clk: rockchip: rk3368: remove the flag ROCKCHIP_PLL_SYNC_RATE for NPLL
[firefly-linux-kernel-4.4.55.git] / kernel / kexec.c
index 59f7b55ba7453d4b406d0c066e5f6be5cea7037c..d873b64fbddcdd9e1666738f2b6192c6c5dc0029 100644 (file)
 /*
- * kexec.c - kexec system call
+ * kexec.c - kexec_load system call
  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
  *
  * This source code is licensed under the GNU General Public License,
  * Version 2.  See the file COPYING for more details.
  */
 
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
 #include <linux/capability.h>
 #include <linux/mm.h>
 #include <linux/file.h>
-#include <linux/slab.h>
-#include <linux/fs.h>
 #include <linux/kexec.h>
 #include <linux/mutex.h>
 #include <linux/list.h>
-#include <linux/highmem.h>
 #include <linux/syscalls.h>
-#include <linux/reboot.h>
-#include <linux/ioport.h>
-#include <linux/hardirq.h>
-#include <linux/elf.h>
-#include <linux/elfcore.h>
-#include <linux/utsname.h>
-#include <linux/numa.h>
-#include <linux/suspend.h>
-#include <linux/device.h>
-#include <linux/freezer.h>
-#include <linux/pm.h>
-#include <linux/cpu.h>
-#include <linux/console.h>
 #include <linux/vmalloc.h>
-#include <linux/swap.h>
-#include <linux/syscore_ops.h>
-
-#include <asm/page.h>
-#include <asm/uaccess.h>
-#include <asm/io.h>
-#include <asm/sections.h>
-
-/* Per cpu memory for storing cpu states in case of system crash. */
-note_buf_t __percpu *crash_notes;
-
-/* vmcoreinfo stuff */
-static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
-u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
-size_t vmcoreinfo_size;
-size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
-
-/* Location of the reserved area for the crash kernel */
-struct resource crashk_res = {
-       .name  = "Crash kernel",
-       .start = 0,
-       .end   = 0,
-       .flags = IORESOURCE_BUSY | IORESOURCE_MEM
-};
-struct resource crashk_low_res = {
-       .name  = "Crash kernel",
-       .start = 0,
-       .end   = 0,
-       .flags = IORESOURCE_BUSY | IORESOURCE_MEM
-};
-
-int kexec_should_crash(struct task_struct *p)
-{
-       if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
-               return 1;
-       return 0;
-}
-
-/*
- * When kexec transitions to the new kernel there is a one-to-one
- * mapping between physical and virtual addresses.  On processors
- * where you can disable the MMU this is trivial, and easy.  For
- * others it is still a simple predictable page table to setup.
- *
- * In that environment kexec copies the new kernel to its final
- * resting place.  This means I can only support memory whose
- * physical address can fit in an unsigned long.  In particular
- * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
- * If the assembly stub has more restrictive requirements
- * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
- * defined more restrictively in <asm/kexec.h>.
- *
- * The code for the transition from the current kernel to the
- * the new kernel is placed in the control_code_buffer, whose size
- * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
- * page of memory is necessary, but some architectures require more.
- * Because this memory must be identity mapped in the transition from
- * virtual to physical addresses it must live in the range
- * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
- * modifiable.
- *
- * The assembly stub in the control code buffer is passed a linked list
- * of descriptor pages detailing the source pages of the new kernel,
- * and the destination addresses of those source pages.  As this data
- * structure is not used in the context of the current OS, it must
- * be self-contained.
- *
- * The code has been made to work with highmem pages and will use a
- * destination page in its final resting place (if it happens
- * to allocate it).  The end product of this is that most of the
- * physical address space, and most of RAM can be used.
- *
- * Future directions include:
- *  - allocating a page table with the control code buffer identity
- *    mapped, to simplify machine_kexec and make kexec_on_panic more
- *    reliable.
- */
-
-/*
- * KIMAGE_NO_DEST is an impossible destination address..., for
- * allocating pages whose destination address we do not care about.
- */
-#define KIMAGE_NO_DEST (-1UL)
+#include <linux/slab.h>
 
-static int kimage_is_destination_range(struct kimage *image,
-                                      unsigned long start, unsigned long end);
-static struct page *kimage_alloc_page(struct kimage *image,
-                                      gfp_t gfp_mask,
-                                      unsigned long dest);
+#include "kexec_internal.h"
 
-static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
-                           unsigned long nr_segments,
-                            struct kexec_segment __user *segments)
+static int copy_user_segment_list(struct kimage *image,
+                                 unsigned long nr_segments,
+                                 struct kexec_segment __user *segments)
 {
+       int ret;
        size_t segment_bytes;
-       struct kimage *image;
-       unsigned long i;
-       int result;
-
-       /* Allocate a controlling structure */
-       result = -ENOMEM;
-       image = kzalloc(sizeof(*image), GFP_KERNEL);
-       if (!image)
-               goto out;
-
-       image->head = 0;
-       image->entry = &image->head;
-       image->last_entry = &image->head;
-       image->control_page = ~0; /* By default this does not apply */
-       image->start = entry;
-       image->type = KEXEC_TYPE_DEFAULT;
-
-       /* Initialize the list of control pages */
-       INIT_LIST_HEAD(&image->control_pages);
-
-       /* Initialize the list of destination pages */
-       INIT_LIST_HEAD(&image->dest_pages);
-
-       /* Initialize the list of unusable pages */
-       INIT_LIST_HEAD(&image->unuseable_pages);
 
