X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;f=docs%2FLangRef.html;h=10fb2e6a6c7b6209b3eeee42dabb5c0ee58b4a79;hb=d8be2154b38ea623f2320b26c9e1a40be0d0206b;hp=da7c7e1dea705abe538b0a5179ebfaa3c471bbf5;hpb=2eb93b3f03fb1167f7d40a1d5a17e84bb95d0510;p=oota-llvm.git diff --git a/docs/LangRef.html b/docs/LangRef.html index da7c7e1dea7..10fb2e6a6c7 100644 --- a/docs/LangRef.html +++ b/docs/LangRef.html @@ -191,20 +191,20 @@
  • Debugger intrinsics
  • Exception Handling intrinsics
  • -
  • Atomic Operations and Synchronization Intrinsics +
  • Trampoline Intrinsic
      -
    1. 'llvm.atomic.lcs.*' Intrinsic
    2. -
    3. 'llvm.atomic.ls.*' Intrinsic
    4. -
    5. 'llvm.atomic.las.*' Intrinsic
    6. -
    7. 'llvm.atomic.lss.*' Intrinsic
    8. -
    9. 'llvm.memory.barrier' Intrinsic
    10. +
    11. 'llvm.init.trampoline' Intrinsic
  • -
  • General intrinsics
  • +
  • General intrinsics
      -
    1. 'llvm.var.annotation' - Intrinsic
    2. -
    +
  • + llvm.var.annotation' Intrinsic
  • + +
      +
    1. + llvm.annotation.*' Intrinsic
    2. +
    @@ -282,7 +282,7 @@ by the verifier pass indicate bugs in transformation passes or input to the parser.

    - +
    Identifiers
    @@ -290,25 +290,27 @@ the parser.

    -

    LLVM uses three different forms of identifiers, for different -purposes:

    +

    LLVM identifiers come in two basic types: global and local. Global + identifiers (functions, global variables) begin with the @ character. Local + identifiers (register names, types) begin with the % character. Additionally, + there are three different formats for identifiers, for different purposes:

      -
    1. Named values are represented as a string of characters with a '%' prefix. - For example, %foo, %DivisionByZero, %a.really.long.identifier. The actual - regular expression used is '%[a-zA-Z$._][a-zA-Z$._0-9]*'. +
    2. Named values are represented as a string of characters with their prefix. + For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual + regular expression used is '[%@][a-zA-Z$._][a-zA-Z$._0-9]*'. Identifiers which require other characters in their names can be surrounded - with quotes. In this way, anything except a " character can be used - in a name.
    3. + with quotes. In this way, anything except a " character can + be used in a named value. -
    4. Unnamed values are represented as an unsigned numeric value with a '%' - prefix. For example, %12, %2, %44.
    5. +
    6. Unnamed values are represented as an unsigned numeric value with their + prefix. For example, %12, @2, %44.
    7. Constants, which are described in a section about constants, below.
    -

    LLVM requires that values start with a '%' sign for two reasons: Compilers +

    LLVM requires that values start with a prefix for two reasons: Compilers don't need to worry about name clashes with reserved words, and the set of reserved words may be expanded in the future without penalty. Additionally, unnamed identifiers allow a compiler to quickly come up with a temporary @@ -321,7 +323,7 @@ languages. There are keywords for different opcodes 'ret', etc...), for primitive type names ('void', 'i32', etc...), and others. These reserved words cannot conflict with variable names, because -none of them start with a '%' character.

    +none of them start with a prefix character ('%' or '@').

    Here is an example of LLVM code to multiply the integer variable '%X' by 8:

    @@ -805,6 +807,9 @@ a power of 2.

    This function attribute indicates that the function type does not use the unwind instruction and does not allow stack unwinding to propagate through it.
    +
    nest
    +
    This indicates that the parameter can be excised using the + trampoline intrinsics.
    @@ -1492,7 +1497,7 @@ following is the syntax for constant expressions:

    Floating point extend a constant to another type. The size of CST must be smaller or equal to the size of TYPE. Both types must be floating point.
    -
    fp2uint ( CST to TYPE )
    +
    fptoui ( CST to TYPE )
    Convert a floating point constant to the corresponding unsigned integer constant. TYPE must be an integer type. CST must be floating point. If the value won't fit in the integer type, the results are undefined.
    @@ -2163,18 +2168,28 @@ Instruction
    Syntax:
      <result> = shl <ty> <var1>, <var2>   ; yields {ty}:result
     
    +
    Overview:
    +

    The 'shl' instruction returns the first operand shifted to the left a specified number of bits.

