X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;f=include%2Fllvm%2FADT%2FSmallVector.h;h=769b7dc9f5e8b6e9ca1ec7fb3bf6890e96904fc5;hb=bc363931085587bac42a40653962a3e5acd1ffce;hp=d5fef4828e612e58150d85a79c3971359da2722e;hpb=d0dfbe096dd71ca4d652784705584876f8b18250;p=oota-llvm.git diff --git a/include/llvm/ADT/SmallVector.h b/include/llvm/ADT/SmallVector.h index d5fef4828e6..769b7dc9f5e 100644 --- a/include/llvm/ADT/SmallVector.h +++ b/include/llvm/ADT/SmallVector.h @@ -14,105 +14,108 @@ #ifndef LLVM_ADT_SMALLVECTOR_H #define LLVM_ADT_SMALLVECTOR_H -#include "llvm/ADT/iterator.h" +#include "llvm/Support/AlignOf.h" +#include "llvm/Support/Compiler.h" #include "llvm/Support/type_traits.h" #include #include +#include +#include #include +#include #include -#ifdef _MSC_VER -namespace std { -#if _MSC_VER <= 1310 - // Work around flawed VC++ implementation of std::uninitialized_copy. Define - // additional overloads so that elements with pointer types are recognized as - // scalars and not objects, causing bizarre type conversion errors. - template - inline _Scalar_ptr_iterator_tag _Ptr_cat(T1 **, T2 **) { - _Scalar_ptr_iterator_tag _Cat; - return _Cat; +namespace llvm { + +/// SmallVectorBase - This is all the non-templated stuff common to all +/// SmallVectors. +class SmallVectorBase { +protected: + void *BeginX, *EndX, *CapacityX; + +protected: + SmallVectorBase(void *FirstEl, size_t Size) + : BeginX(FirstEl), EndX(FirstEl), CapacityX((char*)FirstEl+Size) {} + + /// grow_pod - This is an implementation of the grow() method which only works + /// on POD-like data types and is out of line to reduce code duplication. + void grow_pod(void *FirstEl, size_t MinSizeInBytes, size_t TSize); + +public: + /// size_in_bytes - This returns size()*sizeof(T). + size_t size_in_bytes() const { + return size_t((char*)EndX - (char*)BeginX); } - template - inline _Scalar_ptr_iterator_tag _Ptr_cat(T1* const *, T2 **) { - _Scalar_ptr_iterator_tag _Cat; - return _Cat; + /// capacity_in_bytes - This returns capacity()*sizeof(T). + size_t capacity_in_bytes() const { + return size_t((char*)CapacityX - (char*)BeginX); } -#else -// FIXME: It is not clear if the problem is fixed in VS 2005. What is clear -// is that the above hack won't work if it wasn't fixed. -#endif -} -#endif -namespace llvm { + bool empty() const { return BeginX == EndX; } +}; -/// SmallVectorImpl - This class consists of common code factored out of the -/// SmallVector class to reduce code duplication based on the SmallVector 'N' -/// template parameter. -template -class SmallVectorImpl { -protected: - T *Begin, *End, *Capacity; +template struct SmallVectorStorage; + +/// SmallVectorTemplateCommon - This is the part of SmallVectorTemplateBase +/// which does not depend on whether the type T is a POD. The extra dummy +/// template argument is used by ArrayRef to avoid unnecessarily requiring T +/// to be complete. +template +class SmallVectorTemplateCommon : public SmallVectorBase { +private: + template friend struct SmallVectorStorage; // Allocate raw space for N elements of type T. If T has a ctor or dtor, we // don't want it to be automatically run, so we need to represent the space as - // something else. An array of char would work great, but might not be - // aligned sufficiently. Instead, we either use GCC extensions, or some - // number of union instances for the space, which guarantee maximal alignment. -protected: -#ifdef __GNUC__ - typedef char U; - U FirstEl __attribute__((aligned)); -#else - union U { - double D; - long double LD; - long long L; - void *P; - } FirstEl; -#endif + // something else. Use an array of char of sufficient alignment. + typedef llvm::AlignedCharArrayUnion U; + U FirstEl; // Space after 'FirstEl' is clobbered, do not add any instance vars after it. -public: - // Default ctor - Initialize to empty. - explicit SmallVectorImpl(unsigned N) - : Begin(reinterpret_cast(&FirstEl)), - End(reinterpret_cast(&FirstEl)), - Capacity(reinterpret_cast(&FirstEl)+N) { + +protected: + SmallVectorTemplateCommon(size_t Size) : SmallVectorBase(&FirstEl, Size) {} + + void grow_pod(size_t MinSizeInBytes, size_t TSize) { + SmallVectorBase::grow_pod(&FirstEl, MinSizeInBytes, TSize); } - ~SmallVectorImpl() { - // Destroy the constructed elements in the vector. - destroy_range(Begin, End); + /// isSmall - Return true if this is a smallvector which has not had dynamic + /// memory allocated for it. + bool isSmall() const { + return BeginX == static_cast(&FirstEl); + } - // If this wasn't grown from