X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;f=include%2Fllvm%2FADT%2FSmallVector.h;h=b9384702c3ba0588d3a402e677a9805d4c471729;hb=091d6ba2757d2db7f5db28e3b87a0c87dd0a3360;hp=b166ab49323a88594457a796c0617b0ea02a7264;hpb=e6e55d79592fa0926175d6b17e3db89b298ada4e;p=oota-llvm.git diff --git a/include/llvm/ADT/SmallVector.h b/include/llvm/ADT/SmallVector.h index b166ab49323..b9384702c3b 100644 --- a/include/llvm/ADT/SmallVector.h +++ b/include/llvm/ADT/SmallVector.h @@ -14,97 +14,100 @@ #ifndef LLVM_ADT_SMALLVECTOR_H #define LLVM_ADT_SMALLVECTOR_H +#include "llvm/ADT/iterator_range.h" +#include "llvm/Support/AlignOf.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/MathExtras.h" #include "llvm/Support/type_traits.h" #include #include +#include +#include #include +#include +#include #include -#ifdef _MSC_VER -namespace std { -#if _MSC_VER <= 1310 - // Work around flawed VC++ implementation of std::uninitialized_copy. Define - // additional overloads so that elements with pointer types are recognized as - // scalars and not objects, causing bizarre type conversion errors. - template - inline _Scalar_ptr_iterator_tag _Ptr_cat(T1 **, T2 **) { - _Scalar_ptr_iterator_tag _Cat; - return _Cat; - } - - template - inline _Scalar_ptr_iterator_tag _Ptr_cat(T1* const *, T2 **) { - _Scalar_ptr_iterator_tag _Cat; - return _Cat; - } -#else -// FIXME: It is not clear if the problem is fixed in VS 2005. What is clear -// is that the above hack won't work if it wasn't fixed. -#endif -} -#endif - namespace llvm { -/// SmallVectorBase - This is all the non-templated stuff common to all -/// SmallVectors. +/// This is all the non-templated stuff common to all SmallVectors. class SmallVectorBase { protected: void *BeginX, *EndX, *CapacityX; +protected: + SmallVectorBase(void *FirstEl, size_t Size) + : BeginX(FirstEl), EndX(FirstEl), CapacityX((char*)FirstEl+Size) {} + + /// This is an implementation of the grow() method which only works + /// on POD-like data types and is out of line to reduce code duplication. + void grow_pod(void *FirstEl, size_t MinSizeInBytes, size_t TSize); + +public: + /// This returns size()*sizeof(T). + size_t size_in_bytes() const { + return size_t((char*)EndX - (char*)BeginX); + } + + /// capacity_in_bytes - This returns capacity()*sizeof(T). + size_t capacity_in_bytes() const { + return size_t((char*)CapacityX - (char*)BeginX); + } + + bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const { return BeginX == EndX; } +}; + +template struct SmallVectorStorage; + +/// This is the part of SmallVectorTemplateBase which does not depend on whether +/// the type T is a POD. The extra dummy template argument is used by ArrayRef +/// to avoid unnecessarily requiring T to be complete. +template +class SmallVectorTemplateCommon : public SmallVectorBase { +private: + template friend struct SmallVectorStorage; + // Allocate raw space for N elements of type T. If T has a ctor or dtor, we // don't want it to be automatically run, so we need to represent the space as - // something else. An array of char would work great, but might not be - // aligned sufficiently. Instead, we either use GCC extensions, or some - // number of union instances for the space, which guarantee maximal alignment. -#ifdef __GNUC__ - typedef char U; - U FirstEl __attribute__((aligned)); -#else - union U { - double D; - long double LD; - long long L; - void *P; - } FirstEl; -#endif + // something else. Use an array of char of sufficient alignment. + typedef llvm::AlignedCharArrayUnion U; + U FirstEl; // Space after 'FirstEl' is clobbered, do not add any instance vars after it. - + protected: - SmallVectorBase(size_t Size) - : BeginX(&FirstEl), EndX(&FirstEl), CapacityX((char*)&FirstEl+Size) {} - - /// isSmall - Return true if this is a smallvector which has not had dynamic + SmallVectorTemplateCommon(size_t Size) : SmallVectorBase(&FirstEl, Size) {} + + void grow_pod(size_t MinSizeInBytes, size_t TSize) { + SmallVectorBase::grow_pod(&FirstEl, MinSizeInBytes, TSize); + } + + /// Return true if this is a smallvector which has not had dynamic /// memory allocated for it. bool isSmall() const { return BeginX == static_cast(&FirstEl); } - -public: - bool empty() const { return BeginX == EndX; } -}; -template -class SmallVectorTemplateCommon : public SmallVectorBase { -protected: + /// Put this vector in a state of being small. + void resetToSmall() { + BeginX = EndX = CapacityX = &FirstEl; + } + void setEnd(T *P) { this->EndX = P; } public: - SmallVectorTemplateCommon(size_t Size) : SmallVectorBase(Size) {} - typedef size_t size_type; typedef ptrdiff_t difference_type; typedef T value_type; typedef T *iterator; typedef const T *const_iterator; - + typedef std::reverse_iterator const_reverse_iterator; typedef std::reverse_iterator reverse_iterator; - + typedef T &reference; typedef const T &const_reference; typedef T *pointer; typedef const T *const_pointer; - + // forward iterator creation methods. iterator begin() { return (iterator)this->BeginX; } const_iterator begin() const { return (const_iterator)this->BeginX; } @@ -114,7 +117,7 @@ protected: iterator capacity_ptr() { return (iterator)this->CapacityX; } const_iterator capacity_ptr() const { return (const_iterator)this->CapacityX;} public: - + // reverse iterator creation methods. reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); } @@ -123,316 +126,540 @@ public: size_type size() const { return end()-begin(); } size_type max_size() const { return size_type(-1) / sizeof(T); } - - /// capacity - Return the total number of elements in the currently allocated - /// buffer. + + /// Return the total number of elements in the currently allocated buffer. size_t capacity() const { return capacity_ptr() - begin(); } - - /// data - Return a pointer to the vector's buffer, even if empty(). + + /// Return a pointer to the vector's buffer, even if empty(). pointer data() { return pointer(begin()); } - /// data - Return a pointer to the vector's buffer, even if empty(). + /// Return a pointer to the vector's buffer, even if empty(). const_pointer data() const { return const_pointer(begin()); } - - reference operator[](unsigned idx) { - assert(begin() + idx < end()); + + reference operator[](size_type idx) { + assert(idx < size()); return begin()[idx]; } - const_reference operator[](unsigned idx) const { - assert(begin() + idx < end()); + const_reference operator[](size_type idx) const { + assert(idx < size()); return begin()[idx]; } reference front() { + assert(!empty()); return begin()[0]; } const_reference front() const { + assert(!empty()); return begin()[0]; } reference back() { + assert(!empty()); return end()[-1]; } const_reference back() const { + assert(!empty()); return end()[-1]; } }; - - + +/// SmallVectorTemplateBase - This is where we put method +/// implementations that are designed to work with non-POD-like T's. template class SmallVectorTemplateBase : public SmallVectorTemplateCommon { -public: +protected: SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon(Size) {} + static void destroy_range(T *S, T *E) { + while (S != E) { + --E; + E->~T(); + } + } + + /// Use move-assignment to move the range [I, E) onto the + /// objects starting with "Dest". This is just 's + /// std::move, but not all stdlibs actually provide that. + template + static It2 move(It1 I, It1 E, It2 Dest) { + for (; I != E; ++I, ++Dest) + *Dest = ::std::move(*I); + return Dest; + } + + /// Use move-assignment to move the range + /// [I, E) onto the objects ending at "Dest", moving objects + /// in reverse order. This is just 's + /// std::move_backward, but not all stdlibs actually provide that. + template + static It2 move_backward(It1 I, It1 E, It2 Dest) { + while (I != E) + *--Dest = ::std::move(*--E); + return Dest; + } + + /// Move the range [I, E) into the uninitialized memory starting with "Dest", + /// constructing elements as needed. + template + static void uninitialized_move(It1 I, It1 E, It2 Dest) { + for (; I != E; ++I, ++Dest) + ::new ((void*) &*Dest) T(::std::move(*I)); + } + + /// Copy the range [I, E) onto the uninitialized memory starting with "Dest", + /// constructing elements as needed. + template + static void uninitialized_copy(It1 I, It1 E, It2 Dest) { + std::uninitialized_copy(I, E, Dest); + } + + /// Grow the allocated memory (without initializing new elements), doubling + /// the size of the allocated memory. Guarantees space for at least one more + /// element, or MinSize more elements if specified. + void grow(size_t MinSize = 0); + +public: + void push_back(const T &Elt) { + if (LLVM_UNLIKELY(this->EndX >= this->CapacityX)) + this->grow(); + ::new ((void*) this->end()) T(Elt); + this->setEnd(this->end()+1); + } + + void push_back(T &&Elt) { + if (LLVM_UNLIKELY(this->EndX >= this->CapacityX)) + this->grow(); + ::new ((void*) this->end()) T(::std::move(Elt)); + this->setEnd(this->end()+1); + } + + void pop_back() { + this->setEnd(this->end()-1); + this->end()->~T(); + } }; +// Define