X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;f=include%2Fllvm%2FDerivedTypes.h;h=04a73fe8cf2e74c9a977f61713a29971cf4a1c37;hb=ef0732d25a9882c947984ae3f2afbef5463ba00f;hp=05b065b8a1a99ba96c971fbdf89798586d118459;hpb=f173842577ca243413294cdf074a7c9e31163688;p=oota-llvm.git diff --git a/include/llvm/DerivedTypes.h b/include/llvm/DerivedTypes.h index 05b065b8a1a..04a73fe8cf2 100644 --- a/include/llvm/DerivedTypes.h +++ b/include/llvm/DerivedTypes.h @@ -1,13 +1,13 @@ //===-- llvm/DerivedTypes.h - Classes for handling data types ---*- C++ -*-===// -// +// // The LLVM Compiler Infrastructure // -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// //===----------------------------------------------------------------------===// // -// This file contains the declarations of classes that represent "derived +// This file contains the declarations of classes that represent "derived // types". These are things like "arrays of x" or "structure of x, y, z" or // "method returning x taking (y,z) as parameters", etc... // @@ -19,35 +19,24 @@ #define LLVM_DERIVED_TYPES_H #include "llvm/Type.h" -#include namespace llvm { +class Value; template class TypeMap; class FunctionValType; class ArrayValType; class StructValType; class PointerValType; +class VectorValType; +class IntegerValType; +class APInt; -class DerivedType : public Type, public AbstractTypeUser { - /// RefCount - This counts the number of PATypeHolders that are pointing to - /// this type. When this number falls to zero, if the type is abstract and - /// has no AbstractTypeUsers, the type is deleted. - /// - mutable unsigned RefCount; - - // AbstractTypeUsers - Implement a list of the users that need to be notified - // if I am a type, and I get resolved into a more concrete type. - // - ///// FIXME: kill mutable nonsense when Type's are not const - mutable std::vector AbstractTypeUsers; +class DerivedType : public Type { + friend class Type; protected: - DerivedType(PrimitiveID id) : Type("", id), RefCount(0) { - } - ~DerivedType() { - assert(AbstractTypeUsers.empty()); - } + explicit DerivedType(TypeID id) : Type(id) {} /// notifyUsesThatTypeBecameConcrete - Notify AbstractTypeUsers of this type /// that the current type has transitioned from being abstract to being @@ -55,11 +44,12 @@ protected: /// void notifyUsesThatTypeBecameConcrete(); - // dropAllTypeUses - When this (abstract) type is resolved to be equal to - // another (more concrete) type, we must eliminate all references to other - // types, to avoid some circular reference problems. - virtual void dropAllTypeUses() = 0; - + /// dropAllTypeUses - When this (abstract) type is resolved to be equal to + /// another (more concrete) type, we must eliminate all references to other + /// types, to avoid some circular reference problems. + /// + void dropAllTypeUses(); + public: //===--------------------------------------------------------------------===// @@ -67,415 +57,393 @@ public: // are managed by (add|remove)AbstractTypeUser. See comments in // AbstractTypeUser.h for more information. - // addAbstractTypeUser - Notify an abstract type that there is a new user of - // it. This function is called primarily by the PATypeHandle class. - // - void addAbstractTypeUser(AbstractTypeUser *U) const { - assert(isAbstract() && "addAbstractTypeUser: Current type not abstract!"); - AbstractTypeUsers.push_back(U); - } - - // removeAbstractTypeUser - Notify an abstract type that a user of the class - // no longer has a handle to the type. This function is called primarily by - // the PATypeHandle class. When there are no users of the abstract type, it - // is annihilated, because there is no way to get a reference to it ever - // again. - // - void removeAbstractTypeUser(AbstractTypeUser *U) const; - - // refineAbstractTypeTo - This function is used to when it is discovered that - // the 'this' abstract type is actually equivalent to the NewType specified. - // This causes all users of 'this' to switch to reference the more concrete - // type NewType and for 'this' to be deleted. - // + /// refineAbstractTypeTo - This function is used to when it is discovered that + /// the 'this' abstract type is actually equivalent to the NewType specified. + /// This causes all users of 'this' to switch to reference the more concrete + /// type NewType and for 'this' to be deleted. + /// void refineAbstractTypeTo(const Type *NewType); - void addRef() const { - assert(isAbstract() && "Cannot add a reference to a non-abstract type!"); - ++RefCount; - } + void dump() const { Type::dump(); } - void dropRef() const { - assert(isAbstract() && "Cannot drop a refernce to a non-abstract type!"); - assert(RefCount && "No objects are currently referencing