X-Git-Url: http://plrg.eecs.uci.edu/git/?a=blobdiff_plain;ds=sidebyside;f=lib%2FVMCore%2FVerifier.cpp;h=52fd134d488d3ba6cad86c14b7ef492557d08d37;hb=9ccaf53ada99c63737547c0235baeb8454b04e80;hp=39f7faac432549e4369e4a323d47988abe5b14c2;hpb=59bf4fcc0680e75b408579064d1205a132361196;p=oota-llvm.git diff --git a/lib/VMCore/Verifier.cpp b/lib/VMCore/Verifier.cpp index 39f7faac432..52fd134d488 100644 --- a/lib/VMCore/Verifier.cpp +++ b/lib/VMCore/Verifier.cpp @@ -47,20 +47,21 @@ #include "llvm/IntrinsicInst.h" #include "llvm/Metadata.h" #include "llvm/Module.h" -#include "llvm/ModuleProvider.h" #include "llvm/Pass.h" #include "llvm/PassManager.h" +#include "llvm/TypeSymbolTable.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Assembly/Writer.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/CFG.h" +#include "llvm/Support/Debug.h" #include "llvm/Support/InstVisitor.h" +#include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/STLExtras.h" -#include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include @@ -68,10 +69,10 @@ using namespace llvm; namespace { // Anonymous namespace for class - struct VISIBILITY_HIDDEN PreVerifier : public FunctionPass { + struct PreVerifier : public FunctionPass { static char ID; // Pass ID, replacement for typeid - PreVerifier() : FunctionPass(&ID) { } + PreVerifier() : FunctionPass(ID) { } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); @@ -84,15 +85,16 @@ namespace { // Anonymous namespace for class for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { if (I->empty() || !I->back().isTerminator()) { - errs() << "Basic Block does not have terminator!\n"; - WriteAsOperand(errs(), I, true); - errs() << "\n"; + dbgs() << "Basic Block in function '" << F.getName() + << "' does not have terminator!\n"; + WriteAsOperand(dbgs(), I, true); + dbgs() << "\n"; Broken = true; } } if (Broken) - llvm_report_error("Broken module, no Basic Block terminator!"); + report_fatal_error("Broken module, no Basic Block terminator!"); return false; } @@ -102,19 +104,67 @@ namespace { // Anonymous namespace for class char PreVerifier::ID = 0; static RegisterPass PreVer("preverify", "Preliminary module verification"); -static const PassInfo *const PreVerifyID = &PreVer; +char &PreVerifyID = PreVerifier::ID; namespace { - struct VISIBILITY_HIDDEN - Verifier : public FunctionPass, public InstVisitor { + class TypeSet : public AbstractTypeUser { + public: + TypeSet() {} + + /// Insert a type into the set of types. + bool insert(const Type *Ty) { + if (!Types.insert(Ty)) + return false; + if (Ty->isAbstract()) + Ty->addAbstractTypeUser(this); + return true; + } + + // Remove ourselves as abstract type listeners for any types that remain + // abstract when the TypeSet is destroyed. + ~TypeSet() { + for (SmallSetVector::iterator I = Types.begin(), + E = Types.end(); I != E; ++I) { + const Type *Ty = *I; + if (Ty->isAbstract()) + Ty->removeAbstractTypeUser(this); + } + } + + // Abstract type user interface. + + /// Remove types from the set when refined. Do not insert the type it was + /// refined to because that type hasn't been verified yet. + void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) { + Types.remove(OldTy); + OldTy->removeAbstractTypeUser(this); + } + + /// Stop listening for changes to a type which is no longer abstract. + void typeBecameConcrete(const DerivedType *AbsTy) { + AbsTy->removeAbstractTypeUser(this); + } + + void dump() const {} + + private: + SmallSetVector Types; + + // Disallow copying. + TypeSet(const TypeSet &); + TypeSet &operator=(const TypeSet &); + }; + + struct Verifier : public FunctionPass, public InstVisitor { static char ID; // Pass ID, replacement for typeid bool Broken; // Is this module found to be broken? bool RealPass; // Are we not being run by a PassManager? VerifierFailureAction action; // What to do if verification fails. Module *Mod; // Module we are verifying right now - DominatorTree *DT; // Dominator Tree, caution can be null! - + LLVMContext *Context; // Context within which we are verifying + DominatorTree *DT; // Dominator Tree, caution can be null! + std::string Messages; raw_string_ostream MessagesStr; @@ -124,27 +174,35 @@ namespace { /// an instruction in the same block. SmallPtrSet InstsInThisBlock; + /// Types - keep track of the types that have been checked already. + TypeSet Types; + + /// MDNodes - keep track of the metadata nodes that have been checked + /// already. + SmallPtrSet MDNodes; + Verifier() - : FunctionPass(&ID), + : FunctionPass(ID), Broken(false), RealPass(true), action(AbortProcessAction), - DT(0), MessagesStr(Messages) {} + Mod(0), Context(0), DT(0), MessagesStr(Messages) {} explicit Verifier(VerifierFailureAction ctn) - : FunctionPass(&ID), - Broken(false), RealPass(true), action(ctn), DT(0), + : FunctionPass(ID), + Broken(false), RealPass(true), action(ctn), Mod(0), Context(0), DT(0), MessagesStr(Messages) {} explicit Verifier(bool AB) - : FunctionPass(&ID), + : FunctionPass(ID), Broken(false), RealPass(true), - action( AB ? AbortProcessAction : PrintMessageAction), DT(0), - MessagesStr(Messages) {} + action( AB ? AbortProcessAction : PrintMessageAction), Mod(0), + Context(0), DT(0), MessagesStr(Messages) {} explicit Verifier(DominatorTree &dt) - : FunctionPass(&ID), - Broken(false), RealPass(false), action(PrintMessageAction), - DT(&dt), MessagesStr(Messages) {} + : FunctionPass(ID), + Broken(false), RealPass(false), action(PrintMessageAction), Mod(0), + Context(0), DT(&dt), MessagesStr(Messages) {} bool doInitialization(Module &M) { Mod = &M; + Context = &M.getContext(); verifyTypeSymbolTable(M.getTypeSymbolTable()); // If this is a real pass, in a pass manager, we must abort before @@ -160,6 +218,7 @@ namespace { if (RealPass) DT = &getAnalysis(); Mod = F.getParent(); + if (!Context) Context = &F.getContext(); visit(F); InstsInThisBlock.clear(); @@ -190,6 +249,10 @@ namespace { I != E; ++I) visitGlobalAlias(*I); + for (Module::named_metadata_iterator I = M.named_metadata_begin(), + E = M.named_metadata_end(); I != E; ++I) + visitNamedMDNode(*I); + // If the module is broken, abort at this time. return abortIfBroken(); } @@ -211,12 +274,12 @@ namespace { default: llvm_unreachable("Unknown action"); case AbortProcessAction: MessagesStr << "compilation aborted!