X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;f=include%2Fllvm%2FADT%2FSmallVector.h;h=10ae049ff91fc2d3c9c95a56c31aff5a8b04984f;hb=5dd76fa50a63c6460957d11d2542469f0a7d65d7;hp=ae258846e74c0c7e4d048663e1e0502679f7ea8b;hpb=b5677f933f918acd8b8525635510d22dfb26285e;p=oota-llvm.git diff --git a/include/llvm/ADT/SmallVector.h b/include/llvm/ADT/SmallVector.h index ae258846e74..10ae049ff91 100644 --- a/include/llvm/ADT/SmallVector.h +++ b/include/llvm/ADT/SmallVector.h @@ -2,8 +2,8 @@ // // The LLVM Compiler Infrastructure // -// This file was developed by Chris Lattner and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // @@ -14,25 +14,51 @@ #ifndef LLVM_ADT_SMALLVECTOR_H #define LLVM_ADT_SMALLVECTOR_H +#include "llvm/Support/type_traits.h" #include -#include +#include +#include +#include +#include #include +#ifdef _MSC_VER +namespace std { +#if _MSC_VER <= 1310 + // Work around flawed VC++ implementation of std::uninitialized_copy. Define + // additional overloads so that elements with pointer types are recognized as + // scalars and not objects, causing bizarre type conversion errors. + template + inline _Scalar_ptr_iterator_tag _Ptr_cat(T1 **, T2 **) { + _Scalar_ptr_iterator_tag _Cat; + return _Cat; + } + + template + inline _Scalar_ptr_iterator_tag _Ptr_cat(T1* const *, T2 **) { + _Scalar_ptr_iterator_tag _Cat; + return _Cat; + } +#else +// FIXME: It is not clear if the problem is fixed in VS 2005. What is clear +// is that the above hack won't work if it wasn't fixed. +#endif +} +#endif + namespace llvm { -/// SmallVectorImpl - This class consists of common code factored out of the -/// SmallVector class to reduce code duplication based on the SmallVector 'N' -/// template parameter. -template -class SmallVectorImpl { - T *Begin, *End, *Capacity; - +/// SmallVectorBase - This is all the non-templated stuff common to all +/// SmallVectors. +class SmallVectorBase { +protected: + void *BeginX, *EndX, *CapacityX; + // Allocate raw space for N elements of type T. If T has a ctor or dtor, we // don't want it to be automatically run, so we need to represent the space as // something else. An array of char would work great, but might not be - // aligned sufficiently. Instead, we either use GCC extensions, or some - // number of union instances for the space, which guarantee maximal alignment. -protected: + // aligned sufficiently. Instead we use some number of union instances for + // the space, which guarantee maximal alignment. union U { double D; long double LD; @@ -40,181 +66,583 @@ protected: void *P; } FirstEl; // Space after 'FirstEl' is clobbered, do not add any instance vars after it. -public: - // Default ctor - Initialize to empty. - SmallVectorImpl(unsigned N) - : Begin((T*)&FirstEl), End((T*)&FirstEl), Capacity((T*)&FirstEl+N) { + +protected: + SmallVectorBase(size_t Size) + : BeginX(&FirstEl), EndX(&FirstEl), CapacityX((char*)&FirstEl+Size) {} + + /// isSmall - Return true if this is a smallvector which has not had dynamic + /// memory allocated for it. + bool isSmall() const { + return BeginX == static_cast(&FirstEl); } - - ~SmallVectorImpl() { - // Destroy the constructed elements in the vector. - for (iterator I = Begin, E = End; I != E; ++I) - I->~T(); - // If this wasn't grown from the inline copy, deallocate the old space. - if (!isSmall()) - delete[] (char*)Begin; + /// size_in_bytes - This returns size()*sizeof(T). + size_t size_in_bytes() const { + return size_t((char*)EndX - (char*)BeginX); } - + + /// capacity_in_bytes - This returns capacity()*sizeof(T). + size_t capacity_in_bytes() const { + return size_t((char*)CapacityX - (char*)BeginX); + } + + /// grow_pod - This is an implementation of the grow() method which