this object!"); + // Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const DerivedType *) { return true; } + static inline bool classof(const Type *T) { + return T->isDerivedType(); + } +}; - // If this is the last PATypeHolder using this object, and there are no - // PATypeHandles using it, the type is dead, delete it now. - if (--RefCount == 0 && AbstractTypeUsers.empty()) - delete this; +/// Class to represent integer types. Note that this class is also used to +/// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and +/// Int64Ty. +/// @brief Integer representation type +class IntegerType : public DerivedType { +protected: + explicit IntegerType(unsigned NumBits) : DerivedType(IntegerTyID) { + setSubclassData(NumBits); + } + friend class TypeMap; +public: + /// This enum is just used to hold constants we need for IntegerType. + enum { + MIN_INT_BITS = 1, ///< Minimum number of bits that can be specified + MAX_INT_BITS = (1<<23)-1 ///< Maximum number of bits that can be specified + ///< Note that bit width is stored in the Type classes SubclassData field + ///< which has 23 bits. This yields a maximum bit width of 8,388,607 bits. + }; + + /// This static method is the primary way of constructing an IntegerType. + /// If an IntegerType with the same NumBits value was previously instantiated, + /// that instance will be returned. Otherwise a new one will be created. Only + /// one instance with a given NumBits value is ever created. + /// @brief Get or create an IntegerType instance. + static const IntegerType* get(unsigned NumBits); + + /// @brief Get the number of bits in this IntegerType + unsigned getBitWidth() const { return getSubclassData(); } + + /// getBitMask - Return a bitmask with ones set for all of the bits + /// that can be set by an unsigned version of this type. This is 0xFF for + /// i8, 0xFFFF for i16, etc. + uint64_t getBitMask() const { + return ~uint64_t(0UL) >> (64-getBitWidth()); } + /// getSignBit - Return a uint64_t with just the most significant bit set (the + /// sign bit, if the value is treated as a signed number). + uint64_t getSignBit() const { + return 1ULL << (getBitWidth()-1); + } + + /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc. + /// @returns a bit mask with ones set for all the bits of this type. + /// @brief Get a bit mask for this type. + APInt getMask() const; - void dump() const { Value::dump(); } + /// This method determines if the width of this IntegerType is a power-of-2 + /// in terms of 8 bit bytes. + /// @returns true if this is a power-of-2 byte width. + /// @brief Is this a power-of-2 byte-width IntegerType ? + bool isPowerOf2ByteWidth() const; // Methods for support type inquiry through isa, cast, and dyn_cast: - static inline bool classof(const DerivedType *T) { return true; } + static inline bool classof(const IntegerType *) { return true; } static inline bool classof(const Type *T) { - return T->isDerivedType(); - } - static inline bool classof(const Value *V) { - return isa(V) && classof(cast(V)); + return T->getTypeID() == IntegerTyID; } }; - - -struct FunctionType : public DerivedType { - typedef std::vector ParamTypes; +/// FunctionType - Class to represent function types +/// +class FunctionType : public DerivedType { friend class TypeMap; -private: - PATypeHandle ResultType; - ParamTypes ParamTys; bool isVarArgs; FunctionType(const FunctionType &); // Do not implement const FunctionType &operator=(const FunctionType &); // Do not implement -protected: - // This should really be private, but it squelches a bogus warning - // from GCC to make them protected: warning: `class FunctionType' only - // defines private constructors and has no friends - - // Private ctor - Only can be created by a static member... - FunctionType(const Type *Result, const std::vector &Params, + FunctionType(const Type *Result, const std::vector &Params, bool IsVarArgs); - // dropAllTypeUses - When this (abstract) type is resolved to be equal to - // another (more concrete) type, we must eliminate all references to other - // types, to avoid some circular reference problems. - virtual void dropAllTypeUses(); - public: /// FunctionType::get - This static method is the primary way of constructing - /// a FunctionType - static FunctionType *get(const Type *Result, - const std::vector &Params, - bool isVarArg); + /// a FunctionType. + /// + static FunctionType *get( + const Type *Result, ///< The result type + const std::vector &Params, ///< The types of the parameters + bool isVarArg ///< Whether this is a variable argument length function + ); + + /// isValidReturnType - Return true if the specified type is valid as a return + /// type. + static bool isValidReturnType(const Type *RetTy); inline bool isVarArg() const { return isVarArgs; } - inline const Type *getReturnType() const { return ResultType; } - inline const ParamTypes &getParamTypes() const { return ParamTys; } + inline const Type *getReturnType() const { return ContainedTys[0]; } - // Parameter type accessors... - const Type *getParamType(unsigned i) const { return ParamTys[i]; } - - // getNumParams - Return the number of fixed parameters this function type - // requires. This does not consider varargs. - // - unsigned getNumParams() const { return ParamTys.size(); } + typedef Type::subtype_iterator param_iterator; + param_iterator param_begin() const { return ContainedTys + 1; } + param_iterator param_end() const { return &ContainedTys[NumContainedTys]; } + // Parameter type accessors... + const Type *getParamType(unsigned i) const { return ContainedTys[i+1]; } - virtual const Type *getContainedType(unsigned i) const { - return i == 0 ? ResultType.get() : ParamTys[i-1].get(); - } - virtual unsigned getNumContainedTypes() const { return ParamTys.size()+1; } + /// getNumParams - Return the number of fixed parameters this function type + /// requires. This does not consider varargs. + /// + unsigned getNumParams() const { return NumContainedTys - 1; } // Implement the AbstractTypeUser interface. virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy); virtual void typeBecameConcrete(const DerivedType *AbsTy); - + // Methods for support type inquiry through isa, cast, and dyn_cast: - static inline bool classof(const FunctionType *T) { return true; } + static inline bool classof(const FunctionType *) { return true; } static inline bool classof(const Type *T) { - return T->getPrimitiveID() == FunctionTyID; - } - static inline bool classof(const Value *V) { - return isa(V) && classof(cast(V)); + return T->getTypeID() == FunctionTyID; } }; -// CompositeType - Common super class of ArrayType, StructType, and PointerType -// +/// CompositeType - Common super class of ArrayType, StructType, PointerType +/// and VectorType class CompositeType : public DerivedType { protected: - inline CompositeType(PrimitiveID id) : DerivedType(id) { } + inline explicit CompositeType(TypeID id) : DerivedType(id) { } public: - // getTypeAtIndex - Given an index value into the type, return the type of the - // element. - // + /// getTypeAtIndex - Given an index value into the type, return the type of + /// the element. + /// virtual const Type *getTypeAtIndex(const Value *V) const = 0; + virtual const Type *getTypeAtIndex(unsigned Idx) const = 0; virtual bool indexValid(const Value *V) const = 0; + virtual bool indexValid(unsigned Idx) const = 0; // Methods for support type inquiry through isa, cast, and dyn_cast: - static inline bool classof(const CompositeType *T) { return true; } + static inline bool classof(const CompositeType *) { return true; } static inline bool classof(const Type *T) { - return T->getPrimitiveID() == ArrayTyID || - T->getPrimitiveID() == StructTyID || - T->getPrimitiveID() == PointerTyID; - } - static inline bool classof(const Value *V) { - return isa(V) && classof(cast(V)); + return T->getTypeID() == ArrayTyID || + T->getTypeID() == StructTyID || + T->getTypeID() == PointerTyID || + T->getTypeID() == VectorTyID; } }; -struct StructType : public CompositeType { +/// StructType - Class to represent struct types +/// +class StructType : public CompositeType { friend class TypeMap; - typedef std::vector ElementTypes; - -private: - ElementTypes ETypes; // Element types of struct - StructType(const StructType &); // Do not implement const StructType &operator=(const StructType &); // Do not implement - -protected: - // This should really be private, but it squelches a bogus warning - // from GCC to make them protected: warning: `class StructType' only - // defines private constructors and has no friends - - // Private ctor - Only can be created by a static member... - StructType(const std::vector &Types); - - // dropAllTypeUses - When this (abstract) type is resolved to be equal to - // another (more concrete) type, we must eliminate all references to other - // types, to avoid some circular reference problems. - virtual void dropAllTypeUses(); - + StructType(const std::vector &Types, bool isPacked); public: /// StructType::get - This static method is the primary way to create a /// StructType. - static StructType *get(const std::vector &Params); - - inline const ElementTypes &getElementTypes() const { return ETypes; } - - virtual const Type *getContainedType(unsigned i) const { - return ETypes[i].get(); + /// + static StructType *get(const std::vector &Params, + bool isPacked=false); + + /// StructType::get - This static method is a convenience method for + /// creating structure types by specifying the elements as arguments. + /// Note that this method always returns a non-packed struct. To get + /// an empty struct, pass NULL, NULL. + static StructType *get(const Type *type, ...) END_WITH_NULL; + + // Iterator access to the elements + typedef Type::subtype_iterator element_iterator; + element_iterator element_begin() const { return ContainedTys; } + element_iterator element_end() const { return &ContainedTys[NumContainedTys];} + + // Random access to the elements + unsigned getNumElements() const { return NumContainedTys; } + const Type *getElementType(unsigned N) const { + assert(N < NumContainedTys && "Element number out of range!"); + return ContainedTys[N]; } - virtual unsigned getNumContainedTypes() const { return ETypes.size(); } - // getTypeAtIndex - Given an index value into the type, return the type of the - // element. For a structure type, this must be a constant value... - // - virtual const Type *getTypeAtIndex(const Value *V) const ; + /// getTypeAtIndex - Given an index value into the type, return the type of + /// the element. For a structure type, this must be a constant value... + /// + virtual const Type *getTypeAtIndex(const Value *V) const; + virtual const Type *getTypeAtIndex(unsigned Idx) const; virtual bool indexValid(const Value *V) const; + virtual bool indexValid(unsigned Idx) const; // Implement the AbstractTypeUser interface. virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy); virtual void typeBecameConcrete(const DerivedType *AbsTy); // Methods for support type inquiry through isa, cast, and dyn_cast: - static inline bool classof(const StructType *T) { return true; } + static inline bool classof(const StructType *) { return true; } static inline bool classof(const Type *T) { - return T->getPrimitiveID() == StructTyID; - } - static inline bool classof(const Value *V) { - return isa(V) && classof(cast(V)); + return T->getTypeID() == StructTyID; } + + bool isPacked() const { return (0 != getSubclassData()) ? true : false; } }; -// SequentialType - This is the superclass of the array and pointer type -// classes. Both of these represent "arrays" in memory. The array type -// represents a specifically sized array, pointer types are unsized/unknown size -// arrays. SequentialType holds the common features of both, which stem from -// the fact that both lay their components out in memory identically. -// +/// SequentialType - This is the superclass of the array, pointer and vector +/// type classes. All of these represent "arrays" in memory. The array type +/// represents a specifically sized array, pointer types are unsized/unknown +/// size arrays, vector types represent specifically sized arrays that +/// allow for use of SIMD instructions. SequentialType holds the common +/// features of all, which stem from the fact that all three lay their +/// components out in memory identically. +/// class SequentialType : public CompositeType { + PATypeHandle ContainedType; ///< Storage for the single contained type SequentialType(const SequentialType &); // Do not implement! const SequentialType &operator=(const SequentialType &); // Do not implement! -protected: - PATypeHandle ElementType; - SequentialType(PrimitiveID TID, const Type *ElType) - : CompositeType(TID), ElementType(PATypeHandle(ElType, this)) { + // avoiding warning: 'this' : used in base member initializer list + SequentialType* this_() { return this; } +protected: + SequentialType(TypeID TID, const Type *ElType) + : CompositeType(TID), ContainedType(ElType, this_()) { + ContainedTys = &ContainedType; + NumContainedTys = 1; } public: - inline const Type *getElementType() const { return ElementType; } + inline const Type *getElementType() const { return ContainedTys[0]; } - virtual const Type *getContainedType(unsigned i) const { - return ElementType.get(); + virtual bool indexValid(const Value *V) const; + virtual bool indexValid(unsigned) const { + return true; } - virtual unsigned getNumContainedTypes() const { return 1; } - // getTypeAtIndex - Given an index value into the type, return the type of the - // element. For sequential types, there is only one subtype... - // - virtual const Type *getTypeAtIndex(const Value *V) const { - return ElementType.get(); + /// getTypeAtIndex - Given an index value into the type, return the type of + /// the element. For sequential types, there is only one subtype... + /// + virtual const Type *getTypeAtIndex(const Value *) const { + return ContainedTys[0]; } - virtual bool indexValid(const Value *V) const { - return V->getType()->isInteger(); + virtual const Type *getTypeAtIndex(unsigned) const { + return ContainedTys[0]; } // Methods for support type