\n"; - errs() << MessagesStr.str(); + dbgs() << MessagesStr.str(); // Client should choose different reaction if abort is not desired abort(); case PrintMessageAction: MessagesStr << "verification continues.\n"; - errs() << MessagesStr.str(); + dbgs() << MessagesStr.str(); return false; case ReturnStatusAction: MessagesStr << "compilation terminated.\n"; @@ -230,12 +293,14 @@ namespace { void visitGlobalValue(GlobalValue &GV); void visitGlobalVariable(GlobalVariable &GV); void visitGlobalAlias(GlobalAlias &GA); + void visitNamedMDNode(NamedMDNode &NMD); + void visitMDNode(MDNode &MD, Function *F); void visitFunction(Function &F); void visitBasicBlock(BasicBlock &BB); using InstVisitor::visit; - + void visit(Instruction &I); - + void visitTruncInst(TruncInst &I); void visitZExtInst(ZExtInst &I); void visitSExtInst(SExtInst &I); @@ -263,13 +328,15 @@ namespace { void visitStoreInst(StoreInst &SI); void visitInstruction(Instruction &I); void visitTerminatorInst(TerminatorInst &I); + void visitBranchInst(BranchInst &BI); void visitReturnInst(ReturnInst &RI); void visitSwitchInst(SwitchInst &SI); + void visitIndirectBrInst(IndirectBrInst &BI); void visitSelectInst(SelectInst &SI); void visitUserOp1(Instruction &I); void visitUserOp2(Instruction &I) { visitUserOp1(I); } void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI); - void visitAllocationInst(AllocationInst &AI); + void visitAllocaInst(AllocaInst &AI); void visitExtractValueInst(ExtractValueInst &EVI); void visitInsertValueInst(InsertValueInst &IVI); @@ -282,14 +349,15 @@ namespace { bool isReturnValue, const Value *V); void VerifyFunctionAttrs(const FunctionType *FT, const AttrListPtr &Attrs, const Value *V); + void VerifyType(const Type *Ty); void WriteValue(const Value *V) { if (!V) return; if (isa(V)) { - MessagesStr << *V; + MessagesStr << *V << '\n'; } else { WriteAsOperand(MessagesStr, V, true, Mod); - MessagesStr << "\n"; + MessagesStr << '\n'; } } @@ -314,14 +382,23 @@ namespace { Broken = true; } - void CheckFailed(const Twine &Message, const Value* V1, - const Type* T2, const Value* V3 = 0) { + void CheckFailed(const Twine &Message, const Value *V1, + const Type *T2, const Value *V3 = 0) { MessagesStr << Message.str() << "\n"; WriteValue(V1); WriteType(T2); WriteValue(V3); Broken = true; } + + void CheckFailed(const Twine &Message, const Type *T1, + const Type *T2 = 0, const Type *T3 = 0) { + MessagesStr << Message.str() << "\n"; + WriteType(T1); + WriteType(T2); + WriteType(T3); + Broken = true; + } }; } // End anonymous namespace @@ -349,10 +426,10 @@ void Verifier::visit(Instruction &I) { void Verifier::visitGlobalValue(GlobalValue &GV) { Assert1(!GV.isDeclaration() || + GV.isMaterializable() || GV.hasExternalLinkage() || GV.hasDLLImportLinkage() || GV.hasExternalWeakLinkage() || - GV.hasGhostLinkage() || (isa(GV) && (GV.hasLocalLinkage() || GV.hasWeakLinkage())), "Global is external, but doesn't have external or dllimport or weak linkage!", @@ -360,14 +437,14 @@ void Verifier::visitGlobalValue(GlobalValue &GV) { Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(), "Global is marked as dllimport, but not external", &GV); - + Assert1(!GV.hasAppendingLinkage() || isa(GV), "Only global variables can have appending linkage!", &GV); if (GV.hasAppendingLinkage()) { - GlobalVariable &GVar = cast(GV); - Assert1(isa(GVar.getType()->getElementType()), - "Only global arrays can have appending linkage!", &GV); + GlobalVariable *GVar = dyn_cast(&GV); + Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(), + "Only global arrays can have appending linkage!", GVar); } } @@ -385,28 +462,6 @@ void Verifier::visitGlobalVariable(GlobalVariable &GV) { Assert1(!GV.isConstant(), "'common' global may not be marked constant!", &GV); } - - // Verify that any metadata used in a global initializer points only to - // other globals. - if (MDNode *FirstNode = dyn_cast(GV.getInitializer())) { - SmallVector NodesToAnalyze; - NodesToAnalyze.push_back(FirstNode); - while (!NodesToAnalyze.empty()) { - const MDNode *N = NodesToAnalyze.back(); - NodesToAnalyze.pop_back(); - - for (MDNode::const_elem_iterator I = N->elem_begin(), - E = N->elem_end(); I != E; ++I) - if (const Value *V = *I) { - if (const MDNode *Next = dyn_cast(V)) - NodesToAnalyze.push_back(Next); - else - Assert3(isa(V), - "reference to instruction from global metadata node", - &GV, N, V); - } - } - } } else { Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() || GV.hasExternalWeakLinkage(), @@ -444,7 +499,57 @@ void Verifier::visitGlobalAlias(GlobalAlias &GA) { visitGlobalValue(GA); } +void Verifier::visitNamedMDNode(NamedMDNode &NMD) { + for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) { + MDNode *MD = NMD.getOperand(i); + if (!MD) + continue; + + Assert1(!MD->isFunctionLocal(), + "Named metadata operand cannot be function local!", MD); + visitMDNode(*MD, 0); + } +} + +void Verifier::visitMDNode(MDNode &MD, Function *F) { + // Only visit each node once. Metadata can be mutually recursive, so this + // avoids infinite recursion here, as well as being an optimization. + if (!MDNodes.insert(&MD)) + return; + + for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) { + Value *Op = MD.getOperand(i); + if (!Op) + continue; + if (isa(Op) || isa(Op)) + continue; + if (MDNode *N = dyn_cast(Op)) { + Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(), + "Global metadata operand cannot be function local!", &MD, N); + visitMDNode(*N, F); + continue; + } + Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op); + + // If this was an instruction, bb, or argument, verify that it is in the + // function that we expect. + Function *ActualF = 0; + if (Instruction *I = dyn_cast(Op)) + ActualF = I->getParent()->getParent(); + else if (BasicBlock *BB = dyn_cast(Op)) + ActualF = BB->getParent(); + else if (Argument *A = dyn_cast(Op)) + ActualF = A->getParent(); + assert(ActualF && "Unimplemented function local metadata case!"); + + Assert2(ActualF == F, "function-local metadata used in wrong function", + &MD, Op); + } +} + void Verifier::verifyTypeSymbolTable(TypeSymbolTable &ST) { + for (TypeSymbolTable::iterator I = ST.begin(), E = ST.end(); I != E; ++I) + VerifyType(I->second); } // VerifyParameterAttrs - Check the given attributes for an argument or return @@ -535,16 +640,17 @@ void Verifier::VerifyFunctionAttrs(const FunctionType *FT, static bool VerifyAttributeCount(const AttrListPtr &Attrs, unsigned Params) { if (Attrs.isEmpty()) return true; - + unsigned LastSlot = Attrs.getNumSlots() - 1; unsigned LastIndex = Attrs.getSlot(LastSlot).Index; if (LastIndex <= Params || (LastIndex == (unsigned)~0 && (LastSlot == 0 || Attrs.getSlot(LastSlot - 1).Index <= Params))) return true; - + return false; } + // visitFunction - Verify that a function is ok. // void Verifier::visitFunction(Function &F) { @@ -552,17 +658,19 @@ void Verifier::visitFunction(Function &F) { const FunctionType *FT = F.getFunctionType(); unsigned NumArgs = F.arg_size(); + Assert1(Context == &F.getContext(), + "Function context does not match Module context!", &F); + Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); Assert2(FT->getNumParams() == NumArgs, "# formal arguments must match # of arguments for function type!", &F, FT); Assert1(F.getReturnType()->isFirstClassType() || - F.getReturnType() == Type::getVoidTy(F.getContext()) || - isa(F.getReturnType()), + F.getReturnType()->isVoidTy() || + F.getReturnType()->isStructTy(), "Functions cannot return aggregate values!", &F); - Assert1(!F.hasStructRetAttr() || - F.getReturnType() == Type::getVoidTy(F.getContext()), + Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), "Invalid struct return type!", &F); const AttrListPtr &Attrs = F.getAttributes(); @@ -582,16 +690,14 @@ void Verifier::visitFunction(Function &F) { case CallingConv::Fast: case CallingConv::Cold: case CallingConv::X86_FastCall: + case CallingConv::X86_ThisCall: Assert1(!F.isVarArg(), "Varargs functions must have C calling conventions!", &F); break; } - + bool isLLVMdotName = F.getName().size() >= 5 && F.getName().substr(0, 5) == "llvm."; - if (!isLLVMdotName) - Assert1(F.getReturnType() != Type::getMetadataTy(F.getContext()), - "Function may not return metadata unless it's an intrinsic", &F); // Check that the argument values match the function type for this function... unsigned i = 0; @@ -603,13 +709,15 @@ void Verifier::visitFunction(Function &F) { Assert1(I->getType()->isFirstClassType(), "Function arguments must have first-class types!", I); if (!isLLVMdotName) - Assert2(I->getType() != Type::getMetadataTy(F.getContext()), + Assert2(!I->getType()->isMetadataTy(), "Function takes metadata but isn't an intrinsic", I, &F); } - if (F.isDeclaration()) { + if (F.isMaterializable()) { + // Function has a body somewhere we can't see. + } else if (F.isDeclaration()) { Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() || - F.hasExternalWeakLinkage() || F.hasGhostLinkage(), + F.hasExternalWeakLinkage(), "invalid linkage type for function declaration", &F); } else { // Verify that this function (which has a body) is not named "llvm.*". It @@ -620,10 +728,23 @@ void Verifier::visitFunction(Function &F) { BasicBlock *Entry = &F.getEntryBlock(); Assert1(pred_begin(Entry) == pred_end(Entry), "Entry block to function must not have predecessors!", Entry); + + // The address of the entry block cannot be taken, unless it is dead. + if (Entry->hasAddressTaken()) { + Assert1(!BlockAddress::get(Entry)->isConstantUsed(), + "blockaddress may not be used with the entry block!", Entry); + } + } + + // If this function is actually an intrinsic, verify that it is only used in + // direct call/invokes, never having its "address taken". + if (F.getIntrinsicID()) { + const User *U; + if (F.hasAddressTaken(&U)) + Assert1(0, "Invalid user of intrinsic instruction!", U); } } - // verifyBasicBlock - Verify that a basic block is well formed... // void Verifier::visitBasicBlock(BasicBlock &BB) { @@ -640,7 +761,6 @@ void Verifier::visitBasicBlock(BasicBlock &BB) { std::sort(Preds.begin(), Preds.end()); PHINode *PN; for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast(I));++I) { - // Ensure that PHI nodes have at least one entry! Assert1(PN->getNumIncomingValues() != 0, "PHI nodes must have at least one entry. If the block is dead, " @@ -685,10 +805,18 @@ void Verifier::visitTerminatorInst(TerminatorInst &I) { visitInstruction(I); } +void Verifier::visitBranchInst(BranchInst &BI) { + if (BI.isConditional()) { + Assert2(BI.getCondition()->getType()->isIntegerTy(1), + "Branch condition is not 'i1' type!", &BI, BI.getCondition()); + } + visitTerminatorInst(BI); +} + void Verifier::visitReturnInst(ReturnInst &RI) { Function *F = RI.getParent()->getParent(); unsigned N = RI.getNumOperands(); - if (F->getReturnType() == Type::getVoidTy(RI.getContext())) + if (F->getReturnType()->isVoidTy()) Assert2(N == 0, "Found return instr that returns non-void in Function of void " "return type!", &RI, F->getReturnType()); @@ -716,7 +844,7 @@ void Verifier::visitReturnInst(ReturnInst &RI) { CheckFailed("Function return type does not match operand " "type of return inst!", &RI, F->getReturnType()); } - + // Check to make sure that the return value has necessary properties for // terminators... visitTerminatorInst(RI); @@ -726,13 +854,27 @@ void Verifier::visitSwitchInst(SwitchInst &SI) { // Check to make sure that all of the constants in the switch instruction // have the same type as the switched-on value. const Type *SwitchTy = SI.getCondition()->getType(); - for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i) + SmallPtrSet Constants; + for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i) { Assert1(SI.getCaseValue(i)->getType() == SwitchTy, "Switch constants must all be same type as switch value!", &SI); + Assert2(Constants.insert(SI.getCaseValue(i)), + "Duplicate integer as switch case", &SI, SI.getCaseValue(i)); + } visitTerminatorInst(SI); } +void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { + Assert1(BI.getAddress()->getType()->isPointerTy(), + "Indirectbr operand must have pointer type!", &BI); + for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) + Assert1(BI.getDestination(i)->getType()->isLabelTy(), + "Indirectbr destinations must all have pointer type!", &BI); + + visitTerminatorInst(BI); +} + void Verifier::visitSelectInst(SelectInst &SI) { Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), SI.getOperand(2)), @@ -743,7 +885,6 @@ void Verifier::visitSelectInst(SelectInst &SI) { visitInstruction(SI); } - /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of /// a pass, if any exist, it's an error. /// @@ -760,9 +901,9 @@ void Verifier::visitTruncInst(TruncInst &I) { unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); unsigned DestBitSize = DestTy->getScalarSizeInBits(); - Assert1(SrcTy->isIntOrIntVector(), "Trunc only operates on integer", &I); - Assert1(DestTy->isIntOrIntVector(), "Trunc only produces integer", &I); - Assert1(isa(SrcTy) == isa(DestTy), + Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); + Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); + Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), "trunc source and destination must both be a vector or neither", &I); Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I); @@ -775,9 +916,9 @@ void Verifier::visitZExtInst(ZExtInst &I) { const Type *DestTy = I.getType(); // Get the size of the types in bits, we'll need this later - Assert1(SrcTy->isIntOrIntVector(), "ZExt only operates on integer", &I); - Assert1(DestTy->isIntOrIntVector(), "ZExt only produces an integer", &I); - Assert1(isa(SrcTy) == isa(DestTy), + Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); + Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); + Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), "zext source and destination must both be a vector or neither", &I); unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); unsigned DestBitSize = DestTy->getScalarSizeInBits(); @@ -796,9 +937,9 @@ void Verifier::visitSExtInst(SExtInst &I) { unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); unsigned DestBitSize = DestTy->getScalarSizeInBits(); - Assert1(SrcTy->isIntOrIntVector(), "SExt only operates on integer", &I); - Assert1(DestTy->isIntOrIntVector(), "SExt only produces an integer", &I); - Assert1(isa(SrcTy) == isa(DestTy), + Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); + Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); + Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), "sext source and destination must both be a vector or neither", &I); Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I); @@ -813,9 +954,9 @@ void Verifier::visitFPTruncInst(FPTruncInst &I) { unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); unsigned DestBitSize = DestTy->getScalarSizeInBits(); - Assert1(SrcTy->isFPOrFPVector(),"FPTrunc only operates on FP", &I); - Assert1(DestTy->isFPOrFPVector(),"FPTrunc only produces an FP", &I); - Assert1(isa(SrcTy) == isa(DestTy), + Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I); + Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I); + Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), "fptrunc source and destination must both be a vector or neither",&I); Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I); @@ -831,9 +972,9 @@ void Verifier::visitFPExtInst(FPExtInst &I) { unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); unsigned DestBitSize = DestTy->getScalarSizeInBits(); - Assert1(SrcTy->isFPOrFPVector(),"FPExt only operates on FP", &I); - Assert1(DestTy->isFPOrFPVector(),"FPExt only produces an FP", &I); - Assert1(isa(SrcTy) == isa(DestTy), + Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I); + Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I); + Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), "fpext source and destination must both be a vector or neither", &I); Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I); @@ -845,14 +986,14 @@ void Verifier::visitUIToFPInst(UIToFPInst &I) { const Type *SrcTy = I.getOperand(0)->getType(); const Type *DestTy = I.getType(); - bool SrcVec = isa(SrcTy); - bool DstVec = isa(DestTy); + bool SrcVec = SrcTy->isVectorTy(); + bool DstVec = DestTy->isVectorTy(); Assert1(SrcVec == DstVec, "UIToFP source and dest must both be vector or scalar", &I); - Assert1(SrcTy->isIntOrIntVector(), + Assert1(SrcTy->isIntOrIntVectorTy(), "UIToFP source must be integer or integer vector", &I); - Assert1(DestTy->isFPOrFPVector(), + Assert1(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", &I); if (SrcVec && DstVec) @@ -868,14 +1009,14 @@ void Verifier::visitSIToFPInst(SIToFPInst &I) { const Type *SrcTy = I.getOperand(0)->getType(); const Type *DestTy = I.getType(); - bool SrcVec = SrcTy->getTypeID() == Type::VectorTyID; - bool DstVec = DestTy->getTypeID() == Type::VectorTyID; + bool SrcVec = SrcTy->isVectorTy(); + bool DstVec = DestTy->isVectorTy(); Assert1(SrcVec == DstVec, "SIToFP source and dest must both be vector or scalar", &I); - Assert1(SrcTy->isIntOrIntVector(), + Assert1(SrcTy->isIntOrIntVectorTy(), "SIToFP source must be integer or integer vector", &I); - Assert1(DestTy->isFPOrFPVector(), + Assert1(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", &I); if (SrcVec && DstVec) @@ -891,13 +1032,14 @@ void Verifier::visitFPToUIInst(FPToUIInst &I) { const Type *SrcTy = I.getOperand(0)->getType(); const Type *DestTy = I.getType(); - bool SrcVec = isa(SrcTy); - bool DstVec = isa(DestTy); + bool SrcVec = SrcTy->isVectorTy(); + bool DstVec = DestTy->isVectorTy(); Assert1(SrcVec == DstVec, "FPToUI source and dest must both be vector or scalar", &I); - Assert1(SrcTy->isFPOrFPVector(), "FPToUI source must be FP or FP vector", &I); - Assert1(DestTy->isIntOrIntVector(), + Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", + &I); + Assert1(DestTy->isIntOrIntVectorTy(), "FPToUI result must be integer or integer vector", &I); if (SrcVec && DstVec) @@ -913,14 +1055,14 @@ void Verifier::visitFPToSIInst(FPToSIInst &I) { const Type *SrcTy = I.getOperand(0)->getType(); const Type *DestTy = I.getType(); - bool SrcVec = isa(SrcTy); - bool DstVec = isa(DestTy); + bool SrcVec = SrcTy->isVectorTy(); + bool DstVec = DestTy->isVectorTy(); Assert1(SrcVec == DstVec, "FPToSI source and dest must both be vector or scalar", &I); - Assert1(SrcTy->isFPOrFPVector(), + Assert1(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", &I); - Assert1(DestTy->isIntOrIntVector(), + Assert1(DestTy->isIntOrIntVectorTy(), "FPToSI result must be integer or integer vector", &I); if (SrcVec && DstVec) @@ -936,8 +1078,8 @@ void Verifier::visitPtrToIntInst(PtrToIntInst &I) { const Type *SrcTy = I.getOperand(0)->getType(); const Type *DestTy = I.getType(); - Assert1(isa(SrcTy), "PtrToInt source must be pointer", &I); - Assert1(DestTy->isInteger(), "PtrToInt result must be integral", &I); + Assert1(SrcTy->isPointerTy(), "PtrToInt source must be pointer", &I); + Assert1(DestTy->isIntegerTy(), "PtrToInt result must be integral", &I); visitInstruction(I); } @@ -947,8 +1089,8 @@ void Verifier::visitIntToPtrInst(IntToPtrInst &I) { const Type *SrcTy = I.getOperand(0)->getType(); const Type *DestTy = I.getType(); - Assert1(SrcTy->isInteger(), "IntToPtr source must be an integral", &I); - Assert1(isa(DestTy), "IntToPtr result must be a pointer",&I); + Assert1(SrcTy->isIntegerTy(), "IntToPtr source must be an integral", &I); + Assert1(DestTy->isPointerTy(), "IntToPtr result must be a pointer",&I); visitInstruction(I); } @@ -964,7 +1106,7 @@ void Verifier::visitBitCastInst(BitCastInst &I) { // BitCast implies a no-op cast of type only. No bits change. // However, you can't cast pointers to anything but pointers. - Assert1(isa(DestTy) == isa(DestTy), + Assert1(DestTy->isPointerTy() == DestTy->isPointerTy(), "Bitcast requires both operands to be pointer or neither", &I); Assert1(SrcBitSize == DestBitSize, "Bitcast requires types of same width",&I); @@ -989,11 +1131,15 @@ void Verifier::visitPHINode(PHINode &PN) { "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); - // Check that all of the operands of the PHI node have the same type as the - // result. - for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) + // Check that all of the values of the PHI node have the same type as the + // result, and that the incoming blocks are really basic blocks. + for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { Assert1(PN.getType() == PN.getIncomingValue(i)->getType(), "PHI node operands are not the same type as the result!", &PN); + Assert1(isa(PN.getOperand( + PHINode::getOperandNumForIncomingBlock(i))), + "PHI node incoming block is not a BasicBlock!", &PN); + } // All other PHI node constraints are checked in the visitBasicBlock method. @@ -1003,12 +1149,12 @@ void Verifier::visitPHINode(PHINode &PN) { void Verifier::VerifyCallSite(CallSite CS) { Instruction *I = CS.getInstruction(); - Assert1(isa(CS.getCalledValue()->getType()), + Assert1(CS.getCalledValue()->getType()->isPointerTy(), "Called function must be a pointer!", I); const PointerType *FPTy = cast(CS.getCalledValue()->getType()); - Assert1(isa(FPTy->getElementType()), - "Called function is not pointer to function type!", I); + Assert1(FPTy->getElementType()->isFunctionTy(), + "Called function is not pointer to function type!", I); const FunctionType *FTy = cast(FPTy->getElementType()); // Verify that the correct number of arguments are being passed @@ -1019,7 +1165,7 @@ void Verifier::VerifyCallSite(CallSite CS) { Assert1(CS.arg_size() == FTy->getNumParams(), "Incorrect number of arguments passed to called function!", I); - // Verify that all arguments to the call match the function type... + // Verify that all arguments to the call match the function type. for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i), "Call parameter type does not match function signature!", @@ -1046,13 +1192,11 @@ void Verifier::VerifyCallSite(CallSite CS) { } // Verify that there's no metadata unless it's a direct call to an intrinsic. - if (!CS.getCalledFunction() || CS.getCalledFunction()->getName().size() < 5 || - CS.getCalledFunction()->getName().substr(0, 5) != "llvm.") { - Assert1(FTy->getReturnType() != Type::getMetadataTy(I->getContext()), - "Only intrinsics may return metadata", I); + if (!CS.getCalledFunction() || + !CS.getCalledFunction()->getName().startswith("llvm.")) { for (FunctionType::param_iterator PI = FTy->param_begin(), PE = FTy->param_end(); PI != PE; ++PI) - Assert1(PI->get() != Type::getMetadataTy(I->getContext()), + Assert1(!PI->get()->isMetadataTy(), "Function has metadata parameter but isn't an intrinsic", I); } @@ -1069,6 +1213,7 @@ void Verifier::visitCallInst(CallInst &CI) { void Verifier::visitInvokeInst(InvokeInst &II) { VerifyCallSite(&II); + visitTerminatorInst(II); } /// visitBinaryOperator - Check that both arguments to the binary operator are @@ -1088,7 +1233,7 @@ void Verifier::visitBinaryOperator(BinaryOperator &B) { case Instruction::UDiv: case Instruction::SRem: case Instruction::URem: - Assert1(B.getType()->isIntOrIntVector(), + Assert1(B.getType()->isIntOrIntVectorTy(), "Integer arithmetic operators only work with integral types!", &B); Assert1(B.getType() == B.getOperand(0)->getType(), "Integer arithmetic operators must have same type " @@ -1101,7 +1246,7 @@ void Verifier::visitBinaryOperator(BinaryOperator &B) { case Instruction::FMul: case Instruction::FDiv: case Instruction::FRem: - Assert1(B.getType()->isFPOrFPVector(), + Assert1(B.getType()->isFPOrFPVectorTy(), "Floating-point arithmetic operators only work with " "floating-point types!", &B); Assert1(B.getType() == B.getOperand(0)->getType(), @@ -1112,7 +1257,7 @@ void Verifier::visitBinaryOperator(BinaryOperator &B) { case Instruction::And: case Instruction::Or: case Instruction::Xor: - Assert1(B.getType()->isIntOrIntVector(), + Assert1(B.getType()->isIntOrIntVectorTy(), "Logical operators only work with integral types!", &B); Assert1(B.getType() == B.getOperand(0)->getType(), "Logical operators must have same type for operands and result!", @@ -1121,7 +1266,7 @@ void Verifier::visitBinaryOperator(BinaryOperator &B) { case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: - Assert1(B.getType()->isIntOrIntVector(), + Assert1(B.getType()->isIntOrIntVectorTy(), "Shifts only work with integral types!", &B); Assert1(B.getType() == B.getOperand(0)->getType(), "Shift return type must be same as operands!", &B); @@ -1140,7 +1285,7 @@ void Verifier::visitICmpInst(ICmpInst& IC) { Assert1(Op0Ty == Op1Ty, "Both operands to ICmp instruction are not of the same type!", &IC); // Check that the operands are the right type - Assert1(Op0Ty->isIntOrIntVector() || isa(Op0Ty), + Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPointerTy(), "Invalid operand types for ICmp instruction", &IC); visitInstruction(IC); @@ -1153,7 +1298,7 @@ void Verifier::visitFCmpInst(FCmpInst& FC) { Assert1(Op0Ty == Op1Ty, "Both operands to FCmp instruction are not of the same type!", &FC); // Check that the operands are the right type - Assert1(Op0Ty->isFPOrFPVector(), + Assert1(Op0Ty->isFPOrFPVectorTy(), "Invalid operand types for FCmp instruction", &FC); visitInstruction(FC); } @@ -1207,39 +1352,40 @@ void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(), Idxs.begin(), Idxs.end()); Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP); - Assert2(isa(GEP.getType()) && + Assert2(GEP.getType()->isPointerTy() && cast(GEP.getType())->getElementType() == ElTy, "GEP is not of right type for indices!", &GEP, ElTy); visitInstruction(GEP); } void