    +
    Arguments:
    +

    Both arguments to the 'shl' instruction must be the same integer type.

    +
    Semantics:
    -

    The value produced is var1 * 2var2.

    + +

    The value produced is var1 * 2var2. If +var2 is (statically or dynamically) equal to or larger than the number +of bits in var1, the result is undefined.

    +
    Example:
       <result> = shl i32 4, %var   ; yields {i32}: 4 << %var
       <result> = shl i32 4, 2      ; yields {i32}: 16
       <result> = shl i32 1, 10     ; yields {i32}: 1024
    +  <result> = shl i32 1, 32     ; undefined
     
    @@ -2194,9 +2209,11 @@ operand shifted to the right a specified number of bits with zero fill.

    integer type.

    Semantics:
    +

    This instruction always performs a logical shift right operation. The most significant bits of the result will be filled with zero bits after the -shift.

    +shift. If var2 is (statically or dynamically) equal to or larger than +the number of bits in var1, the result is undefined.

    Example:
    @@ -2204,6 +2221,7 @@ shift.

    <result> = lshr i32 4, 2 ; yields {i32}:result = 1 <result> = lshr i8 4, 3 ; yields {i8}:result = 0 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7FFFFFFF + <result> = lshr i32 1, 32 ; undefined
    @@ -2227,7 +2245,9 @@ operand shifted to the right a specified number of bits with sign extension.

    Semantics:

    This instruction always performs an arithmetic shift right operation, The most significant bits of the result will be filled with the sign bit -of var1.

    +of var1. If var2 is (statically or dynamically) equal to or +larger than the number of bits in var1, the result is undefined. +

    Example:
    @@ -2235,6 +2255,7 @@ of var1.

    <result> = ashr i32 4, 2 ; yields {i32}:result = 1 <result> = ashr i8 4, 3 ; yields {i8}:result = 0 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1 + <result> = ashr i32 1, 32 ; undefined
    @@ -3089,34 +3110,30 @@ used to make a no-op cast because it always changes bits. Use
    Syntax:
    -  <result> = fp2uint <ty> <value> to <ty2>             ; yields ty2
    +  <result> = fptoui <ty> <value> to <ty2>             ; yields ty2
     
    Overview:
    -

    The 'fp2uint' converts a floating point value to its +

    The 'fptoui' converts a floating point value to its unsigned integer equivalent of type ty2.

    Arguments:
    -

    The 'fp2uint' instruction takes a value to cast, which must be a +

    The 'fptoui' instruction takes a value to cast, which must be a floating point value, and a type to cast it to, which must be an integer type.

    Semantics:
    -

    The 'fp2uint' instruction converts its +

    The 'fptoui' instruction converts its floating point operand into the nearest (rounding towards zero) unsigned integer value. If the value cannot fit in ty2, the results are undefined.

    -

    When converting to i1, the conversion is done as a comparison against -zero. If the value was zero, the i1 result will be false. -If the value was non-zero, the i1 result will be true.

    -
    Example:
    -  %X = fp2uint double 123.0 to i32      ; yields i32:123
    -  %Y = fp2uint float 1.0E+300 to i1     ; yields i1:true
    -  %X = fp2uint float 1.04E+17 to i8     ; yields undefined:1
    +  %X = fptoui double 123.0 to i32      ; yields i32:123
    +  %Y = fptoui float 1.0E+300 to i1     ; yields undefined:1
    +  %X = fptoui float 1.04E+17 to i8     ; yields undefined:1
     
    @@ -3148,14 +3165,10 @@ must also be an integer type.

    towards zero) signed integer value. If the value cannot fit in ty2, the results are undefined.

    -

    When converting to i1, the conversion is done as a comparison against -zero. If the value was zero, the i1 result will be false. -If the value was non-zero, the i1 result will be true.