the inline copy, deallocate the old space. - if (!isSmall()) - operator delete(Begin); + /// resetToSmall - Put this vector in a state of being small. + void resetToSmall() { + BeginX = EndX = CapacityX = &FirstEl; } + void setEnd(T *P) { this->EndX = P; } +public: typedef size_t size_type; typedef ptrdiff_t difference_type; typedef T value_type; - typedef T* iterator; - typedef const T* const_iterator; + typedef T *iterator; + typedef const T *const_iterator; - typedef std::reverse_iterator const_reverse_iterator; - typedef std::reverse_iterator reverse_iterator; + typedef std::reverse_iterator const_reverse_iterator; + typedef std::reverse_iterator reverse_iterator; - typedef T& reference; - typedef const T& const_reference; - typedef T* pointer; - typedef const T* const_pointer; - - bool empty() const { return Begin == End; } - size_type size() const { return End-Begin; } - size_type max_size() const { return size_type(-1) / sizeof(T); } + typedef T &reference; + typedef const T &const_reference; + typedef T *pointer; + typedef const T *const_pointer; // forward iterator creation methods. - iterator begin() { return Begin; } - const_iterator begin() const { return Begin; } - iterator end() { return End; } - const_iterator end() const { return End; } + iterator begin() { return (iterator)this->BeginX; } + const_iterator begin() const { return (const_iterator)this->BeginX; } + iterator end() { return (iterator)this->EndX; } + const_iterator end() const { return (const_iterator)this->EndX; } +protected: + iterator capacity_ptr() { return (iterator)this->CapacityX; } + const_iterator capacity_ptr() const { return (const_iterator)this->CapacityX;} +public: // reverse iterator creation methods. reverse_iterator rbegin() { return reverse_iterator(end()); } @@ -120,16 +123,25 @@ public: reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin());} + size_type size() const { return end()-begin(); } + size_type max_size() const { return size_type(-1) / sizeof(T); } + + /// capacity - Return the total number of elements in the currently allocated + /// buffer. + size_t capacity() const { return capacity_ptr() - begin(); } + + /// data - Return a pointer to the vector's buffer, even if empty(). + pointer data() { return pointer(begin()); } + /// data - Return a pointer to the vector's buffer, even if empty(). + const_pointer data() const { return const_pointer(begin()); } - /* These asserts could be "Begin + idx < End", but there are lots of places - in llvm where we use &v[v.size()] instead of v.end(). */ reference operator[](unsigned idx) { - assert (Begin + idx <= End); - return Begin[idx]; + assert(begin() + idx < end()); + return begin()[idx]; } const_reference operator[](unsigned idx) const { - assert (Begin + idx <= End); - return Begin[idx]; + assert(begin() + idx < end()); + return begin()[idx]; } reference front() { @@ -145,61 +157,278 @@ public: const_reference back() const { return end()[-1]; } +}; + +/// SmallVectorTemplateBase - This is where we put method +/// implementations that are designed to work with non-POD-like T's. +template +class SmallVectorTemplateBase : public SmallVectorTemplateCommon { +protected: + SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon(Size) {} - void push_back(const_reference Elt) { - if (End < Capacity) { - Retry: - new (End) T(Elt); - ++End; + static void destroy_range(T *S, T *E) { + while (S != E) { + --E; + E->~T(); + } + } + + /// move - Use move-assignment to move the range [I, E) onto the + /// objects starting with "Dest". This is just 's + /// std::move, but not all stdlibs actually provide that. + template + static It2 move(It1 I, It1 E, It2 Dest) { +#if LLVM_USE_RVALUE_REFERENCES + for (; I != E; ++I, ++Dest) + *Dest = ::std::move(*I); + return Dest; +#else + return ::std::copy(I, E, Dest); +#endif + } + + /// move_backward - Use move-assignment to move the range + /// [I, E) onto the objects ending at "Dest", moving objects + /// in reverse order. This is just 's + /// std::move_backward, but not all stdlibs actually provide that. + template + static It2 move_backward(It1 I, It1 E, It2 Dest) { +#if LLVM_USE_RVALUE_REFERENCES + while (I != E) + *--Dest = ::std::move(*--E); + return Dest; +#else + return ::std::copy_backward(I, E, Dest); +#endif + } + + /// uninitialized_move - Move the range [I, E) into the uninitialized + /// memory starting with "Dest", constructing elements as needed. + template + static void uninitialized_move(It1 I, It1 E, It2 Dest) { +#if LLVM_USE_RVALUE_REFERENCES + for (; I != E; ++I, ++Dest) + ::new ((void*) &*Dest) T(::std::move(*I)); +#else + ::std::uninitialized_copy(I, E, Dest); +#endif + } + + /// uninitialized_copy - Copy the range [I, E) onto the uninitialized + /// memory starting with "Dest", constructing elements as needed. + template + static void uninitialized_copy(It1 I, It1 E, It2 Dest) { + std::uninitialized_copy(I, E, Dest); + } + + /// grow - Grow the allocated memory (without initializing new + /// elements), doubling the size of the allocated memory. + /// Guarantees space for at least one more element, or MinSize more + /// elements if specified. + void grow(size_t MinSize = 0); + +public: + void push_back(const T &Elt) { + if (this->EndX < this->CapacityX) { + Retry: + ::new ((void*) this->end()) T(Elt); + this->setEnd(this->end()+1); return; } - grow(); + this->grow(); goto Retry; } +#if LLVM_USE_RVALUE_REFERENCES + void push_back(T &&Elt) { + if (this->EndX < this->CapacityX) { + Retry: + ::new ((void*) this->end()) T(::std::move(Elt)); + this->setEnd(this->end()+1); + return; + } + this->grow(); + goto Retry; + } +#endif + void pop_back() { - --End; - End->~T(); + this->setEnd(this->end()-1); + this->end()->~T(); } +}; - T pop_back_val() { - T Result = back(); - pop_back(); - return Result; +// Define this out-of-line to dissuade the C++ compiler from inlining it. +template +void SmallVectorTemplateBase::grow(size_t MinSize) { + size_t CurCapacity = this->capacity(); + size_t CurSize = this->size(); + size_t NewCapacity = 2*CurCapacity + 1; // Always grow, even from zero. + if (NewCapacity < MinSize) + NewCapacity = MinSize; + T *NewElts = static_cast(malloc(NewCapacity*sizeof(T))); + + // Move the elements over. + this->uninitialized_move(this->begin(), this->end(), NewElts); + + // Destroy the original elements. + destroy_range(this->begin(), this->end()); + + // If this wasn't grown from the inline copy, deallocate the old space. + if (!this->isSmall()) + free(this->begin()); + + this->setEnd(NewElts+CurSize); + this->BeginX = NewElts; + this->CapacityX = this->begin()+NewCapacity; +} + + +/// SmallVectorTemplateBase - This is where we put method +/// implementations that are designed to work with POD-like T's. +template +class SmallVectorTemplateBase : public SmallVectorTemplateCommon { +protected: + SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon(Size) {} + + // No need to do a destroy loop for POD's. + static void destroy_range(T *, T *) {} + + /// move - Use move-assignment to move the range [I, E) onto the + /// objects starting with "Dest". For PODs, this is just memcpy. + template + static It2 move(It1 I, It1 E, It2 Dest) { + return ::std::copy(I, E, Dest); + } + + /// move_backward - Use move-assignment to move the range + /// [I, E) onto the objects ending at "Dest", moving objects + /// in reverse order. + template + static It2 move_backward(It1 I, It1 E, It2 Dest) { + return ::std::copy_backward(I, E, Dest); + } + + /// uninitialized_move - Move the range [I, E) onto the uninitialized memory + /// starting with "Dest", constructing elements into it as needed. + template + static void uninitialized_move(It1 I, It1 E, It2 Dest) { + // Just do a copy. + uninitialized_copy(I, E, Dest); + } + + /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory + /// starting with "Dest", constructing elements into it as needed. + template + static void uninitialized_copy(It1 I, It1 E, It2 Dest) { + // Arbitrary iterator types; just use the basic implementation. + std::uninitialized_copy(I, E, Dest); + } + + /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory + /// starting with "Dest", constructing elements into it as needed. + template + static void uninitialized_copy(T1 *I, T1 *E, T2 *Dest) { + // Use memcpy for PODs iterated by pointers (which includes SmallVector + // iterators): std::uninitialized_copy optimizes to memmove, but we can + // use memcpy here. + memcpy(Dest, I, (E-I)*sizeof(T)); + } + + /// grow - double the size of the allocated memory, guaranteeing space for at + /// least one more element or MinSize if specified. + void grow(size_t MinSize = 0) { + this->grow_pod(MinSize*sizeof(T), sizeof(T)); + } +public: + void push_back(const T &Elt) { + if (this->EndX < this->CapacityX) { + Retry: + memcpy(this->end(), &Elt, sizeof(T)); + this->setEnd(this->end()+1); + return; + } + this->grow(); + goto Retry; + } + + void pop_back() { + this->setEnd(this->end()-1); + } +}; + + +/// SmallVectorImpl - This class consists of common code factored out of the +/// SmallVector