Verifier::visitLoadInst(LoadInst &LI) { - const Type *ElTy = - cast(LI.getOperand(0)->getType())->getElementType(); + const PointerType *PTy = dyn_cast(LI.getOperand(0)->getType()); + Assert1(PTy, "Load operand must be a pointer.", &LI); + const Type *ElTy = PTy->getElementType(); Assert2(ElTy == LI.getType(), "Load result type does not match pointer operand type!", &LI, ElTy); - Assert1(ElTy != Type::getMetadataTy(LI.getContext()), - "Can't load metadata!", &LI); visitInstruction(LI); } void Verifier::visitStoreInst(StoreInst &SI) { - const Type *ElTy = - cast(SI.getOperand(1)->getType())->getElementType(); + const PointerType *PTy = dyn_cast(SI.getOperand(1)->getType()); + Assert1(PTy, "Store operand must be a pointer.", &SI); + const Type *ElTy = PTy->getElementType(); Assert2(ElTy == SI.getOperand(0)->getType(), - "Stored value type does not match pointer operand type!", &SI, ElTy); - Assert1(ElTy != Type::getMetadataTy(SI.getContext()), - "Can't store metadata!", &SI); + "Stored value type does not match pointer operand type!", + &SI, ElTy); visitInstruction(SI); } -void Verifier::visitAllocationInst(AllocationInst &AI) { +void Verifier::visitAllocaInst(AllocaInst &AI) { const PointerType *PTy = AI.getType(); Assert1(PTy->getAddressSpace() == 0, "Allocation instruction pointer not in the generic address space!", &AI); Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type", &AI); + Assert1(AI.getArraySize()->getType()->isIntegerTy(), + "Alloca array size must have integer type", &AI); visitInstruction(AI); } @@ -1273,45 +1419,35 @@ void Verifier::visitInstruction(Instruction &I) { Assert1(*UI != (User*)&I || !DT->isReachableFromEntry(BB), "Only PHI nodes may reference their own value!", &I); } - - // Verify that if this is a terminator that it is at the end of the block. - if (isa(I)) - Assert1(BB->getTerminator() == &I, "Terminator not at end of block!", &I); - // Check that void typed values don't have names - Assert1(I.getType() != Type::getVoidTy(I.getContext()) || !I.hasName(), + Assert1(!I.getType()->isVoidTy() || !I.hasName(), "Instruction has a name, but provides a void value!", &I); // Check that the return value of the instruction is either void or a legal // value type. - Assert1(I.getType() == Type::getVoidTy(I.getContext()) || - I.getType()->isFirstClassType() - || ((isa(I) || isa(I)) - && isa(I.getType())), + Assert1(I.getType()->isVoidTy() || + I.getType()->isFirstClassType(), "Instruction returns a non-scalar type!", &I); - // Check that the instruction doesn't produce metadata or metadata*. Calls - // all already checked against the callee type. - Assert1(I.getType() != Type::getMetadataTy(I.getContext()) || + // Check that the instruction doesn't produce metadata. Calls are already + // checked against the callee type. + Assert1(!I.getType()->isMetadataTy() || isa(I) || isa(I), "Invalid use of metadata!", &I); - if (const PointerType *PTy = dyn_cast(I.getType())) - Assert1(PTy->getElementType() != Type::getMetadataTy(I.getContext()), - "Instructions may not produce pointer to metadata.", &I); - - // Check that all uses of the instruction, if they are instructions // themselves, actually have parent basic blocks. If the use is not an // instruction, it is an error! for (User::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ++UI) { - Assert1(isa(*UI), "Use of instruction is not an instruction!", - *UI); - Instruction *Used = cast(*UI); - Assert2(Used->getParent() != 0, "Instruction referencing instruction not" - " embedded in a basic block!", &I, Used); + if (Instruction *Used = dyn_cast(*UI)) + Assert2(Used->getParent() != 0, "Instruction referencing instruction not" + " embedded in a basic block!", &I, Used); + else { + CheckFailed("Use of instruction is not an instruction!", *UI); + return; + } } for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { @@ -1323,15 +1459,10 @@ void Verifier::visitInstruction(Instruction &I) { Assert1(0, "Instruction operands must be first-class values!", &I); } - if (const PointerType *PTy = - dyn_cast(I.getOperand(i)->getType())) - Assert1(PTy->getElementType() != Type::getMetadataTy(I.getContext()), - "Invalid use of metadata pointer.", &I); - if (Function *F = dyn_cast(I.getOperand(i))) { // Check to make sure that the "address of" an intrinsic function is never // taken. - Assert1(!F->isIntrinsic() || (i == 0 && isa(I)), + Assert1(!F->isIntrinsic() || (i + 1 == e && isa(I)), "Cannot take the address of an intrinsic!", &I); Assert1(F->getParent() == Mod, "Referencing function in another module!", &I); @@ -1361,7 +1492,9 @@ void Verifier::visitInstruction(Instruction &I) { // value in the predecessor basic blocks they correspond to. BasicBlock *UseBlock = BB; if (isa(I)) - UseBlock = cast(I.getOperand(i+1)); + UseBlock = dyn_cast(I.getOperand(i+1)); + Assert2(UseBlock, "Invoke operand is PHI node with bad incoming-BB", + Op, &I); if (isa(I) && UseBlock == OpBlock) { // Special case of a phi node in the normal destination or the unwind @@ -1394,9 +1527,9 @@ void Verifier::visitInstruction(Instruction &I) { } else if (isa(I)) { // PHI nodes are more difficult than other nodes because they actually // "use" the value in the predecessor basic blocks they correspond to. - BasicBlock *PredBB = cast(I.getOperand(i+1)); - Assert2(DT->dominates(OpBlock, PredBB) || - !DT->isReachableFromEntry(PredBB), + BasicBlock *PredBB = dyn_cast(I.getOperand(i+1)); + Assert2(PredBB && (DT->dominates(OpBlock, PredBB) || + !DT->isReachableFromEntry(PredBB)), "Instruction does not dominate all uses!", Op, &I); } else { if (OpBlock == BB) { @@ -1412,11 +1545,79 @@ void Verifier::visitInstruction(Instruction &I) { "Instruction does not dominate all uses!", Op, &I); } } else if (isa(I.getOperand(i))) { - Assert1(i == 0 && (isa(I) || isa(I)), + Assert1((i + 1 == e && isa(I)) || + (i + 3 == e && isa(I)), "Cannot take the address of an inline asm!", &I); } } InstsInThisBlock.insert(&I); + + VerifyType(I.getType()); +} + +/// VerifyType - Verify that a type is well formed. +/// +void Verifier::VerifyType(const Type *Ty) { + if (!Types.insert(Ty)) return; + + Assert1(Context == &Ty->getContext(), + "Type context does not match Module context!", Ty); + + switch (Ty->getTypeID()) { + case Type::FunctionTyID: { + const FunctionType *FTy = cast(Ty); + + const Type *RetTy = FTy->getReturnType(); + Assert2(FunctionType::isValidReturnType(RetTy), + "Function type with invalid return type", RetTy, FTy); + VerifyType(RetTy); + + for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { + const Type *ElTy = FTy->getParamType(i); + Assert2(FunctionType::isValidArgumentType(ElTy), + "Function type with invalid parameter type", ElTy, FTy); + VerifyType(ElTy); + } + } break; + case Type::StructTyID: { + const StructType *STy = cast(Ty); + for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { + const Type *ElTy = STy->getElementType(i); + Assert2(StructType::isValidElementType(ElTy), + "Structure type with invalid element type", ElTy, STy); + VerifyType(ElTy); + } + } break; + case Type::UnionTyID: { + const UnionType *UTy = cast(Ty); + for (unsigned i = 0, e = UTy->getNumElements(); i != e; ++i) { + const Type *ElTy = UTy->getElementType(i); + Assert2(UnionType::isValidElementType(ElTy), + "Union type with invalid element type", ElTy, UTy); + VerifyType(ElTy); + } + } break; + case Type::ArrayTyID: { + const ArrayType *ATy = cast(Ty); + Assert1(ArrayType::isValidElementType(ATy->getElementType()), + "Array type with invalid element type", ATy); + VerifyType(ATy->getElementType()); + } break; + case Type::PointerTyID: { + const PointerType *PTy = cast(Ty); + Assert1(PointerType::isValidElementType(PTy->getElementType()), + "Pointer type with invalid element type", PTy); + VerifyType(PTy->getElementType()); + } break; + case Type::VectorTyID: { + const VectorType *VTy = cast(Ty); + Assert1(VectorType::isValidElementType(VTy->getElementType()), + "Vector type with invalid element type", VTy); + VerifyType(VTy->getElementType()); + } break; + default: + break; + } } // Flags used by TableGen to mark intrinsic parameters with the @@ -1430,23 +1631,31 @@ void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { Function *IF = CI.getCalledFunction(); Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!", IF); - + #define GET_INTRINSIC_VERIFIER #include "llvm/Intrinsics.gen" #undef GET_INTRINSIC_VERIFIER - + + // If the intrinsic takes MDNode arguments, verify that they are either global + // or are local to *this* function. + for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i) + if (MDNode *MD = dyn_cast(CI.getArgOperand(i))) + visitMDNode(*MD, CI.getParent()->getParent()); + switch (ID) { default: break; - case Intrinsic::dbg_declare: // llvm.dbg.declare - if (Constant *C = dyn_cast(CI.getOperand(1))) - Assert1(C && !isa(C), - "invalid llvm.dbg.declare intrinsic call", &CI); - break; + case Intrinsic::dbg_declare: { // llvm.dbg.declare + Assert1(CI.getArgOperand(0) && isa(CI.getArgOperand(0)), + "invalid llvm.dbg.declare intrinsic call 1", &CI); + MDNode *MD = cast(CI.getArgOperand(0)); + Assert1(MD->getNumOperands() == 1, + "invalid llvm.dbg.declare intrinsic call 2", &CI); + } break; case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: - Assert1(isa(CI.getOperand(4)), + Assert1(isa(CI.getArgOperand(3)), "alignment argument of memory intrinsics must be a constant int", &CI); break; @@ -1455,34 +1664,45 @@ void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { case Intrinsic::gcread: if (ID == Intrinsic::gcroot) { AllocaInst *AI = - dyn_cast(CI.getOperand(1)->stripPointerCasts()); - Assert1(AI && isa(AI->getType()->getElementType()), + dyn_cast(CI.getArgOperand(0)->stripPointerCasts()); + Assert1(AI && AI->getType()->getElementType()->isPointerTy(), "llvm.gcroot parameter #1 must be a pointer alloca.", &CI); - Assert1(isa(CI.getOperand(2)), + Assert1(isa(CI.getArgOperand(1)), "llvm.gcroot parameter #2 must be a constant.", &CI); } - + Assert1(CI.getParent()->getParent()->hasGC(), "Enclosing function does not use GC.", &CI); break; case Intrinsic::init_trampoline: - Assert1(isa(CI.getOperand(2)->stripPointerCasts()), + Assert1(isa(CI.getArgOperand(1)->stripPointerCasts()), "llvm.init_trampoline parameter #2 must resolve to a function.", &CI); break; case Intrinsic::prefetch: - Assert1(isa(CI.getOperand(2)) && - isa(CI.getOperand(3)) && - cast(CI.getOperand(2))->getZExtValue() < 2 && - cast(CI.getOperand(3))->getZExtValue() < 4, + Assert1(isa(CI.getArgOperand(1)) && + isa(CI.getArgOperand(2)) && + cast(CI.getArgOperand(1))->getZExtValue() < 2 && + cast(CI.getArgOperand(2))->getZExtValue() < 4, "invalid arguments to llvm.prefetch", &CI); break; case Intrinsic::stackprotector: - Assert1(isa(CI.getOperand(2)->stripPointerCasts()), + Assert1(isa(CI.getArgOperand(1)->stripPointerCasts()), "llvm.stackprotector parameter #2 must resolve to an alloca.", &CI); break; + case Intrinsic::lifetime_start: + case Intrinsic::lifetime_end: + case Intrinsic::invariant_start: + Assert1(isa(CI.getArgOperand(0)), + "size argument of memory use markers must be a constant integer", + &CI); + break; + case Intrinsic::invariant_end: + Assert1(isa(CI.getArgOperand(1)), + "llvm.invariant.end parameter #2 must be a constant integer", &CI); + break; } } @@ -1491,13 +1711,11 @@ void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { /// parameters beginning with NumRets. /// static std::string IntrinsicParam(unsigned ArgNo, unsigned NumRets) { - if (ArgNo < NumRets) { - if (NumRets == 1) - return "Intrinsic result type"; - else - return "Intrinsic result type #" + utostr(ArgNo); - } else + if (ArgNo >= NumRets) return "Intrinsic parameter #" + utostr(ArgNo - NumRets); + if (NumRets == 1) + return "Intrinsic result type"; + return "Intrinsic result type #" + utostr(ArgNo); } bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty, @@ -1514,9 +1732,13 @@ bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty, const Type *RetTy = FTy->getReturnType(); const StructType *ST = dyn_cast(RetTy); - unsigned NumRets = 1; - if (ST) - NumRets = ST->getNumElements(); + unsigned NumRetVals; + if (RetTy->isVoidTy()) + NumRetVals = 0; + else if (ST) + NumRetVals = ST->getNumElements(); + else + NumRetVals = 1; if (VT < 0) { int Match = ~VT; @@ -1528,7 +1750,7 @@ bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty, TruncatedElementVectorType)) != 0) { const IntegerType *IEltTy = dyn_cast(EltTy); if (!VTy || !IEltTy) { - CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not " + CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not " "an integral vector type.", F); return false; } @@ -1536,7 +1758,7 @@ bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty, // the