    -
    Example:
       %X = fptosi double -123.0 to i32      ; yields i32:-123
    -  %Y = fptosi float 1.0E-247 to i1      ; yields i1:true
    +  %Y = fptosi float 1.0E-247 to i1      ; yields undefined:1
       %X = fptosi float 1.04E+17 to i8      ; yields undefined:1
     
    @@ -3570,7 +3583,7 @@ value argument; otherwise, it returns the second value argument.
    Syntax:
    -  <result> = [tail] call [cconv] <ty>* <fnptrval>(<param list>)
    +  <result> = [tail] call [cconv] <ty> [<fnty>*] <fnptrval>(<param list>)
     
    Overview:
    @@ -3595,10 +3608,15 @@ value argument; otherwise, it returns the second value argument. to using C calling conventions.
  • -

    'ty': shall be the signature of the pointer to function value - being invoked. The argument types must match the types implied by this - signature. This type can be omitted if the function is not varargs and - if the function type does not return a pointer to a function.

    +

    'ty': the type of the call instruction itself which is also + the type of the return value. Functions that return no value are marked + void.

    +
  • +
  • +

    'fnty': shall be the signature of the pointer to function + value being invoked. The argument types must match the types implied by + this signature. This type can be omitted if the function is not varargs + and if the function type does not return a pointer to a function.

  • 'fnptrval': An LLVM value containing a pointer to a function to @@ -3628,10 +3646,11 @@ the invoke instruction.

    Example:
    -  %retval = call i32 %test(i32 %argc)
    -  call i32(i8 *, ...) *%printf(i8 * %msg, i32 12, i8 42);
    -  %X = tail call i32 %foo()
    -  %Y = tail call fastcc i32 %foo()
    +  %retval = call i32 @test(i32 %argc)
    +  call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42);
    +  %X = tail call i32 @foo()
    +  %Y = tail call fastcc i32 @foo()
    +  %Z = call void %foo(i8 97 signext)
     
    @@ -3705,17 +3724,27 @@ of an intrinsic function. Additionally, because intrinsic functions are part of the LLVM language, it is required if any are added that they be documented here.

    -

    Some intrinsic functions can be overloaded, i.e., the intrinsic represents -a family of functions that perform the same operation but on different data -types. This is most frequent with the integer types. Since LLVM can represent -over 8 million different integer types, there is a way to declare an intrinsic -that can be overloaded based on its arguments. Such an intrinsic will have the -names of its argument types encoded into its function name, each -preceded by a period. For example, the llvm.ctpop function can take an -integer of any width. This leads to a family of functions such as -i32 @llvm.ctpop.i8(i8 %val) and i32 @llvm.ctpop.i29(i29 %val). -

    - +

    Some intrinsic functions can be overloaded, i.e., the intrinsic represents +a family of functions that perform the same operation but on different data +types. Because LLVM can represent over 8 million different integer types, +overloading is used commonly to allow an intrinsic function to operate on any +integer type. One or more of the argument types or the result type can be +overloaded to accept any integer type. Argument types may also be defined as +exactly matching a previous argument's type or the result type. This allows an +intrinsic function which accepts multiple arguments, but needs all of them to +be of the same type, to only be overloaded with respect to a single argument or +the result.

    + +

    Overloaded intrinsics will have the names of its overloaded argument types +encoded into its function name, each preceded by a period. Only those types +which are overloaded result in a name suffix. Arguments whose type is matched +against another type do not. For example, the llvm.ctpop function can +take an integer of any width and returns an integer of exactly the same integer +width. This leads to a family of functions such as +i8 @llvm.ctpop.i8(i8 %val) and i29 @llvm.ctpop.i29(i29 %val). +Only one type, the return type, is overloaded, and only one type suffix is +required. Because the argument's type is matched against the return type, it +does not require its own name suffix.

    To learn how to add an intrinsic function, please see the Extending LLVM Guide. @@ -3897,7 +3926,7 @@ href="GarbageCollection.html">Accurate Garbage Collection with LLVM.

    Syntax:
    -  declare void @llvm.gcroot(<ty>** %ptrloc, <ty2>* %metadata)
    +  declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
     
    Overview:
    @@ -3931,7 +3960,7 @@ the runtime to find the pointer at GC safe points.
    Syntax:
    -  declare i8 * @llvm.gcread(i8 * %ObjPtr, i8 ** %Ptr)
    +  declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
     
    Overview:
    @@ -3966,7 +3995,7 @@ garbage collector runtime, as needed.