this out-of-line to dissuade the C++ compiler from inlining it. +template +void SmallVectorTemplateBase::grow(size_t MinSize) { + size_t CurCapacity = this->capacity(); + size_t CurSize = this->size(); + // Always grow, even from zero. + size_t NewCapacity = size_t(NextPowerOf2(CurCapacity+2)); + if (NewCapacity < MinSize) + NewCapacity = MinSize; + T *NewElts = static_cast(malloc(NewCapacity*sizeof(T))); + + // Move the elements over. + this->uninitialized_move(this->begin(), this->end(), NewElts); + + // Destroy the original elements. + destroy_range(this->begin(), this->end()); + + // If this wasn't grown from the inline copy, deallocate the old space. + if (!this->isSmall()) + free(this->begin()); + + this->setEnd(NewElts+CurSize); + this->BeginX = NewElts; + this->CapacityX = this->begin()+NewCapacity; +} + + +/// SmallVectorTemplateBase - This is where we put method +/// implementations that are designed to work with POD-like T's. template class SmallVectorTemplateBase : public SmallVectorTemplateCommon { -public: +protected: SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon(Size) {} - + + // No need to do a destroy loop for POD's. + static void destroy_range(T *, T *) {} + + /// Use move-assignment to move the range [I, E) onto the + /// objects starting with "Dest". For PODs, this is just memcpy. + template + static It2 move(It1 I, It1 E, It2 Dest) { + return ::std::copy(I, E, Dest); + } + + /// Use move-assignment to move the range [I, E) onto the objects ending at + /// "Dest", moving objects in reverse order. + template + static It2 move_backward(It1 I, It1 E, It2 Dest) { + return ::std::copy_backward(I, E, Dest); + } + + /// Move the range [I, E) onto the uninitialized memory + /// starting with "Dest", constructing elements into it as needed. + template + static void uninitialized_move(It1 I, It1 E, It2 Dest) { + // Just do a copy. + uninitialized_copy(I, E, Dest); + } + + /// Copy the range [I, E) onto the uninitialized memory + /// starting with "Dest", constructing elements into it as needed. + template + static void uninitialized_copy(It1 I, It1 E, It2 Dest) { + // Arbitrary iterator types; just use the basic implementation. + std::uninitialized_copy(I, E, Dest); + } + + /// Copy the range [I, E) onto the uninitialized memory + /// starting with "Dest", constructing elements into it as needed. + template + static void uninitialized_copy( + T1 *I, T1 *E, T2 *Dest, + typename std::enable_if::type, + T2>::value>::type * = nullptr) { + // Use memcpy for PODs iterated by pointers (which includes SmallVector + // iterators): std::uninitialized_copy optimizes to memmove, but we can + // use memcpy here. Note that I and E are iterators and thus might be + // invalid for memcpy if they are equal. + if (I != E) + memcpy(Dest, I, (E - I) * sizeof(T)); + } + + /// Double the size of the allocated memory, guaranteeing space for at + /// least one more element or MinSize if specified. + void grow(size_t MinSize = 0) { + this->grow_pod(MinSize*sizeof(T), sizeof(T)); + } +public: + void push_back(const T &Elt) { + if (LLVM_UNLIKELY(this->EndX >= this->CapacityX)) + this->grow(); + memcpy(this->end(), &Elt, sizeof(T)); + this->setEnd(this->end()+1); + } + + void pop_back() { + this->setEnd(this->end()-1); + } }; - - -/// SmallVectorImpl - This class consists of common code factored out of the -/// SmallVector class to reduce code duplication based on the SmallVector 'N' -/// template parameter. + + +/// This class consists of common code factored out of the SmallVector class to +/// reduce code duplication based on the SmallVector 'N' template parameter. template class SmallVectorImpl : public SmallVectorTemplateBase::value> { + typedef SmallVectorTemplateBase::value > SuperClass; + + SmallVectorImpl(const SmallVectorImpl&) = delete; public: - typedef typename SmallVectorTemplateBase::value >::iterator - iterator; - typedef typename SmallVectorTemplateBase::value >::size_type - size_type; - + typedef typename SuperClass::iterator iterator; + typedef typename SuperClass::size_type size_type; + +protected: // Default ctor - Initialize to empty. explicit SmallVectorImpl(unsigned N) : SmallVectorTemplateBase::value>(N*sizeof(T)) { } - + +public: ~SmallVectorImpl() { // Destroy the constructed elements in the vector. - destroy_range(this->begin(), this->end()); - + this->destroy_range(this->begin(), this->end()); + // If this wasn't grown from the