class to reduce code duplication based on the SmallVector 'N' +/// template parameter. +template +class SmallVectorImpl : public SmallVectorTemplateBase::value> { + typedef SmallVectorTemplateBase::value > SuperClass; + + SmallVectorImpl(const SmallVectorImpl&); // DISABLED. +public: + typedef typename SuperClass::iterator iterator; + typedef typename SuperClass::size_type size_type; + +protected: + // Default ctor - Initialize to empty. + explicit SmallVectorImpl(unsigned N) + : SmallVectorTemplateBase::value>(N*sizeof(T)) { + } + +public: + ~SmallVectorImpl() { + // Destroy the constructed elements in the vector. + this->destroy_range(this->begin(), this->end()); + + // If this wasn't grown from the inline copy, deallocate the old space. + if (!this->isSmall()) + free(this->begin()); } + void clear() { - destroy_range(Begin, End); - End = Begin; + this->destroy_range(this->begin(), this->end()); + this->EndX = this->BeginX; } void resize(unsigned N) { - if (N < size()) { - destroy_range(Begin+N, End); - End = Begin+N; - } else if (N > size()) { - if (unsigned(Capacity-Begin) < N) - grow(N); - construct_range(End, Begin+N, T()); - End = Begin+N; + if (N < this->size()) { + this->destroy_range(this->begin()+N, this->end()); + this->setEnd(this->begin()+N); + } else if (N > this->size()) { + if (this->capacity() < N) + this->grow(N); + std::uninitialized_fill(this->end(), this->begin()+N, T()); + this->setEnd(this->begin()+N); } } void resize(unsigned N, const T &NV) { - if (N < size()) { - destroy_range(Begin+N, End); - End = Begin+N; - } else if (N > size()) { - if (unsigned(Capacity-Begin) < N) - grow(N); - construct_range(End, Begin+N, NV); - End = Begin+N; + if (N < this->size()) { + this->destroy_range(this->begin()+N, this->end()); + this->setEnd(this->begin()+N); + } else if (N > this->size()) { + if (this->capacity() < N) + this->grow(N); + std::uninitialized_fill(this->end(), this->begin()+N, NV); + this->setEnd(this->begin()+N); } } void reserve(unsigned N) { - if (unsigned(Capacity-Begin) < N) - grow(N); + if (this->capacity() < N) + this->grow(N); + } + + T pop_back_val() { +#if LLVM_USE_RVALUE_REFERENCES + T Result = ::std::move(this->back()); +#else + T Result = this->back(); +#endif + this->pop_back(); + return Result; } void swap(SmallVectorImpl &RHS); @@ -210,99 +439,154 @@ public: void append(in_iter in_start, in_iter in_end) { size_type NumInputs = std::distance(in_start, in_end); // Grow allocated space if needed. - if (NumInputs > size_type(Capacity-End)) - grow(size()+NumInputs); + if (NumInputs > size_type(this->capacity_ptr()-this->end())) + this->grow(this->size()+NumInputs); // Copy the new elements over. - std::uninitialized_copy(in_start, in_end, End); - End += NumInputs; + // TODO: NEED To compile time dispatch on whether in_iter is a random access + // iterator to use the fast uninitialized_copy. + std::uninitialized_copy(in_start, in_end, this->end()); + this->setEnd(this->end() + NumInputs); } /// append - Add the specified range to the end of the SmallVector. /// void append(size_type NumInputs, const T &Elt) { // Grow allocated space if needed. - if (NumInputs > size_type(Capacity-End)) - grow(size()+NumInputs); + if (NumInputs > size_type(this->capacity_ptr()-this->end())) + this->grow(this->size()+NumInputs); // Copy the new elements over. - std::uninitialized_fill_n(End, NumInputs, Elt); - End += NumInputs; + std::uninitialized_fill_n(this->end(), NumInputs, Elt); + this->setEnd(this->end() + NumInputs); } void assign(unsigned NumElts, const T &Elt) { clear(); - if (unsigned(Capacity-Begin) < NumElts) - grow(NumElts); - End = Begin+NumElts; - construct_range(Begin, End, Elt); + if (this->capacity() < NumElts) + this->grow(NumElts); + this->setEnd(this->begin()+NumElts); + std::uninitialized_fill(this->begin(), this->end(), Elt); } iterator erase(iterator I) { + assert(I >= this->begin() && "Iterator to erase is out of bounds."); + assert(I < this->end() && "Erasing at past-the-end iterator."); + iterator N = I; // Shift all elts down one. - std::copy(I+1, End, I); + this->move(I+1, this->end(), I); // Drop the last elt. - pop_back(); + this->pop_back(); return(N); } iterator erase(iterator S, iterator E) { + assert(S >= this->begin() && "Range to erase is out of bounds."); + assert(S <= E && "Trying to erase invalid range."); + assert(E <= this->end() && "Trying to erase past the end."); + iterator N = S; // Shift all elts down. - iterator I = std::copy(E, End, S); + iterator I = this->move(E, this->end(), S); // Drop