type being matched against. if ((Match & ExtendedElementVectorType) != 0) { if ((IEltTy->getBitWidth() & 1) != 0) { - CheckFailed(IntrinsicParam(ArgNo, NumRets) + " vector " + CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " vector " "element bit-width is odd.", F); return false; } @@ -1546,25 +1768,25 @@ bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty, Match &= ~(ExtendedElementVectorType | TruncatedElementVectorType); } - if (Match <= static_cast(NumRets - 1)) { + if (Match <= static_cast(NumRetVals - 1)) { if (ST) RetTy = ST->getElementType(Match); if (Ty != RetTy) { - CheckFailed(IntrinsicParam(ArgNo, NumRets) + " does not " + CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " does not " "match return type.", F); return false; } } else { - if (Ty != FTy->getParamType(Match - NumRets)) { - CheckFailed(IntrinsicParam(ArgNo, NumRets) + " does not " - "match parameter %" + utostr(Match - NumRets) + ".", F); + if (Ty != FTy->getParamType(Match - NumRetVals)) { + CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " does not " + "match parameter %" + utostr(Match - NumRetVals) + ".", F); return false; } } } else if (VT == MVT::iAny) { - if (!EltTy->isInteger()) { - CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not " + if (!EltTy->isIntegerTy()) { + CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not " "an integer type.", F); return false; } @@ -1588,8 +1810,8 @@ bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty, break; } } else if (VT == MVT::fAny) { - if (!EltTy->isFloatingPoint()) { - CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not " + if (!EltTy->isFloatingPointTy()) { + CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not " "a floating-point type.", F); return false; } @@ -1602,13 +1824,14 @@ bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty, Suffix += EVT::getEVT(EltTy).getEVTString(); } else if (VT == MVT::vAny) { if (!VTy) { - CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not a vector type.", F); + CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a vector type.", + F); return false; } Suffix += ".v" + utostr(NumElts) + EVT::getEVT(EltTy).getEVTString(); } else if (VT == MVT::iPTR) { - if (!isa(Ty)) { - CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not a " + if (!Ty->isPointerTy()) { + CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a " "pointer and a pointer is required.", F); return false; } @@ -1620,7 +1843,7 @@ bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty, Suffix += ".p" + utostr(PTyp->getAddressSpace()) + EVT::getEVT(PTyp->getElementType()).getEVTString(); } else { - CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not a " + CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a " "pointer and a pointer is required.", F); return false; } @@ -1640,10 +1863,10 @@ bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty, } } else if (EVT((MVT::SimpleValueType)VT).getTypeForEVT(Ty->getContext()) != EltTy) { - CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is wrong!", F); + CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is wrong!", F); return false; } else if (EltTy != Ty) { - CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is a vector " + CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is a vector " "and a scalar is required.", F); return false; } @@ -1655,18 +1878,18 @@ bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty, /// Intrinsics.gen. This implements a little state machine that verifies the /// prototype of intrinsics. void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F, - unsigned RetNum, - unsigned ParamNum, ...) { + unsigned NumRetVals, + unsigned NumParams, ...) { va_list VA; - va_start(VA, ParamNum); + va_start(VA, NumParams); const FunctionType *FTy = F->getFunctionType(); - + // For overloaded intrinsics, the Suffix of the function name must match the // types of the arguments. This variable keeps track of the expected // suffix, to be checked at the end. std::string Suffix; - if (FTy->getNumParams() + FTy->isVarArg() != ParamNum) { + if (FTy->getNumParams() + FTy->isVarArg() != NumParams) { CheckFailed("Intrinsic prototype has incorrect number of arguments!", F); return; } @@ -1674,23 +1897,27 @@ void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F, const Type *Ty = FTy->getReturnType(); const StructType *ST = dyn_cast(Ty); + if (NumRetVals == 0 && !Ty->isVoidTy()) { + CheckFailed("Intrinsic should return void", F); + return; + } + // Verify the return types. - if (ST && ST->getNumElements() != RetNum) { + if (ST && ST->getNumElements() != NumRetVals) { CheckFailed("Intrinsic prototype has incorrect number of return types!", F); return; } - - for (unsigned ArgNo = 0; ArgNo < RetNum; ++ArgNo) { + + for (unsigned ArgNo = 0; ArgNo != NumRetVals; ++ArgNo) { int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative. if (ST) Ty = ST->getElementType(ArgNo); - if (!PerformTypeCheck(ID, F, Ty, VT, ArgNo, Suffix)) break; } // Verify the parameter types. - for (unsigned ArgNo = 0; ArgNo < ParamNum; ++ArgNo) { + for (unsigned ArgNo = 0; ArgNo != NumParams; ++ArgNo) { int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative. if (VT == MVT::isVoid && ArgNo > 0) { @@ -1699,8 +1926,8 @@ void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F, break; } - if (!PerformTypeCheck(ID, F, FTy->getParamType(ArgNo), VT, ArgNo + RetNum, - Suffix)) + if (!PerformTypeCheck(ID, F, FTy->getParamType(ArgNo), VT, + ArgNo + NumRetVals, Suffix)) break; } @@ -1738,17 +1965,17 @@ FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) { } -// verifyFunction - Create +/// verifyFunction - Check a function for errors, printing messages on stderr. +/// Return true if the function is corrupt. +/// bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) { Function &F = const_cast(f); assert(!F.isDeclaration() && "Cannot verify external functions"); - ExistingModuleProvider MP(F.getParent()); - FunctionPassManager FPM(&MP); + FunctionPassManager FPM(F.getParent()); Verifier *V = new Verifier(action); FPM.add(V); FPM.run(F); - MP.releaseModule(); return V->Broken; } @@ -1761,7 +1988,7 @@ bool llvm::verifyModule(const Module &M, VerifierFailureAction action, Verifier *V = new Verifier(action); PM.add(V); PM.run(const_cast(M)); - + if (ErrorInfo && V->Broken) *ErrorInfo = V->MessagesStr.str(); return V->Broken;