        /* Read in the segments */
        image->nr_segments = nr_segments;
        segment_bytes = nr_segments * sizeof(*segments);
-       result = copy_from_user(image->segment, segments, segment_bytes);
-       if (result) {
-               result = -EFAULT;
-               goto out;
-       }
-
-       /*
-        * Verify we have good destination addresses.  The caller is
-        * responsible for making certain we don't attempt to load
-        * the new image into invalid or reserved areas of RAM.  This
-        * just verifies it is an address we can use.
-        *
-        * Since the kernel does everything in page size chunks ensure
-        * the destination addresses are page aligned.  Too many
-        * special cases crop of when we don't do this.  The most
-        * insidious is getting overlapping destination addresses
-        * simply because addresses are changed to page size
-        * granularity.
-        */
-       result = -EADDRNOTAVAIL;
-       for (i = 0; i < nr_segments; i++) {
-               unsigned long mstart, mend;
-
-               mstart = image->segment[i].mem;
-               mend   = mstart + image->segment[i].memsz;
-               if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
-                       goto out;
-               if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
-                       goto out;
-       }
-
-       /* Verify our destination addresses do not overlap.
-        * If we alloed overlapping destination addresses
-        * through very weird things can happen with no
-        * easy explanation as one segment stops on another.
-        */
-       result = -EINVAL;
-       for (i = 0; i < nr_segments; i++) {
-               unsigned long mstart, mend;
-               unsigned long j;
-
-               mstart = image->segment[i].mem;
-               mend   = mstart + image->segment[i].memsz;
-               for (j = 0; j < i; j++) {
-                       unsigned long pstart, pend;
-                       pstart = image->segment[j].mem;
-                       pend   = pstart + image->segment[j].memsz;
-                       /* Do the segments overlap ? */
-                       if ((mend > pstart) && (mstart < pend))
-                               goto out;
-               }
-       }
-
-       /* Ensure our buffer sizes are strictly less than
-        * our memory sizes.  This should always be the case,
-        * and it is easier to check up front than to be surprised
-        * later on.
-        */
-       result = -EINVAL;
-       for (i = 0; i < nr_segments; i++) {
-               if (image->segment[i].bufsz > image->segment[i].memsz)
-                       goto out;
-       }
-
-       result = 0;
-out:
-       if (result == 0)
-               *rimage = image;
-       else
-               kfree(image);
-
-       return result;
-
-}
-
-static void kimage_free_page_list(struct list_head *list);
-
-static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
-                               unsigned long nr_segments,
-                               struct kexec_segment __user *segments)
-{
-       int result;
-       struct kimage *image;
-
-       /* Allocate and initialize a controlling structure */
-       image = NULL;
-       result = do_kimage_alloc(&image, entry, nr_segments, segments);
-       if (result)
-               goto out;
-
-       /*
-        * Find a location for the control code buffer, and add it
-        * the vector of segments so that it's pages will also be
-        * counted as destination pages.
-        */
-       result = -ENOMEM;
-       image->control_code_page = kimage_alloc_control_pages(image,
-                                          get_order(KEXEC_CONTROL_PAGE_SIZE));
-       if (!image->control_code_page) {
-               printk(KERN_ERR "Could not allocate control_code_buffer\n");
-               goto out_free;
-       }
-
-       image->swap_page = kimage_alloc_control_pages(image, 0);
-       if (!image->swap_page) {
-               printk(KERN_ERR "Could not allocate swap buffer\n");
-               goto out_free;
-       }
+       ret = copy_from_user(image->segment, segments, segment_bytes);
+       if (ret)
+               ret = -EFAULT;
 
-       *rimage = image;
-       return 0;
-
-out_free:
-       kimage_free_page_list(&image->control_pages);
-       kfree(image);
-out:
-       return result;
+       return ret;
 }
 
-static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
-                               unsigned long nr_segments,
-                               struct kexec_segment __user *segments)
+static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
+                            unsigned long nr_segments,
+                            struct kexec_segment __user *segments,
+                            unsigned long flags)
 {
-       int result;
+       int ret;
        struct kimage *image;
-       unsigned long i;
+       bool kexec_on_panic = flags & KEXEC_ON_CRASH;
 
-       image = NULL;
-       /* Verify we have a valid entry point */
-       if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
-               result = -EADDRNOTAVAIL;
-               goto out;
+       if (kexec_on_panic) {
+               /* Verify we have a valid entry point */
+               if ((entry < crashk_res.start) || (entry > crashk_res.end))
+                       return -EADDRNOTAVAIL;
        }
 
        /* Allocate and initialize a controlling structure */
-       result = do_kimage_alloc(&image, entry, nr_segments, segments);
-       if (result)
-               goto out;
+       image = do_kimage_alloc_init();
+       if (!image)
+               return -ENOMEM;
 
-       /* Enable the special crash kernel control page
-        * allocation policy.
-        */
-       image->control_page = crashk_res.start;
-       image->type = KEXEC_TYPE_CRASH;
+       image->start = entry;
 