    Syntax:
    -  declare void @llvm.gcwrite(i8 * %P1, i8 * %Obj, i8 ** %P2)
    +  declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
     
    Overview:
    @@ -4059,7 +4088,7 @@ source-language caller.
    Syntax:
    -  declare i8  *@llvm.frameaddress(i32 <level>)
    +  declare i8 *@llvm.frameaddress(i32 <level>)
     
    Overview:
    @@ -4102,7 +4131,7 @@ source-language caller.
    Syntax:
    -  declare i8  *@llvm.stacksave()
    +  declare i8 *@llvm.stacksave()
     
    Overview:
    @@ -4168,8 +4197,7 @@ See the description for llvm.stacksave.
    Syntax:
    -  declare void @llvm.prefetch(i8  * <address>,
    -                                i32 <rw>, i32 <locality>)
    +  declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>)
     
    Overview:
    @@ -4213,7 +4241,7 @@ performance.
    Syntax:
    -  declare void @llvm.pcmarker( i32 <id> )
    +  declare void @llvm.pcmarker(i32 <id>)
     
    Overview:
    @@ -4463,9 +4491,14 @@ this can be specified as the fourth argument, otherwise it should be set to 0 or
    Syntax:
    +

    This is an overloaded intrinsic. You can use llvm.sqrt on any +floating point type. Not all targets support all types however.

    -  declare float @llvm.sqrt.f32(float %Val)
    -  declare double @llvm.sqrt.f64(double %Val)
    +  declare float     @llvm.sqrt.f32(float %Val)
    +  declare double    @llvm.sqrt.f64(double %Val)
    +  declare x86_fp80  @llvm.sqrt.f80(x86_fp80 %Val)
    +  declare fp128     @llvm.sqrt.f128(fp128 %Val)
    +  declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
     
    Overview:
    @@ -4499,9 +4532,14 @@ floating point number.
    Syntax:
    +

    This is an overloaded intrinsic. You can use llvm.powi on any +floating point type. Not all targets support all types however.

    -  declare float  @llvm.powi.f32(float  %Val, i32 %power)
    -  declare double @llvm.powi.f64(double %Val, i32 %power)
    +  declare float     @llvm.powi.f32(float  %Val, i32 %power)
    +  declare double    @llvm.powi.f64(double %Val, i32 %power)
    +  declare x86_fp80  @llvm.powi.f80(x86_fp80  %Val, i32 %power)
    +  declare fp128     @llvm.powi.f128(fp128 %Val, i32 %power)
    +  declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128  %Val, i32 %power)
     
    Overview:
    @@ -4549,12 +4587,11 @@ These allow efficient code generation for some algorithms.
    Syntax:

    This is an overloaded intrinsic function. You can use bswap on any integer -type that is an even number of bytes (i.e. BitWidth % 16 == 0). Note the suffix -that includes the type for the result and the operand. +type that is an even number of bytes (i.e. BitWidth % 16 == 0).

    -  declare i16 @llvm.bswap.i16.i16(i16 <id>)
    -  declare i32 @llvm.bswap.i32.i32(i32 <id>)
    -  declare i64 @llvm.bswap.i64.i64(i64 <id>)
    +  declare i16 @llvm.bswap.i16(i16 <id>)
    +  declare i32 @llvm.bswap.i32(i32 <id>)
    +  declare i64 @llvm.bswap.i64(i64 <id>)
     
    Overview:
    @@ -4569,12 +4606,12 @@ byte order.
    Semantics:

    -The llvm.bswap.16.i16 intrinsic returns an i16 value that has the high +The llvm.bswap.i16 intrinsic returns an i16 value that has the high and low byte of the input i16 swapped. Similarly, the llvm.bswap.i32 intrinsic returns an i32 value that has the four bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned -i32 will have its bytes in 3, 2, 1, 0 order. The llvm.bswap.i48.i48, -llvm.bswap.i64.i64 and other intrinsics extend this concept to +i32 will have its bytes in 3, 2, 1, 0 order. The llvm.bswap.i48, +llvm.bswap.i64 and other intrinsics extend this concept to additional even-byte lengths (6 bytes, 8 bytes and more, respectively).

    @@ -4591,11 +4628,11 @@ additional even-byte lengths (6 bytes, 8 bytes and more, respectively).

    This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit width. Not all targets support all bit widths however.