inline copy, deallocate the old space. if (!this->isSmall()) - operator delete(this->begin()); + free(this->begin()); } - - + + void clear() { - destroy_range(this->begin(), this->end()); + this->destroy_range(this->begin(), this->end()); this->EndX = this->BeginX; } - void resize(unsigned N) { + void resize(size_type N) { if (N < this->size()) { this->destroy_range(this->begin()+N, this->end()); this->setEnd(this->begin()+N); } else if (N > this->size()) { if (this->capacity() < N) - grow(N); - this->construct_range(this->end(), this->begin()+N, T()); + this->grow(N); + for (auto I = this->end(), E = this->begin() + N; I != E; ++I) + new (&*I) T(); this->setEnd(this->begin()+N); } } - void resize(unsigned N, const T &NV) { + void resize(size_type N, const T &NV) { if (N < this->size()) { - destroy_range(this->begin()+N, this->end()); - setEnd(this->begin()+N); + this->destroy_range(this->begin()+N, this->end()); + this->setEnd(this->begin()+N); } else if (N > this->size()) { if (this->capacity() < N) - grow(N); - construct_range(this->end(), this->begin()+N, NV); - setEnd(this->begin()+N); + this->grow(N); + std::uninitialized_fill(this->end(), this->begin()+N, NV); + this->setEnd(this->begin()+N); } } - void reserve(unsigned N) { + void reserve(size_type N) { if (this->capacity() < N) - grow(N); - } - - void push_back(const T &Elt) { - if (this->EndX < this->CapacityX) { - Retry: - new (this->end()) T(Elt); - setEnd(this->end()+1); - return; - } - this->grow(); - goto Retry; + this->grow(N); } - - void pop_back() { - setEnd(this->end()-1); - this->end()->~T(); - } - - T pop_back_val() { - T Result = this->back(); - pop_back(); + + T LLVM_ATTRIBUTE_UNUSED_RESULT pop_back_val() { + T Result = ::std::move(this->back()); + this->pop_back(); return Result; } - - + void swap(SmallVectorImpl &RHS); - - /// append - Add the specified range to the end of the SmallVector. - /// + + /// Add the specified range to the end of the SmallVector. template void append(in_iter in_start, in_iter in_end) { size_type NumInputs = std::distance(in_start, in_end); // Grow allocated space if needed. if (NumInputs > size_type(this->capacity_ptr()-this->end())) - grow(this->size()+NumInputs); - + this->grow(this->size()+NumInputs); + // Copy the new elements over. - // TODO: NEED To compile time dispatch on whether in_iter is a random access - // iterator to use the fast uninitialized_copy. - std::uninitialized_copy(in_start, in_end, this->end()); - setEnd(this->end() + NumInputs); + this->uninitialized_copy(in_start, in_end, this->end()); + this->setEnd(this->end() + NumInputs); } - - /// append - Add the specified range to the end of the SmallVector. - /// + + /// Add the specified range to the end of the SmallVector. void append(size_type NumInputs, const T &Elt) { // Grow allocated space if needed. if (NumInputs > size_type(this->capacity_ptr()-this->end())) - grow(this->size()+NumInputs); - + this->grow(this->size()+NumInputs); + // Copy the new elements over. std::uninitialized_fill_n(this->end(), NumInputs, Elt); - setEnd(this->end() + NumInputs); + this->setEnd(this->end() + NumInputs); + } + + void append(std::initializer_list IL) { + append(IL.begin(), IL.end()); } - - void assign(unsigned NumElts, const T &Elt) { + + void assign(size_type NumElts, const T &Elt) { clear(); if (this->capacity() < NumElts) - grow(NumElts); - setEnd(this->begin()+NumElts); - construct_range(this->begin(), this->end(), Elt); + this->grow(NumElts); + this->setEnd(this->begin()+NumElts); + std::uninitialized_fill(this->begin(), this->end(), Elt); } - + + void assign(std::initializer_list IL) { + clear(); + append(IL); + } + iterator erase(iterator I) { + assert(I >= this->begin() && "Iterator to erase is out of bounds."); + assert(I < this->end() && "Erasing at past-the-end iterator."); + iterator N = I; // Shift all elts down one. - std::copy(I+1, this->end(), I); + this->move(I+1, this->end(), I); // Drop the last elt. - pop_back(); + this->pop_back(); return(N); } - + iterator erase(iterator S, iterator E) { + assert(S >= this->begin() && "Range to erase is out of bounds."); + assert(S <= E && "Trying to erase invalid range."); + assert(E <= this->end() && "Trying to erase past the end."); + iterator N = S; // Shift all elts down. - iterator I = std::copy(E, this->end(), S); + iterator I = this->move(E, this->end(), S); // Drop the last elts. - destroy_range(I, this->end()); - setEnd(I); + this->destroy_range(I, this->end()); + this->setEnd(I); return(N); } - - iterator