only works + /// on POD-like datatypes and is out of line to reduce code duplication. + void grow_pod(size_t MinSizeInBytes, size_t TSize); + +public: + bool empty() const { return BeginX == EndX; } +}; + + +template +class SmallVectorTemplateCommon : public SmallVectorBase { +protected: + void setEnd(T *P) { this->EndX = P; } +public: + SmallVectorTemplateCommon(size_t Size) : SmallVectorBase(Size) {} + typedef size_t size_type; - typedef T* iterator; - typedef const T* const_iterator; - typedef T& reference; - typedef const T& const_reference; + typedef ptrdiff_t difference_type; + typedef T value_type; + typedef T *iterator; + typedef const T *const_iterator; - bool empty() const { return Begin == End; } - size_type size() const { return End-Begin; } - - iterator begin() { return Begin; } - const_iterator begin() const { return Begin; } + typedef std::reverse_iterator const_reverse_iterator; + typedef std::reverse_iterator reverse_iterator; + + typedef T &reference; + typedef const T &const_reference; + typedef T *pointer; + typedef const T *const_pointer; + + // forward iterator creation methods. + iterator begin() { return (iterator)this->BeginX; } + const_iterator begin() const { return (const_iterator)this->BeginX; } + iterator end() { return (iterator)this->EndX; } + const_iterator end() const { return (const_iterator)this->EndX; } +protected: + iterator capacity_ptr() { return (iterator)this->CapacityX; } + const_iterator capacity_ptr() const { return (const_iterator)this->CapacityX;} +public: + + // reverse iterator creation methods. + reverse_iterator rbegin() { return reverse_iterator(end()); } + const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); } + reverse_iterator rend() { return reverse_iterator(begin()); } + const_reverse_iterator rend() const { return const_reverse_iterator(begin());} + + size_type size() const { return end()-begin(); } + size_type max_size() const { return size_type(-1) / sizeof(T); } + + /// capacity - Return the total number of elements in the currently allocated + /// buffer. + size_t capacity() const { return capacity_ptr() - begin(); } + + /// data - Return a pointer to the vector's buffer, even if empty(). + pointer data() { return pointer(begin()); } + /// data - Return a pointer to the vector's buffer, even if empty(). + const_pointer data() const { return const_pointer(begin()); } - iterator end() { return End; } - const_iterator end() const { return End; } - reference operator[](unsigned idx) { - return Begin[idx]; + assert(begin() + idx < end()); + return begin()[idx]; } const_reference operator[](unsigned idx) const { - return Begin[idx]; + assert(begin() + idx < end()); + return begin()[idx]; } - + + reference front() { + return begin()[0]; + } + const_reference front() const { + return begin()[0]; + } + reference back() { return end()[-1]; } const_reference back() const { return end()[-1]; } +}; + +/// SmallVectorTemplateBase - This is where we put method +/// implementations that are designed to work with non-POD-like T's. +template +class SmallVectorTemplateBase : public SmallVectorTemplateCommon { +public: + SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon(Size) {} + + static void destroy_range(T *S, T *E) { + while (S != E) { + --E; + E->~T(); + } + } + + /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory + /// starting with "Dest", constructing elements into it as needed. + template + static void uninitialized_copy(It1 I, It1 E, It2 Dest) { + std::uninitialized_copy(I, E, Dest); + } + + /// grow - double the size of the allocated memory, guaranteeing space for at + /// least one more element or MinSize if specified. + void grow(size_t MinSize = 0); +}; + +// Define