inquiry through isa, cast, and dyn_cast: - static inline bool classof(const SequentialType *T) { return true; } + static inline bool classof(const SequentialType *) { return true; } static inline bool classof(const Type *T) { - return T->getPrimitiveID() == ArrayTyID || - T->getPrimitiveID() == PointerTyID; - } - static inline bool classof(const Value *V) { - return isa(V) && classof(cast(V)); + return T->getTypeID() == ArrayTyID || + T->getTypeID() == PointerTyID || + T->getTypeID() == VectorTyID; } }; +/// ArrayType - Class to represent array types +/// class ArrayType : public SequentialType { friend class TypeMap; - unsigned NumElements; + uint64_t NumElements; ArrayType(const ArrayType &); // Do not implement const ArrayType &operator=(const ArrayType &); // Do not implement -protected: - // This should really be private, but it squelches a bogus warning - // from GCC to make them protected: warning: `class ArrayType' only - // defines private constructors and has no friends - - // Private ctor - Only can be created by a static member... - ArrayType(const Type *ElType, unsigned NumEl); - - // dropAllTypeUses - When this (abstract) type is resolved to be equal to - // another (more concrete) type, we must eliminate all references to other - // types, to avoid some circular reference problems. - virtual void dropAllTypeUses(); - + ArrayType(const Type *ElType, uint64_t NumEl); public: /// ArrayType::get - This static method is the primary way to construct an /// ArrayType - static ArrayType *get(const Type *ElementType, unsigned NumElements); + /// + static ArrayType *get(const Type *ElementType, uint64_t NumElements); - inline unsigned getNumElements() const { return NumElements; } + inline uint64_t getNumElements() const { return NumElements; } // Implement the AbstractTypeUser interface. virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy); virtual void typeBecameConcrete(const DerivedType *AbsTy); // Methods for support type inquiry through isa, cast, and dyn_cast: - static inline bool classof(const ArrayType *T) { return true; } + static inline bool classof(const ArrayType *) { return true; } static inline bool classof(const Type *T) { - return T->getPrimitiveID() == ArrayTyID; - } - static inline bool classof(const Value *V) { - return isa(V) && classof(cast(V)); + return T->getTypeID() == ArrayTyID; } }; +/// VectorType - Class to represent vector types +/// +class VectorType : public SequentialType { + friend class TypeMap; + unsigned NumElements; + + VectorType(const VectorType &); // Do not implement + const VectorType &operator=(const VectorType &); // Do not implement + VectorType(const Type *ElType, unsigned NumEl); +public: + /// VectorType::get - This static method is the primary way to construct an + /// VectorType + /// + static VectorType *get(const Type *ElementType, unsigned NumElements); + + /// VectorType::getInteger - This static method gets a VectorType with the + /// same number of elements as the input type, and the element type is an + /// integer type of the same width as the input element type. + /// + static VectorType *getInteger(const VectorType *VTy) { + unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); + const Type *EltTy = IntegerType::get(EltBits); + return VectorType::get(EltTy, VTy->getNumElements()); + } + + /// @brief Return the number of elements in the Vector type. + inline unsigned getNumElements() const { return NumElements; } + + /// @brief Return the number of bits in the Vector type. + inline unsigned getBitWidth() const { + return NumElements *getElementType()->getPrimitiveSizeInBits(); + } + + // Implement the AbstractTypeUser interface. + virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy); + virtual void typeBecameConcrete(const DerivedType *AbsTy); + + // Methods for support type inquiry through isa, cast, and dyn_cast: + static inline bool classof(const VectorType *) { return true; } + static inline bool classof(const Type *T) { + return T->getTypeID() == VectorTyID; + } +}; +/// PointerType - Class to represent pointers +/// class PointerType : public SequentialType { friend class TypeMap; + unsigned AddressSpace; + PointerType(const PointerType &); // Do not implement const PointerType &operator=(const PointerType &); // Do not implement -protected: - // This should really be private, but it squelches a bogus warning - // from GCC to make them protected: warning: `class PointerType' only - // defines private constructors and has no friends - - // Private ctor - Only can be created by a static member... - PointerType(const Type *ElType); - - // dropAllTypeUses - When this (abstract) type is resolved to be equal to - // another (more concrete) type, we must