insert(iterator I, const T &Elt) { + + iterator insert(iterator I, T &&Elt) { if (I == this->end()) { // Important special case for empty vector. - push_back(Elt); + this->push_back(::std::move(Elt)); return this->end()-1; } - - if (this->EndX < this->CapacityX) { - Retry: - new (this->end()) T(this->back()); - this->setEnd(this->end()+1); - // Push everything else over. - std::copy_backward(I, this->end()-1, this->end()); - *I = Elt; - return I; + + assert(I >= this->begin() && "Insertion iterator is out of bounds."); + assert(I <= this->end() && "Inserting past the end of the vector."); + + if (this->EndX >= this->CapacityX) { + size_t EltNo = I-this->begin(); + this->grow(); + I = this->begin()+EltNo; } - size_t EltNo = I-this->begin(); - this->grow(); - I = this->begin()+EltNo; - goto Retry; + + ::new ((void*) this->end()) T(::std::move(this->back())); + // Push everything else over. + this->move_backward(I, this->end()-1, this->end()); + this->setEnd(this->end()+1); + + // If we just moved the element we're inserting, be sure to update + // the reference. + T *EltPtr = &Elt; + if (I <= EltPtr && EltPtr < this->EndX) + ++EltPtr; + + *I = ::std::move(*EltPtr); + return I; } - - iterator insert(iterator I, size_type NumToInsert, const T &Elt) { + + iterator insert(iterator I, const T &Elt) { if (I == this->end()) { // Important special case for empty vector. - append(NumToInsert, Elt); + this->push_back(Elt); return this->end()-1; } - + + assert(I >= this->begin() && "Insertion iterator is out of bounds."); + assert(I <= this->end() && "Inserting past the end of the vector."); + + if (this->EndX >= this->CapacityX) { + size_t EltNo = I-this->begin(); + this->grow(); + I = this->begin()+EltNo; + } + ::new ((void*) this->end()) T(std::move(this->back())); + // Push everything else over. + this->move_backward(I, this->end()-1, this->end()); + this->setEnd(this->end()+1); + + // If we just moved the element we're inserting, be sure to update + // the reference. + const T *EltPtr = &Elt; + if (I <= EltPtr && EltPtr < this->EndX) + ++EltPtr; + + *I = *EltPtr; + return I; + } + + iterator insert(iterator I, size_type NumToInsert, const T &Elt) { // Convert iterator to elt# to avoid invalidating iterator when we reserve() size_t InsertElt = I - this->begin(); - + + if (I == this->end()) { // Important special case for empty vector. + append(NumToInsert, Elt); + return this->begin()+InsertElt; + } + + assert(I >= this->begin() && "Insertion iterator is out of bounds."); + assert(I <= this->end() && "Inserting past the end of the vector."); + // Ensure there is enough space. - reserve(static_cast(this->size() + NumToInsert)); - + reserve(this->size() + NumToInsert); + // Uninvalidate the iterator. I = this->begin()+InsertElt; - + // If there are more elements between the insertion point and the end of the // range than there are being inserted, we can use a simple approach to // insertion. Since we already reserved space, we know that this won't // reallocate the vector. if (size_t(this->end()-I) >= NumToInsert) { T *OldEnd = this->end(); - append(this->end()-NumToInsert, this->end()); - + append(std::move_iterator(this->end() - NumToInsert), + std::move_iterator(this->end())); + // Copy the existing elements that get replaced. - std::copy_backward(I, OldEnd-NumToInsert, OldEnd); - + this->move_backward(I, OldEnd-NumToInsert, OldEnd); + std::fill_n(I, NumToInsert, Elt); return I; } - + // Otherwise, we're inserting more elements than exist already, and we're // not inserting at the end. - - // Copy over the elements that we're about to overwrite. + + // Move over the elements that we're about to overwrite. T *OldEnd = this->end(); - setEnd(this->end() + NumToInsert); + this->setEnd(this->end() + NumToInsert); size_t NumOverwritten = OldEnd-I; - uninitialized_copy(I, OldEnd, this->end()-NumOverwritten); - + this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten); + // Replace the overwritten part. std::fill_n(I, NumOverwritten, Elt); - + // Insert the non-overwritten middle part. std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt); return I; } - + template iterator insert(iterator I, ItTy From, ItTy To) { + // Convert iterator to elt# to avoid invalidating iterator when we reserve() + size_t InsertElt = I - this->begin(); + if (I == this->end()) { // Important special case for empty vector. append(From, To); - return this->end()-1; + return