X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;f=include%2Fllvm%2FADT%2FAPInt.h;h=3a98ae42349d7cdb0e378892b01d537dfc283dab;hb=7ed47a13356daed2a34cd2209a31f92552e3bdd8;hp=936be5fbd638a1a5e4fb24853d21f935cd19b40c;hpb=66ed1099ff3591c61e008198bb5a30862e778fc0;p=oota-llvm.git diff --git a/include/llvm/ADT/APInt.h b/include/llvm/ADT/APInt.h index 936be5fbd63..3a98ae42349 100644 --- a/include/llvm/ADT/APInt.h +++ b/include/llvm/ADT/APInt.h @@ -1,14 +1,14 @@ -//===-- llvm/Support/APInt.h - For Arbitrary Precision Integer -*- C++ -*--===// +//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===// // // The LLVM Compiler Infrastructure // -// This file was developed by Sheng Zhou and is distributed under the -// University of Illinois Open Source License. See LICENSE.TXT for details. +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a class to represent arbitrary precision integral -// constant values. +// constant values and operations on them. // //===----------------------------------------------------------------------===// @@ -19,14 +19,18 @@ #include #include +#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1] + namespace llvm { + class Serializer; + class Deserializer; + + /* An unsigned host type used as a single part of a multi-part + bignum. */ + typedef uint64_t integerPart; -/// Forward declaration. -class APInt; -namespace APIntOps { - APInt udiv(const APInt& LHS, const APInt& RHS); - APInt urem(const APInt& LHS, const APInt& RHS); -} + const unsigned int host_char_bit = 8; + const unsigned int integerPartWidth = host_char_bit * sizeof(integerPart); //===----------------------------------------------------------------------===// // APInt Class @@ -63,29 +67,23 @@ class APInt { uint32_t BitWidth; ///< The number of bits in this APInt. /// This union is used to store the integer value. When the - /// integer bit-width <= 64, it uses VAL; - /// otherwise it uses the pVal. + /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal. union { uint64_t VAL; ///< Used to store the <= 64 bits integer value. uint64_t *pVal; ///< Used to store the >64 bits integer value. }; - /// This enum is just used to hold a constant we needed for APInt. + /// This enum is used to hold the constants we needed for APInt. enum { - APINT_BITS_PER_WORD = sizeof(uint64_t) * 8, - APINT_WORD_SIZE = sizeof(uint64_t) + APINT_BITS_PER_WORD = sizeof(uint64_t) * 8, ///< Bits in a word + APINT_WORD_SIZE = sizeof(uint64_t) ///< Byte size of a word }; - // Fast internal constructor + /// This constructor is used only internally for speed of construction of + /// temporaries. It is unsafe for general use so it is not public. + /// @brief Fast internal constructor APInt(uint64_t* val, uint32_t bits) : BitWidth(bits), pVal(val) { } - /// Here one word's bitwidth equals to that of uint64_t. - /// @returns the number of words to hold the integer value of this APInt. - /// @brief Get the number of words. - inline uint32_t getNumWords() const { - return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; - } - /// @returns true if the number of bits <= 64, false otherwise. /// @brief Determine if this APInt just has one word to store value. inline bool isSingleWord() const { @@ -93,26 +91,32 @@ class APInt { } /// @returns the word position for the specified bit position. + /// @brief Determine which word a bit is in. static inline uint32_t whichWord(uint32_t bitPosition) { return bitPosition / APINT_BITS_PER_WORD; } /// @returns the bit position in a word for the specified bit position - /// in APInt. + /// in the APInt. + /// @brief Determine which bit in a word a bit is in. static inline uint32_t whichBit(uint32_t bitPosition) { return bitPosition % APINT_BITS_PER_WORD; } - /// @returns a uint64_t type integer with just bit position at - /// "whichBit(bitPosition)" setting, others zero. + /// This method generates and returns a uint64_t (word) mask for a single + /// bit at a specific bit position. This is used to mask the bit in the + /// corresponding word. + /// @returns a uint64_t with only bit at "whichBit(bitPosition)" set + /// @brief Get a single bit mask. static inline uint64_t maskBit(uint32_t bitPosition) { - return (static_cast(1)) << whichBit(bitPosition); + return 1ULL << whichBit(bitPosition); } - /// This method is used internally to clear the to "N" bits that are not used - /// by the APInt. This is needed after the most significant word is assigned - /// a value to ensure that those bits are zero'd out. - /// @brief Clear high order bits + /// This method is used internally to clear the to "N" bits in the high order + /// word that are not used by the APInt. This is needed after the most + /// significant word is assigned a value to ensure that those bits are + /// zero'd out. + /// @brief Clear unused high order bits inline APInt& clearUnusedBits() { // Compute how many bits are used in the final word uint32_t wordBits = BitWidth % APINT_BITS_PER_WORD; @@ -138,8 +142,8 @@ class APInt { } /// This is used by the constructors that take string arguments. - /// @brief Converts a char array into an APInt - void fromString(uint32_t numBits, const char *StrStart, uint32_t slen, + /// @brief Convert a char array into an APInt + void fromString(uint32_t numBits, const char *strStart, uint32_t slen, uint8_t radix); /// This is used by the toString method to divide by the radix. It simply @@ -151,42 +155,279 @@ class APInt { const APInt &RHS, uint32_t rhsWords, APInt *Quotient, APInt *Remainder); -#ifndef NDEBUG - /// @brief debug method - void dump() const; -#endif - public: + /// @name Constructors + /// @{ + /// If isSigned is true then val is treated as if it were a signed value + /// (i.e. as an int64_t) and the appropriate sign extension to the bit width + /// will be done. Otherwise, no sign extension occurs (high order bits beyond + /// the range of val are zero filled). + /// @param numBits the bit width of the constructed APInt + /// @param val the initial value of the APInt + /// @param isSigned how to treat signedness of val /// @brief Create a new APInt of numBits width, initialized as val. - APInt(uint32_t numBits, uint64_t val); + APInt(uint32_t numBits, uint64_t val, bool isSigned = false); /// Note that numWords can be smaller or larger than the corresponding bit /// width but any extraneous bits will be dropped. - /// @brief Create a new APInt of numBits width, initialized as bigVal[]. - APInt(uint32_t numBits, uint32_t numWords, uint64_t bigVal[]); - - /// @brief Create a new APInt by translating the string represented - /// integer value. - APInt(uint32_t numBits, const std::string& Val, uint8_t radix); - - /// @brief Create a new APInt by translating the char array represented - /// integer value. - APInt(uint32_t numBits, const char StrStart[], uint32_t slen, uint8_t