X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;f=include%2Fllvm%2FADT%2FImmutableSet.h;h=261d0494e2d6c5b185ed0a2acb45e218f0a2445f;hb=fc601db2ed899d800ea0a50f7ecf7de2a820cbc1;hp=841b4ab6371bb23c98176efa85a6bc53ed06fc38;hpb=be24d91d824387cea4454bd16f63d5b2409c56e1;p=oota-llvm.git diff --git a/include/llvm/ADT/ImmutableSet.h b/include/llvm/ADT/ImmutableSet.h index 841b4ab6371..261d0494e2d 100644 --- a/include/llvm/ADT/ImmutableSet.h +++ b/include/llvm/ADT/ImmutableSet.h @@ -2,8 +2,8 @@ // // The LLVM Compiler Infrastructure // -// This file was developed by Ted Kremenek and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // @@ -15,47 +15,65 @@ #define LLVM_ADT_IMSET_H #include "llvm/Support/Allocator.h" +#include "llvm/ADT/DenseMap.h" #include "llvm/ADT/FoldingSet.h" +#include "llvm/Support/DataTypes.h" +#include "llvm/Support/ErrorHandling.h" #include +#include +#include namespace llvm { - -//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// // Immutable AVL-Tree Definition. //===----------------------------------------------------------------------===// template class ImutAVLFactory; - +template class ImutIntervalAVLFactory; +template class ImutAVLTreeInOrderIterator; +template class ImutAVLTreeGenericIterator; template -class ImutAVLTree : public FoldingSetNode { - struct ComputeIsEqual; +class ImutAVLTree { public: typedef typename ImutInfo::key_type_ref key_type_ref; typedef typename ImutInfo::value_type value_type; typedef typename ImutInfo::value_type_ref value_type_ref; + typedef ImutAVLFactory Factory; - friend class ImutAVLFactory; - - //===----------------------------------------------------===// + friend class ImutIntervalAVLFactory; + + friend class ImutAVLTreeGenericIterator; + + typedef ImutAVLTreeInOrderIterator iterator; + + //===----------------------------------------------------===// // Public Interface. - //===----------------------------------------------------===// - - ImutAVLTree* getLeft() const { return reinterpret_cast(Left); } - - ImutAVLTree* getRight() const { return Right; } - - unsigned getHeight() const { return Height; } - - const value_type& getValue() const { return Value; } - + //===----------------------------------------------------===// + + /// Return a pointer to the left subtree. This value + /// is NULL if there is no left subtree. + ImutAVLTree *getLeft() const { return left; } + + /// Return a pointer to the right subtree. This value is + /// NULL if there is no right subtree. + ImutAVLTree *getRight() const { return right; } + + /// getHeight - Returns the height of the tree. A tree with no subtrees + /// has a height of 1. + unsigned getHeight() const { return height; } + + /// getValue - Returns the data value associated with the tree node. + const value_type& getValue() const { return value; } + + /// find - Finds the subtree associated with the specified key value. + /// This method returns NULL if no matching subtree is found. ImutAVLTree* find(key_type_ref K) { ImutAVLTree *T = this; - while (T) { key_type_ref CurrentKey = ImutInfo::KeyOfValue(T->getValue()); - if (ImutInfo::isEqual(K,CurrentKey)) return T; else if (ImutInfo::isLess(K,CurrentKey)) @@ -63,212 +81,377 @@ public: else T = T->getRight(); } - return NULL; } - + + /// getMaxElement - Find the subtree associated with the highest ranged + /// key value. + ImutAVLTree* getMaxElement() { + ImutAVLTree *T = this; + ImutAVLTree *Right = T->getRight(); + while (Right) { T = right; right = T->getRight(); } + return T; + } + + /// size - Returns the number of nodes in the tree, which includes + /// both leaves and non-leaf nodes. unsigned size() const { unsigned n = 1; - - if (const ImutAVLTree* L = getLeft()) n += L->size(); - if (const ImutAVLTree* R = getRight()) n += R->size(); - + if (const ImutAVLTree* L = getLeft()) + n += L->size(); + if (const ImutAVLTree* R = getRight()) + n += R->size(); return n; } - - + + /// begin - Returns an iterator that iterates over the nodes of the tree + /// in an inorder traversal. The returned iterator thus refers to the + /// the tree node with the minimum data element. + iterator begin() const { return iterator(this); } + + /// end - Returns an iterator for the tree that denotes the end of an + /// inorder traversal. + iterator end() const { return iterator(); } + + bool isElementEqual(value_type_ref V) const { + // Compare the keys. + if (!ImutInfo::isEqual(ImutInfo::KeyOfValue(getValue()), + ImutInfo::KeyOfValue(V))) + return false; + + // Also compare the data values. + if (!ImutInfo::isDataEqual(ImutInfo::DataOfValue(getValue()), + ImutInfo::DataOfValue(V))) + return false; + + return true; + } + + bool isElementEqual(const ImutAVLTree* RHS) const { + return isElementEqual(RHS->getValue()); + } + + /// isEqual - Compares two trees for structural equality and returns true + /// if they are equal. This worst case performance of this operation is + // linear in the sizes of the trees. bool isEqual(const ImutAVLTree& RHS) const { - // FIXME: Todo. - return true; + if (&RHS == this) + return true; + + iterator LItr = begin(), LEnd = end(); + iterator RItr = RHS.begin(), REnd = RHS.end(); + + while (LItr != LEnd && RItr != REnd) { + if (*LItr == *RItr) { + LItr.skipSubTree(); + RItr.skipSubTree(); + continue; + } + + if (!LItr->isElementEqual(*RItr)) + return false; + + ++LItr; + ++RItr; + } + + return LItr == LEnd && RItr == REnd; } - + + /// isNotEqual - Compares two trees for structural inequality. Performance + /// is the same is isEqual. bool isNotEqual(const ImutAVLTree& RHS) const { return !isEqual(RHS); } - - bool contains(const key_type_ref K) { return (bool) find(K); } - + + /// contains - Returns true if this tree contains a subtree (node) that + /// has an data element that matches the specified key. Complexity + /// is logarithmic in the size of the tree. + bool contains(key_type_ref K) { return (bool) find(K); } + + /// foreach - A member template the accepts invokes operator() on a functor + /// object (specifed by Callback) for every node/subtree in the tree. + /// Nodes are visited using an inorder traversal. template void foreach(Callback& C) { - if (ImutAVLTree* L = getLeft()) L->foreach(C); - - C(Value); - - if (ImutAVLTree* R = getRight()) R->foreach(C); - } - - unsigned verify() const { - unsigned HL = getLeft() ? getLeft()->verify() : 0; - unsigned HR = getRight() ? getRight()->verify() : 0; - - assert (getHeight() == ( HL > HR ? HL : HR ) + 1 - && "Height calculation wrong."); - - assert ((HL > HR ? HL-HR : HR-HL) <= 2 - && "Balancing invariant violated."); - - - assert (!getLeft() - || ImutInfo::isLess(ImutInfo::KeyOfValue(getLeft()->getValue()), - ImutInfo::KeyOfValue(getValue())) - && "Value in left child is not less that current value."); - - - assert (!getRight() - || ImutInfo::isLess(ImutInfo::KeyOfValue(getValue()), - ImutInfo::KeyOfValue(getRight()->getValue())) - && "Current value is not less that value of right child."); - + if (ImutAVLTree* L = getLeft()) + L->foreach(C); + + C(value); + + if (ImutAVLTree* R = getRight()) + R->foreach(C); + } + + /// validateTree - A utility method that checks that the balancing and + /// ordering invariants of the tree are satisifed. It is a recursive + /// method that returns the height of the tree, which is then consumed + /// by the enclosing validateTree call. External callers should ignore the + /// return value. An invalid tree will cause an assertion to fire in + /// a debug build. + unsigned validateTree() const { + unsigned HL = getLeft() ? getLeft()->validateTree() : 0; + unsigned HR = getRight() ? getRight()->validateTree() : 0; + (void) HL; + (void) HR; + + assert(getHeight() == ( HL > HR ? HL : HR ) + 1 + && "Height calculation wrong"); + + assert((HL > HR ? HL-HR : HR-HL) <= 2 + && "Balancing invariant violated"); + + assert((!getLeft() || + ImutInfo::isLess(ImutInfo::KeyOfValue(getLeft()->getValue()), + ImutInfo::KeyOfValue(getValue()))) && + "Value in left child is not less that current value"); + + + assert(!(getRight() || + ImutInfo::isLess(ImutInfo::KeyOfValue(getValue()), + ImutInfo::KeyOfValue(getRight()->getValue()))) && + "Current value is not less that value of right child"); + return getHeight(); - } - - //===----------------------------------------------------===// - // Internal Values. + } + + //===----------------------------------------------------===// + // Internal values. //===----------------------------------------------------===// - + private: - uintptr_t Left; - ImutAVLTree* Right; - unsigned Height; - value_type Value; - - //===----------------------------------------------------===// - // Profiling or FoldingSet. + Factory *factory; + ImutAVLTree *left; + ImutAVLTree *right; + ImutAVLTree *prev; + ImutAVLTree *next; + + unsigned height : 28; + unsigned IsMutable : 1; + unsigned IsDigestCached : 1; + unsigned IsCanonicalized : 1; + + value_type value; + uint32_t digest; + uint32_t refCount; + //===----------------------------------------------------===// - - static inline - void Profile(FoldingSetNodeID& ID, ImutAVLTree* L, ImutAVLTree* R, - unsigned H, value_type_ref V) { - ID.AddPointer(L); - ID.AddPointer(R); - ID.AddInteger(H); - ImutInfo::Profile(ID,V); - } - -public: - - void Profile(FoldingSetNodeID& ID) { - Profile(ID,getSafeLeft(),getRight(),getHeight(),getValue()); - } - - //===----------------------------------------------------===// // Internal methods (node manipulation; used by Factory). //===----------------------------------------------------===// - + private: - - ImutAVLTree(ImutAVLTree* l, ImutAVLTree* r, value_type_ref v, unsigned height) - : Left(reinterpret_cast(l) | 0x1), - Right(r), Height(height), Value(v) {} - - bool isMutable() const { return Left & 0x1; } - - ImutAVLTree* getSafeLeft() const { - return reinterpret_cast(Left & ~0x1); - } - - // Mutating operations. A tree root can be manipulated as long as - // its reference has not "escaped" from internal methods of a - // factory object (see below). When a tree pointer is externally - // viewable by client code, the internal "mutable bit" is cleared - // to mark the tree immutable. Note that a tree that still has - // its mutable bit set may have children (subtrees) that are themselves + /// ImutAVLTree - Internal constructor that is only called by + /// ImutAVLFactory. + ImutAVLTree(Factory *f, ImutAVLTree* l, ImutAVLTree* r, value_type_ref v, + unsigned height) + : factory(f), left(l), right(r), prev(0), next(0), height(height), + IsMutable(true), IsDigestCached(false), IsCanonicalized(0), + value(v), digest(0), refCount(0) + { + if (left) left->retain(); + if (right) right->retain(); + } + + /// isMutable - Returns true if the left and right subtree references + /// (as well as height) can be changed. If this method returns false, + /// the tree is truly immutable. Trees returned from an ImutAVLFactory + /// object should always have this method return true. Further, if this + /// method returns false for an instance of ImutAVLTree, all subtrees + /// will also have this method return false. The converse is not true. + bool isMutable() const { return IsMutable; } + + /// hasCachedDigest - Returns true if the digest for this tree is cached. + /// This can only be true if the tree is immutable. + bool hasCachedDigest() const { return IsDigestCached; } + + //===----------------------------------------------------===// + // Mutating operations. A tree root can be manipulated as + // long as its reference has not "escaped" from internal + // methods of a factory object (see below). When a tree + // pointer is externally viewable by client code, the + // internal "mutable bit" is cleared to mark the tree + // immutable. Note that a tree that still has its mutable + // bit set may have children (subtrees) that are themselves // immutable. - - void RemoveMutableFlag() { - assert (Left & 0x1 && "Mutable flag already removed."); - Left &= ~0x1; - } - - void setLeft(ImutAVLTree* NewLeft) { - assert (isMutable()); - Left = reinterpret_cast(NewLeft) | 0x1; - } - - void setRight(ImutAVLTree* NewRight) { - assert (isMutable()); - Right = NewRight; - } - + //===----------------------------------------------------===// + + /// markImmutable - Clears the mutable flag for a tree. After this happens, + /// it is an error to call setLeft(), setRight(), and setHeight(). + void markImmutable() { + assert(isMutable() && "Mutable flag already removed."); + IsMutable = false; + } + + /// markedCachedDigest - Clears the NoCachedDigest flag for a tree. + void markedCachedDigest() { + assert(!hasCachedDigest() && "NoCachedDigest flag already removed."); + IsDigestCached = true; + } + + /// setHeight - Changes the height of the tree. Used internally by + /// ImutAVLFactory. void setHeight(unsigned h) { - assert (isMutable()); - Height = h; + assert(isMutable() && "Only a mutable tree can have its height changed."); + height = h; + } + + static inline + uint32_t computeDigest(ImutAVLTree* L, ImutAVLTree* R, value_type_ref V) { + uint32_t digest = 0; + + if (L) + digest += L->computeDigest(); + + // Compute digest of stored data. + FoldingSetNodeID ID; + ImutInfo::Profile(ID,V); + digest += ID.ComputeHash(); + + if (R) + digest += R->computeDigest(); + + return digest; + } + + inline uint32_t computeDigest() { + // Check the lowest bit to determine if digest has actually been + // pre-computed. + if (hasCachedDigest()) + return digest; + + uint32_t X = computeDigest(getLeft(), getRight(), getValue()); + digest = X; + markedCachedDigest(); + return X; + } + + //===----------------------------------------------------===// + // Reference count operations. + //===----------------------------------------------------===// + +public: + void retain() { ++refCount; } + void release() { + assert(refCount > 0); + if (--refCount == 0) + destroy(); + } + void destroy() { + if (left) + left->release(); + if (right) + right->release(); + if (IsCanonicalized) { + if (next) + next->prev = prev; + + if (prev) + prev->next = next; + else + factory->Cache[factory->maskCacheIndex(computeDigest())] = next; + } + + // We need to clear the mutability bit in case we are + // destroying the node as part of a sweep in ImutAVLFactory::recoverNodes(). + IsMutable = false; + factory->freeNodes.push_back(this); } }; -//===----------------------------------------------------------------------===// +//===----------------------------------------------------------------------===// // Immutable AVL-Tree Factory class. //===----------------------------------------------------------------------===// -template +template class ImutAVLFactory { + friend class ImutAVLTree; typedef ImutAVLTree TreeTy; typedef typename TreeTy::value_type_ref value_type_ref; typedef typename TreeTy::key_type_ref key_type_ref; - - typedef FoldingSet CacheTy; - - CacheTy Cache; - BumpPtrAllocator Allocator; - - //===--------------------------------------------------===// + + typedef DenseMap CacheTy; + + CacheTy Cache; + uintptr_t Allocator; + std::vector createdNodes; + std::vector freeNodes; + + bool ownsAllocator() const { + return Allocator & 0x1 ? false : true; + } + + BumpPtrAllocator& getAllocator() const { + return *reinterpret_cast(Allocator & ~0x1); + } + + //===--------------------------------------------------===// // Public interface. //===--------------------------------------------------===// - + public: - ImutAVLFactory() {} - - TreeTy* Add(TreeTy* T, value_type_ref V) { - T = Add_internal(V,T); - MarkImmutable(T); + ImutAVLFactory() + : Allocator(reinterpret_cast(new BumpPtrAllocator())) {} + + ImutAVLFactory(BumpPtrAllocator& Alloc) + : Allocator(reinterpret_cast(&Alloc) | 0x1) {} + + ~ImutAVLFactory() { + if (ownsAllocator()) delete &getAllocator(); + } + + TreeTy* add(TreeTy* T, value_type_ref V) { + T = add_internal(V,T); + markImmutable(T); + recoverNodes(); return T; } - - TreeTy* Remove(TreeTy* T, key_type_ref V) { - T = Remove_internal(V,T); - MarkImmutable(T); + + TreeTy* remove(TreeTy* T, key_type_ref V) { + T = remove_internal(V,T); + markImmutable(T); + recoverNodes(); return T; } - - TreeTy* GetEmptyTree() const { return NULL; } - - //===--------------------------------------------------===// + + TreeTy* getEmptyTree() const { return NULL; } + +protected: + + //===--------------------------------------------------===// // A bunch of quick helper functions used for reasoning // about the properties of trees and their children. // These have succinct names so that the balancing code // is as terse (and readable) as possible. //===--------------------------------------------------===// -private: - - bool isEmpty(TreeTy* T) const { - return !T; - } - - unsigned Height(TreeTy* T) const { - return T ? T->getHeight() : 0; - } - - TreeTy* Left(TreeTy* T) const { - assert (T); - return T->getSafeLeft(); - } - - TreeTy* Right(TreeTy* T) const { - assert (T); - return T->getRight(); - } - - value_type_ref Value(TreeTy* T) const { - assert (T); - return T->Value; - } - - unsigned IncrementHeight(TreeTy* L, TreeTy* R) const { - unsigned hl = Height(L); - unsigned hr = Height(R); - return ( hl > hr ? hl : hr ) + 1; - } - - //===--------------------------------------------------===// - // "CreateNode" is used to generate new tree roots that link + + bool isEmpty(TreeTy* T) const { return !T; } + unsigned getHeight(TreeTy* T) const { return T ? T->getHeight() : 0; } + TreeTy* getLeft(TreeTy* T) const { return T->getLeft(); } + TreeTy* getRight(TreeTy* T) const { return T->getRight(); } + value_type_ref getValue(TreeTy* T) const { return T->value; } + + // Make sure the index is not the Tombstone or Entry key of the DenseMap. + static inline unsigned maskCacheIndex(unsigned I) { + return (I & ~0x02); + } + + unsigned incrementHeight(TreeTy* L, TreeTy* R) const { + unsigned hl = getHeight(L); + unsigned hr = getHeight(R); + return (hl > hr ? hl : hr) + 1; + } + + static bool compareTreeWithSection(TreeTy* T, + typename TreeTy::iterator& TI, + typename TreeTy::iterator& TE) { + typename TreeTy::iterator I = T->begin(), E = T->end(); + for ( ; I!=E ; ++I, ++TI) { + if (TI == TE || !I->isElementEqual(*TI)) + return false; + } + return true; + } + + //===--------------------------------------------------===// + // "createNode" is used to generate new tree roots that link // to other trees. The functon may also simply move links // in an existing root if that root is still marked mutable. // This is necessary because otherwise our balancing code @@ -276,160 +459,355 @@ private: // then discarded later before the finished tree is // returned to the caller. //===--------------------------------------------------===// - - TreeTy* CreateNode(TreeTy* L, value_type_ref V, TreeTy* R) { - FoldingSetNodeID ID; - unsigned height = IncrementHeight(L,R); - - TreeTy::Profile(ID,L,R,height,V); - void* InsertPos; - - if (TreeTy* T = Cache.FindNodeOrInsertPos(ID,InsertPos)) - return T; - - assert (InsertPos != NULL); - - // FIXME: more intelligent calculation of alignment. - TreeTy* T = (TreeTy*) Allocator.Allocate(sizeof(*T),16); - new (T) TreeTy(L,R,V,height); - - Cache.InsertNode(T,InsertPos); - return T; - } - - TreeTy* CreateNode(TreeTy* L, TreeTy* OldTree, TreeTy* R) { - assert (!isEmpty(OldTree)); - - if (OldTree->isMutable()) { - OldTree->setLeft(L); - OldTree->setRight(R); - OldTree->setHeight(IncrementHeight(L,R)); - return OldTree; + + TreeTy* createNode(TreeTy* L, value_type_ref V, TreeTy* R) { + BumpPtrAllocator& A = getAllocator(); + TreeTy* T; + if (!freeNodes.empty()) { + T = freeNodes.back(); + freeNodes.pop_back(); + assert(T != L); + assert(T != R); + } else { + T = (TreeTy*) A.Allocate(); + } + new (T) TreeTy(this, L, R, V, incrementHeight(L,R)); + createdNodes.push_back(T); + return T; + } + + TreeTy* createNode(TreeTy* newLeft, TreeTy* oldTree, TreeTy* newRight) { + return createNode(newLeft, getValue(oldTree), newRight); + } + + void recoverNodes() { + for (unsigned i = 0, n = createdNodes.size(); i < n; ++i) { + TreeTy *N = createdNodes[i]; + if (N->isMutable() && N->refCount == 0) + N->destroy(); } - else return CreateNode(L, Value(OldTree), R); + createdNodes.clear(); } - - /// Balance - Used by Add_internal and Remove_internal to + + /// balanceTree - Used by add_internal and remove_internal to /// balance a newly created tree. - TreeTy* Balance(TreeTy* L, value_type_ref V, TreeTy* R) { - - unsigned hl = Height(L); - unsigned hr = Height(R); - + TreeTy* balanceTree(TreeTy* L, value_type_ref V, TreeTy* R) { + unsigned hl = getHeight(L); + unsigned hr = getHeight(R); + if (hl > hr + 2) { - assert (!isEmpty(L) && - "Left tree cannot be empty to have a height >= 2."); - - TreeTy* LL = Left(L); - TreeTy* LR = Right(L); - - if (Height(LL) >= Height(LR)) - return CreateNode(LL, L, CreateNode(LR,V,R)); - - assert (!isEmpty(LR) && - "LR cannot be empty because it has a height >= 1."); - - TreeTy* LRL = Left(LR); - TreeTy* LRR = Right(LR); - - return CreateNode(CreateNode(LL,L,LRL), LR, CreateNode(LRR,V,R)); + assert(!isEmpty(L) && "Left tree cannot be empty to have a height >= 2"); + + TreeTy *LL = getLeft(L); + TreeTy *LR = getRight(L); + + if (getHeight(LL) >= getHeight(LR)) + return createNode(LL, L, createNode(LR,V,R)); + + assert(!isEmpty(LR) && "LR cannot be empty because it has a height >= 1"); + + TreeTy *LRL = getLeft(LR); + TreeTy *LRR = getRight(LR); + + return createNode(createNode(LL,L,LRL), LR, createNode(LRR,V,R)); } - else if (hr > hl + 2) { - assert (!isEmpty(R) && - "Right tree cannot be empty to have a height >= 2."); - - TreeTy* RL = Left(R); - TreeTy* RR = Right(R); - - if (Height(RR) >= Height(RL)) - return CreateNode(CreateNode(L,V,RL), R, RR); - - assert (!isEmpty(RL) && - "RL cannot be empty because it has a height >= 1."); - - TreeTy* RLL = Left(RL); - TreeTy* RLR = Right(RL); - - return CreateNode(CreateNode(L,V,RLL), RL, CreateNode(RLR,R,RR)); + + if (hr > hl + 2) { + assert(!isEmpty(R) && "Right tree cannot be empty to have a height >= 2"); + + TreeTy *RL = getLeft(R); + TreeTy *RR = getRight(R); + + if (getHeight(RR) >= getHeight(RL)) + return createNode(createNode(L,V,RL), R, RR); + + assert(!isEmpty(RL) && "RL cannot be empty because it has a height >= 1"); + + TreeTy *RLL = getLeft(RL); + TreeTy *RLR = getRight(RL); + + return createNode(createNode(L,V,RLL), RL, createNode(RLR,R,RR)); } - else - return CreateNode(L,V,R); + + return createNode(L,V,R); } - - /// Add_internal - Creates a new tree that includes the specified + + /// add_internal - Creates a new tree that includes the specified /// data and the data from the original tree. If the original tree /// already contained the data item, the original tree is returned. - TreeTy* Add_internal(value_type_ref V, TreeTy* T) { + TreeTy* add_internal(value_type_ref V, TreeTy* T) { if (isEmpty(T)) - return CreateNode(T, V, T); - - assert (!T->isMutable()); - + return createNode(T, V, T); + assert(!T->isMutable()); + key_type_ref K = ImutInfo::KeyOfValue(V); - key_type_ref KCurrent = ImutInfo::KeyOfValue(Value(T)); - + key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T)); + if (ImutInfo::isEqual(K,KCurrent)) - return CreateNode(Left(T), V, Right(T)); + return createNode(getLeft(T), V, getRight(T)); else if (ImutInfo::isLess(K,KCurrent)) - return Balance(Add_internal(V,Left(T)), Value(T), Right(T)); + return balanceTree(add_internal(V, getLeft(T)), getValue(T), getRight(T)); else - return Balance(Left(T), Value(T), Add_internal(V,Right(T))); + return balanceTree(getLeft(T), getValue(T), add_internal(V, getRight(T))); } - - /// Remove_interal - Creates a new tree that includes all the data + + /// remove_internal - Creates a new tree that includes all the data /// from the original tree except the specified data. If the /// specified data did not exist in the original tree, the original /// tree is returned. - TreeTy* Remove_internal(key_type_ref K, TreeTy* T) { + TreeTy* remove_internal(key_type_ref K, TreeTy* T) { if (isEmpty(T)) return T; - - assert (!T->isMutable()); - - key_type_ref KCurrent = ImutInfo::KeyOfValue(Value(T)); - - if (ImutInfo::isEqual(K,KCurrent)) - return CombineLeftRightTrees(Left(T),Right(T)); - else if (ImutInfo::isLess(K,KCurrent)) - return Balance(Remove_internal(K,Left(T)), Value(T), Right(T)); - else - return Balance(Left(T), Value(T), Remove_internal(K,Right(T))); - } - - TreeTy* CombineLeftRightTrees(TreeTy* L, TreeTy* R) { - if (isEmpty(L)) return R; - if (isEmpty(R)) return L; - - TreeTy* OldNode; - TreeTy* NewRight = RemoveMinBinding(R,OldNode); - return Balance(L,Value(OldNode),NewRight); - } - - TreeTy* RemoveMinBinding(TreeTy* T, TreeTy*& NodeRemoved) { - assert (!isEmpty(T)); - - if (isEmpty(Left(T))) { - NodeRemoved = T; - return Right(T); + + assert(!T->isMutable()); + + key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T)); + + if (ImutInfo::isEqual(K,KCurrent)) { + return combineTrees(getLeft(T), getRight(T)); + } else if (ImutInfo::isLess(K,KCurrent)) { + return balanceTree(remove_internal(K, getLeft(T)), + getValue(T), getRight(T)); + } else { + return balanceTree(getLeft(T), getValue(T), + remove_internal(K, getRight(T))); } - - return Balance(RemoveMinBinding(Left(T),NodeRemoved),Value(T),Right(T)); - } - - /// MarkImmutable - Clears the mutable bits of a root and all of its + } + + TreeTy* combineTrees(TreeTy* L, TreeTy* R) { + if (isEmpty(L)) + return R; + if (isEmpty(R)) + return L; + TreeTy* OldNode; + TreeTy* newRight = removeMinBinding(R,OldNode); + return balanceTree(L, getValue(OldNode), newRight); + } + + TreeTy* removeMinBinding(TreeTy* T, TreeTy*& Noderemoved) { + assert(!isEmpty(T)); + if (isEmpty(getLeft(T))) { + Noderemoved = T; + return getRight(T); + } + return balanceTree(removeMinBinding(getLeft(T), Noderemoved), + getValue(T), getRight(T)); + } + + /// markImmutable - Clears the mutable bits of a root and all of its /// descendants. - void MarkImmutable(TreeTy* T) { + void markImmutable(TreeTy* T) { if (!T || !T->isMutable()) return; - - T->RemoveMutableFlag(); - MarkImmutable(Left(T)); - MarkImmutable(Right(T)); + T->markImmutable(); + markImmutable(getLeft(T)); + markImmutable(getRight(T)); + } + +public: + TreeTy *getCanonicalTree(TreeTy *TNew) { + if (!TNew) + return 0; + + if (TNew->IsCanonicalized) + return TNew; + + // Search the hashtable for another tree with the same digest, and + // if find a collision compare those trees by their contents. + unsigned digest = TNew->computeDigest(); + TreeTy *&entry = Cache[maskCacheIndex(digest)]; + do { + if (!entry) + break; + for (TreeTy *T = entry ; T != 0; T = T->next) { + // Compare the Contents('T') with Contents('TNew') + typename TreeTy::iterator TI = T->begin(), TE = T->end(); + if (!compareTreeWithSection(TNew, TI, TE)) + continue; + if (TI != TE) + continue; // T has more contents than TNew. + // Trees did match! Return 'T'. + if (TNew->refCount == 0) + TNew->destroy(); + return T; + } + entry->prev = TNew; + TNew->next = entry; + } + while (false); + + entry = TNew; + TNew->IsCanonicalized = true; + return TNew; } }; +//===----------------------------------------------------------------------===// +// Immutable AVL-Tree Iterators. +//===----------------------------------------------------------------------===// -//===----------------------------------------------------------------------===// +template +class ImutAVLTreeGenericIterator { + SmallVector stack; +public: + enum VisitFlag { VisitedNone=0x0, VisitedLeft=0x1, VisitedRight=0x3, + Flags=0x3 }; + + typedef ImutAVLTree TreeTy; + typedef ImutAVLTreeGenericIterator _Self; + + inline ImutAVLTreeGenericIterator() {} + inline ImutAVLTreeGenericIterator(const TreeTy* Root) { + if (Root) stack.push_back(reinterpret_cast(Root)); + } + + TreeTy* operator*() const { + assert(!stack.empty()); + return reinterpret_cast(stack.back() & ~Flags); + } + + uintptr_t getVisitState() const { + assert(!stack.empty()); + return stack.back() & Flags; + } + + + bool atEnd() const { return stack.empty(); } + + bool atBeginning() const { + return stack.size() == 1 && getVisitState() == VisitedNone; + } + + void skipToParent() { + assert(!stack.empty()); + stack.pop_back(); + if (stack.empty()) + return; + switch (getVisitState()) { + case VisitedNone: + stack.back() |= VisitedLeft; + break; + case VisitedLeft: + stack.back() |= VisitedRight; + break; + default: + llvm_unreachable("Unreachable."); + } + } + + inline bool operator==(const _Self& x) const { + if (stack.size() != x.stack.size()) + return false; + for (unsigned i = 0 ; i < stack.size(); i++) + if (stack[i] != x.stack[i]) + return false; + return true; + } + + inline bool operator!=(const _Self& x) const { return !operator==(x); } + + _Self& operator++() { + assert(!stack.empty()); + TreeTy* Current = reinterpret_cast(stack.back() & ~Flags); + assert(Current); + switch (getVisitState()) { + case VisitedNone: + if (TreeTy* L = Current->getLeft()) + stack.push_back(reinterpret_cast(L)); + else + stack.back() |= VisitedLeft; + break; + case VisitedLeft: + if (TreeTy* R = Current->getRight()) + stack.push_back(reinterpret_cast(R)); + else + stack.back() |= VisitedRight; + break; + case VisitedRight: + skipToParent(); + break; + default: + llvm_unreachable("Unreachable."); + } + return *this; + } + + _Self& operator--() { + assert(!stack.empty()); + TreeTy* Current = reinterpret_cast(stack.back() & ~Flags); + assert(Current); + switch (getVisitState()) { + case VisitedNone: + stack.pop_back(); + break; + case VisitedLeft: + stack.back() &= ~Flags; // Set state to "VisitedNone." + if (TreeTy* L = Current->getLeft()) + stack.push_back(reinterpret_cast(L) | VisitedRight); + break; + case VisitedRight: + stack.back() &= ~Flags; + stack.back() |= VisitedLeft; + if (TreeTy* R = Current->getRight()) + stack.push_back(reinterpret_cast(R) | VisitedRight); + break; + default: + llvm_unreachable("Unreachable."); + } + return *this; + } +}; + +template +class ImutAVLTreeInOrderIterator { + typedef ImutAVLTreeGenericIterator InternalIteratorTy; + InternalIteratorTy InternalItr; + +public: + typedef ImutAVLTree TreeTy; + typedef ImutAVLTreeInOrderIterator _Self; + + ImutAVLTreeInOrderIterator(const TreeTy* Root) : InternalItr(Root) { + if (Root) operator++(); // Advance to first element. + } + + ImutAVLTreeInOrderIterator() : InternalItr() {} + + inline bool operator==(const _Self& x) const { + return InternalItr == x.InternalItr; + } + + inline bool operator!=(const _Self& x) const { return !operator==(x); } + + inline TreeTy* operator*() const { return *InternalItr; } + inline TreeTy* operator->() const { return *InternalItr; } + + inline _Self& operator++() { + do ++InternalItr; + while (!InternalItr.atEnd() && + InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft); + + return *this; + } + + inline _Self& operator--() { + do --InternalItr; + while (!InternalItr.atBeginning() && + InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft); + + return *this; + } + + inline void skipSubTree() { + InternalItr.skipToParent(); + + while (!InternalItr.atEnd() && + InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft) + ++InternalItr; + } +}; + +//===----------------------------------------------------------------------===// // Trait classes for Profile information. //===----------------------------------------------------------------------===// @@ -440,21 +818,21 @@ template struct ImutProfileInfo { typedef const T value_type; typedef const T& value_type_ref; - + static inline void Profile(FoldingSetNodeID& ID, value_type_ref X) { - X.Profile(ID); - } + FoldingSetTrait::Profile(X,ID); + } }; /// Profile traits for integers. template -struct ImutProfileInteger { +struct ImutProfileInteger { typedef const T value_type; typedef const T& value_type_ref; - + static inline void Profile(FoldingSetNodeID& ID, value_type_ref X) { ID.AddInteger(X); - } + } }; #define PROFILE_INTEGER_INFO(X)\ @@ -479,13 +857,13 @@ template struct ImutProfileInfo { typedef const T* value_type; typedef value_type value_type_ref; - + static inline void Profile(FoldingSetNodeID &ID, value_type_ref X) { ID.AddPointer(X); } }; -//===----------------------------------------------------------------------===// +//===----------------------------------------------------------------------===// // Trait classes that contain element comparison operators and type // definitions used by ImutAVLTree, ImmutableSet, and ImmutableMap. These // inherit from the profile traits (ImutProfileInfo) to include operations @@ -502,16 +880,21 @@ struct ImutContainerInfo : public ImutProfileInfo { typedef typename ImutProfileInfo::value_type_ref value_type_ref; typedef value_type key_type; typedef value_type_ref key_type_ref; - + typedef bool data_type; + typedef bool data_type_ref; + static inline key_type_ref KeyOfValue(value_type_ref D) { return D; } - - static inline bool isEqual(key_type_ref LHS, key_type_ref RHS) { + static inline data_type_ref DataOfValue(value_type_ref) { return true; } + + static inline bool isEqual(key_type_ref LHS, key_type_ref RHS) { return std::equal_to()(LHS,RHS); } - + static inline bool isLess(key_type_ref LHS, key_type_ref RHS) { return std::less()(LHS,RHS); } + + static inline bool isDataEqual(data_type_ref,data_type_ref) { return true; } }; /// ImutContainerInfo - Specialization for pointer values to