this->begin()+InsertElt; } - + + assert(I >= this->begin() && "Insertion iterator is out of bounds."); + assert(I <= this->end() && "Inserting past the end of the vector."); + size_t NumToInsert = std::distance(From, To); - // Convert iterator to elt# to avoid invalidating iterator when we reserve() - size_t InsertElt = I - this->begin(); - + // Ensure there is enough space. - reserve(static_cast(this->size() + NumToInsert)); - + reserve(this->size() + NumToInsert); + // Uninvalidate the iterator. I = this->begin()+InsertElt; - + // If there are more elements between the insertion point and the end of the // range than there are being inserted, we can use a simple approach to // insertion. Since we already reserved space, we know that this won't // reallocate the vector. if (size_t(this->end()-I) >= NumToInsert) { T *OldEnd = this->end(); - append(this->end()-NumToInsert, this->end()); - + append(std::move_iterator(this->end() - NumToInsert), + std::move_iterator(this->end())); + // Copy the existing elements that get replaced. - std::copy_backward(I, OldEnd-NumToInsert, OldEnd); - + this->move_backward(I, OldEnd-NumToInsert, OldEnd); + std::copy(From, To, I); return I; } - + // Otherwise, we're inserting more elements than exist already, and we're // not inserting at the end. - - // Copy over the elements that we're about to overwrite. + + // Move over the elements that we're about to overwrite. T *OldEnd = this->end(); - setEnd(this->end() + NumToInsert); + this->setEnd(this->end() + NumToInsert); size_t NumOverwritten = OldEnd-I; - uninitialized_copy(I, OldEnd, this->end()-NumOverwritten); - + this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten); + // Replace the overwritten part. - std::copy(From, From+NumOverwritten, I); - + for (T *J = I; NumOverwritten > 0; --NumOverwritten) { + *J = *From; + ++J; ++From; + } + // Insert the non-overwritten middle part. - uninitialized_copy(From+NumOverwritten, To, OldEnd); + this->uninitialized_copy(From, To, OldEnd); return I; } - - const SmallVectorImpl - &operator=(const SmallVectorImpl &RHS); - + + void insert(iterator I, std::initializer_list IL) { + insert(I, IL.begin(), IL.end()); + } + + template void emplace_back(ArgTypes &&... Args) { + if (LLVM_UNLIKELY(this->EndX >= this->CapacityX)) + this->grow(); + ::new ((void *)this->end()) T(std::forward(Args)...); + this->setEnd(this->end() + 1); + } + + SmallVectorImpl &operator=(const SmallVectorImpl &RHS); + + SmallVectorImpl &operator=(SmallVectorImpl &&RHS); + bool operator==(const SmallVectorImpl &RHS) const { if (this->size() != RHS.size()) return false; return std::equal(this->begin(), this->end(), RHS.begin()); @@ -440,14 +667,14 @@ public: bool operator!=(const SmallVectorImpl &RHS) const { return !(*this == RHS); } - + bool operator<(const SmallVectorImpl &RHS) const { return std::lexicographical_compare(this->begin(), this->end(), RHS.begin(), RHS.end()); } - - /// set_size - Set the array size to \arg N, which the current array must have - /// enough capacity for. + + /// Set the array size to \p N, which the current array must have enough + /// capacity for. /// /// This does not construct or destroy any elements in the vector. /// @@ -455,68 +682,12 @@ public: /// of the buffer when they know that more elements are available, and only /// update the size later. This avoids the cost of value initializing elements /// which will only be overwritten. - void set_size(unsigned N) { + void set_size(size_type N) { assert(N <= this->capacity()); - setEnd(this->begin() + N); - } - -private: - /// grow - double the size of the allocated memory, guaranteeing space for at - /// least one more element or MinSize if specified. - void grow(size_t MinSize = 0); - - static void construct_range(T *S, T *E, const T &Elt) { - for (; S != E; ++S) - new (S) T(Elt); - } - - static void destroy_range(T *S, T *E) { - // No need to do a destroy loop for POD's. - if (isPodLike::value) return; - - while (S != E) { - --E; - E->~T(); - } - } - - /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory - /// starting with "Dest", constructing elements into it as needed. - template - static void uninitialized_copy(It1 I, It1 E, It2 Dest) { - // Use memcpy for PODs: std::uninitialized_copy optimizes to memmove. - if (isPodLike::value) - memcpy(&*Dest, &*I, (E-I)*sizeof(T)); - else - std::uninitialized_copy(I, E, Dest); + this->setEnd(this->begin() + N); } }; - - -// Define this out-of-line to dissuade the C++ compiler