radix); - + /// @param numBits the bit width of the constructed APInt + /// @param numWords the number of words in bigVal + /// @param bigVal a sequence of words to form the initial value of the APInt + /// @brief Construct an APInt of numBits width, initialized as bigVal[]. + APInt(uint32_t numBits, uint32_t numWords, const uint64_t bigVal[]); + + /// This constructor interprets Val as a string in the given radix. The + /// interpretation stops when the first charater that is not suitable for the + /// radix is encountered. Acceptable radix values are 2, 8, 10 and 16. It is + /// an error for the value implied by the string to require more bits than + /// numBits. + /// @param numBits the bit width of the constructed APInt + /// @param val the string to be interpreted + /// @param radix the radix of Val to use for the intepretation + /// @brief Construct an APInt from a string representation. + APInt(uint32_t numBits, const std::string& val, uint8_t radix); + + /// This constructor interprets the slen characters starting at StrStart as + /// a string in the given radix. The interpretation stops when the first + /// character that is not suitable for the radix is encountered. Acceptable + /// radix values are 2, 8, 10 and 16. It is an error for the value implied by + /// the string to require more bits than numBits. + /// @param numBits the bit width of the constructed APInt + /// @param strStart the start of the string to be interpreted + /// @param slen the maximum number of characters to interpret + /// @param radix the radix to use for the conversion + /// @brief Construct an APInt from a string representation. + APInt(uint32_t numBits, const char strStart[], uint32_t slen, uint8_t radix); + + /// Simply makes *this a copy of that. /// @brief Copy Constructor. - APInt(const APInt& API); + APInt(const APInt& that); /// @brief Destructor. ~APInt(); + + /// Default constructor that creates an uninitialized APInt. This is useful + /// for object deserialization (pair this with the static method Read). + explicit APInt() : BitWidth(1) {} + + /// @brief Used by the Bitcode serializer to emit APInts to Bitcode. + void Emit(Serializer& S) const; + + /// @brief Used by the Bitcode deserializer to deserialize APInts. + void Read(Deserializer& D); - /// @brief Copy assignment operator. - APInt& operator=(const APInt& RHS); + /// @} + /// @name Value Tests + /// @{ + /// This tests the high bit of this APInt to determine if it is set. + /// @returns true if this APInt is negative, false otherwise + /// @brief Determine sign of this APInt. + bool isNegative() const { + return (*this)[BitWidth - 1]; + } - /// Assigns an integer value to the APInt. - /// @brief Assignment operator. - APInt& operator=(uint64_t RHS); + /// This tests the high bit of the APInt to determine if it is unset. + /// @brief Determine if this APInt Value is positive (not negative). + bool isPositive() const { + return !isNegative(); + } + + /// This tests if the value of this APInt is strictly positive (> 0). + /// @returns true if this APInt is Positive and not zero. + /// @brief Determine if this APInt Value is strictly positive. + inline bool isStrictlyPositive() const { + return isPositive() && (*this) != 0; + } + + /// This checks to see if the value has all bits of the APInt are set or not. + /// @brief Determine if all bits are set + inline bool isAllOnesValue() const { + return countPopulation() == BitWidth; + } + + /// This checks to see if the value of this APInt is the maximum unsigned + /// value for the APInt's bit width. + /// @brief Determine if this is the largest unsigned value. + bool isMaxValue() const { + return countPopulation() == BitWidth; + } + + /// This checks to see if the value of this APInt is the maximum signed + /// value for the APInt's bit width. + /// @brief Determine if this is the largest signed value. + bool isMaxSignedValue() const { + return BitWidth == 1 ? VAL == 0 : + !isNegative() && countPopulation() == BitWidth - 1; + } + + /// This checks to see if the value of this APInt is the minimum unsigned + /// value for the APInt's bit width. + /// @brief Determine if this is the smallest unsigned value. + bool isMinValue() const { + return countPopulation() == 0; + } + + /// This checks to see if the value of this APInt is the minimum signed + /// value for the APInt's bit width. + /// @brief Determine if this is the smallest signed value. + bool isMinSignedValue() const { + return BitWidth == 1 ? VAL == 1 : + isNegative() && countPopulation() == 1; + } + + /// @brief Check if this APInt has an N-bits integer value. + inline bool isIntN(uint32_t N) const { + assert(N && "N == 0 ???"); + if (isSingleWord()) { + return VAL == (VAL & (~0ULL >> (64 - N))); + } else { + APInt Tmp(N, getNumWords(), pVal); + return Tmp == (*this); + } + } + + /// @returns true if the argument APInt value is a power of two > 0. + bool isPowerOf2() const; + + /// isSignBit - Return true if this is the value returned by getSignBit. + bool isSignBit() const { return isMinSignedValue(); } + + /// This converts the APInt to a boolean value as a test against zero. + /// @brief Boolean conversion function. + inline bool getBoolValue() const { + return *this != 0; + } - /// Increments the APInt by one. + /// getLimitedValue - If this value is smaller than the specified limit, + /// return it, otherwise return the limit value. This causes the value + /// to saturate to the limit. + uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const { + return (getActiveBits() > 64 || getZExtValue() > Limit) ? + Limit : getZExtValue(); + } + + /// @} + /// @name Value Generators + /// @{ + /// @brief Gets maximum unsigned value of APInt for specific bit width. + static APInt getMaxValue(uint32_t numBits) { + return APInt(numBits, 0).set(); + } + + /// @brief Gets maximum signed value of APInt for a specific bit width. + static APInt getSignedMaxValue(uint32_t numBits) { + return APInt(numBits, 0).set().clear(numBits - 1); + } + + /// @brief Gets minimum unsigned value of APInt for a specific bit width. + static APInt getMinValue(uint32_t numBits) { + return APInt(numBits, 0); + } + + /// @brief Gets minimum signed value of APInt for a specific bit width. + static APInt getSignedMinValue(uint32_t numBits) { + return APInt(numBits, 0).set(numBits - 1); + } + + /// getSignBit - This is just a wrapper function of getSignedMinValue(), and + /// it helps code readability when we want to get a SignBit. + /// @brief Get the SignBit for a specific bit width. + inline static APInt getSignBit(uint32_t BitWidth) { + return getSignedMinValue(BitWidth); + } + + /// @returns the all-ones value for an APInt of the specified bit-width. + /// @brief Get the all-ones value. + static APInt getAllOnesValue(uint32_t numBits) { + return APInt(numBits, 