,7 +2557,8 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, return getTrue(ITy); case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: - ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL); + ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, + 0, Q.AT, Q.CxtI, Q.DT); if (!KnownNonNegative) break; // fall-through @@ -2373,6 +2578,41 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, return getTrue(ITy); } + // handle: + // CI2 << X == CI + // CI2 << X != CI + // + // where CI2 is a power of 2 and CI isn't + if (auto *CI = dyn_cast(RHS)) { + const APInt *CI2Val, *CIVal = &CI->getValue(); + if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && + CI2Val->isPowerOf2()) { + if (!CIVal->isPowerOf2()) { + // CI2 << X can equal zero in some circumstances, + // this simplification is unsafe if CI is zero. + // + // We know it is safe if: + // - The shift is nsw, we can't shift out the one bit. + // - The shift is nuw, we can't shift out the one bit. + // - CI2 is one + // - CI isn't zero + if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() || + *CI2Val == 1 || !CI->isZero()) { + if (Pred == ICmpInst::ICMP_EQ) + return ConstantInt::getFalse(RHS->getContext()); + if (Pred == ICmpInst::ICMP_NE) + return ConstantInt::getTrue(RHS->getContext()); + } + } + if (CIVal->isSignBit() && *CI2Val == 1) { + if (Pred == ICmpInst::ICMP_UGT) + return ConstantInt::getFalse(RHS->getContext()); + if (Pred == ICmpInst::ICMP_ULE) + return ConstantInt::getTrue(RHS->getContext()); + } + } + } + if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && LBO->getOperand(1) == RBO->getOperand(1)) { switch (LBO->getOpcode()) { @@ -2620,6 +2860,23 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, } } + // If a bit is known to be zero for A and known to be one for B, + // then A and B cannot be equal. + if (ICmpInst::isEquality(Pred)) { + if (ConstantInt *CI = dyn_cast(RHS)) { + uint32_t BitWidth = CI->getBitWidth(); + APInt LHSKnownZero(BitWidth, 0); + APInt LHSKnownOne(BitWidth, 0); + computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AT, + Q.CxtI, Q.DT); + const APInt &RHSVal = CI->getValue(); + if (((LHSKnownZero & RHSVal) != 0) || ((LHSKnownOne & ~RHSVal) != 0)) + return Pred == ICmpInst::ICMP_EQ + ? ConstantInt::getFalse(CI->getContext()) + : ConstantInt::getTrue(CI->getContext()); + } + } + // If the comparison is with the result of a select instruction, check whether // comparing with either branch of the select always yields the same value. if (isa(LHS) || isa(RHS)) @@ -2638,8 +2895,10 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, const DataLayout *DL, const TargetLibraryInfo *TLI, - const DominatorTree *DT) { - return ::SimplifyICmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT), + const DominatorTree *DT, + AssumptionTracker *AT, + Instruction *CxtI) { + return ::SimplifyICmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT, AT, CxtI), RecursionLimit); } @@ -2735,8 +2994,10 @@ static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, const DataLayout *DL, const TargetLibraryInfo *TLI, - const DominatorTree *DT) { - return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT), + const DominatorTree *DT, + AssumptionTracker *AT, + const Instruction *CxtI) { + return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT, AT, CxtI), RecursionLimit); } @@ -2774,9 +3035,11 @@ static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, const DataLayout *DL, const TargetLibraryInfo *TLI, - const DominatorTree *DT) { - return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Query (DL, TLI, DT), - RecursionLimit); + const DominatorTree *DT, + AssumptionTracker *AT, + const Instruction *CxtI) { + return ::SimplifySelectInst(Cond, TrueVal, FalseVal, + Query (DL, TLI, DT, AT, CxtI), RecursionLimit); } /// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can @@ -2784,29 +3047,72 @@ Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, static Value *SimplifyGEPInst(ArrayRef Ops, const Query &Q, unsigned) { // The type of the GEP pointer operand. PointerType *PtrTy = cast(Ops[0]->getType()->getScalarType()); + unsigned AS = PtrTy->getAddressSpace(); // getelementptr P -> P. if (Ops.size() == 1) return Ops[0]; - if (isa(Ops[0])) { - // Compute the (pointer) type returned by the GEP instruction. - Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1)); - Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace()); - if (VectorType *VT = dyn_cast(Ops[0]->getType())) - GEPTy = VectorType::get(GEPTy, VT->getNumElements()); + // Compute the (pointer) type returned by the GEP instruction. + Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1)); + Type *GEPTy = PointerType::get(LastType, AS); + if (VectorType *VT = dyn_cast(Ops[0]->getType())) + GEPTy = VectorType::get(GEPTy, VT->getNumElements()); + + if (isa(Ops[0])) return UndefValue::get(GEPTy); - } if (Ops.size() == 2) { // getelementptr P, 0 -> P. if (match(Ops[1], m_Zero())) return Ops[0]; - // getelementptr P, N -> P if P points to a type of zero size. - if (Q.DL) { - Type *Ty = PtrTy->getElementType(); - if (Ty->isSized() && Q.DL->getTypeAllocSize(Ty) == 0) + + Type *Ty = PtrTy->getElementType(); + if (Q.DL && Ty->isSized()) { + Value *P; + uint64_t C; + uint64_t TyAllocSize = Q.DL->getTypeAllocSize(Ty); + // getelementptr P, N -> P if P points to a type of zero size. + if (TyAllocSize == 0) return Ops[0]; + + // The following transforms are only safe if the ptrtoint cast + // doesn't truncate the pointers. + if (Ops[1]->getType()->getScalarSizeInBits() == + Q.DL->getPointerSizeInBits(AS)) { + auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { + if (match(P, m_Zero())) + return Constant::getNullValue(GEPTy); + Value *Temp; + if (match(P, m_PtrToInt(m_Value(Temp)))) + if (Temp->getType() == GEPTy) + return Temp; + return nullptr; + }; + + // getelementptr V, (sub P, V) -> P if P points to a type of size 1. + if (TyAllocSize == 1 && + match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) + if (Value *R = PtrToIntOrZero(P)) + return R; + + // getelementptr V, (ashr (sub P, V), C) -> Q + // if P points to a type of size 1 << C. + if (match(Ops[1], + m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), + m_ConstantInt(C))) && + TyAllocSize == 1ULL << C) + if (Value *R = PtrToIntOrZero(P)) + return R; + + // getelementptr V, (sdiv (sub P, V), C) -> Q + // if P points to a type of size C. + if (match(Ops[1], + m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), + m_SpecificInt(TyAllocSize)))) + if (Value *R = PtrToIntOrZero(P)) + return R; + } } } @@ -2820,8 +3126,9 @@ static Value *SimplifyGEPInst(ArrayRef Ops, const Query &Q, unsigned) { Value *llvm::SimplifyGEPInst(ArrayRef Ops, const DataLayout *DL, const TargetLibraryInfo *TLI, - const DominatorTree *DT) { - return ::SimplifyGEPInst(Ops, Query (DL, TLI, DT), RecursionLimit); + const DominatorTree *DT, AssumptionTracker *AT, + const Instruction *CxtI) { + return ::SimplifyGEPInst(Ops, Query (DL, TLI, DT, AT, CxtI), RecursionLimit); } /// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we @@ -2857,8 +3164,11 @@ Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, ArrayRef Idxs, const DataLayout *DL, const TargetLibraryInfo *TLI, - const DominatorTree *DT) { - return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query (DL, TLI, DT), + const DominatorTree *DT, + AssumptionTracker *AT, + const Instruction *CxtI) { + return ::SimplifyInsertValueInst(Agg, Val, Idxs, + Query (DL, TLI, DT, AT, CxtI), RecursionLimit); } @@ -2905,8 +3215,11 @@ static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) { Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout *DL, const TargetLibraryInfo *TLI, - const DominatorTree *DT) { - return ::SimplifyTruncInst(Op, Ty, Query (DL, TLI, DT), RecursionLimit); + const DominatorTree *DT, + AssumptionTracker *AT, + const Instruction *CxtI) { + return ::SimplifyTruncInst(Op, Ty, Query (DL, TLI, DT, AT, CxtI), + RecursionLimit); } //=== Helper functions for higher up the class hierarchy. @@ -2978,8 +3291,10 @@ static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const