treat pointers @@ -523,19 +906,24 @@ struct ImutContainerInfo : public ImutProfileInfo { typedef typename ImutProfileInfo::value_type_ref value_type_ref; typedef value_type key_type; typedef value_type_ref key_type_ref; - + typedef bool data_type; + typedef bool data_type_ref; + static inline key_type_ref KeyOfValue(value_type_ref D) { return D; } - + static inline data_type_ref DataOfValue(value_type_ref) { return true; } + static inline bool isEqual(key_type_ref LHS, key_type_ref RHS) { return LHS == RHS; } - + static inline bool isLess(key_type_ref LHS, key_type_ref RHS) { return LHS < RHS; } + + static inline bool isDataEqual(data_type_ref,data_type_ref) { return true; } }; -//===----------------------------------------------------------------------===// +//===----------------------------------------------------------------------===// // Immutable Set //===----------------------------------------------------------------------===// @@ -544,64 +932,290 @@ class ImmutableSet { public: typedef typename ValInfo::value_type value_type; typedef typename ValInfo::value_type_ref value_type_ref; - -private: typedef ImutAVLTree TreeTy; - TreeTy* Root; - - ImmutableSet(TreeTy* R) : Root(R) {} - + +private: + TreeTy *Root; + public: - + /// Constructs a set from a pointer to a tree root. In general one + /// should use a Factory object to create sets instead of directly + /// invoking the constructor, but there are cases where make this + /// constructor public is useful. + explicit ImmutableSet(TreeTy* R) : Root(R) { + if (Root) { Root->retain(); } + } + ImmutableSet(const ImmutableSet &X) : Root(X.Root) { + if (Root) { Root->retain(); } + } + ImmutableSet &operator=(const ImmutableSet &X) { + if (Root != X.Root) { + if (X.Root) { X.Root->retain(); } + if (Root) { Root->release(); } + Root = X.Root; + } + return *this; + } + ~ImmutableSet() { + if (Root) { Root->release(); } + } + class Factory { typename TreeTy::Factory F; - + const bool Canonicalize; + public: - Factory() {} - - ImmutableSet GetEmptySet() { return ImmutableSet(F.GetEmptyTree()); } - - ImmutableSet Add(ImmutableSet Old, value_type_ref V) { - return ImmutableSet(F.Add(Old.Root,V)); + Factory(bool canonicalize = true) + : Canonicalize(canonicalize) {} + + Factory(BumpPtrAllocator& Alloc, bool canonicalize = true) + : F(Alloc), Canonicalize(canonicalize) {} + + /// getEmptySet - Returns an immutable set that contains no elements. + ImmutableSet getEmptySet() { + return ImmutableSet(F.getEmptyTree()); } - - ImmutableSet Remove(ImmutableSet Old, value_type_ref V) { - return ImmutableSet(F.Remove(Old.Root,V)); + + /// add - Creates a new immutable set that contains all of the values + /// of the original set with the addition of the specified value. If + /// the original set already included the value, then the original set is + /// returned and no memory is allocated. The time and space complexity + /// of this operation is logarithmic in the size of the original set. + /// The memory allocated to represent the set is released when the + /// factory object that created the set is destroyed. + ImmutableSet add(ImmutableSet Old, value_type_ref V) { + TreeTy *NewT = F.add(Old.Root, V); + return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT); + } + + /// remove - Creates a new immutable set that contains all of the values + /// of the original set with the exception of the specified value. If + /// the original set did not contain the value, the original set is + /// returned and no memory is allocated. The time and space complexity + /// of this operation is logarithmic in the size of the original set. + /// The memory allocated to represent the set is released when the + /// factory object that created the set is destroyed. + ImmutableSet remove(ImmutableSet Old, value_type_ref V) { + TreeTy *NewT = F.remove(Old.Root, V); + return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT); + } + + BumpPtrAllocator& getAllocator() { return F.getAllocator(); } + + typename TreeTy::Factory *getTreeFactory() const { + return const_cast(&F); } - + private: - Factory(const Factory& RHS) {}; - void operator=(const Factory& RHS) {}; + Factory(const Factory& RHS) LLVM_DELETED_FUNCTION; + void operator=(const Factory& RHS) LLVM_DELETED_FUNCTION; }; - + friend class Factory; - - bool contains(const value_type_ref V) const { + + /// Returns true if the set contains the specified value. + bool contains(value_type_ref V) const { return Root ? Root->contains(V) : false; } - - bool operator==(ImmutableSet RHS) const { + + bool operator==(const ImmutableSet &RHS) const { return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root; } - - bool operator!=(ImmutableSet RHS) const { + + bool operator!=(const ImmutableSet &RHS) const { return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root; } - + + TreeTy *getRoot() { + if (Root) { Root->retain(); } + return Root; + } + + TreeTy *getRootWithoutRetain() const { + return Root; + } + + /// isEmpty - Return true if the set contains no elements. bool isEmpty() const { return !Root; } - + + /// isSingleton - Return true if the set contains exactly one element. + /// This method runs in constant time. + bool isSingleton() const { return getHeight() == 1; } + template void foreach(Callback& C) { if (Root) Root->foreach(C); } - + template void foreach() { if (Root) { Callback C; Root->foreach(C); } } - - //===--------------------------------------------------===// + + //===--------------------------------------------------===// + // Iterators. + //===--------------------------------------------------===// + + class iterator { + typename TreeTy::iterator itr; + iterator(TreeTy* t) : itr(t) {} + friend class ImmutableSet; + public: + iterator() {} + inline value_type_ref operator*() const { return itr->getValue(); } + inline iterator& operator++() { ++itr; return *this; } + inline iterator operator++(int) { iterator tmp(*this); ++itr; return tmp; } + inline iterator& operator--() { --itr; return *this; } + inline iterator operator--(int) { iterator tmp(*this); --itr; return tmp; } + inline bool operator==(const iterator& RHS) const { return RHS.itr == itr; } + inline bool operator!