eliminate all references to other - // types, to avoid some circular reference problems. - virtual void dropAllTypeUses(); + explicit PointerType(const Type *ElType, unsigned AddrSpace); public: - /// PointerType::get - This is the only way to construct a new pointer type. - static PointerType *get(const Type *ElementType); + /// PointerType::get - This constructs a pointer to an object of the specified + /// type in a numbered address space. + static PointerType *get(const Type *ElementType, unsigned AddressSpace); + + /// PointerType::getUnqual - This constructs a pointer to an object of the + /// specified type in the generic address space (address space zero). + static PointerType *getUnqual(const Type *ElementType) { + return PointerType::get(ElementType, 0); + } + + /// @brief Return the address space of the Pointer type. + inline unsigned getAddressSpace() const { return AddressSpace; } // Implement the AbstractTypeUser interface. virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy); virtual void typeBecameConcrete(const DerivedType *AbsTy); // Implement support type inquiry through isa, cast, and dyn_cast: - static inline bool classof(const PointerType *T) { return true; } + static inline bool classof(const PointerType *) { return true; } static inline bool classof(const Type *T) { - return T->getPrimitiveID() == PointerTyID; - } - static inline bool classof(const Value *V) { - return isa(V) && classof(cast(V)); + return T->getTypeID() == PointerTyID; } }; +/// OpaqueType - Class to represent abstract types +/// class OpaqueType : public DerivedType { OpaqueType(const OpaqueType &); // DO NOT IMPLEMENT const OpaqueType &operator=(const OpaqueType &); // DO NOT IMPLEMENT -protected: - // This should really be private, but it squelches a bogus warning - // from GCC to make them protected: warning: `class OpaqueType' only - // defines private constructors and has no friends - - // Private ctor - Only can be created by a static member... OpaqueType(); - - // dropAllTypeUses - When this (abstract) type is resolved to be equal to - // another (more concrete) type, we must eliminate all references to other - // types, to avoid some circular reference problems. - virtual void dropAllTypeUses() { - // FIXME: THIS IS NOT AN ABSTRACT TYPE USER! - } // No type uses - public: - // OpaqueType::get - Static factory method for the OpaqueType class... + /// OpaqueType::get - Static factory method for the OpaqueType class... + /// static OpaqueType *get() { return new OpaqueType(); // All opaque types are distinct } - // Implement the AbstractTypeUser interface. - virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) { - abort(); // FIXME: this is not really an AbstractTypeUser! - } - virtual void typeBecameConcrete(const DerivedType *AbsTy) { - abort(); // FIXME: this is not really an AbstractTypeUser! - } - // Implement support for type inquiry through isa, cast, and dyn_cast: - static inline bool classof(const OpaqueType *T) { return true; } + static inline bool classof(const OpaqueType *) { return true; } static inline bool classof(const Type *T) { - return T->getPrimitiveID() == OpaqueTyID; - } - static inline bool classof(const Value *V) { - return isa(V) && classof(cast(V)); + return T->getTypeID() == OpaqueTyID; } }; - -// Define some inline methods for the AbstractTypeUser.h:PATypeHandle class. -// These are defined here because they MUST be inlined, yet are dependent on -// the definition of the Type class. Of course Type derives from Value, which -// contains an AbstractTypeUser instance, so there is no good way to factor out -// the code. Hence this bit of uglyness. -// -inline void PATypeHandle::addUser() { - assert(Ty && "Type Handle has a null type!"); - if (Ty->isAbstract()) - cast(Ty)->addAbstractTypeUser(User); -} -inline void PATypeHandle::removeUser() { - if (Ty->isAbstract()) - cast(Ty)->removeAbstractTypeUser(User); -} - -inline void PATypeHandle::removeUserFromConcrete() { - if (!Ty->isAbstract()) - cast(Ty)->removeAbstractTypeUser(User); -} - -// Define inline methods for PATypeHolder... - -inline void PATypeHolder::addRef() { - if (Ty->isAbstract()) - cast(Ty)->addRef(); -} - -inline void PATypeHolder::dropRef() { - if (Ty->isAbstract()) - cast(Ty)->dropRef(); -} - -/// get - This implements the forwarding part of the union-find algorithm for -/// abstract types. Before every access to the Type*, we check to see if the -/// type we are pointing to is forwarding to a new type. If so, we drop our -/// reference to the type. -inline const Type* PATypeHolder::get() const { - const Type *NewTy = Ty->getForwardedType(); - if (!NewTy) return Ty; - return *const_cast(this) = NewTy; -} - } // End llvm namespace #endif