-       /*
-        * Verify we have good destination addresses.  Normally
-        * the caller is responsible for making certain we don't
-        * attempt to load the new image into invalid or reserved
-        * areas of RAM.  But crash kernels are preloaded into a
-        * reserved area of ram.  We must ensure the addresses
-        * are in the reserved area otherwise preloading the
-        * kernel could corrupt things.
-        */
-       result = -EADDRNOTAVAIL;
-       for (i = 0; i < nr_segments; i++) {
-               unsigned long mstart, mend;
+       ret = copy_user_segment_list(image, nr_segments, segments);
+       if (ret)
+               goto out_free_image;
+
+       ret = sanity_check_segment_list(image);
+       if (ret)
+               goto out_free_image;
 
-               mstart = image->segment[i].mem;
-               mend = mstart + image->segment[i].memsz - 1;
-               /* Ensure we are within the crash kernel limits */
-               if ((mstart < crashk_res.start) || (mend > crashk_res.end))
-                       goto out_free;
+        /* Enable the special crash kernel control page allocation policy. */
+       if (kexec_on_panic) {
+               image->control_page = crashk_res.start;
+               image->type = KEXEC_TYPE_CRASH;
        }
 
        /*
-        * Find a location for the control code buffer, and add
+        * Find a location for the control code buffer, and add it
         * the vector of segments so that it's pages will also be
         * counted as destination pages.
         */
-       result = -ENOMEM;
+       ret = -ENOMEM;
        image->control_code_page = kimage_alloc_control_pages(image,
                                           get_order(KEXEC_CONTROL_PAGE_SIZE));
        if (!image->control_code_page) {
-               printk(KERN_ERR "Could not allocate control_code_buffer\n");
-               goto out_free;
-       }
-
-       *rimage = image;
-       return 0;
-
-out_free:
-       kfree(image);
-out:
-       return result;
-}
-
-static int kimage_is_destination_range(struct kimage *image,
-                                       unsigned long start,
-                                       unsigned long end)
-{
-       unsigned long i;
-
-       for (i = 0; i < image->nr_segments; i++) {
-               unsigned long mstart, mend;
-
-               mstart = image->segment[i].mem;
-               mend = mstart + image->segment[i].memsz;
-               if ((end > mstart) && (start < mend))
-                       return 1;
+               pr_err("Could not allocate control_code_buffer\n");
+               goto out_free_image;
        }
 