the last elts. - destroy_range(I, End); - End = I; + this->destroy_range(I, this->end()); + this->setEnd(I); return(N); } +#if LLVM_USE_RVALUE_REFERENCES + iterator insert(iterator I, T &&Elt) { + if (I == this->end()) { // Important special case for empty vector. + this->push_back(::std::move(Elt)); + return this->end()-1; + } + + assert(I >= this->begin() && "Insertion iterator is out of bounds."); + assert(I <= this->end() && "Inserting past the end of the vector."); + + if (this->EndX < this->CapacityX) { + Retry: + ::new ((void*) this->end()) T(::std::move(this->back())); + this->setEnd(this->end()+1); + // Push everything else over. + this->move_backward(I, this->end()-1, this->end()); + + // If we just moved the element we're inserting, be sure to update + // the reference. + T *EltPtr = &Elt; + if (I <= EltPtr && EltPtr < this->EndX) + ++EltPtr; + + *I = ::std::move(*EltPtr); + return I; + } + size_t EltNo = I-this->begin(); + this->grow(); + I = this->begin()+EltNo; + goto Retry; + } +#endif + iterator insert(iterator I, const T &Elt) { - if (I == End) { // Important special case for empty vector. - push_back(Elt); - return end()-1; + if (I == this->end()) { // Important special case for empty vector. + this->push_back(Elt); + return this->end()-1; } - if (End < Capacity) { - Retry: - new (End) T(back()); - ++End; + assert(I >= this->begin() && "Insertion iterator is out of bounds."); + assert(I <= this->end() && "Inserting past the end of the vector."); + + if (this->EndX < this->CapacityX) { + Retry: + ::new ((void*) this->end()) T(this->back()); + this->setEnd(this->end()+1); // Push everything else over. - std::copy_backward(I, End-1, End); - *I = Elt; + this->move_backward(I, this->end()-1, this->end()); + + // If we just moved the element we're inserting, be sure to update + // the reference. + const T *EltPtr = &Elt; + if (I <= EltPtr && EltPtr < this->EndX) + ++EltPtr; + + *I = *EltPtr; return I; } - size_t EltNo = I-Begin; - grow(); - I = Begin+EltNo; + size_t EltNo = I-this->begin(); + this->grow(); + I = this->begin()+EltNo; goto Retry; } iterator insert(iterator I, size_type NumToInsert, const T &Elt) { - if (I == End) { // Important special case for empty vector. + // Convert iterator to elt# to avoid invalidating iterator when we reserve() + size_t InsertElt = I - this->begin(); + + if (I == this->end()) { // Important special case for empty vector. append(NumToInsert, Elt); - return end()-1; + return this->begin()+InsertElt; } - // Convert iterator to elt# to avoid invalidating iterator when we reserve() - size_t InsertElt = I-begin(); + assert(I >= this->begin() && "Insertion iterator is out of bounds."); + assert(I <= this->end() && "Inserting past the end of the vector."); // Ensure there is enough space. - reserve(static_cast(size() + NumToInsert)); + reserve(static_cast(this->size() + NumToInsert)); // Uninvalidate the iterator. - I = begin()+InsertElt; + I = this->begin()+InsertElt; // If there are more elements between the insertion point and the end of the // range than there are being inserted, we can use a simple approach to // insertion. Since we already reserved space, we know that this won't // reallocate the vector. - if (size_t(end()-I) >= NumToInsert) { - T *OldEnd = End; - append(End-NumToInsert, End); + if (size_t(this->end()-I) >= NumToInsert) { + T *OldEnd = this->end(); + append(this->end()-NumToInsert, this->end()); // Copy the existing elements that get replaced. - std::copy(I, OldEnd-NumToInsert, I+NumToInsert); + this->move_backward(I, OldEnd-NumToInsert, OldEnd); std::fill_n(I, NumToInsert, Elt); return I; @@ -311,11 +595,11 @@ public: // Otherwise, we're inserting more elements than exist already, and we're // not inserting at the end. - // Copy over the elements that we're about to overwrite. - T *OldEnd = End; - End += NumToInsert; + // Move over the elements that we're about to overwrite. + T *OldEnd = this->end(); + this->setEnd(this->end() + NumToInsert); size_t NumOverwritten = OldEnd-I; - std::uninitialized_copy(I, OldEnd, End-NumOverwritten); + this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten); // Replace the overwritten part. std::fill_n(I, NumOverwritten, Elt); @@ -327,31 +611,35 @@ public: template iterator insert(iterator I, ItTy From, ItTy To) { - if (I == End) { // Important special case for empty vector. + // Convert iterator to elt# to avoid invalidating iterator when we reserve() + size_t InsertElt = I - this->begin(); + + if (I == this->end()) { // Important