    -  declare i32 @llvm.ctpop.i8 (i8  <src>)
    -  declare i32 @llvm.ctpop.i16(i16 <src>)
    +  declare i8 @llvm.ctpop.i8 (i8  <src>)
    +  declare i16 @llvm.ctpop.i16(i16 <src>)
       declare i32 @llvm.ctpop.i32(i32 <src>)
    -  declare i32 @llvm.ctpop.i64(i64 <src>)
    -  declare i32 @llvm.ctpop.i256(i256 <src>)
    +  declare i64 @llvm.ctpop.i64(i64 <src>)
    +  declare i256 @llvm.ctpop.i256(i256 <src>)
     
    Overview:
    @@ -4630,11 +4667,11 @@ The 'llvm.ctpop' intrinsic counts the 1's in a variable.

    This is an overloaded intrinsic. You can use llvm.ctlz on any integer bit width. Not all targets support all bit widths however.

    -  declare i32 @llvm.ctlz.i8 (i8  <src>)
    -  declare i32 @llvm.ctlz.i16(i16 <src>)
    +  declare i8 @llvm.ctlz.i8 (i8  <src>)
    +  declare i16 @llvm.ctlz.i16(i16 <src>)
       declare i32 @llvm.ctlz.i32(i32 <src>)
    -  declare i32 @llvm.ctlz.i64(i64 <src>)
    -  declare i32 @llvm.ctlz.i256(i256 <src>)
    +  declare i64 @llvm.ctlz.i64(i64 <src>)
    +  declare i256 @llvm.ctlz.i256(i256 <src>)
     
    Overview:
    @@ -4673,11 +4710,11 @@ of src. For example, llvm.ctlz(i32 2) = 30.

    This is an overloaded intrinsic. You can use llvm.cttz on any integer bit width. Not all targets support all bit widths however.

    -  declare i32 @llvm.cttz.i8 (i8  <src>)
    -  declare i32 @llvm.cttz.i16(i16 <src>)
    +  declare i8 @llvm.cttz.i8 (i8  <src>)
    +  declare i16 @llvm.cttz.i16(i16 <src>)
       declare i32 @llvm.cttz.i32(i32 <src>)
    -  declare i32 @llvm.cttz.i64(i64 <src>)
    -  declare i32 @llvm.cttz.i256(i256 <src>)
    +  declare i64 @llvm.cttz.i64(i64 <src>)
    +  declare i256 @llvm.cttz.i256(i256 <src>)
     
    Overview:
    @@ -4714,8 +4751,8 @@ of src. For example, llvm.cttz(2) = 1.

    This is an overloaded intrinsic. You can use llvm.part.select on any integer bit width.

    -  declare i17 @llvm.part.select.i17.i17 (i17 %val, i32 %loBit, i32 %hiBit)
    -  declare i29 @llvm.part.select.i29.i29 (i29 %val, i32 %loBit, i32 %hiBit)
    +  declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
    +  declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
     
    Overview:
    @@ -4761,8 +4798,8 @@ returned in the reverse order. So, for example, if X has the value

    This is an overloaded intrinsic. You can use llvm.part.set on any integer bit width.

    -  declare i17 @llvm.part.set.i17.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
    -  declare i29 @llvm.part.set.i29.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
    +  declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
    +  declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
     
    Overview:
    @@ -4831,298 +4868,74 @@ Handling document.

    - -
    -

    - These intrinsic functions expand the "universal IR" of LLVM to represent - hardware constructs for atomic operations and memory synchronization. This - provides an interface to the hardware, not an interface to the programmer. It - is aimed at a low enough level to allow any programming models or APIs which - need atomic behaviors to map cleanly onto it. It is also modeled primarily on - hardware behavior. Just as hardware provides a "unviresal IR" for source - languages, it also provides a starting point for developing a "universal" - atomic operation and synchronization IR. -

    -

    - These do not form an API such as high-level threading libraries, - software transaction memory systems, atomic primitives, and intrinsic - functionss as found in BSD, GNU libc, atomic_ops, APR, and other system and - application libraries. The hardware interface provided by LLVM should allow - a clean implementation of all of these APIs and parallel programming models. - No one model or paradigm should be selected above others unless the hardware - itself ubiquitously does so. -