=(const iterator& RHS) const { return RHS.itr != itr; } + inline value_type *operator->() const { return &(operator*()); } + }; + + iterator begin() const { return iterator(Root); } + iterator end() const { return iterator(); } + + //===--------------------------------------------------===// + // Utility methods. + //===--------------------------------------------------===// + + unsigned getHeight() const { return Root ? Root->getHeight() : 0; } + + static inline void Profile(FoldingSetNodeID& ID, const ImmutableSet& S) { + ID.AddPointer(S.Root); + } + + inline void Profile(FoldingSetNodeID& ID) const { + return Profile(ID,*this); + } + + //===--------------------------------------------------===// // For testing. - //===--------------------------------------------------===// - - void verify() const { if (Root) Root->verify(); } + //===--------------------------------------------------===// + + void validateTree() const { if (Root) Root->validateTree(); } +}; + +// NOTE: This may some day replace the current ImmutableSet. +template > +class ImmutableSetRef { +public: + typedef typename ValInfo::value_type value_type; + typedef typename ValInfo::value_type_ref value_type_ref; + typedef ImutAVLTree TreeTy; + typedef typename TreeTy::Factory FactoryTy; + +private: + TreeTy *Root; + FactoryTy *Factory; + +public: + /// Constructs a set from a pointer to a tree root. In general one + /// should use a Factory object to create sets instead of directly + /// invoking the constructor, but there are cases where make this + /// constructor public is useful. + explicit ImmutableSetRef(TreeTy* R, FactoryTy *F) + : Root(R), + Factory(F) { + if (Root) { Root->retain(); } + } + ImmutableSetRef(const ImmutableSetRef &X) + : Root(X.Root), + Factory(X.Factory) { + if (Root) { Root->retain(); } + } + ImmutableSetRef &operator=(const ImmutableSetRef &X) { + if (Root != X.Root) { + if (X.Root) { X.Root->retain(); } + if (Root) { Root->release(); } + Root = X.Root; + Factory = X.Factory; + } + return *this; + } + ~ImmutableSetRef() { + if (Root) { Root->release(); } + } + + static inline ImmutableSetRef getEmptySet(FactoryTy *F) { + return ImmutableSetRef(0, F); + } + + ImmutableSetRef add(value_type_ref V) { + return ImmutableSetRef(Factory->add(Root, V), Factory); + } + + ImmutableSetRef remove(value_type_ref V) { + return ImmutableSetRef(Factory->remove(Root, V), Factory); + } + + /// Returns true if the set contains the specified value. + bool contains(value_type_ref V) const { + return Root ? Root->contains(V) : false; + } + + ImmutableSet asImmutableSet(bool canonicalize = true) const { + return ImmutableSet(canonicalize ? + Factory->getCanonicalTree(Root) : Root); + } + + TreeTy *getRootWithoutRetain() const { + return Root; + } + + bool operator==(const ImmutableSetRef &RHS) const { + return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root; + } + + bool operator!=(const ImmutableSetRef &RHS) const { + return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root; + } + + /// isEmpty - Return true if the set contains no elements. + bool isEmpty() const { return !Root; } + + /// isSingleton - Return true if the set contains exactly one element. + /// This method runs in constant time. + bool isSingleton() const { return getHeight() == 1; } + + //===--------------------------------------------------===// + // Iterators. + //===--------------------------------------------------===// + + class iterator { + typename TreeTy::iterator itr; + iterator(TreeTy* t) : itr(t) {} + friend class ImmutableSetRef; + public: + iterator() {} + inline value_type_ref operator*() const { return itr->getValue(); } + inline iterator& operator++() { ++itr; return *this; } + inline iterator operator++(int) { iterator tmp(*this); ++itr; return tmp; } + inline iterator& operator--() { --itr; return *this; } + inline iterator operator--(int) { iterator tmp(*this); --itr; return tmp; } + inline bool operator==(const iterator& RHS) const { return RHS.itr == itr; } + inline bool operator!=(const iterator& RHS) const { return RHS.itr != itr; } + inline value_type *operator->() const { return &(operator*()); } + }; + + iterator begin() const { return iterator(Root); } + iterator end() const { return iterator(); } + + //===--------------------------------------------------===// + // Utility methods. + //===--------------------------------------------------===// + unsigned getHeight() const { return Root ? Root->getHeight() : 0; } + + static inline void Profile(FoldingSetNodeID& ID, const ImmutableSetRef& S) { + ID.AddPointer(S.Root); + } + + inline void Profile(FoldingSetNodeID& ID) const { + return Profile(ID,*this); + } + + //===--------------------------------------------------===// + // For testing. + //===--------------------------------------------------===// + + void validateTree() const { if (Root) Root->validateTree(); } }; } // end namespace llvm