0).set(); + } + + /// @returns the '0' value for an APInt of the specified bit-width. + /// @brief Get the '0' value. + static APInt getNullValue(uint32_t numBits) { + return APInt(numBits, 0); + } + + /// Get an APInt with the same BitWidth as this APInt, just zero mask + /// the low bits and right shift to the least significant bit. + /// @returns the high "numBits" bits of this APInt. + APInt getHiBits(uint32_t numBits) const; + + /// Get an APInt with the same BitWidth as this APInt, just zero mask + /// the high bits. + /// @returns the low "numBits" bits of this APInt. + APInt getLoBits(uint32_t numBits) const; + + /// Constructs an APInt value that has a contiguous range of bits set. The + /// bits from loBit to hiBit will be set. All other bits will be zero. For + /// example, with parameters(32, 15, 0) you would get 0x0000FFFF. If hiBit is + /// less than loBit then the set bits "wrap". For example, with + /// parameters (32, 3, 28), you would get 0xF000000F. + /// @param numBits the intended bit width of the result + /// @param loBit the index of the lowest bit set. + /// @param hiBit the index of the highest bit set. + /// @returns An APInt value with the requested bits set. + /// @brief Get a value with a block of bits set. + static APInt getBitsSet(uint32_t numBits, uint32_t loBit, uint32_t hiBit) { + assert(hiBit < numBits && "hiBit out of range"); + assert(loBit < numBits && "loBit out of range"); + if (hiBit < loBit) + return getLowBitsSet(numBits, hiBit+1) | + getHighBitsSet(numBits, numBits-loBit+1); + return getLowBitsSet(numBits, hiBit-loBit+1).shl(loBit); + } + + /// Constructs an APInt value that has the top hiBitsSet bits set. + /// @param numBits the bitwidth of the result + /// @param hiBitsSet the number of high-order bits set in the result. + /// @brief Get a value with high bits set + static APInt getHighBitsSet(uint32_t numBits, uint32_t hiBitsSet) { + assert(hiBitsSet <= numBits && "Too many bits to set!"); + // Handle a degenerate case, to avoid shifting by word size + if (hiBitsSet == 0) + return APInt(numBits, 0); + uint32_t shiftAmt = numBits - hiBitsSet; + // For small values, return quickly + if (numBits <= APINT_BITS_PER_WORD) + return APInt(numBits, ~0ULL << shiftAmt); + return (~APInt(numBits, 0)).shl(shiftAmt); + } + + /// Constructs an APInt value that has the bottom loBitsSet bits set. + /// @param numBits the bitwidth of the result + /// @param loBitsSet the number of low-order bits set in the result. + /// @brief Get a value with low bits set + static APInt getLowBitsSet(uint32_t numBits, uint32_t loBitsSet) { + assert(loBitsSet <= numBits && "Too many bits to set!"); + // Handle a degenerate case, to avoid shifting by word size + if (loBitsSet == 0) + return APInt(numBits, 0); + if (loBitsSet == APINT_BITS_PER_WORD) + return APInt(numBits, -1ULL); + // For small values, return quickly + if (numBits < APINT_BITS_PER_WORD) + return APInt(numBits, (1ULL << loBitsSet) - 1); + return (~APInt(numBits, 0)).lshr(numBits - loBitsSet); + } + + /// The hash value is computed as the sum of the words and the bit width. + /// @returns A hash value computed from the sum of the APInt words. + /// @brief Get a hash value based on this APInt + uint64_t getHashValue() const; + + /// This function returns a pointer to the internal storage of the APInt. + /// This is useful for writing out the APInt in binary form without any + /// conversions. + inline const uint64_t* getRawData() const { + if (isSingleWord()) + return &VAL; + return &pVal[0]; + } + + /// @} + /// @name Unary Operators + /// @{ + /// @returns a new APInt value representing *this incremented by one /// @brief Postfix increment operator. inline const APInt operator++(int) { APInt API(*this); @@ -194,11 +435,11 @@ public: return API; } - /// Increments the APInt by one. + /// @returns *this incremented by one /// @brief Prefix increment operator. APInt& operator++(); - /// Decrements the APInt by one. + /// @returns a new APInt representing *this decremented by one. /// @brief Postfix decrement operator. inline const APInt operator--(int) { APInt API(*this); @@ -206,216 +447,359 @@ public: return API; } - /// Decrements the APInt by one. + /// @returns *this decremented by one. /// @brief Prefix decrement operator. APInt& operator--(); - /// Performs bitwise AND operation on this APInt and the given APInt& RHS, - /// assigns the result to this APInt. + /// Performs a bitwise complement operation on this APInt. + /// @returns an APInt that is the bitwise complement of *this + /// @brief Unary bitwise complement operator. + APInt operator~() const; + + /// Negates *this using two's complement logic. + /// @returns An APInt value representing the negation of *this. + /// @brief Unary negation operator + inline APInt operator-() const { + return APInt(BitWidth, 0) - (*this); + } + + /// Performs logical negation operation on this APInt. + /// @returns true if *this is zero, false otherwise. + /// @brief Logical negation operator. + bool operator !() const; + + /// @} + /// @name Assignment Operators + /// @{ + /// @returns *this after assignment of RHS. + /// @brief Copy assignment operator. + APInt& operator=(const APInt& RHS); + + /// The RHS value is assigned to *this. If the significant bits in RHS exceed + /// the bit width, the excess bits are truncated. If the bit width is larger + /// than 64, the value is zero filled in the unspecified high order bits. + /// @returns *this after assignment of RHS value. + /// @brief Assignment operator. + APInt& operator=(uint64_t RHS); + + /// Performs a bitwise AND operation on this APInt and RHS. The result is + /// assigned to *this. + /// @returns *this after ANDing with RHS. /// @brief Bitwise AND assignment operator. APInt& operator&=(const APInt& RHS); - /// Performs bitwise OR operation on this APInt and the given APInt& RHS, - /// assigns the result to this APInt. + /// Performs a bitwise OR operation on this APInt and RHS. The result is + /// assigned *this; + /// @returns *this after ORing with RHS. /// @brief Bitwise OR assignment operator. APInt& operator|=(const APInt& RHS); - /// Performs bitwise XOR operation on this APInt and the given APInt& RHS, - /// assigns the result to this APInt. + /// Performs a bitwise XOR operation on this APInt and RHS. The result is + /// assigned to *this. + /// @returns *this after XORing with RHS. /// @brief Bitwise XOR assignment operator. APInt& operator^=(const APInt& RHS); - /// Performs a bitwise complement operation on this APInt. - /// @brief Bitwise complement operator. - APInt operator~() const; - - /// Multiplies this APInt by the given APInt& RHS and - /// assigns the result to this APInt. + /// Multiplies this APInt by RHS and assigns the result to *this. + /// @returns *this /// @brief