-       return 0;
-}
-
-static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
-{
-       struct page *pages;
-
-       pages = alloc_pages(gfp_mask, order);
-       if (pages) {
-               unsigned int count, i;
-               pages->mapping = NULL;
-               set_page_private(pages, order);
-               count = 1 << order;
-               for (i = 0; i < count; i++)
-                       SetPageReserved(pages + i);
-       }
-
-       return pages;
-}
-
-static void kimage_free_pages(struct page *page)
-{
-       unsigned int order, count, i;
-
-       order = page_private(page);
-       count = 1 << order;
-       for (i = 0; i < count; i++)
-               ClearPageReserved(page + i);
-       __free_pages(page, order);
-}
-
-static void kimage_free_page_list(struct list_head *list)
-{
-       struct list_head *pos, *next;
-
-       list_for_each_safe(pos, next, list) {
-               struct page *page;
-
-               page = list_entry(pos, struct page, lru);
-               list_del(&page->lru);
-               kimage_free_pages(page);
-       }
-}
-
-static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
-                                                       unsigned int order)
-{
-       /* Control pages are special, they are the intermediaries
-        * that are needed while we copy the rest of the pages
-        * to their final resting place.  As such they must
-        * not conflict with either the destination addresses
-        * or memory the kernel is already using.
-        *
-        * The only case where we really need more than one of
-        * these are for architectures where we cannot disable
-        * the MMU and must instead generate an identity mapped
-        * page table for all of the memory.
-        *
-        * At worst this runs in O(N) of the image size.
-        */
-       struct list_head extra_pages;
-       struct page *pages;
-       unsigned int count;
-
-       count = 1 << order;
-       INIT_LIST_HEAD(&extra_pages);
-
-       /* Loop while I can allocate a page and the page allocated
-        * is a destination page.
-        */
-       do {
-               unsigned long pfn, epfn, addr, eaddr;
-
-               pages = kimage_alloc_pages(GFP_KERNEL, order);
-               if (!pages)
-                       break;
-               pfn   = page_to_pfn(pages);
-               epfn  = pfn + count;
-               addr  = pfn << PAGE_SHIFT;
-               eaddr = epfn << PAGE_SHIFT;
-               if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
-                             kimage_is_destination_range(image, addr, eaddr)) {
-                       list_add(&pages->lru, &extra_pages);
-                       pages = NULL;
-               }
-       } while (!pages);
-
-       if (pages) {
-               /* Remember the allocated page... */
-               list_add(&pages->lru, &image->control_pages);
-
-               /* Because the page is already in it's destination
-                * location we will never allocate another page at
-                * that address.  Therefore kimage_alloc_pages
-                * will not return it (again) and we don't need
-                * to give it an entry in image->segment[].
-                */
-       }
-       /* Deal with the destination pages I have inadvertently allocated.
-        *
-        * Ideally I would convert multi-page allocations into single
-        * page allocations, and add everything to image->dest_pages.
-        *
-        * For now it is simpler to just free the pages.
-        */
-       kimage_free_page_list(&extra_pages);
-
-       return pages;
-}
-
-static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
-                                                     unsigned int order)
-{
-       /* Control pages are special, they are the intermediaries
-        * that are needed while we copy the rest of the pages
-        * to their final resting place.  As such they must
-        * not conflict with either the destination addresses
-        * or memory the kernel is already using.
-        *
-        * Control pages are also the only pags we must allocate
-        * when loading a crash kernel.  All of the other pages
-        * are specified by the segments and we just memcpy
-        * into them directly.
-        *
-        * The only case where we really need more than one of
-        * these are for architectures where we cannot disable
-        * the MMU and must instead generate an identity mapped
-        * page table for all of the memory.
-        *
-        * Given the low demand this implements a very simple
-        * allocator that finds the first hole of the appropriate
-        * size in the reserved memory region, and allocates all
-        * of the memory up to and including the hole.
-        */
-       unsigned long hole_start, hole_end, size;
-       struct page *pages;
-
-       pages = NULL;
-       size = (1 << order) << PAGE_SHIFT;
-       hole_start = (image->control_page + (size - 1)) & ~(size - 1);
-       hole_end   = hole_start + size - 1;
-       while (hole_end <= crashk_res.end) {
-               unsigned long i;
-
-               if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
-                       break;
-               /* See if I overlap any of the segments */
-               for (i = 0; i < image->nr_segments; i++) {
-                       unsigned long mstart, mend;
-
-                       mstart = image->segment[i].mem;
-                       mend   = mstart + image->segment[i].memsz - 1;
-                       if ((hole_end >= mstart) && (hole_start <= mend)) {
-                               /* Advance the hole to the end of the segment */
-                               hole_start = (mend + (size - 1)) & ~(size - 1);
-                               hole_end   = hole_start + size - 1;
-                               break;
-                       }
+       if (!kexec_on_panic) {
+               image->swap_page = kimage_alloc_control_pages(image, 0);
+               if (!image->swap_page) {
+                       pr_err("Could not allocate swap buffer\n");
+                       goto out_free_control_pages;
                }
-               /* If I don't overlap any segments I have found my hole! */
-               if (i == image->nr_segments) {
-                       pages = pfn_to_page(hole_start >> PAGE_SHIFT);
-                       break;
-               }
-       }
-       if (pages)
-               image->control_page = hole_end;
-
-       return pages;
-}
-
-
-struct page *kimage_alloc_control_pages(struct kimage *image,
-                                        unsigned int order)
-{
-       struct page *pages = NULL;
-
-       switch (image->type) {
-       case KEXEC_TYPE_DEFAULT:
-               pages = kimage_alloc_normal_control_pages(image, order);
-               break;
-       case KEXEC_TYPE_CRASH:
-               pages = kimage_alloc_crash_control_pages(image, order);
-               break;
-       }
-
-       return pages;
-}
-
-static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
-{
-       if (*image->entry != 0)
-               image->entry++;
-
-       if (image->entry == image->last_entry) {
-               kimage_entry_t *ind_page;
-               struct page *page;
-
-               page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
-               if (!page)
-                       return -ENOMEM;
-
-               ind_page = page_address(page);
-               *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
-               image->entry = ind_page;
-               image->last_entry = ind_page +
-                                     ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
        }
-       *image->entry = entry;
-       image->entry++;
-       *image->entry = 0;
 
