X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;f=include%2Fllvm%2FAnalysis%2FSparsePropagation.h;h=353b127a56882ce5a67f284765acb862de1dfbd5;hb=fadc359170b3ad198fc961d677a0ee7af1bca560;hp=76c8ccf59c2b553630f2b276fe280725ef1bd0de;hpb=674be02d525d4e24bc6943ed9274958c580bcfbc;p=oota-llvm.git diff --git a/include/llvm/Analysis/SparsePropagation.h b/include/llvm/Analysis/SparsePropagation.h index 76c8ccf59c2..353b127a568 100644 --- a/include/llvm/Analysis/SparsePropagation.h +++ b/include/llvm/Analysis/SparsePropagation.h @@ -33,7 +33,7 @@ namespace llvm { class raw_ostream; template class SmallVectorImpl; - + /// AbstractLatticeFunction - This class is implemented by the dataflow instance /// to specify what the lattice values are and how they handle merges etc. /// This gives the client the power to compute lattice values from instructions, @@ -54,18 +54,18 @@ public: UntrackedVal = untrackedVal; } virtual ~AbstractLatticeFunction(); - + LatticeVal getUndefVal() const { return UndefVal; } LatticeVal getOverdefinedVal() const { return OverdefinedVal; } LatticeVal getUntrackedVal() const { return UntrackedVal; } - + /// IsUntrackedValue - If the specified Value is something that is obviously /// uninteresting to the analysis (and would always return UntrackedVal), /// this function can return true to avoid pointless work. virtual bool IsUntrackedValue(Value *V) { return false; } - + /// ComputeConstant - Given a constant value, compute and return a lattice /// value corresponding to the specified constant. virtual LatticeVal ComputeConstant(Constant *C) { @@ -77,12 +77,12 @@ public: virtual bool IsSpecialCasedPHI(PHINode *PN) { return false; } - + /// GetConstant - If the specified lattice value is representable as an LLVM /// constant value, return it. Otherwise return null. The returned value /// must be in the same LLVM type as Val. virtual Constant *GetConstant(LatticeVal LV, Value *Val, SparseSolver &SS) { - return 0; + return nullptr; } /// ComputeArgument - Given a formal argument value, compute and return a @@ -90,60 +90,60 @@ public: virtual LatticeVal ComputeArgument(Argument *I) { return getOverdefinedVal(); // always safe } - + /// MergeValues - Compute and return the merge of the two specified lattice /// values. Merging should only move one direction down the lattice to /// guarantee convergence (toward overdefined). virtual LatticeVal MergeValues(LatticeVal X, LatticeVal Y) { return getOverdefinedVal(); // always safe, never useful. } - + /// ComputeInstructionState - Given an instruction and a vector of its operand /// values, compute the result value of the instruction. virtual LatticeVal ComputeInstructionState(Instruction &I, SparseSolver &SS) { return getOverdefinedVal(); // always safe, never useful. } - + /// PrintValue - Render the specified lattice value to the specified stream. virtual void PrintValue(LatticeVal V, raw_ostream &OS); }; - + /// SparseSolver - This class is a general purpose solver for Sparse Conditional /// Propagation with a programmable lattice function. /// class SparseSolver { typedef AbstractLatticeFunction::LatticeVal LatticeVal; - + /// LatticeFunc - This is the object that knows the lattice and how to do /// compute transfer functions. AbstractLatticeFunction *LatticeFunc; - + DenseMap ValueState; // The state each value is in. SmallPtrSet BBExecutable; // The bbs that are executable. - + std::vector InstWorkList; // Worklist of insts to process. - + std::vector BBWorkList; // The BasicBlock work list - + /// KnownFeasibleEdges - Entries in this set are edges which have already had /// PHI nodes retriggered. typedef std::pair Edge; std::set KnownFeasibleEdges; - SparseSolver(const SparseSolver&) LLVM_DELETED_FUNCTION; - void operator=(const SparseSolver&) LLVM_DELETED_FUNCTION; + SparseSolver(const SparseSolver&) = delete; + void operator=(const SparseSolver&) = delete; public: explicit SparseSolver(AbstractLatticeFunction *Lattice) : LatticeFunc(Lattice) {} ~SparseSolver() { delete LatticeFunc; } - + /// Solve - Solve for constants and executable blocks. /// void Solve(Function &F); - + void Print(Function &F, raw_ostream &OS) const; /// getLatticeState - Return the LatticeVal object that corresponds to the @@ -153,7 +153,7 @@ public: DenseMap::const_iterator I = ValueState.find(V); return I != ValueState.end() ? I->second : LatticeFunc->getUntrackedVal(); } - + /// getOrInitValueState - Return the LatticeVal object that corresponds to the /// value, initializing the value's state if it hasn't been entered into the /// map yet. This function is necessary because not all values should start @@ -161,7 +161,7 @@ public: /// constants should be marked as constants. /// LatticeVal getOrInitValueState(Value *V); - + /// isEdgeFeasible - Return true if the control flow edge from the 'From' /// basic block to the 'To' basic block is currently feasible. If /// AggressiveUndef is true, then this treats values with unknown lattice @@ -176,25 +176,25 @@ public: bool isBlockExecutable(BasicBlock *BB) const { return BBExecutable.count(BB); } - + private: /// UpdateState - When the state for some instruction is potentially updated, /// this function notices and adds I to the worklist if needed. void UpdateState(Instruction &Inst, LatticeVal V); - + /// MarkBlockExecutable - This method can be used by clients to mark all of /// the blocks that are known to be intrinsically live in the processed unit. void MarkBlockExecutable(BasicBlock *BB); - + /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB /// work list if it is not already executable. void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest); - + /// getFeasibleSuccessors - Return a vector of booleans to indicate which /// successors are reachable from a given terminator instruction. void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl &Succs, bool AggressiveUndef); - + void visitInst(Instruction &I); void visitPHINode(PHINode &I); void visitTerminatorInst(TerminatorInst &TI);