this out-of-line to dissuade the C++ compiler from inlining it. +template +void SmallVectorTemplateBase::grow(size_t MinSize) { + size_t CurCapacity = this->capacity(); + size_t CurSize = this->size(); + size_t NewCapacity = 2*CurCapacity + 1; // Always grow, even from zero. + if (NewCapacity < MinSize) + NewCapacity = MinSize; + T *NewElts = static_cast(malloc(NewCapacity*sizeof(T))); + + // Copy the elements over. + this->uninitialized_copy(this->begin(), this->end(), NewElts); + + // Destroy the original elements. + destroy_range(this->begin(), this->end()); + + // If this wasn't grown from the inline copy, deallocate the old space. + if (!this->isSmall()) + free(this->begin()); + + this->setEnd(NewElts+CurSize); + this->BeginX = NewElts; + this->CapacityX = this->begin()+NewCapacity; +} + + +/// SmallVectorTemplateBase - This is where we put method +/// implementations that are designed to work with POD-like T's. +template +class SmallVectorTemplateBase : public SmallVectorTemplateCommon { +public: + SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon(Size) {} + + // No need to do a destroy loop for POD's. + static void destroy_range(T *, T *) {} + + /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory + /// starting with "Dest", constructing elements into it as needed. + template + static void uninitialized_copy(It1 I, It1 E, It2 Dest) { + // Arbitrary iterator types; just use the basic implementation. + std::uninitialized_copy(I, E, Dest); + } + + /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory + /// starting with "Dest", constructing elements into it as needed. + template + static void uninitialized_copy(T1 *I, T1 *E, T2 *Dest) { + // Use memcpy for PODs iterated by pointers (which includes SmallVector + // iterators): std::uninitialized_copy optimizes to memmove, but we can + // use memcpy here. + memcpy(Dest, I, (E-I)*sizeof(T)); + } + + /// grow - double the size of the allocated memory, guaranteeing space for at + /// least one more element or MinSize if specified. + void grow(size_t MinSize = 0) { + this->grow_pod(MinSize*sizeof(T), sizeof(T)); + } +}; + + +/// SmallVectorImpl - This class consists of common code factored out of the +/// SmallVector class to reduce code duplication based on the SmallVector 'N' +/// template parameter. +template +class SmallVectorImpl : public SmallVectorTemplateBase::value> { + typedef SmallVectorTemplateBase::value > SuperClass; - void push_back(const_reference Elt) { - if (End < Capacity) { - Retry: - new (End) T(Elt); - ++End; + SmallVectorImpl(const SmallVectorImpl&); // DISABLED. +public: + typedef typename SuperClass::iterator iterator; + typedef typename SuperClass::size_type size_type; + + // Default ctor - Initialize to empty. + explicit SmallVectorImpl(unsigned N) + : SmallVectorTemplateBase::value>(N*sizeof(T)) { + } + + ~SmallVectorImpl() { + // Destroy the constructed elements in the vector. + this->destroy_range(this->begin(), this->end()); + + // If this wasn't grown from the inline copy, deallocate the old space. + if (!this->isSmall()) + free(this->begin()); + } + + + void clear() { + this->destroy_range(this->begin(), this->end()); + this->EndX = this->BeginX; + } + + void resize(unsigned N) { + if (N < this->size()) { + this->destroy_range(this->begin()+N, this->end()); + this->setEnd(this->begin()+N); + } else if (N > this->size()) { + if (this->capacity() < N) + this->grow(N); + this->construct_range(this->end(), this->begin()+N, T()); + this->setEnd(this->begin()+N); + } + } + + void resize(unsigned N, const T &NV) { + if (N < this->size()) { + this->destroy_range(this->begin()+N, this->end()); + this->setEnd(this->begin()+N); + } else if (N > this->size()) { + if (this->capacity() < N) + this->grow(N); + construct_range(this->end(), this->begin()+N, NV); + this->setEnd(this->begin()+N); + } + } + + void reserve(unsigned N) { + if (this->capacity() < N) + this->grow(N); + } + + void push_back(const T &Elt) { + if (this->EndX < this->CapacityX) { + Retry: + new (this->end()) T(Elt); + this->setEnd(this->end()+1); return; } - grow(); + this->grow(); goto Retry; } - + void pop_back() { - --End; - End->~T(); + this->setEnd(this->end()-1); + this->end()->~T(); } - - void clear() { - while (End != Begin) { - End->~T(); - --End; - } + + T pop_back_val() { + T Result = this->back(); + pop_back(); + return Result; } - + + + void swap(SmallVectorImpl &RHS); + /// append - Add the specified range to the end of the SmallVector. /// template void append(in_iter in_start, in_iter in_end) { - unsigned NumInputs = std::distance(in_start, in_end); + size_type NumInputs = std::distance(in_start, in_end); // Grow allocated space if needed. - if (End+NumInputs > Capacity) - grow(size()+NumInputs); + if (NumInputs > size_type(this->capacity_ptr()-this->end())) + this->grow(this->size()+NumInputs); // Copy the new elements over. - std::uninitialized_copy(in_start, in_end, End); - End += NumInputs; + // TODO: NEED To compile time dispatch on whether in_iter is a random access + // iterator to use the fast uninitialized_copy. + std::uninitialized_copy(in_start, in_end, this->end()); + this->setEnd(this->end() + NumInputs); } - + + /// append - Add the specified range to the end of the SmallVector. + /// + void append(size_type NumInputs, const T &Elt) { + // Grow allocated space if needed. + if (NumInputs > size_type(this->capacity_ptr()-this->end())) + this->grow(this->size()+NumInputs); + + // Copy the new elements over. + std::uninitialized_fill_n(this->end(), NumInputs, Elt); + this->setEnd(this->end() + NumInputs); + } + void assign(unsigned NumElts, const T &Elt) { clear(); - if (Begin+NumElts > Capacity) - grow(NumElts); - End = Begin+NumElts; - for (; NumElts; --NumElts) - new (Begin+NumElts-1) T(Elt); + if (this->capacity() < NumElts) + this->grow(NumElts); + this->setEnd(this->begin()+NumElts); + construct_range(this->begin(), this->end(), Elt); } - - const SmallVectorImpl &operator=(const SmallVectorImpl &RHS); - -private: - /// isSmall - Return true if this is a smallvector which has not had dynamic - /// memory allocated for it. - bool isSmall() const { - return (void*)Begin == (void*)&FirstEl; + + iterator erase(iterator I) { + iterator N = I; + // Shift all elts down one. + std::copy(I+1, this->end(), I); + // Drop the last elt. + pop_back(); + return(N); } - /// grow - double the size of the allocated memory, guaranteeing space for at - /// least one more element or MinSize if specified. - void grow(unsigned MinSize = 0); + iterator erase(iterator S, iterator E) { + iterator N = S; + // Shift all elts down. + iterator I = std::copy(E, this->end(), S); + // Drop the last elts. + this->destroy_range(I, this->end()); + this->setEnd(I); + return(N); + } + + iterator insert(iterator I, const T &Elt) { + if (I == this->end()) { // Important special case for empty vector. + push_back(Elt); + return this->end()-1; + } + + if (this->EndX < this->CapacityX) { + Retry: + new (this->end()) T(this->back()); + this->setEnd(this->end()+1); + // Push everything else over. + std::copy_backward(I, this->end()-1, this->end()); + *I = Elt; + return I; + } + size_t EltNo = I-this->begin(); + this->grow(); + I = this->begin()+EltNo; + goto Retry; + } + + iterator insert(iterator I, size_type NumToInsert, const T &Elt) { + if (I == this->end()) { // Important special case for empty vector. + append(NumToInsert, Elt); + return