    -
    - - - -
    -
    Syntax:
    -

    - This is an overloaded intrinsic. You can use llvm.atomic.lcs on any - integer bit width. Not all targets support all bit widths however. -

    -declare i8 @llvm.atomic.lcs.i8.i8p.i8.i8( i8* <ptr>, i8 <cmp>, i8 <val> )
    -declare i16 @llvm.atomic.lcs.i16.i16p.i16.i16( i16* <ptr>, i16 <cmp>, i16 <val> )
    -declare i32 @llvm.atomic.lcs.i32.i32p.i32.i32( i32* <ptr>, i32 <cmp>, i32 <val> )
    -declare i64 @llvm.atomic.lcs.i64.i64p.i64.i64( i64* <ptr>, i64 <cmp>, i64 <val> )
    -
    -

    -
    Overview:
    -

    - This loads a value in shared memory and compares it to a given value. If they - are equal, it stores a new value into the shared memory. -

    -
    Arguments:
    -

    - The llvm.atomic.lcs intrinsic takes three arguments. The result as - well as both cmp and val must be integer values with the - same bit width. The ptr argument must be a pointer to a value of - this integer type. While any bit width integer may be used, targets may only - lower representations they support in hardware. -

    -
    Semantics:
    -

    - This entire intrinsic must be executed atomically. It first loads the value - in shared memory pointed to by ptr and compares it with the value - cmp. If they are equal, val is stored into the shared - memory. The loaded value is yielded in all cases. This provides the - equivalent of an atomic compare-and-swap operation within the SSA framework. -

    -
    Examples:
    -
    -%ptr      = malloc i32
    -            store i32 4, %ptr
    -
    -%val1     = add i32 4, 4
    -%result1  = call i32 @llvm.atomic.lcs( i32* %ptr, i32 4, %val1 )
    -                                          ; yields {i32}:result1 = 4
    -%stored1  = icmp eq i32 %result1, 4       ; yields {i1}:stored1 = true
    -%memval1  = load i32* %ptr                ; yields {i32}:memval1 = 8
    -
    -%val2     = add i32 1, 1
    -%result2  = call i32 @llvm.atomic.lcs( i32* %ptr, i32 5, %val2 )
    -                                          ; yields {i32}:result2 = 8
    -%stored2  = icmp eq i32 %result2, 5       ; yields {i1}:stored2 = false
    -%memval2  = load i32* %ptr                ; yields {i32}:memval2 = 8
    -
    -
    - - - -
    -
    Syntax:
    -

    - This is an overloaded intrinsic. You can use llvm.atomic.ls on any - integer bit width. Not all targets support all bit widths however. -

    -declare i8 @llvm.atomic.ls.i8.i8p.i8( i8* <ptr>, i8 <val> )
    -declare i16 @llvm.atomic.ls.i16.i16p.i16( i16* <ptr>, i16 <val> )
    -declare i32 @llvm.atomic.ls.i32.i32p.i32( i32* <ptr>, i32 <val> )
    -declare i64 @llvm.atomic.ls.i64.i64p.i64( i64* <ptr>, i64 <val> )
    -
    -

    -
    Overview:
    -

    - This intrinsic loads the value stored in shared memory at ptr and - yields the value from memory. It then stores the value in val in the - shared memory at ptr. -

    -
    Arguments:
    -

    - The llvm.atomic.ls intrinsic takes two arguments. Both the - val argument and the result must be integers of the same bit width. - The first argument, ptr, must be a pointer to a value of this - integer type. The targets may only lower integer representations they - support. -

    -
    Semantics:
    -

    - This intrinsic loads the value pointed to by ptr, yields it, and - stores val back into ptr atomically. This provides the - equivalent of an atomic swap operation within the SSA framework. -

    -
    Examples:
    -
    -%ptr      = malloc i32
    -            store i32 4, %ptr
    -
    -%val1     = add i32 4, 4
    -%result1  = call i32 @llvm.atomic.ls( i32* %ptr, i32 %val1 )
    -                                        ; yields {i32}:result1 = 4
    -%stored1  = icmp eq i32 %result1, 4     ; yields {i1}:stored1 = true
    -%memval1  = load i32* %ptr              ; yields {i32}:memval1 = 8
    -
    -%val2     = add i32 1, 1
    -%result2  = call i32 @llvm.atomic.ls( i32* %ptr, i32 %val2 )
    -                                        ; yields {i32}:result2 = 8
    -%stored2  = icmp eq i32 %result2, 8     ; yields {i1}:stored2 = true
    -%memval2  = load i32* %ptr              ; yields {i32}:memval2 = 2
    -
    -
    - - - -
    -
    Syntax:
    -