special case for empty vector. append(From, To); - return end()-1; + return this->begin()+InsertElt; } + assert(I >= this->begin() && "Insertion iterator is out of bounds."); + assert(I <= this->end() && "Inserting past the end of the vector."); + size_t NumToInsert = std::distance(From, To); - // Convert iterator to elt# to avoid invalidating iterator when we reserve() - size_t InsertElt = I-begin(); // Ensure there is enough space. - reserve(static_cast(size() + NumToInsert)); + reserve(static_cast(this->size() + NumToInsert)); // Uninvalidate the iterator. - I = begin()+InsertElt; + I = this->begin()+InsertElt; // If there are more elements between the insertion point and the end of the // range than there are being inserted, we can use a simple approach to // insertion. Since we already reserved space, we know that this won't // reallocate the vector. - if (size_t(end()-I) >= NumToInsert) { - T *OldEnd = End; - append(End-NumToInsert, End); + if (size_t(this->end()-I) >= NumToInsert) { + T *OldEnd = this->end(); + append(this->end()-NumToInsert, this->end()); // Copy the existing elements that get replaced. - std::copy(I, OldEnd-NumToInsert, I+NumToInsert); + this->move_backward(I, OldEnd-NumToInsert, OldEnd); std::copy(From, To, I); return I; @@ -360,175 +648,219 @@ public: // Otherwise, we're inserting more elements than exist already, and we're // not inserting at the end. - // Copy over the elements that we're about to overwrite. - T *OldEnd = End; - End += NumToInsert; + // Move over the elements that we're about to overwrite. + T *OldEnd = this->end(); + this->setEnd(this->end() + NumToInsert); size_t NumOverwritten = OldEnd-I; - std::uninitialized_copy(I, OldEnd, End-NumOverwritten); + this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten); // Replace the overwritten part. - std::copy(From, From+NumOverwritten, I); + for (T *J = I; NumOverwritten > 0; --NumOverwritten) { + *J = *From; + ++J; ++From; + } // Insert the non-overwritten middle part. - std::uninitialized_copy(From+NumOverwritten, To, OldEnd); + this->uninitialized_copy(From, To, OldEnd); return I; } - const SmallVectorImpl &operator=(const SmallVectorImpl &RHS); + SmallVectorImpl &operator=(const SmallVectorImpl &RHS); + +#if LLVM_USE_RVALUE_REFERENCES + SmallVectorImpl &operator=(SmallVectorImpl &&RHS); +#endif bool operator==(const SmallVectorImpl &RHS) const { - if (size() != RHS.size()) return false; - for (T *This = Begin, *That = RHS.Begin, *E = Begin+size(); - This != E; ++This, ++That) - if (*This != *That) - return false; - return true; + if (this->size() != RHS.size()) return false; + return std::equal(this->begin(), this->end(), RHS.begin()); + } + bool operator!=(const SmallVectorImpl &RHS) const { + return !(*this == RHS); } - bool operator!=(const SmallVectorImpl &RHS) const { return !(*this == RHS); } bool operator<(const SmallVectorImpl &RHS) const { - return std::lexicographical_compare(begin(), end(), + return std::lexicographical_compare(this->begin(), this->end(), RHS.begin(), RHS.end()); } -private: - /// isSmall - Return true if this is a smallvector which has not had dynamic - /// memory allocated for it. - bool isSmall() const { - return static_cast(Begin) == - static_cast(&FirstEl); - } - - /// grow - double the size of the allocated memory, guaranteeing space for at - /// least one more element or MinSize if specified. - void grow(size_type MinSize = 0); - - void construct_range(T *S, T *E, const T &Elt) { - for (; S != E; ++S) - new (S) T(Elt); - } - - void destroy_range(T *S, T *E) { - while (S != E) { - --E; - E->~T(); - } + /// set_size - Set the array size to \arg N, which the current array must have + /// enough capacity for. + /// + /// This does not construct or destroy any elements in the vector. + /// + /// Clients can use this in conjunction with capacity() to write past the end + /// of the buffer when they know that more elements are available, and only + /// update the size later. This avoids the cost of value initializing elements + /// which will only be overwritten. + void set_size(unsigned N) { + assert(N <= this->capacity()); + this->setEnd(this->begin() + N); } }; -// Define this out-of-line to dissuade the C++ compiler from inlining it. -template -void SmallVectorImpl::grow(size_t MinSize) { - size_t CurCapacity = Capacity-Begin; - size_t CurSize = size(); - size_t NewCapacity = 2*CurCapacity; - if (NewCapacity < MinSize) - NewCapacity = MinSize; - T *NewElts = static_cast(operator new(NewCapacity*sizeof(T))); - - // Copy