from inlining it. -template -void SmallVectorImpl::grow(size_t MinSize) { - size_t CurCapacity = this->capacity(); - size_t CurSize = this->size(); - size_t NewCapacity = 2*CurCapacity; - if (NewCapacity < MinSize) - NewCapacity = MinSize; - T *NewElts = static_cast(operator new(NewCapacity*sizeof(T))); - - // Copy the elements over. - uninitialized_copy(this->begin(), this->end(), NewElts); - // Destroy the original elements. - destroy_range(this->begin(), this->end()); - - // If this wasn't grown from the inline copy, deallocate the old space. - if (!this->isSmall()) - operator delete(this->begin()); - - setEnd(NewElts+CurSize); - this->BeginX = NewElts; - this->CapacityX = this->begin()+NewCapacity; -} template void SmallVectorImpl::swap(SmallVectorImpl &RHS) { @@ -530,34 +701,34 @@ void SmallVectorImpl::swap(SmallVectorImpl &RHS) { return; } if (RHS.size() > this->capacity()) - grow(RHS.size()); + this->grow(RHS.size()); if (this->size() > RHS.capacity()) RHS.grow(this->size()); // Swap the shared elements. size_t NumShared = this->size(); if (NumShared > RHS.size()) NumShared = RHS.size(); - for (unsigned i = 0; i != static_cast(NumShared); ++i) + for (size_type i = 0; i != NumShared; ++i) std::swap((*this)[i], RHS[i]); // Copy over the extra elts. if (this->size() > RHS.size()) { size_t EltDiff = this->size() - RHS.size(); - uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end()); + this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end()); RHS.setEnd(RHS.end()+EltDiff); - destroy_range(this->begin()+NumShared, this->end()); - setEnd(this->begin()+NumShared); + this->destroy_range(this->begin()+NumShared, this->end()); + this->setEnd(this->begin()+NumShared); } else if (RHS.size() > this->size()) { size_t EltDiff = RHS.size() - this->size(); - uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end()); - setEnd(this->end() + EltDiff); - destroy_range(RHS.begin()+NumShared, RHS.end()); + this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end()); + this->setEnd(this->end() + EltDiff); + this->destroy_range(RHS.begin()+NumShared, RHS.end()); RHS.setEnd(RHS.begin()+NumShared); } } template -const SmallVectorImpl &SmallVectorImpl:: +SmallVectorImpl &SmallVectorImpl:: operator=(const SmallVectorImpl &RHS) { // Avoid self-assignment. if (this == &RHS) return *this; @@ -575,36 +746,110 @@ const SmallVectorImpl &SmallVectorImpl:: NewEnd = this->begin(); // Destroy excess elements. - destroy_range(NewEnd, this->end()); + this->destroy_range(NewEnd, this->end()); // Trim. - setEnd(NewEnd); + this->setEnd(NewEnd); return *this; } // If we have to grow to have enough elements, destroy the current elements. // This allows us to avoid copying them during the grow. + // FIXME: don't do this if they're efficiently moveable. if (this->capacity() < RHSSize) { // Destroy current elements. - destroy_range(this->begin(), this->end()); - setEnd(this->begin()); + this->destroy_range(this->begin(), this->end()); + this->setEnd(this->begin()); CurSize = 0; - grow(RHSSize); + this->grow(RHSSize); } else if (CurSize) { // Otherwise, use assignment for the already-constructed elements. std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin()); } // Copy construct the new elements in place. - uninitialized_copy(RHS.begin()+CurSize, RHS.end(), this->begin()+CurSize); + this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(), + this->begin()+CurSize); + + // Set end. + this->setEnd(this->begin()+RHSSize); + return *this; +} + +template +SmallVectorImpl &SmallVectorImpl::operator=(SmallVectorImpl &&RHS) { + // Avoid self-assignment. + if (this == &RHS) return *this; + + // If the RHS isn't small, clear this vector and then steal its buffer. + if (!RHS.isSmall()) { + this->destroy_range(this->begin(), this->end()); + if (!this->isSmall()) free(this->begin()); + this->BeginX = RHS.BeginX; + this->EndX = RHS.EndX; + this->CapacityX = RHS.CapacityX; + RHS.resetToSmall(); + return *this; + } + + // If we already have sufficient space, assign the common elements, then + // destroy any excess. + size_t RHSSize = RHS.size(); + size_t CurSize = this->size(); + if (CurSize >= RHSSize) { + // Assign common elements. + iterator NewEnd = this->begin(); + if (RHSSize) + NewEnd = this->move(RHS.begin(), RHS.end(), NewEnd); + + // Destroy excess elements and trim the bounds. + this->destroy_range(NewEnd, this->end()); + this->setEnd(NewEnd); + + // Clear the RHS. + RHS.clear(); + + return *this; + } + + // If