this->end()-1; + } + + // Convert iterator to elt# to avoid invalidating iterator when we reserve() + size_t InsertElt = I - this->begin(); + + // Ensure there is enough space. + reserve(static_cast(this->size() + NumToInsert)); + + // Uninvalidate the iterator. + I = this->begin()+InsertElt; + + // If there are more elements between the insertion point and the end of the + // range than there are being inserted, we can use a simple approach to + // insertion. Since we already reserved space, we know that this won't + // reallocate the vector. + if (size_t(this->end()-I) >= NumToInsert) { + T *OldEnd = this->end(); + append(this->end()-NumToInsert, this->end()); + + // Copy the existing elements that get replaced. + std::copy_backward(I, OldEnd-NumToInsert, OldEnd); + + std::fill_n(I, NumToInsert, Elt); + return I; + } + + // Otherwise, we're inserting more elements than exist already, and we're + // not inserting at the end. + + // Copy over the elements that we're about to overwrite. + T *OldEnd = this->end(); + this->setEnd(this->end() + NumToInsert); + size_t NumOverwritten = OldEnd-I; + this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten); + + // Replace the overwritten part. + std::fill_n(I, NumOverwritten, Elt); + + // Insert the non-overwritten middle part. + std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt); + return I; + } + + template + iterator insert(iterator I, ItTy From, ItTy To) { + if (I == this->end()) { // Important special case for empty vector. + append(From, To); + return this->end()-1; + } + + size_t NumToInsert = std::distance(From, To); + // Convert iterator to elt# to avoid invalidating iterator when we reserve() + size_t InsertElt = I - this->begin(); + + // Ensure there is enough space. + reserve(static_cast(this->size() + NumToInsert)); + + // Uninvalidate the iterator. + I = this->begin()+InsertElt; + + // If there are more elements between the insertion point and the end of the + // range than there are being inserted, we can use a simple approach to + // insertion. Since we already reserved space, we know that this won't + // reallocate the vector. + if (size_t(this->end()-I) >= NumToInsert) { + T *OldEnd = this->end(); + append(this->end()-NumToInsert, this->end()); + + // Copy the existing elements that get replaced. + std::copy_backward(I, OldEnd-NumToInsert, OldEnd); + + std::copy(From, To, I); + return I; + } + + // Otherwise, we're inserting more elements than exist already, and we're + // not inserting at the end. + + // Copy over the elements that we're about to overwrite. + T *OldEnd = this->end(); + this->setEnd(this->end() + NumToInsert); + size_t NumOverwritten = OldEnd-I; + this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten); + + // Replace the overwritten part. + for (; NumOverwritten > 0; --NumOverwritten) { + *I = *From; + ++I; ++From; + } + + // Insert the non-overwritten middle part. + this->uninitialized_copy(From, To, OldEnd); + return I; + } + + const SmallVectorImpl + &operator=(const SmallVectorImpl &RHS); + + bool operator==(const SmallVectorImpl &RHS) const { + if (this->size() != RHS.size()) return false; + return std::equal(this->begin(), this->end(), RHS.begin()); + } + bool operator!=(const SmallVectorImpl &RHS) const { + return !