    - This is an overloaded intrinsic. You can use llvm.atomic.las on any - integer bit width. Not all targets support all bit widths however. -

    -declare i8 @llvm.atomic.las.i8.i8p.i8( i8* <ptr>, i8 <delta> )
    -declare i16 @llvm.atomic.las.i16.i16p.i16( i16* <ptr>, i16 <delta> )
    -declare i32 @llvm.atomic.las.i32.i32p.i32( i32* <ptr>, i32 <delta> )
    -declare i64 @llvm.atomic.las.i64.i64p.i64( i64* <ptr>, i64 <delta> )
    -
    -

    -
    Overview:
    -

    - This intrinsic adds delta to the value stored in shared memory at - ptr. It yields the original value at ptr. -

    -
    Arguments:
    -

    - The intrinsic takes two arguments, the first a pointer to an integer value - and the second an integer value. The result is also an integer value. These - integer types can have any bit width, but they must all have the same bit - width. The targets may only lower integer representations they support. -

    -
    Semantics:
    -

    - This intrinsic does a series of operations atomically. It first loads the - value stored at ptr. It then adds delta, stores the result - to ptr. It yields the original value stored at ptr. -

    -
    Examples:
    -
    -%ptr      = malloc i32
    -        store i32 4, %ptr
    -%result1  = call i32 @llvm.atomic.las( i32* %ptr, i32 4 )
    -                                ; yields {i32}:result1 = 4
    -%result2  = call i32 @llvm.atomic.las( i32* %ptr, i32 2 )
    -                                ; yields {i32}:result2 = 8
    -%result3  = call i32 @llvm.atomic.las( i32* %ptr, i32 5 )
    -                                ; yields {i32}:result3 = 10
    -%memval   = load i32* %ptr      ; yields {i32}:memval1 = 15
    -
    + Trampoline Intrinsic
    - -
    -
    Syntax:

    - This is an overloaded intrinsic. You can use llvm.atomic.lss on any - integer bit width. Not all targets support all bit widths however. -

    -declare i8 @llvm.atomic.lss.i8.i8.i8( i8* <ptr>, i8 <delta> )
    -declare i16 @llvm.atomic.lss.i16.i16.i16( i16* <ptr>, i16 <delta> )
    -declare i32 @llvm.atomic.lss.i32.i32.i32( i32* <ptr>, i32 <delta> )
    -declare i64 @llvm.atomic.lss.i64.i64.i64( i64* <ptr>, i64 <delta> )
    -
    + This intrinsic makes it possible to excise one parameter, marked with + the nest attribute, from a function. The result is a callable + function pointer lacking the nest parameter - the caller does not need + to provide a value for it. Instead, the value to use is stored in + advance in a "trampoline", a block of memory usually allocated + on the stack, which also contains code to splice the nest value into the + argument list. This is used to implement the GCC nested function address + extension.

    -
    Overview:

    - This intrinsic subtracts delta from the value stored in shared - memory at ptr. It yields the original value at ptr. -

    -
    Arguments:
    -

    - The intrinsic takes two arguments, the first a pointer to an integer value - and the second an integer value. The result is also an integer value. These - integer types can have any bit width, but they must all have the same bit - width. The targets may only lower integer representations they support. -

    -
    Semantics:
    -

    - This intrinsic does a series of operations atomically. It first loads the - value stored at ptr. It then subtracts delta, - stores the result to ptr. It yields the original value stored - at ptr. -

    -
    Examples:
    + For example, if the function is + i32 f(i8* nest %c, i32 %x, i32 %y) then the resulting function + pointer has signature i32 (i32, i32)*. It can be created as follows:

    -%ptr      = malloc i32
    -        store i32 32, %ptr
    -%result1  = call i32 @llvm.atomic.lss( i32* %ptr, i32 4 )
    -                                    ; yields {i32}:result1 = 32
    -%result2  = call i32 @llvm.atomic.lss( i32* %ptr, i32 2 )
    -                                    ; yields {i32}:result2 = 28
    -%result3  = call i32 @llvm.atomic.lss( i32* %ptr, i32 5 )
    -                                    ; yields {i32}:result3 = 26
    -%memval   = load i32* %ptr          ; yields {i32}:memval1 = 21
    +  %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
    +  %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
    +  %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
    +  %fp = bitcast i8* %p to i32 (i32, i32)*
     
    +

    The call %val = call i32 %fp( i32 %x, i32 %y ) is then equivalent + to %val = call i32 %f( i8* %nval, i32 %x, i32 %y ).