Multiplication assignment operator. APInt& operator*=(const APInt& RHS); - /// Adds this APInt by the given APInt& RHS and - /// assigns the result to this APInt. + /// Adds RHS to *this and assigns the result to *this. + /// @returns *this /// @brief Addition assignment operator. APInt& operator+=(const APInt& RHS); - /// Subtracts this APInt by the given APInt &RHS and - /// assigns the result to this APInt. + /// Subtracts RHS from *this and assigns the result to *this. + /// @returns *this /// @brief Subtraction assignment operator. APInt& operator-=(const APInt& RHS); - /// Performs bitwise AND operation on this APInt and - /// the given APInt& RHS. + /// Shifts *this left by shiftAmt and assigns the result to *this. + /// @returns *this after shifting left by shiftAmt + /// @brief Left-shift assignment function. + inline APInt& operator<<=(uint32_t shiftAmt) { + *this = shl(shiftAmt); + return *this; + } + + /// @} + /// @name Binary Operators + /// @{ + /// Performs a bitwise AND operation on *this and RHS. + /// @returns An APInt value representing the bitwise AND of *this and RHS. /// @brief Bitwise AND operator. APInt operator&(const APInt& RHS) const; + APInt And(const APInt& RHS) const { + return this->operator&(RHS); + } - /// Performs bitwise OR operation on this APInt and the given APInt& RHS. + /// Performs a bitwise OR operation on *this and RHS. + /// @returns An APInt value representing the bitwise OR of *this and RHS. /// @brief Bitwise OR operator. APInt operator|(const APInt& RHS) const; + APInt Or(const APInt& RHS) const { + return this->operator|(RHS); + } - /// Performs bitwise XOR operation on this APInt and the given APInt& RHS. + /// Performs a bitwise XOR operation on *this and RHS. + /// @returns An APInt value representing the bitwise XOR of *this and RHS. /// @brief Bitwise XOR operator. APInt operator^(const APInt& RHS) const; + APInt Xor(const APInt& RHS) const { + return this->operator^(RHS); + } - /// Performs logical negation operation on this APInt. - /// @brief Logical negation operator. - bool operator !() const; - - /// Multiplies this APInt by the given APInt& RHS. + /// Multiplies this APInt by RHS and returns the result. /// @brief Multiplication operator. APInt operator*(const APInt& RHS) const; - /// Adds this APInt by the given APInt& RHS. + /// Adds RHS to this APInt and returns the result. /// @brief Addition operator. APInt operator+(const APInt& RHS) const; + APInt operator+(uint64_t RHS) const { + return (*this) + APInt(BitWidth, RHS); + } - /// Subtracts this APInt by the given APInt& RHS + /// Subtracts RHS from this APInt and returns the result. /// @brief Subtraction operator. APInt operator-(const APInt& RHS) const; + APInt operator-(uint64_t RHS) const { + return (*this) - APInt(BitWidth, RHS); + } + + APInt operator<<(unsigned Bits) const { + return shl(Bits); + } - /// @brief Unary negation operator - inline APInt operator-() const { - return APInt(BitWidth, 0) - (*this); + /// Arithmetic right-shift this APInt by shiftAmt. + /// @brief Arithmetic right-shift function. + APInt ashr(uint32_t shiftAmt) const; + + /// Logical right-shift this APInt by shiftAmt. + /// @brief Logical right-shift function. + APInt lshr(uint32_t shiftAmt) const; + + /// Left-shift this APInt by shiftAmt. + /// @brief Left-shift function. + APInt shl(uint32_t shiftAmt) const; + + /// @brief Rotate left by rotateAmt. + APInt rotl(uint32_t rotateAmt) const; + + /// @brief Rotate right by rotateAmt. + APInt rotr(uint32_t rotateAmt) const; + + /// Perform an unsigned divide operation on this APInt by RHS. Both this and + /// RHS are treated as unsigned quantities for purposes of this division. + /// @returns a new APInt value containing the division result + /// @brief Unsigned division operation. + APInt udiv(const APInt& RHS) const; + + /// Signed divide this APInt by APInt RHS. + /// @brief Signed division function for APInt. + inline APInt sdiv(const APInt& RHS) const { + if (isNegative()) + if (RHS.isNegative()) + return (-(*this)).udiv(-RHS); + else + return -((-(*this)).udiv(RHS)); + else if (RHS.isNegative()) + return -(this->udiv(-RHS)); + return this->udiv(RHS); + } + + /// Perform an unsigned remainder operation on this APInt with RHS being the + /// divisor. Both this and RHS are treated as unsigned quantities for purposes + /// of this operation. Note that this is a true remainder operation and not + /// a modulo operation because the sign follows the sign of the dividend + /// which is *this. + /// @returns a new APInt value containing the remainder result + /// @brief Unsigned remainder operation. + APInt urem(const APInt& RHS) const; + + /// Signed remainder operation on APInt. + /// @brief Function for signed remainder operation. + inline APInt srem(const APInt& RHS) const { + if (isNegative()) + if (RHS.isNegative()) + return -((-(*this)).urem(-RHS)); + else + return -((-(*this)).urem(RHS)); + else if (RHS.isNegative()) + return this->urem(-RHS); + return this->urem(RHS); } + /// Sometimes it is convenient to divide two APInt values and obtain both + /// the quotient and remainder. This function does both operations in the + /// same computation making it a little more efficient. + /// @brief Dual division/remainder interface. + static void udivrem(const APInt &LHS, const APInt &RHS, + APInt &Quotient, APInt &Remainder); + + static void sdivrem(const APInt &LHS, const APInt &RHS, + APInt &Quotient, APInt &Remainder) + { + if (LHS.isNegative()) { + if (RHS.isNegative()) + APInt::udivrem(-LHS, -RHS, Quotient, Remainder); + else + APInt::udivrem(-LHS, RHS, Quotient, Remainder); + Quotient = -Quotient; + Remainder = -Remainder; + } else if (RHS.isNegative()) { + APInt::udivrem(LHS, -RHS, Quotient, Remainder); + Quotient = -Quotient; + } else { + APInt::udivrem(LHS, RHS, Quotient, Remainder); + } + } + + /// @returns the bit value at bitPosition /// @brief Array-indexing support. bool operator[](uint32_t bitPosition) const; - /// Compare this APInt with the given APInt& RHS - /// for the validity of the equality relationship. + /// @} + /// @name Comparison Operators + /// @{ + /// Compares this APInt with RHS for the validity of the equality + /// relationship. /// @brief Equality operator. bool operator==(const APInt& RHS) const; - /// Compare this APInt with the given uint64_t value - /// for the validity of the equality relationship. + /// Compares this APInt with a uint64_t for the validity of the equality + /// relationship. + /// @returns true if *this == Val /// @brief Equality operator. bool operator==(uint64_t Val) const; - /// Compare this APInt with the given APInt& RHS - /// for the validity of the inequality relationship. + /// Compares this APInt with RHS for the validity of the equality + /// relationship. + /// @returns true if *this == Val + /// @brief Equality comparison. + bool eq(const APInt &RHS) const { + return (*this) == RHS; + } + + /// Compares this APInt with RHS for the validity of the inequality + /// relationship. + /// @returns true if *this != Val /// @brief Inequality operator. inline bool operator!