(*this == RHS); + } + + bool operator<(const SmallVectorImpl &RHS) const { + return std::lexicographical_compare(this->begin(), this->end(), + RHS.begin(), RHS.end()); + } + + /// set_size - Set the array size to \arg N, which the current array must have + /// enough capacity for. + /// + /// This does not construct or destroy any elements in the vector. + /// + /// Clients can use this in conjunction with capacity() to write past the end + /// of the buffer when they know that more elements are available, and only + /// update the size later. This avoids the cost of value initializing elements + /// which will only be overwritten. + void set_size(unsigned N) { + assert(N <= this->capacity()); + this->setEnd(this->begin() + N); + } + +private: + static void construct_range(T *S, T *E, const T &Elt) { + for (; S != E; ++S) + new (S) T(Elt); + } }; -// Define this out-of-line to dissuade the C++ compiler from inlining it. + template -void SmallVectorImpl::grow(unsigned MinSize) { - unsigned CurCapacity = Capacity-Begin; - unsigned CurSize = size(); - unsigned NewCapacity = 2*CurCapacity; - if (NewCapacity < MinSize) - NewCapacity = MinSize; - T *NewElts = reinterpret_cast(new char[NewCapacity*sizeof(T)]); - - // Copy the elements over. - std::uninitialized_copy(Begin, End, NewElts); - - // Destroy the original elements. - for (iterator I = Begin, E = End; I != E; ++I) - I->~T(); - - // If this wasn't grown from the inline copy, deallocate the old space. - if (!isSmall()) - delete[] (char*)Begin; - - Begin = NewElts; - End = NewElts+CurSize; - Capacity = Begin+NewCapacity; +void SmallVectorImpl::swap(SmallVectorImpl &RHS) { + if (this == &RHS) return; + + // We can only avoid copying elements if neither vector is small. + if (!this->isSmall() && !RHS.isSmall()) { + std::swap(this->BeginX, RHS.BeginX); + std::swap(this->EndX, RHS.EndX); + std::swap(this->CapacityX, RHS.CapacityX); + return; + } + if (RHS.size() > this->capacity()) + this->grow(RHS.size()); + if (this->size() > RHS.capacity()) + RHS.grow(this->size()); + + // Swap the shared elements. + size_t NumShared = this->size(); + if (NumShared > RHS.size()) NumShared = RHS.size(); + for (unsigned i = 0; i != static_cast(NumShared); ++i) + std::swap((*this)[i], RHS[i]); + + // Copy over the extra elts. + if (this->size() > RHS.size()) { + size_t EltDiff = this->size() - RHS.size(); + this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end()); + RHS.setEnd(RHS.end()+EltDiff); + this->destroy_range(this->begin()+NumShared, this->end()); + this->setEnd(this->begin()+NumShared); + } else if (RHS.size() > this->size()) { + size_t EltDiff = RHS.size() - this->size(); + this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end()); + this->setEnd(this->end() + EltDiff); + this->destroy_range(RHS.begin()+NumShared, RHS.end()); + RHS.setEnd(RHS.begin()+NumShared); + } } - + template -const SmallVectorImpl & -SmallVectorImpl::operator=(const SmallVectorImpl &RHS) { +const SmallVectorImpl &SmallVectorImpl:: + operator=(const SmallVectorImpl &RHS) { // Avoid self-assignment. if (this == &RHS) return *this; - + // If we already have sufficient space, assign the common elements, then // destroy any excess. - unsigned RHSSize = RHS.size(); - unsigned CurSize = size(); + size_t RHSSize = RHS.size(); + size_t CurSize = this->size(); if (CurSize >= RHSSize) { // Assign common elements. - std::copy(RHS.Begin, RHS.Begin+RHSSize, Begin); - + iterator NewEnd; + if (RHSSize) + NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin()); + else + NewEnd = this->begin(); + // Destroy excess elements. - for (unsigned i = RHSSize; i != CurSize; ++i) - Begin[i].