    Syntax:
    -

    -declare void @llvm.memory.barrier( i1 <ll>, i1 <ls>, i1 <sl>, i1 <ss> )
    +declare i8* @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
     
    -

    Overview:

    - The llvm.memory.barrier intrinsic guarantees ordering between - specific pairs of memory access types. + This fills the memory pointed to by tramp with code + and returns a function pointer suitable for executing it.

    Arguments:

    - The llvm.memory.barrier intrinsic requires four boolean arguments. - Each argument enables a specific barrier as listed below. -

      -
    • ll: load-load barrier
    • -
    • ls: load-store barrier
    • -
    • sl: store-load barrier
    • -
    • ss: store-store barrier
    • -
    + The llvm.init.trampoline intrinsic takes three arguments, all + pointers. The tramp argument must point to a sufficiently large + and sufficiently aligned block of memory; this memory is written to by the + intrinsic. Note that the size and the alignment are target-specific - LLVM + currently provides no portable way of determining them, so a front-end that + generates this intrinsic needs to have some target-specific knowledge. + The func argument must hold a function bitcast to an i8*.

    Semantics:

    - This intrinsic causes the system to enforce some ordering constraints upon - the loads and stores of the program. This barrier does not indicate - when any events will occur, it only enforces an order in - which they occur. For any of the specified pairs of load and store operations - (f.ex. load-load, or store-load), all of the first operations preceding the - barrier will complete before any of the second operations succeeding the - barrier begin. Specifically the semantics for each pairing is as follows: -

      -
    • ll: All loads before the barrier must complete before any load - after the barrier begins.
    • -
    • ls: All loads before the barrier must complete before any - store after the barrier begins.
    • -
    • ss: All stores before the barrier must complete before any - store after the barrier begins.
    • -
    • sl: All stores before the barrier must complete before any - load after the barrier begins.
    • -
    - These semantics are applied with a logical "and" behavior when more than one - is enabled in a single memory barrier intrinsic. + The block of memory pointed to by tramp is filled with target + dependent code, turning it into a function. A pointer to this function is + returned, but needs to be bitcast to an + appropriate function pointer type + before being called. The new function's signature is the same as that of + func with any arguments marked with the nest attribute + removed. At most one such nest argument is allowed, and it must be + of pointer type. Calling the new function is equivalent to calling + func with the same argument list, but with nval used for the + missing nest argument. If, after calling + llvm.init.trampoline, the memory pointed to by tramp is + modified, then the effect of any later call to the returned function pointer is + undefined.

    -
    Example:
    -
    -%ptr      = malloc i32
    -            store i32 4, %ptr
    -
    -%result1  = load i32* %ptr      ; yields {i32}:result1 = 4
    -            call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
    -                                ; guarantee the above finishes
    -            store i32 8, %ptr   ; before this begins
    -
    @@ -5170,6 +4983,48 @@ This can be useful for special purpose optimizations that want to look for these generation and optimization.
    + + + +
    + +
    Syntax:
    +

    This is an overloaded intrinsic. You can use 'llvm.annotation' on +any integer bit width. +

    +
    +  declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32  <int> )
    +  declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32  <int> )
    +  declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32  <int> )
    +  declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32  <int> )
    +  declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32  <int> )
    +
    + +
    Overview:
    + +

    +The 'llvm.annotation' intrinsic. +

    + +
    Arguments:
    + +

    +The first argument is an integer value (result of some expression), +the second is a pointer to a global string, the third is a pointer to a global +string which is the source file name, and the last argument is the line number. +It returns the value of the first argument. +

    + +
    Semantics:
    + +

    +This intrinsic allows annotations to be put on arbitrary expressions +with arbitrary strings. This can be useful for special purpose optimizations +that want to look for these annotations. These have no other defined use, they +are ignored by code generation and optimization. +