+       *rimage = image;
        return 0;
-}
-
-static int kimage_set_destination(struct kimage *image,
-                                  unsigned long destination)
-{
-       int result;
-
-       destination &= PAGE_MASK;
-       result = kimage_add_entry(image, destination | IND_DESTINATION);
-       if (result == 0)
-               image->destination = destination;
-
-       return result;
-}
-
-
-static int kimage_add_page(struct kimage *image, unsigned long page)
-{
-       int result;
-
-       page &= PAGE_MASK;
-       result = kimage_add_entry(image, page | IND_SOURCE);
-       if (result == 0)
-               image->destination += PAGE_SIZE;
-
-       return result;
-}
-
-
-static void kimage_free_extra_pages(struct kimage *image)
-{
-       /* Walk through and free any extra destination pages I may have */
-       kimage_free_page_list(&image->dest_pages);
-
-       /* Walk through and free any unusable pages I have cached */
-       kimage_free_page_list(&image->unuseable_pages);
-
-}
-static void kimage_terminate(struct kimage *image)
-{
-       if (*image->entry != 0)
-               image->entry++;
-
-       *image->entry = IND_DONE;
-}
-
-#define for_each_kimage_entry(image, ptr, entry) \
-       for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
-               ptr = (entry & IND_INDIRECTION)? \
-                       phys_to_virt((entry & PAGE_MASK)): ptr +1)
-
-static void kimage_free_entry(kimage_entry_t entry)
-{
-       struct page *page;
-
-       page = pfn_to_page(entry >> PAGE_SHIFT);
-       kimage_free_pages(page);
-}
-
-static void kimage_free(struct kimage *image)
-{
-       kimage_entry_t *ptr, entry;
-       kimage_entry_t ind = 0;
-
-       if (!image)
-               return;
-
-       kimage_free_extra_pages(image);
-       for_each_kimage_entry(image, ptr, entry) {
-               if (entry & IND_INDIRECTION) {
-                       /* Free the previous indirection page */
-                       if (ind & IND_INDIRECTION)
-                               kimage_free_entry(ind);
-                       /* Save this indirection page until we are
-                        * done with it.
-                        */
-                       ind = entry;
-               }
-               else if (entry & IND_SOURCE)
-                       kimage_free_entry(entry);
-       }
-       /* Free the final indirection page */
-       if (ind & IND_INDIRECTION)
-               kimage_free_entry(ind);
-
-       /* Handle any machine specific cleanup */
-       machine_kexec_cleanup(image);
-
-       /* Free the kexec control pages... */
+out_free_control_pages:
        kimage_free_page_list(&image->control_pages);
+out_free_image:
        kfree(image);
-}
-
-static kimage_entry_t *kimage_dst_used(struct kimage *image,
-                                       unsigned long page)
-{
-       kimage_entry_t *ptr, entry;
-       unsigned long destination = 0;
-
-       for_each_kimage_entry(image, ptr, entry) {
-               if (entry & IND_DESTINATION)
-                       destination = entry & PAGE_MASK;
-               else if (entry & IND_SOURCE) {
-                       if (page == destination)
-                               return ptr;
-                       destination += PAGE_SIZE;
-               }
-       }
-
-       return NULL;
-}
-
-static struct page *kimage_alloc_page(struct kimage *image,
-                                       gfp_t gfp_mask,
-                                       unsigned long destination)
-{
-       /*
-        * Here we implement safeguards to ensure that a source page
-        * is not copied to its destination page before the data on
-        * the destination page is no longer useful.
-        *
-        * To do this we maintain the invariant that a source page is
-        * either its own destination page, or it is not a
-        * destination page at all.
-        *
-        * That is slightly stronger than required, but the proof
-        * that no problems will not occur is trivial, and the
-        * implementation is simply to verify.
-        *
-        * When allocating all pages normally this algorithm will run
-        * in O(N) time, but in the worst case it will run in O(N^2)
-        * time.   If the runtime is a problem the data structures can
-        * be fixed.
-        */
-       struct page *page;
-       unsigned long addr;
-
-       /*
-        * Walk through the list of destination pages, and see if I
-        * have a match.
-        */
-       list_for_each_entry(page, &image->dest_pages, lru) {
-               addr = page_to_pfn(page) << PAGE_SHIFT;
-               if (addr == destination) {
-                       list_del(&page->lru);
-                       return page;
-               }
-       }
-       page = NULL;
-       while (1) {
-               kimage_entry_t *old;
-
-               /* Allocate a page, if we run out of memory give up */
-               page = kimage_alloc_pages(gfp_mask, 0);
-               if (!page)
-                       return NULL;
-               /* If the page cannot be used file it away */
-               if (page_to_pfn(page) >
-                               (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
-                       list_add(&page->lru, &image->unuseable_pages);
-                       continue;
-               }
-               addr = page_to_pfn(page) << PAGE_SHIFT;
-
-               /* If it is the destination page we want use it */
-               if (addr == destination)
-                       break;
-
-               /* If the page is not a destination page use it */
-               if (!kimage_is_destination_range(image, addr,
-                                                 addr + PAGE_SIZE))
-                       break;
-
-               /*
-                * I know that the page is someones destination page.
-                * See if there is already a source page for this
-                * destination page.  And if so swap the source pages.
-                */
-               old = kimage_dst_used(image, addr);
-               if (old) {
-                       /* If so move it */
-                       unsigned long old_addr;
-                       struct page *old_page;
-
-                       old_addr = *old & PAGE_MASK;
-                       old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
-                       copy_highpage(page, old_page);
-                       *old = addr | (*old & ~PAGE_MASK);
-
-                       /* The old page I have found cannot be a
-                        * destination page, so return it if it's
-                        * gfp_flags honor the ones passed in.
-                        */
-                       if (!(gfp_mask & __GFP_HIGHMEM) &&
-                           PageHighMem(old_page)) {
-                               kimage_free_pages(old_page);
-                               continue;
-                       }
-                       addr = old_addr;
-                       page = old_page;
-                       break;
-               }
-               else {
-                       /* Place the page on the destination list I
-                        * will use it later.
-                        */
-                       list_add(&page->lru, &image->dest_pages);
-               }
-       }
-
-       return page;
-}
-
-static int kimage_load_normal_segment(struct kimage *image,
-                                        struct kexec_segment *segment)
-{
-       unsigned long maddr;
-       size_t ubytes, mbytes;
-       int result;
-       unsigned char __user *buf;
-
-       result = 0;
-       buf = segment->buf;
-       ubytes = segment->bufsz;
-       mbytes = segment->memsz;
-       maddr = segment->mem;
-
-       result = kimage_set_destination(image, maddr);
-       if (result < 0)
-               goto out;
-
-       while (mbytes) {
-               struct page *page;
-               char *ptr;
-               size_t uchunk, mchunk;
-
-               page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
-               if (!page) {
-                       result  = -ENOMEM;
-                       goto out;
-               }
-               result = kimage_add_page(image, page_to_pfn(page)
-                                                               << PAGE_SHIFT);
-               if (result < 0)
-                       goto out;
-
-               ptr = kmap(page);
-               /* Start with a clear page */
-               clear_page(ptr);
-               ptr += maddr & ~PAGE_MASK;
-               mchunk = min_t(size_t, mbytes,
-                               PAGE_SIZE - (maddr & ~PAGE_MASK));
-               uchunk = min(ubytes, mchunk);
-
-               result = copy_from_user(ptr, buf, uchunk);
-               kunmap(page);
-               if (result) {
-                       result = -EFAULT;
-                       goto out;
-               }
-               ubytes -= uchunk;
-               maddr  += mchunk;
-               buf    += mchunk;
-               mbytes -= mchunk;
-       }
-out:
-       return result;
-}
-
-static int kimage_load_crash_segment(struct kimage *image,
-                                       struct kexec_segment *segment)
-{
-       /* For crash dumps kernels we simply copy the data from
-        * user space to it's destination.
-        * We do things a page at a time for the sake of kmap.
-        */
-       unsigned long maddr;
-       size_t ubytes, mbytes;
-       int result;
-       unsigned char __user *buf;
-
-       result = 0;
-       buf = segment->buf;
-       ubytes = segment->bufsz;
-       mbytes = segment->memsz;
-       maddr = segment->mem;
-       while (mbytes) {
-               struct page *page;
-               char *ptr;
-               size_t uchunk, mchunk;
-
-               page = pfn_to_page(maddr >> PAGE_SHIFT);
-               if (!page) {
-                       result  = -ENOMEM;
-                       goto out;
-               }
-               ptr = kmap(page);
-               ptr += maddr & ~PAGE_MASK;
-               mchunk = min_t(size_t, mbytes,
-                               PAGE_SIZE - (maddr & ~PAGE_MASK));
-               uchunk = min(ubytes, mchunk);
-               if (mchunk > uchunk) {
-                       /* Zero the trailing part of the page */
-                       memset(ptr + uchunk, 0, mchunk - uchunk);
-               }
-               result = copy_from_user(ptr, buf, uchunk);
-               kexec_flush_icache_page(page);
-               kunmap(page);
-               if (result) {
-                       result = -EFAULT;
-                       goto out;
-               }
-               ubytes -= uchunk;
-               maddr  += mchunk;
-               buf    += mchunk;
-               mbytes -= mchunk;
-       }
-out:
-       return result;
-}
-
-static int kimage_load_segment(struct kimage *image,
-                               struct kexec_segment *segment)
-{
-       int result = -ENOMEM;
-
-       switch (image->type) {
-       case KEXEC_TYPE_DEFAULT:
-               result = kimage_load_normal_segment(image, segment);
-               break;
-       case KEXEC_TYPE_CRASH:
-               result = kimage_load_crash_segment(image, segment);
-               break;
-       }
-
-       return result;
+       return ret;
 }
 