~T(); - + this->destroy_range(NewEnd, this->end()); + // Trim. - End = Begin + RHSSize; + this->setEnd(NewEnd); return *this; } - + // If we have to grow to have enough elements, destroy the current elements. // This allows us to avoid copying them during the grow. - if (unsigned(Capacity-Begin) < RHSSize) { + if (this->capacity() < RHSSize) { // Destroy current elements. - for (iterator I = Begin, E = End; I != E; ++I) - I->~T(); - End = Begin; + this->destroy_range(this->begin(), this->end()); + this->setEnd(this->begin()); CurSize = 0; - grow(RHSSize); + this->grow(RHSSize); } else if (CurSize) { // Otherwise, use assignment for the already-constructed elements. - std::copy(RHS.Begin, RHS.Begin+CurSize, Begin); + std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin()); } - + // Copy construct the new elements in place. - std::uninitialized_copy(RHS.Begin+CurSize, RHS.End, Begin+CurSize); - + this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(), + this->begin()+CurSize); + // Set end. - End = Begin+RHSSize; + this->setEnd(this->begin()+RHSSize); + return *this; } - + + /// SmallVector - This is a 'vector' (really, a variable-sized array), optimized /// for the case when the array is small. It contains some number of elements /// in-place, which allows it to avoid heap allocation when the actual number of @@ -228,21 +656,97 @@ class SmallVector : public SmallVectorImpl { /// InlineElts - These are 'N-1' elements that are stored inline in the body /// of the vector. The extra '1' element is stored in SmallVectorImpl. typedef typename SmallVectorImpl::U U; - U InlineElts[(sizeof(T)*N+sizeof(U)-1)/sizeof(U) - 1]; -public: - SmallVector() : SmallVectorImpl(N) { + enum { + // MinUs - The number of U's require to cover N T's. + MinUs = (static_cast(sizeof(T))*N + + static_cast(sizeof(U)) - 1) / + static_cast(sizeof(U)), + + // NumInlineEltsElts - The number of elements actually in this array. There + // is already one in the parent class, and we have to round up to avoid + // having a zero-element array. + NumInlineEltsElts = MinUs > 1 ? (MinUs - 1) : 1, + + // NumTsAvailable - The number of T's we actually have space for, which may + // be more than N due to rounding. + NumTsAvailable = (NumInlineEltsElts+1)*static_cast(sizeof(U))/ + static_cast(sizeof(T)) + }; + U InlineElts[NumInlineEltsElts]; +public: + SmallVector() : SmallVectorImpl(NumTsAvailable) { } - + + explicit SmallVector(unsigned Size, const T &Value = T()) + : SmallVectorImpl(NumTsAvailable) { + this->reserve(Size); + while (Size--) + this->push_back(Value); + } + template - SmallVector(ItTy S, ItTy E) : SmallVectorImpl(N) { - append(S, E); + SmallVector(ItTy S, ItTy E) : SmallVectorImpl(NumTsAvailable) { + this->append(S, E); } - - SmallVector(const SmallVector &RHS) : SmallVectorImpl(N) { - operator=(RHS); + + SmallVector(const SmallVector &RHS) : SmallVectorImpl(NumTsAvailable) { + if (!RHS.empty()) + SmallVectorImpl::operator=(RHS); + } + + const SmallVector &operator=(const SmallVector &RHS) { + SmallVectorImpl::operator=(RHS); + return *this; + } + +}; + +/// Specialize SmallVector at N=0. This specialization guarantees +/// that it can be instantiated at an incomplete T if none of its +/// members are required. +template +class SmallVector : public SmallVectorImpl { +public: + SmallVector() : SmallVectorImpl(0) {} + + explicit SmallVector(unsigned Size, const T &Value = T()) + : SmallVectorImpl(0) { + this->reserve(Size); + while (Size--) + this->push_back(Value); + } + + template + SmallVector(ItTy S, ItTy E) : SmallVectorImpl(0) { + this->append(S, E); + } + + SmallVector(const SmallVector &RHS) : SmallVectorImpl(0) { + SmallVectorImpl::operator=(RHS); } + + SmallVector &operator=(const SmallVectorImpl &RHS) { + return SmallVectorImpl::operator=(RHS); + } + }; } // End llvm namespace +namespace std { + /// Implement std::swap in terms of SmallVector swap. + template + inline void + swap(llvm::SmallVectorImpl &LHS, llvm::SmallVectorImpl &RHS) { + LHS.swap(RHS); + } + + /// Implement std::swap in terms of SmallVector swap. + template + inline void + swap(llvm::SmallVector &LHS, llvm::SmallVector &RHS) { + LHS.swap(RHS); + } +} + #endif