DataLayout *DL, const TargetLibraryInfo *TLI, - const DominatorTree *DT) { - return ::SimplifyBinOp(Opcode, LHS, RHS, Query (DL, TLI, DT), RecursionLimit); + const DominatorTree *DT, AssumptionTracker *AT, + const Instruction *CxtI) { + return ::SimplifyBinOp(Opcode, LHS, RHS, Query (DL, TLI, DT, AT, CxtI), + RecursionLimit); } /// SimplifyCmpInst - Given operands for a CmpInst, see if we can @@ -2993,8 +3308,9 @@ static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, const DataLayout *DL, const TargetLibraryInfo *TLI, - const DominatorTree *DT) { - return ::SimplifyCmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT), + const DominatorTree *DT, AssumptionTracker *AT, + const Instruction *CxtI) { + return ::SimplifyCmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT, AT, CxtI), RecursionLimit); } @@ -3069,23 +3385,26 @@ static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd, Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin, User::op_iterator ArgEnd, const DataLayout *DL, const TargetLibraryInfo *TLI, - const DominatorTree *DT) { - return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT), + const DominatorTree *DT, AssumptionTracker *AT, + const Instruction *CxtI) { + return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AT, CxtI), RecursionLimit); } Value *llvm::SimplifyCall(Value *V, ArrayRef Args, const DataLayout *DL, const TargetLibraryInfo *TLI, - const DominatorTree *DT) { - return ::SimplifyCall(V, Args.begin(), Args.end(), Query(DL, TLI, DT), - RecursionLimit); + const DominatorTree *DT, AssumptionTracker *AT, + const Instruction *CxtI) { + return ::SimplifyCall(V, Args.begin(), Args.end(), + Query(DL, TLI, DT, AT, CxtI), RecursionLimit); } /// SimplifyInstruction - See if we can compute a simplified version of this /// instruction. If not, this returns null. Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout *DL, const TargetLibraryInfo *TLI, - const DominatorTree *DT) { + const DominatorTree *DT, + AssumptionTracker *AT) { Value *Result; switch (I->getOpcode()) { @@ -3094,109 +3413,122 @@ Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout *DL, break; case Instruction::FAdd: Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), - I->getFastMathFlags(), DL, TLI, DT); + I->getFastMathFlags(), DL, TLI, DT, AT, I); break; case Instruction::Add: Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), cast(I)->hasNoSignedWrap(), cast(I)->hasNoUnsignedWrap(), - DL, TLI, DT); + DL, TLI, DT, AT, I); break; case Instruction::FSub: Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), - I->getFastMathFlags(), DL, TLI, DT); + I->getFastMathFlags(), DL, TLI, DT, AT, I); break; case Instruction::Sub: Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), cast(I)->hasNoSignedWrap(), cast(I)->hasNoUnsignedWrap(), - DL, TLI, DT); + DL, TLI, DT, AT, I); break; case Instruction::FMul: Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), - I->getFastMathFlags(), DL, TLI, DT); + I->getFastMathFlags(), DL, TLI, DT, AT, I); break; case Instruction::Mul: - Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT); + Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), + DL, TLI, DT, AT, I); break; case Instruction::SDiv: - Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT); + Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), + DL, TLI, DT, AT, I); break; case Instruction::UDiv: - Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT); + Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), + DL, TLI, DT, AT, I); break; case Instruction::FDiv: - Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT); + Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), + DL, TLI, DT, AT, I); break; case Instruction::SRem: - Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT); + Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), + DL, TLI, DT, AT, I); break; case Instruction::URem: - Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT); + Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), + DL, TLI, DT, AT, I); break; case Instruction::FRem: - Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT); + Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), + DL, TLI, DT, AT, I); break; case Instruction::Shl: Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), cast(I)->hasNoSignedWrap(), cast(I)->hasNoUnsignedWrap(), - DL, TLI, DT); + DL, TLI, DT, AT, I); break; case Instruction::LShr: Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), cast(I)->isExact(), - DL, TLI, DT); + DL, TLI, DT, AT, I); break; case Instruction::AShr: Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), cast(I)->isExact(), - DL, TLI, DT); + DL, TLI, DT, AT, I); break; case Instruction::And: - Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT); + Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), + DL, TLI, DT, AT, I); break; case Instruction::Or: - Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT); + Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, + AT, I); break; case Instruction::Xor: - Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT); + Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), + DL, TLI, DT, AT, I); break; case Instruction::ICmp: Result = SimplifyICmpInst(cast(I)->getPredicate(), - I->getOperand(0), I->getOperand(1), DL, TLI, DT); + I->getOperand(0), I->getOperand(1), + DL, TLI, DT, AT, I); break; case Instruction::FCmp: Result = SimplifyFCmpInst(cast(I)->getPredicate(), - I->getOperand(0), I->getOperand(1), DL, TLI, DT); + I->getOperand(0), I->getOperand(1), + DL, TLI, DT, AT, I); break; case Instruction::Select: Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), - I->getOperand(2), DL, TLI, DT); + I->getOperand(2), DL, TLI, DT, AT, I); break; case Instruction::GetElementPtr: { SmallVector Ops(I->op_begin(), I->op_end()); - Result = SimplifyGEPInst(Ops, DL, TLI, DT); + Result = SimplifyGEPInst(Ops, DL, TLI, DT, AT, I); break; } case Instruction::InsertValue: { InsertValueInst *IV = cast(I); Result = SimplifyInsertValueInst(IV->getAggregateOperand(), IV->getInsertedValueOperand(), - IV->getIndices(), DL, TLI, DT); + IV->getIndices(), DL, TLI, DT, AT, I); break; } case Instruction::PHI: - Result = SimplifyPHINode(cast(I), Query (DL, TLI, DT)); + Result = SimplifyPHINode(cast(I), Query (DL, TLI, DT, AT, I)); break; case Instruction::Call: { CallSite CS(cast(I)); Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), - DL, TLI, DT); + DL, TLI, DT, AT, I); break; } case Instruction::Trunc: - Result = SimplifyTruncInst(I->getOperand(0), I->getType(), DL, TLI, DT); + Result = SimplifyTruncInst(I->getOperand(0), I->getType(), DL, TLI, DT, + AT, I); break; } @@ -3220,7 +3552,8 @@ Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout *DL, static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, const DataLayout *DL, const TargetLibraryInfo *TLI, - const DominatorTree *DT) { + const DominatorTree *DT, + AssumptionTracker *AT) { bool Simplified = false; SmallSetVector Worklist; @@ -3247,7 +3580,7 @@ static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, I = Worklist[Idx]; // See if this instruction simplifies. - SimpleV = SimplifyInstruction(I, DL, TLI, DT); + SimpleV = SimplifyInstruction(I, DL, TLI, DT, AT); if (!SimpleV) continue; @@ -3273,15 +3606,17 @@ static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, bool llvm::recursivelySimplifyInstruction(Instruction *I, const DataLayout *DL, const TargetLibraryInfo *TLI, - const DominatorTree *DT) { - return replaceAndRecursivelySimplifyImpl(I, nullptr, DL, TLI, DT); + const DominatorTree *DT, + AssumptionTracker *AT) { + return replaceAndRecursivelySimplifyImpl(I, nullptr, DL, TLI, DT, AT); } bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, const DataLayout *DL, const TargetLibraryInfo *TLI, - const DominatorTree *DT) { + const DominatorTree *DT, + AssumptionTracker *AT) { assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); assert(SimpleV && "Must provide a simplified value."); - return replaceAndRecursivelySimplifyImpl(I, SimpleV, DL, TLI, DT); + return replaceAndRecursivelySimplifyImpl(I, SimpleV, DL, TLI, DT, AT); }