 /*
@@ -921,16 +117,12 @@ static int kimage_load_segment(struct kimage *image,
  *   reinitialize them.
  *
  * - A machine specific part that includes the syscall number
- *   and the copies the image to it's final destination.  And
+ *   and then copies the image to it's final destination.  And
  *   jumps into the image at entry.
  *
  * kexec does not sync, or unmount filesystems so if you need
  * that to happen you need to do that yourself.
  */
-struct kimage *kexec_image;
-struct kimage *kexec_crash_image;
-
-static DEFINE_MUTEX(kexec_mutex);
 
 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
                struct kexec_segment __user *, segments, unsigned long, flags)
@@ -939,7 +131,7 @@ SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
        int result;
 
        /* We only trust the superuser with rebooting the system. */
-       if (!capable(CAP_SYS_BOOT))
+       if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
                return -EPERM;
 
        /*
@@ -980,19 +172,22 @@ SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
        if (nr_segments > 0) {
                unsigned long i;
 
-               /* Loading another kernel to reboot into */
-               if ((flags & KEXEC_ON_CRASH) == 0)
-                       result = kimage_normal_alloc(&image, entry,
-                                                       nr_segments, segments);
-               /* Loading another kernel to switch to if this one crashes */
-               else if (flags & KEXEC_ON_CRASH) {
-                       /* Free any current crash dump kernel before
+               if (flags & KEXEC_ON_CRASH) {
+                       /*
+                        * Loading another kernel to switch to if this one
+                        * crashes.  Free any current crash dump kernel before
                         * we corrupt it.
                         */
+
                        kimage_free(xchg(&kexec_crash_image, NULL));
-                       result = kimage_crash_alloc(&image, entry,
-                                                    nr_segments, segments);
+                       result = kimage_alloc_init(&image, entry, nr_segments,
+                                                  segments, flags);
                        crash_map_reserved_pages();
+               } else {
+                       /* Loading another kernel to reboot into. */
+
+                       result = kimage_alloc_init(&image, entry, nr_segments,
+                                                  segments, flags);
                }
                if (result)
                        goto out;
@@ -1022,23 +217,11 @@ out:
        return result;
 }
 
-/*
- * Add and remove page tables for crashkernel memory
- *
- * Provide an empty default implementation here -- architecture
- * code may override this
- */
-void __weak crash_map_reserved_pages(void)
-{}
-
-void __weak crash_unmap_reserved_pages(void)
-{}
-
 #ifdef CONFIG_COMPAT
-asmlinkage long compat_sys_kexec_load(unsigned long entry,
-                               unsigned long nr_segments,
-                               struct compat_kexec_segment __user *segments,
-                               unsigned long flags)
+COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
+                      compat_ulong_t, nr_segments,
+                      struct compat_kexec_segment __user *, segments,
+                      compat_ulong_t, flags)
 {
        struct compat_kexec_segment in;
        struct kexec_segment out, __user *ksegments;
@@ -1054,7 +237,7 @@ asmlinkage long compat_sys_kexec_load(unsigned long entry,
                return -EINVAL;
 
        ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
-       for (i=0; i < nr_segments; i++) {
+       for (i = 0; i < nr_segments; i++) {
                result = copy_from_user(&in, &segments[i], sizeof(in));
                if (result)
                        return -EFAULT;
@@ -1072,639 +255,3 @@ asmlinkage long compat_sys_kexec_load(unsigned long entry,
        return sys_kexec_load(entry, nr_segments, ksegments, flags);
 }
 #endif
-
-void crash_kexec(struct pt_regs *regs)
-{
-       /* Take the kexec_mutex here to prevent sys_kexec_load
-        * running on one cpu from replacing the crash kernel
-        * we are using after a panic on a different cpu.
-        *
-        * If the crash kernel was not located in a fixed area
-        * of memory the xchg(&kexec_crash_image) would be
-        * sufficient.  But since I reuse the memory...
-        */
-       if (mutex_trylock(&kexec_mutex)) {
-               if (kexec_crash_image) {
-                       struct pt_regs fixed_regs;
-
-                       crash_setup_regs(&fixed_regs, regs);
-                       crash_save_vmcoreinfo();
-                       machine_crash_shutdown(&fixed_regs);
-                       machine_kexec(kexec_crash_image);
-               }
-               mutex_unlock(&kexec_mutex);
-       }
-}
-
-size_t crash_get_memory_size(void)
-{
-       size_t size = 0;
-       mutex_lock(&kexec_mutex);
-       if (crashk_res.end != crashk_res.start)
-               size = resource_size(&crashk_res);
-       mutex_unlock(&kexec_mutex);
-       return size;
-}
-
-void __weak crash_free_reserved_phys_range(unsigned long begin,
-                                          unsigned long end)
-{
-       unsigned long addr;
-
-       for (addr = begin; addr < end; addr += PAGE_SIZE)
-               free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
-}
-
-int crash_shrink_memory(unsigned long new_size)
-{
-       int ret = 0;
-       unsigned long start, end;
-       unsigned long old_size;
-       struct resource *ram_res;
-
-       mutex_lock(&kexec_mutex);
-
-       if (kexec_crash_image) {
-               ret = -ENOENT;
-               goto unlock;
-       }
-       start = crashk_res.start;
-       end = crashk_res.end;
-       old_size = (end == 0) ? 0 : end - start + 1;
-       if (new_size >= old_size) {
-               ret = (new_size == old_size) ? 0 : -EINVAL;
-               goto unlock;
-       }
-
-       ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
-       if (!ram_res) {
-               ret = -ENOMEM;
-               goto unlock;
-       }
-
-       start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
-       end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
-
-       crash_map_reserved_pages();
-       crash_free_reserved_phys_range(end, crashk_res.end);
-
-       if ((start == end) && (crashk_res.parent != NULL))
-               release_resource(&crashk_res);
-
-       ram_res->start = end;
-       ram_res->end = crashk_res.end;
-       ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
-       ram_res->name = "System RAM";
-
-       crashk_res.end = end - 1;
-
-       insert_resource(&iomem_resource, ram_res);
-       crash_unmap_reserved_pages();
-
-unlock:
-       mutex_unlock(&kexec_mutex);
-       return ret;
-}
-
-static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
-                           size_t data_len)
-{
-       struct elf_note note;
-
-       note.n_namesz = strlen(name) + 1;
-       note.n_descsz = data_len;
-       note.n_type   = type;
-       memcpy(buf, &note, sizeof(note));
-       buf += (sizeof(note) + 3)/4;
-       memcpy(buf, name, note.n_namesz);
-       buf += (note.n_namesz + 3)/4;
-       memcpy(buf, data, note.n_descsz);
-       buf += (note.n_descsz + 3)/4;
-
-       return buf;
-}
-
-static void final_note(u32 *buf)
-{
-       struct elf_note note;
-
-       note.n_namesz = 0;
-       note.n_descsz = 0;
-       note.n_type   = 0;
-       memcpy(buf, &note, sizeof(note));
-}
-
-void crash_save_cpu(struct pt_regs *regs, int cpu)
-{
-       struct elf_prstatus prstatus;
-       u32 *buf;
-
-       if ((cpu < 0) || (cpu >= nr_cpu_ids))
-               return;
-
-       /* Using ELF notes here is opportunistic.
-        * I need a well defined structure format
-        * for the data I pass, and I need tags
-        * on the data to indicate what information I have
-        * squirrelled away.  ELF notes happen to provide
-        * all of that, so there is no need to invent something new.
-        */
-       buf = (u32*)per_cpu_ptr(crash_notes, cpu);
-       if (!buf)
-               return;
-       memset(&prstatus, 0, sizeof(prstatus));
-       prstatus.pr_pid = current->pid;
-       elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
-       buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
-                             &prstatus, sizeof(prstatus));
-       final_note(buf);
-}
-
-static int __init crash_notes_memory_init(void)
-{
-       /* Allocate memory for saving cpu registers. */
-       crash_notes = alloc_percpu(note_buf_t);
-       if (!crash_notes) {
-               printk("Kexec: Memory allocation for saving cpu register"
-               " states failed\n");
-               return -ENOMEM;
-       }
-       return 0;
-}
-module_init(crash_notes_memory_init)
-
-
-/*
- * parsing the "crashkernel" commandline
- *
- * this code is intended to be called from architecture specific code
- */
-
-
-/*
- * This function parses command lines in the format
- *
- *   crashkernel=ramsize-range:size[,...][@offset]
- *
- * The function returns 0 on success and -EINVAL on failure.