=(const APInt& RHS) const { return !((*this) == RHS); } - /// Compare this APInt with the given uint64_t value - /// for the validity of the inequality relationship. + /// Compares this APInt with a uint64_t for the validity of the inequality + /// relationship. + /// @returns true if *this != Val /// @brief Inequality operator. inline bool operator!=(uint64_t Val) const { return !((*this) == Val); } - /// @brief Equality comparison - bool eq(const APInt &RHS) const { - return (*this) == RHS; - } - + /// Compares this APInt with RHS for the validity of the inequality + /// relationship. + /// @returns true if *this != Val /// @brief Inequality comparison bool ne(const APInt &RHS) const { return !((*this) == RHS); } + /// Regards both *this and RHS as unsigned quantities and compares them for + /// the validity of the less-than relationship. + /// @returns true if *this < RHS when both are considered unsigned. /// @brief Unsigned less than comparison bool ult(const APInt& RHS) const; + /// Regards both *this and RHS as signed quantities and compares them for + /// validity of the less-than relationship. + /// @returns true if *this < RHS when both are considered signed. /// @brief Signed less than comparison bool slt(const APInt& RHS) const; + /// Regards both *this and RHS as unsigned quantities and compares them for + /// validity of the less-or-equal relationship. + /// @returns true if *this <= RHS when both are considered unsigned. /// @brief Unsigned less or equal comparison bool ule(const APInt& RHS) const { return ult(RHS) || eq(RHS); } + /// Regards both *this and RHS as signed quantities and compares them for + /// validity of the less-or-equal relationship. + /// @returns true if *this <= RHS when both are considered signed. /// @brief Signed less or equal comparison bool sle(const APInt& RHS) const { return slt(RHS) || eq(RHS); } + /// Regards both *this and RHS as unsigned quantities and compares them for + /// the validity of the greater-than relationship. + /// @returns true if *this > RHS when both are considered unsigned. /// @brief Unsigned greather than comparison bool ugt(const APInt& RHS) const { return !ult(RHS) && !eq(RHS); } + /// Regards both *this and RHS as signed quantities and compares them for + /// the validity of the greater-than relationship. + /// @returns true if *this > RHS when both are considered signed. /// @brief Signed greather than comparison bool sgt(const APInt& RHS) const { return !slt(RHS) && !eq(RHS); } + /// Regards both *this and RHS as unsigned quantities and compares them for + /// validity of the greater-or-equal relationship. + /// @returns true if *this >= RHS when both are considered unsigned. /// @brief Unsigned greater or equal comparison bool uge(const APInt& RHS) const { return !ult(RHS); } + /// Regards both *this and RHS as signed quantities and compares them for + /// validity of the greater-or-equal relationship. + /// @returns true if *this >= RHS when both are considered signed. /// @brief Signed greather or equal comparison bool sge(const APInt& RHS) const { return !slt(RHS); } - /// This just tests the high bit of this APInt to determine if it is negative. - /// @returns true if this APInt is negative, false otherwise - /// @brief Determine sign of this APInt. - bool isNegative() const { - return (*this)[BitWidth - 1]; - } - - /// Arithmetic right-shift this APInt by shiftAmt. - /// @brief Arithmetic right-shift function. - APInt ashr(uint32_t shiftAmt) const; - - /// Logical right-shift this APInt by shiftAmt. - /// @brief Logical right-shift function. - APInt lshr(uint32_t shiftAmt) const; - - /// Left-shift this APInt by shiftAmt. - /// @brief Left-shift function. - APInt shl(uint32_t shiftAmt) const; - - /// Signed divide this APInt by APInt RHS. - /// @brief Signed division function for APInt. - inline APInt sdiv(const APInt& RHS) const { - bool isNegativeLHS = isNegative(); - bool isNegativeRHS = RHS.isNegative(); - APInt Result = APIntOps::udiv( - isNegativeLHS ? -(*this) : (*this), isNegativeRHS ? -RHS : RHS); - return isNegativeLHS != isNegativeRHS ? -Result : Result; - } - - /// Unsigned divide this APInt by APInt RHS. - /// @brief Unsigned division function for APInt. - APInt udiv(const APInt& RHS) const; - - /// Signed remainder operation on APInt. - /// @brief Function for signed remainder operation. - inline APInt srem(const APInt& RHS) const { - bool isNegativeLHS = isNegative(); - bool isNegativeRHS = RHS.isNegative(); - APInt Result = APIntOps::urem( - isNegativeLHS ? -(*this) : (*this), isNegativeRHS ? -RHS : RHS); - return isNegativeLHS ? -Result : Result; - } - - /// Unsigned remainder operation on APInt. - /// @brief Function for unsigned remainder operation. - APInt urem(const APInt& RHS) const; - + /// @} + /// @name Resizing Operators + /// @{ /// Truncate the APInt to a specified width. It is an error to specify a width /// that is greater than or equal to the current width. /// @brief Truncate to new width. - void trunc(uint32_t width); + APInt &trunc(uint32_t width); /// This operation sign extends the APInt to a new width. If the high order /// bit is set, the fill on the left will be done with 1 bits, otherwise zero. /// It is an error to specify a width that is less than or equal to the /// current width. /// @brief Sign extend to a new width. - void sext(uint32_t width); + APInt &sext(uint32_t width); - /// This operation zero extends the APInt to a new width. Thie high order bits + /// This operation zero extends the APInt to a new width. The high order bits /// are filled with 0 bits. It is an error to specify a width that is less /// than or equal to the current width. /// @brief Zero extend to a new width. - void zext(uint32_t width); + APInt &zext(uint32_t width); + + /// Make this APInt have the bit width given by \p width. The value is sign + /// extended, truncated, or left alone to make it that width. + /// @brief Sign extend or truncate to width + APInt &sextOrTrunc(uint32_t width); + /// Make this APInt have the bit width given by \p width. The value is zero + /// extended, truncated, or left alone to make it that width. + /// @brief Zero extend or truncate to width + APInt &zextOrTrunc(uint32_t width); + + /// @} + /// @name Bit Manipulation Operators + /// @{ /// @brief Set every bit to 1. APInt& set(); @@ -438,6 +822,22 @@ public: /// @brief Toggles a given bit to its opposite value. APInt& flip(uint32_t bitPosition); + /// @} + /// @name Value Characterization Functions + /// @{ + + /// @returns the total number of bits. + inline uint32_t getBitWidth() const { + return BitWidth; + } + + /// Here one word's bitwidth equals to that of uint64_t. + /// @returns the number of words to hold the integer value of this APInt. + /// @brief Get the number of words. + inline uint32_t getNumWords() const { + return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; + } + /// This function returns the number of active bits which is defined as the /// bit width minus the number of leading zeros. This is used in several /// computations to see how "wide" the value is. @@ -446,6 +846,26 @@ public: return BitWidth - countLeadingZeros(); } + /// This function returns the number of active words in the value of this + /// APInt. This is used in conjunction with getActiveData to extract the raw + /// value of the APInt. + inline uint32_t getActiveWords() const { + return whichWord(getActiveBits()-1) + 1; + } + + /// Computes the minimum bit width for this APInt while considering it to be + /// a signed (and probably negative) value. If the value is not negative, + /// this function returns the same value as getActiveBits(). Otherwise, it + /// returns the smallest bit width that will retain the negative value. For + /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so + /// for -1, this function will always return 1. + /// @brief Get the minimum bit size for this signed APInt + inline uint32_t getMinSignedBits() const { + if (isNegative()) + return BitWidth - countLeadingOnes() + 1; + return getActiveBits()+1; + } + /// This method attempts to return the value of this APInt as a zero extended /// uint64_t. The bitwidth must be <= 64 or the value must fit within a /// uint64_t. Otherwise an assertion will result. @@ -469,84 +889,46 @@ public: return int64_t(pVal[0]); } - /// @brief Gets maximum unsigned value of APInt for specific bit width. - static APInt getMaxValue(uint32_t numBits) { - return APInt(numBits, 0).set(); - } - - /// @brief Gets maximum signed value of APInt for a specific bit width. - static APInt getSignedMaxValue(uint32_t numBits) { - return APInt(numBits, 0).set().clear(numBits - 1); - } - - /// @brief Gets minimum unsigned value of APInt for a specific bit width. - static APInt getMinValue(uint32_t numBits) { - return APInt(numBits, 0); - } - - /// @brief Gets minimum signed value of APInt for a specific bit width. - static APInt getSignedMinValue(uint32_t numBits) { - return APInt(numBits, 0).set(numBits - 1); - } + /// This method determines how many bits are required to hold the APInt + /// equivalent of the string given by \p str of length \p slen. + /// @brief Get bits required for string value. + static uint32_t getBitsNeeded(const char* str, uint32_t slen, uint8_t radix); - /// @returns the all-ones value for an APInt of the specified bit-width. - /// @brief Get the all-ones value. - static APInt getAllOnesValue(uint32_t numBits) { - return APInt(numBits, 0).set(); - } - - /// @returns the '0' value for an APInt of the specified bit-width. - /// @brief Get the '0' value. - static APInt getNullValue(uint32_t numBits) { - return APInt(numBits, 0); - } - - /// The hash value is computed as the sum of the words and the bit width. - /// @returns A hash value computed from the sum of the APInt words. - /// @brief Get a hash value based on this APInt - uint64_t getHashValue() const; - - /// This converts the APInt to a boolean valy as a test against zero. - /// @brief Boolean conversion function. - inline bool getBoolValue() const { - return countLeadingZeros() != BitWidth; - } - - /// This checks to see if the value has all bits of the APInt are set or not. - /// @brief Determine if all bits are set - inline bool isAllOnesValue() const { - return countPopulation() == BitWidth; - } + /// countLeadingZeros - This function is an APInt version of the + /// countLeadingZeros_{32,64} functions in MathExtras.h. It counts the number + /// of zeros from the most significant bit to the first one bit. + /// @returns BitWidth if the value is zero. + /// @returns the number of zeros from the most significant bit to the first + /// one bits. + uint32_t countLeadingZeros() const; - /// This checks to see if the value of this APInt is the maximum unsigned - /// value for the APInt's bit width. - /// @brief Determine if this is the largest unsigned value. - bool isMaxValue() const { - return countPopulation() == BitWidth; - } + /// countLeadingOnes - This function counts the number of contiguous 1 bits + /// in the high order bits. The count stops when the first 0 bit is reached. + /// @returns 0 if the high order bit is not set + /// @returns the number of 1 bits from the most significant to the least + /// @brief Count the number of leading one bits. + uint32_t countLeadingOnes() const; - /// This checks to see if the value of this APInt is the maximum signed - /// value for the APInt's bit width. - /// @brief Determine if this is the largest signed value. - bool isMaxSignedValue() const { - return BitWidth == 1 ? VAL == 0 : - !isNegative() && countPopulation() == BitWidth - 1; - } + /// countTrailingZeros - This function is an APInt version of the + /// countTrailingZoers_{32,64} functions in MathExtras.h. It counts + /// the number of zeros from the least significant bit to the first set bit. + /// @returns BitWidth if the value is zero. + /// @returns the number of zeros from the least significant bit to the first + /// one bit. + /// @brief Count the number of trailing zero bits. + uint32_t countTrailingZeros() const; - /// This checks to see if the value of this APInt is the minimum signed - /// value for the APInt's bit width. - /// @brief Determine if this is the smallest unsigned value. - bool isMinValue() const { - return countPopulation() == 0; - } + /// countPopulation - This function is an APInt version of the + /// countPopulation_{32,64} functions in MathExtras.h. It counts the number + /// of 1 bits in the APInt value. + /// @returns 0 if the value is zero. + /// @returns the number of set bits. + /// @brief Count the number of bits set. + uint32_t countPopulation() const; - /// This checks to see if the value of this APInt is the minimum signed - /// value for the APInt's bit width. - /// @brief Determine if this is the smallest signed value. - bool isMinSignedValue() const { - return BitWidth == 1 ? VAL == 1 : - isNegative() && countPopulation() == 1; - } + /// @} + /// @name Conversion Functions + /// @{ /// This is used internally to convert an APInt to a string. /// @brief Converts an APInt to a std::string @@ -556,7 +938,7 @@ public: /// radix given. The radix can be 2, 8, 10 or 16. /// @returns a character interpretation of the APInt /// @brief Convert unsigned APInt to string representation. - inline std::string toString(uint8_t radix = 10) const { + inline std::string toStringUnsigned(uint8_t radix = 10) const { return toString(radix, false); } @@ -568,85 +950,272 @@ public: return toString(radix, true); } - /// Get an APInt with the same BitWidth as this APInt, just zero mask - /// the low bits and right shift to the least significant bit. - /// @returns the high "numBits" bits of this APInt. - APInt getHiBits(uint32_t numBits) const; + /// @returns a byte-swapped representation of this APInt Value. + APInt byteSwap() const; - /// Get an APInt with the same BitWidth as this APInt, just zero mask - /// the high bits. - /// @returns the low "numBits" bits of this APInt. - APInt getLoBits(uint32_t numBits) const; + /// @brief Converts this APInt to a double value. + double roundToDouble(bool isSigned) const; - /// @returns true if the argument APInt value is a power of two > 0. - bool isPowerOf2() const; + /// @brief Converts this unsigned APInt to a double value. + double roundToDouble() const { + return roundToDouble(false); + } - /// countLeadingZeros - This function is an APInt version of the - /// countLeadingZeros_{32,64} functions in MathExtras.h. It counts the number - /// of zeros from the most significant bit to the first one bit. - /// @returns getNumWords() * APINT_BITS_PER_WORD if the value is zero. - /// @returns the number of zeros from the most significant bit to the first - /// one bits. - /// @brief Count the number of trailing one bits. - uint32_t countLeadingZeros() const; + /// @brief Converts this signed APInt to a double value. + double signedRoundToDouble() const { + return roundToDouble(true); + } - /// countTrailingZeros - This function is an APInt version of the - /// countTrailingZoers_{32,64} functions in MathExtras.h. It counts - /// the number of zeros from the least significant bit to the first one bit. - /// @returns getNumWords() * APINT_BITS_PER_WORD if the value is zero. - /// @returns the number of zeros from the least significant bit to the first - /// one bit. - /// @brief Count the number of trailing zero bits. - uint32_t countTrailingZeros() const; + /// The conversion does not do a translation from integer to double, it just + /// re-interprets the bits as a double. Note that it is valid to do this on + /// any bit width. Exactly 64 bits will be translated. + /// @brief Converts APInt bits to a double + double bitsToDouble() const { + union { + uint64_t I; + double D; + } T; + T.I = (isSingleWord() ? VAL : pVal[0]); + return T.D; + } - /// countPopulation - This function is an APInt version of the - /// countPopulation_{32,64} functions in MathExtras.h. It counts the number - /// of 1 bits in the APInt value. - /// @returns 0 if the value is zero. - /// @returns the number of set bits. - /// @brief Count the number of bits set. - uint32_t countPopulation() const; + /// The conversion does not do a translation from integer to float, it just + /// re-interprets the bits as a float. Note that it is valid to do this on + /// any bit width. Exactly 32 bits will be translated. + /// @brief Converts APInt bits to a double + float bitsToFloat() const { + union { + uint32_t I; + float F; + } T; + T.I = uint32_t((isSingleWord() ? VAL : pVal[0])); + return T.F; + } - /// @returns the total number of bits. - inline uint32_t getBitWidth() const { - return BitWidth; + /// The conversion does not do a translation from double to integer, it just + /// re-interprets the bits of the double. Note that it is valid to do this on + /// any bit width but bits from V may get truncated. + /// @brief Converts a double to APInt bits. + APInt& doubleToBits(double V) { + union { + uint64_t I; + double D; + } T; + T.D = V; + if (isSingleWord()) + VAL = T.I; + else + pVal[0] = T.I; + return clearUnusedBits(); } - /// @brief Check if this APInt has a N-bits integer value. - inline bool isIntN(uint32_t N) const { - assert(N && "N == 0 ???"); - if (isSingleWord()) { - return VAL == (VAL & (~0ULL >> (64 - N))); - } else { - APInt Tmp(N, getNumWords(), pVal); - return Tmp == (*this); - } + /// The conversion does not do a translation from float to integer, it just + /// re-interprets the bits of the float. Note that it is valid to do this on + /// any bit width but bits from V may get truncated. + /// @brief Converts a float to APInt bits. + APInt& floatToBits(float V) { + union { + uint32_t I; + float F; + } T; + T.F = V; + if (isSingleWord()) + VAL = T.I; + else + pVal[0] = T.I; + return clearUnusedBits(); } - /// @returns a byte-swapped representation of this APInt Value. - APInt byteSwap() const; + /// @} + /// @name Mathematics Operations + /// @{ /// @returns the floor log base 2 of this APInt. inline uint32_t logBase2() const { - return getNumWords() * APINT_BITS_PER_WORD - 1 - countLeadingZeros(); + return BitWidth - 1 - countLeadingZeros(); } - /// @brief Converts this APInt to a double value. - double roundToDouble(bool isSigned) const; - - /// @brief Converts this unsigned APInt to a double value. - double roundToDouble() const { - return roundToDouble(false); + /// @returns the log base 2 of this APInt if its an exact power of two, -1 + /// otherwise + inline int32_t exactLogBase2() const { + if (!isPowerOf2()) + return -1; + return logBase2(); } - /// @brief Converts this signed APInt to a double value. - double signedRoundToDouble() const { - return roundToDouble(true); + /// @brief Compute the square root + APInt sqrt() const; + + /// If *this is < 0 then return -(*this), otherwise *this; + /// @brief Get the absolute value; + APInt abs() const { + if (isNegative()) + return -(*this); + return *this; } + + /// @} + + /// @} + /// @name Building-block Operations for APInt and APFloat + /// @{ + + // These building block operations operate on a representation of + // arbitrary precision, two's-complement, bignum integer values. + // They should be sufficient to implement APInt and APFloat bignum + // requirements. Inputs are generally a pointer to the base of an + // array of integer parts, representing an unsigned bignum, and a + // count of how many parts there are. + + /// Sets the least significant part of a bignum to the input value, + /// and zeroes out higher parts. */ + static void tcSet(integerPart *, integerPart, unsigned int); + + /// Assign one bignum to another. + static void tcAssign(integerPart *, const integerPart *, unsigned int); + + /// Returns true if a bignum is zero, false otherwise. + static bool tcIsZero(const integerPart *, unsigned int); + + /// Extract the given bit of a bignum; returns 0 or 1. Zero-based. + static int tcExtractBit(const integerPart *, unsigned int bit); + + /// Copy the bit vector of width srcBITS from SRC, starting at bit + /// srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB + /// becomes the least significant bit of DST. All high bits above + /// srcBITS