the elements over. - if (is_class::value) - std::uninitialized_copy(Begin, End, NewElts); - else - // Use memcpy for PODs (std::uninitialized_copy optimizes to memmove). - memcpy(NewElts, Begin, CurSize * sizeof(T)); - - // Destroy the original elements. - destroy_range(Begin, End); - - // If this wasn't grown from the inline copy, deallocate the old space. - if (!isSmall()) - operator delete(Begin); - - Begin = NewElts; - End = NewElts+CurSize; - Capacity = Begin+NewCapacity; -} template void SmallVectorImpl::swap(SmallVectorImpl &RHS) { if (this == &RHS) return; // We can only avoid copying elements if neither vector is small. - if (!isSmall() && !RHS.isSmall()) { - std::swap(Begin, RHS.Begin); - std::swap(End, RHS.End); - std::swap(Capacity, RHS.Capacity); + if (!this->isSmall() && !RHS.isSmall()) { + std::swap(this->BeginX, RHS.BeginX); + std::swap(this->EndX, RHS.EndX); + std::swap(this->CapacityX, RHS.CapacityX); return; } - if (RHS.size() > size_type(Capacity-Begin)) - grow(RHS.size()); - if (size() > size_type(RHS.Capacity-RHS.begin())) - RHS.grow(size()); + if (RHS.size() > this->capacity()) + this->grow(RHS.size()); + if (this->size() > RHS.capacity()) + RHS.grow(this->size()); // Swap the shared elements. - size_t NumShared = size(); + size_t NumShared = this->size(); if (NumShared > RHS.size()) NumShared = RHS.size(); for (unsigned i = 0; i != static_cast(NumShared); ++i) - std::swap(Begin[i], RHS[i]); + std::swap((*this)[i], RHS[i]); // Copy over the extra elts. - if (size() > RHS.size()) { - size_t EltDiff = size() - RHS.size(); - std::uninitialized_copy(Begin+NumShared, End, RHS.End); - RHS.End += EltDiff; - destroy_range(Begin+NumShared, End); - End = Begin+NumShared; - } else if (RHS.size() > size()) { - size_t EltDiff = RHS.size() - size(); - std::uninitialized_copy(RHS.Begin+NumShared, RHS.End, End); - End += EltDiff; - destroy_range(RHS.Begin+NumShared, RHS.End); - RHS.End = RHS.Begin+NumShared; + if (this->size() > RHS.size()) { + size_t EltDiff = this->size() - RHS.size(); + this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end()); + RHS.setEnd(RHS.end()+EltDiff); + this->destroy_range(this->begin()+NumShared, this->end()); + this->setEnd(this->begin()+NumShared); + } else if (RHS.size() > this->size()) { + size_t EltDiff = RHS.size() - this->size(); + this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end()); + this->setEnd(this->end() + EltDiff); + this->destroy_range(RHS.begin()+NumShared, RHS.end()); + RHS.setEnd(RHS.begin()+NumShared); } } template -const SmallVectorImpl & -SmallVectorImpl::operator=(const SmallVectorImpl &RHS) { +SmallVectorImpl &SmallVectorImpl:: + operator=(const SmallVectorImpl &RHS) { // Avoid self-assignment. if (this == &RHS) return *this; // If we already have sufficient space, assign the common elements, then // destroy any excess. - unsigned RHSSize = unsigned(RHS.size()); - unsigned CurSize = unsigned(size()); + size_t RHSSize = RHS.size(); + size_t CurSize = this->size(); if (CurSize >= RHSSize) { // Assign common elements. iterator NewEnd; if (RHSSize) - NewEnd = std::copy(RHS.Begin, RHS.Begin+RHSSize, Begin); + NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin()); else - NewEnd = Begin; + NewEnd = this->begin(); // Destroy excess elements. - destroy_range(NewEnd, End); + this->destroy_range(NewEnd, this->end()); // Trim. - End = NewEnd; + this->setEnd(NewEnd); return *this; } // If we have to grow to have enough elements, destroy the current elements. // This allows us to avoid copying them during the grow. - if (unsigned(Capacity-Begin) < RHSSize) { + // FIXME: don't do this if they're efficiently moveable. + if (this->capacity() < RHSSize) { // Destroy current elements. - destroy_range(Begin, End); - End = Begin; + this->destroy_range(this->begin(), this->end()); + this->setEnd(this->begin()); CurSize = 0; - grow(RHSSize); + this->grow(RHSSize); } else if (CurSize) { // Otherwise, use assignment for the already-constructed elements. - std::copy(RHS.Begin, RHS.Begin+CurSize, Begin); + std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin()); } // Copy construct the new elements in place. - std::uninitialized_copy(RHS.Begin+CurSize, RHS.End, Begin+CurSize); + this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(), + this->begin()+CurSize); + + // Set end. + this->setEnd(this->begin()+RHSSize); + return *this; +} + +#if LLVM_USE_RVALUE_REFERENCES +template +SmallVectorImpl &SmallVectorImpl::operator=(SmallVectorImpl &&RHS) { + // Avoid self-assignment. + if (this == &RHS) return *this; + + // If the RHS isn't small, clear this vector and then steal its buffer. + if (!RHS.isSmall()) { + this->destroy_range(this->begin(), this->end()); + if (!this->isSmall()) free(this->begin()); + this->BeginX = RHS.BeginX; + this->EndX = RHS.EndX; + this->CapacityX = RHS.CapacityX; + RHS.resetToSmall(); + return *this; + } + + // If we already have sufficient space, assign the common elements, then + // destroy any excess. + size_t RHSSize = RHS.size(); + size_t CurSize = this->size(); + if (CurSize >= RHSSize) { + // Assign common elements. + iterator NewEnd = this->begin(); + if (RHSSize) + NewEnd = this->move(RHS.begin(), RHS.end(), NewEnd); + + // Destroy excess elements and trim the bounds. + this->destroy_range(NewEnd, this->end()); + this->setEnd(NewEnd); + + // Clear the RHS. + RHS.clear(); + + return *this; + } + + // If we have to grow to have enough elements, destroy the current elements. + // This allows us to avoid copying them during the grow. + // FIXME: this may not actually make any sense if we can efficiently move + // elements. + if (this->capacity() < RHSSize) { + // Destroy current elements. + this->destroy_range(this->begin(), this->end()); + this->setEnd(this->begin()); + CurSize = 0; + this->grow(RHSSize); + } else if (CurSize) { + // Otherwise, use assignment for the already-constructed elements. + this->move(RHS.begin(), RHS.end(), this->begin()); + } + + // Move-construct the new elements in place. + this->uninitialized_move(RHS.begin()+CurSize, RHS.end(), + this->begin()+CurSize); // Set end. - End = Begin+RHSSize; + this->setEnd(this->begin()+RHSSize); + + RHS.clear(); return *this; } +#endif + +/// Storage for the SmallVector elements which aren't contained in +/// SmallVectorTemplateCommon. There are 'N-1' elements here. The remaining '1' +/// element is in the base class. This is specialized for the N=1 and N=0 cases +/// to avoid allocating unnecessary storage. +template +struct SmallVectorStorage { + typename SmallVectorTemplateCommon::U InlineElts[N - 1]; +}; +template struct SmallVectorStorage {}; +template struct SmallVectorStorage {}; /// SmallVector - This is a 'vector' (really, a variable-sized array), optimized /// for the case when the array is small. It contains some number of elements @@ -540,43 +872,23 @@ SmallVectorImpl::operator=(const SmallVectorImpl &RHS) { /// template class SmallVector : public SmallVectorImpl { - /// InlineElts - These are 'N-1' elements that are stored inline in the body - /// of the vector. The extra '1' element is stored in SmallVectorImpl. - typedef typename SmallVectorImpl::U U; - enum { - // MinUs - The number of U's require to cover N T's. - MinUs = (static_cast(sizeof(T))*N + - static_cast(sizeof(U)) - 1) / - static_cast(sizeof(U)), - - // NumInlineEltsElts - The number of elements actually in this array. There - // is already one in the parent class, and we have to round up to avoid - // having a zero-element array. - NumInlineEltsElts = MinUs > 1 ? (MinUs - 1) : 1, - - // NumTsAvailable - The number of T's we actually have space for, which may - // be more than N due to rounding. - NumTsAvailable = (NumInlineEltsElts+1)*static_cast(sizeof(U))/ - static_cast(sizeof(T)) - }; - U InlineElts[NumInlineEltsElts]; + /// Storage - Inline space for elements which aren't stored in the base class. + SmallVectorStorage Storage; public: - SmallVector() : SmallVectorImpl(NumTsAvailable) { + SmallVector() : SmallVectorImpl(N) { } explicit SmallVector(unsigned Size, const T &Value = T()) - : SmallVectorImpl(NumTsAvailable) { - this->reserve(Size); - while (Size--) - this->push_back(Value); + : SmallVectorImpl(N) { + this->assign(Size, Value); } template - SmallVector(ItTy S, ItTy E) : SmallVectorImpl(NumTsAvailable) { + SmallVector(ItTy S, ItTy E) : SmallVectorImpl(N) { this->append(S, E); } - SmallVector(const SmallVector &RHS) : SmallVectorImpl(NumTsAvailable) { + SmallVector(const SmallVector &RHS) : SmallVectorImpl(N) { if (!RHS.empty()) SmallVectorImpl::operator=(RHS); } @@ -586,8 +898,25 @@ public: return *this; } +#if LLVM_USE_RVALUE_REFERENCES + SmallVector(SmallVector &&RHS) : SmallVectorImpl(N) { + if (!RHS.empty()) + SmallVectorImpl::operator=(::std::move(RHS)); + } + + const SmallVector &operator=(SmallVector &&RHS) { + SmallVectorImpl::operator=(::std::move(RHS)); + return *this; + } +#endif + }; +template +static inline size_t capacity_in_bytes(const SmallVector &X) { + return X.capacity_in_bytes(); +} + } // End llvm namespace namespace std {