we have to grow to have enough elements, destroy the current elements. + // This allows us to avoid copying them during the grow. + // FIXME: this may not actually make any sense if we can efficiently move + // elements. + if (this->capacity() < RHSSize) { + // Destroy current elements. + this->destroy_range(this->begin(), this->end()); + this->setEnd(this->begin()); + CurSize = 0; + this->grow(RHSSize); + } else if (CurSize) { + // Otherwise, use assignment for the already-constructed elements. + this->move(RHS.begin(), RHS.begin()+CurSize, this->begin()); + } + + // Move-construct the new elements in place. + this->uninitialized_move(RHS.begin()+CurSize, RHS.end(), + this->begin()+CurSize); // Set end. - setEnd(this->begin()+RHSSize); + this->setEnd(this->begin()+RHSSize); + + RHS.clear(); return *this; } +/// Storage for the SmallVector elements which aren't contained in +/// SmallVectorTemplateCommon. There are 'N-1' elements here. The remaining '1' +/// element is in the base class. This is specialized for the N=1 and N=0 cases +/// to avoid allocating unnecessary storage. +template +struct SmallVectorStorage { + typename SmallVectorTemplateCommon::U InlineElts[N - 1]; +}; +template struct SmallVectorStorage {}; +template struct SmallVectorStorage {}; -/// SmallVector - This is a 'vector' (really, a variable-sized array), optimized +/// This is a 'vector' (really, a variable-sized array), optimized /// for the case when the array is small. It contains some number of elements /// in-place, which allows it to avoid heap allocation when the actual number of /// elements is below that threshold. This allows normal "small" cases to be @@ -614,43 +859,33 @@ const SmallVectorImpl &SmallVectorImpl:: /// template class SmallVector : public SmallVectorImpl { - /// InlineElts - These are 'N-1' elements that are stored inline in the body - /// of the vector. The extra '1' element is stored in SmallVectorImpl. - typedef typename SmallVectorImpl::U U; - enum { - // MinUs - The number of U's require to cover N T's. - MinUs = (static_cast(sizeof(T))*N + - static_cast(sizeof(U)) - 1) / - static_cast(sizeof(U)), - - // NumInlineEltsElts - The number of elements actually in this array. There - // is already one in the parent class, and we have to round up to avoid - // having a zero-element array. - NumInlineEltsElts = MinUs > 1 ? (MinUs - 1) : 1, - - // NumTsAvailable - The number of T's we actually have space for, which may - // be more than N due to rounding. - NumTsAvailable = (NumInlineEltsElts+1)*static_cast(sizeof(U))/ - static_cast(sizeof(T)) - }; - U InlineElts[NumInlineEltsElts]; + /// Inline space for elements which aren't stored in the base class. + SmallVectorStorage Storage; public: - SmallVector() : SmallVectorImpl(NumTsAvailable) { + SmallVector() : SmallVectorImpl(N) { } - explicit SmallVector(unsigned Size, const T &Value = T()) - : SmallVectorImpl(NumTsAvailable) { - this->reserve(Size); - while (Size--) - this->push_back(Value); + explicit SmallVector(size_t Size, const T &Value = T()) + : SmallVectorImpl(N) { + this->assign(Size, Value); } template - SmallVector(ItTy S, ItTy E) : SmallVectorImpl(NumTsAvailable) { + SmallVector(ItTy S, ItTy E) : SmallVectorImpl(N) { this->append(S, E); } - SmallVector(const SmallVector &RHS) : SmallVectorImpl(NumTsAvailable) { + template + explicit SmallVector(const llvm::iterator_range R) + : SmallVectorImpl(N) { + this->append(R.begin(), R.end()); + } + + SmallVector(std::initializer_list IL) : SmallVectorImpl(N) { + this->assign(IL); + } + + SmallVector(const SmallVector &RHS) : SmallVectorImpl(N) { if (!RHS.empty()) SmallVectorImpl::operator=(RHS); } @@ -660,8 +895,37 @@ public: return *this; } + SmallVector(SmallVector &&RHS) : SmallVectorImpl(N) { + if (!RHS.empty()) + SmallVectorImpl::operator=(::std::move(RHS)); + } + + const SmallVector &operator=(SmallVector &&RHS) { + SmallVectorImpl::operator=(::std::move(RHS)); + return *this; + } + + SmallVector(SmallVectorImpl &&RHS) : SmallVectorImpl(N) { + if (!RHS.empty()) + SmallVectorImpl::operator=(::std::move(RHS)); + } + + const SmallVector &operator=(SmallVectorImpl &&RHS) { + SmallVectorImpl::operator=(::std::move(RHS)); + return *this; + } + + const SmallVector &operator=(std::initializer_list IL) { + this->assign(IL); + return *this; + } }; +template +static inline size_t capacity_in_bytes(const SmallVector &X) { + return X.capacity_in_bytes(); +} + } // End llvm namespace namespace std {