in DST are zero-filled. + static void tcExtract(integerPart *, unsigned int dstCount, const integerPart *, + unsigned int srcBits, unsigned int srcLSB); + + /// Set the given bit of a bignum. Zero-based. + static void tcSetBit(integerPart *, unsigned int bit); + + /// Returns the bit number of the least or most significant set bit + /// of a number. If the input number has no bits set -1U is + /// returned. + static unsigned int tcLSB(const integerPart *, unsigned int); + static unsigned int tcMSB(const integerPart *, unsigned int); + + /// Negate a bignum in-place. + static void tcNegate(integerPart *, unsigned int); + + /// DST += RHS + CARRY where CARRY is zero or one. Returns the + /// carry flag. + static integerPart tcAdd(integerPart *, const integerPart *, + integerPart carry, unsigned); + + /// DST -= RHS + CARRY where CARRY is zero or one. Returns the + /// carry flag. + static integerPart tcSubtract(integerPart *, const integerPart *, + integerPart carry, unsigned); + + /// DST += SRC * MULTIPLIER + PART if add is true + /// DST = SRC * MULTIPLIER + PART if add is false + /// + /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC + /// they must start at the same point, i.e. DST == SRC. + /// + /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is + /// returned. Otherwise DST is filled with the least significant + /// DSTPARTS parts of the result, and if all of the omitted higher + /// parts were zero return zero, otherwise overflow occurred and + /// return one. + static int tcMultiplyPart(integerPart *dst, const integerPart *src, + integerPart multiplier, integerPart carry, + unsigned int srcParts, unsigned int dstParts, + bool add); + + /// DST = LHS * RHS, where DST has the same width as the operands + /// and is filled with the least significant parts of the result. + /// Returns one if overflow occurred, otherwise zero. DST must be + /// disjoint from both operands. + static int tcMultiply(integerPart *, const integerPart *, + const integerPart *, unsigned); + + /// DST = LHS * RHS, where DST has width the sum of the widths of + /// the operands. No overflow occurs. DST must be disjoint from + /// both operands. Returns the number of parts required to hold the + /// result. + static unsigned int tcFullMultiply(integerPart *, const integerPart *, + const integerPart *, unsigned, unsigned); + + /// If RHS is zero LHS and REMAINDER are left unchanged, return one. + /// Otherwise set LHS to LHS / RHS with the fractional part + /// discarded, set REMAINDER to the remainder, return zero. i.e. + /// + /// OLD_LHS = RHS * LHS + REMAINDER + /// + /// SCRATCH is a bignum of the same size as the operands and result + /// for use by the routine; its contents need not be initialized + /// and are destroyed. LHS, REMAINDER and SCRATCH must be + /// distinct. + static int tcDivide(integerPart *lhs, const integerPart *rhs, + integerPart *remainder, integerPart *scratch, + unsigned int parts); + + /// Shift a bignum left COUNT bits. Shifted in bits are zero. + /// There are no restrictions on COUNT. + static void tcShiftLeft(integerPart *, unsigned int parts, + unsigned int count); + + /// Shift a bignum right COUNT bits. Shifted in bits are zero. + /// There are no restrictions on COUNT. + static void tcShiftRight(integerPart *, unsigned int parts, + unsigned int count); + + /// The obvious AND, OR and XOR and complement operations. + static void tcAnd(integerPart *, const integerPart *, unsigned int); + static void tcOr(integerPart *, const integerPart *, unsigned int); + static void tcXor(integerPart *, const integerPart *, unsigned int); + static void tcComplement(integerPart *, unsigned int); + + /// Comparison (unsigned) of two bignums. + static int tcCompare(const integerPart *, const integerPart *, + unsigned int); + + /// Increment a bignum in-place. Return the carry flag. + static integerPart tcIncrement(integerPart *, unsigned int); + + /// Set the least significant BITS and clear the rest. + static void tcSetLeastSignificantBits(integerPart *, unsigned int, + unsigned int bits); + + /// @brief debug method + void dump() const; + + /// @} }; +inline bool operator==(uint64_t V1, const APInt& V2) { + return V2 == V1; +} + +inline bool operator!=(uint64_t V1, const APInt& V2) { + return V2 != V1; +} + namespace APIntOps { +/// @brief Determine the smaller of two APInts considered to be signed. +inline APInt smin(const APInt &A, const APInt &B) { + return A.slt(B) ? A : B; +} + +/// @brief Determine the larger of two APInts considered to be signed. +inline APInt smax(const APInt &A, const APInt &B) { + return A.sgt(B) ? A : B; +} + +/// @brief Determine the smaller of two APInts considered to be signed. +inline APInt umin(const APInt &A, const APInt &B) { + return A.ult(B) ? A : B; +} + +/// @brief Determine the larger of two APInts considered to be unsigned. +inline APInt umax(const APInt &A, const APInt &B) { + return A.ugt(B) ? A : B; +} + /// @brief Check if the specified APInt has a N-bits integer value. inline bool isIntN(uint32_t N, const APInt& APIVal) { return APIVal.isIntN(N); @@ -654,13 +1223,13 @@ inline bool isIntN(uint32_t N, const APInt& APIVal) { /// @returns true if the argument APInt value is a sequence of ones /// starting at the least significant bit with the remainder zero. -inline const bool isMask(uint32_t numBits, const APInt& APIVal) { +inline bool isMask(uint32_t numBits, const APInt& APIVal) { return APIVal.getBoolValue() && ((APIVal + APInt(numBits,1)) & APIVal) == 0; } /// @returns true if the argument APInt value contains a sequence of ones /// with the remainder zero. -inline const bool isShiftedMask(uint32_t numBits, const APInt& APIVal) { +inline bool isShiftedMask(uint32_t numBits, const APInt& APIVal) { return isMask(numBits, (APIVal - APInt(numBits,1)) | APIVal); } @@ -697,14 +1266,20 @@ inline float RoundAPIntToFloat(const APInt& APIVal) { return float(RoundAPIntToDouble(APIVal)); } +/// Treast the APInt as a signed value for conversion purposes. +/// @brief Converts the given APInt to a float value. +inline float RoundSignedAPIntToFloat(const APInt& APIVal) { + return float(APIVal.signedRoundToDouble()); +} + /// RoundDoubleToAPInt - This function convert a double value to an APInt value. /// @brief Converts the given double value into a APInt. -APInt RoundDoubleToAPInt(double Double, uint32_t width = 64); +APInt RoundDoubleToAPInt(double Double, uint32_t width); /// RoundFloatToAPInt - Converts a float value into an APInt value. /// @brief Converts a float value into a APInt. -inline APInt RoundFloatToAPInt(float Float) { - return RoundDoubleToAPInt(double(Float)); +inline APInt RoundFloatToAPInt(float Float, uint32_t width) { + return RoundDoubleToAPInt(double(Float), width); } /// Arithmetic right-shift the APInt by shiftAmt.