- */
-static int __init parse_crashkernel_mem(char                   *cmdline,
-                                       unsigned long long      system_ram,
-                                       unsigned long long      *crash_size,
-                                       unsigned long long      *crash_base)
-{
-       char *cur = cmdline, *tmp;
-
-       /* for each entry of the comma-separated list */
-       do {
-               unsigned long long start, end = ULLONG_MAX, size;
-
-               /* get the start of the range */
-               start = memparse(cur, &tmp);
-               if (cur == tmp) {
-                       pr_warning("crashkernel: Memory value expected\n");
-                       return -EINVAL;
-               }
-               cur = tmp;
-               if (*cur != '-') {
-                       pr_warning("crashkernel: '-' expected\n");
-                       return -EINVAL;
-               }
-               cur++;
-
-               /* if no ':' is here, than we read the end */
-               if (*cur != ':') {
-                       end = memparse(cur, &tmp);
-                       if (cur == tmp) {
-                               pr_warning("crashkernel: Memory "
-                                               "value expected\n");
-                               return -EINVAL;
-                       }
-                       cur = tmp;
-                       if (end <= start) {
-                               pr_warning("crashkernel: end <= start\n");
-                               return -EINVAL;
-                       }
-               }
-
-               if (*cur != ':') {
-                       pr_warning("crashkernel: ':' expected\n");
-                       return -EINVAL;
-               }
-               cur++;
-
-               size = memparse(cur, &tmp);
-               if (cur == tmp) {
-                       pr_warning("Memory value expected\n");
-                       return -EINVAL;
-               }
-               cur = tmp;
-               if (size >= system_ram) {
-                       pr_warning("crashkernel: invalid size\n");
-                       return -EINVAL;
-               }
-
-               /* match ? */
-               if (system_ram >= start && system_ram < end) {
-                       *crash_size = size;
-                       break;
-               }
-       } while (*cur++ == ',');
-
-       if (*crash_size > 0) {
-               while (*cur && *cur != ' ' && *cur != '@')
-                       cur++;
-               if (*cur == '@') {
-                       cur++;
-                       *crash_base = memparse(cur, &tmp);
-                       if (cur == tmp) {
-                               pr_warning("Memory value expected "
-                                               "after '@'\n");
-                               return -EINVAL;
-                       }
-               }
-       }
-
-       return 0;
-}
-
-/*
- * That function parses "simple" (old) crashkernel command lines like
- *
- *     crashkernel=size[@offset]
- *
- * It returns 0 on success and -EINVAL on failure.
- */
-static int __init parse_crashkernel_simple(char                *cmdline,
-                                          unsigned long long   *crash_size,
-                                          unsigned long long   *crash_base)
-{
-       char *cur = cmdline;
-
-       *crash_size = memparse(cmdline, &cur);
-       if (cmdline == cur) {
-               pr_warning("crashkernel: memory value expected\n");
-               return -EINVAL;
-       }
-
-       if (*cur == '@')
-               *crash_base = memparse(cur+1, &cur);
-       else if (*cur != ' ' && *cur != '\0') {
-               pr_warning("crashkernel: unrecognized char\n");
-               return -EINVAL;
-       }
-
-       return 0;
-}
-
-#define SUFFIX_HIGH 0
-#define SUFFIX_LOW  1
-#define SUFFIX_NULL 2
-static __initdata char *suffix_tbl[] = {
-       [SUFFIX_HIGH] = ",high",
-       [SUFFIX_LOW]  = ",low",
-       [SUFFIX_NULL] = NULL,
-};
-
-/*
- * That function parses "suffix"  crashkernel command lines like
- *
- *     crashkernel=size,[high|low]
- *
- * It returns 0 on success and -EINVAL on failure.
- */
-static int __init parse_crashkernel_suffix(char *cmdline,
-                                          unsigned long long   *crash_size,
-                                          unsigned long long   *crash_base,
-                                          const char *suffix)
-{
-       char *cur = cmdline;
-
-       *crash_size = memparse(cmdline, &cur);
-       if (cmdline == cur) {
-               pr_warn("crashkernel: memory value expected\n");
-               return -EINVAL;
-       }
-
-       /* check with suffix */
-       if (strncmp(cur, suffix, strlen(suffix))) {
-               pr_warn("crashkernel: unrecognized char\n");
-               return -EINVAL;
-       }
-       cur += strlen(suffix);
-       if (*cur != ' ' && *cur != '\0') {
-               pr_warn("crashkernel: unrecognized char\n");
-               return -EINVAL;
-       }
-
-       return 0;
-}
-
-static __init char *get_last_crashkernel(char *cmdline,
-                            const char *name,
-                            const char *suffix)
-{
-       char *p = cmdline, *ck_cmdline = NULL;
-
-       /* find crashkernel and use the last one if there are more */
-       p = strstr(p, name);
-       while (p) {
-               char *end_p = strchr(p, ' ');
-               char *q;
-
-               if (!end_p)
-                       end_p = p + strlen(p);
-
-               if (!suffix) {
-                       int i;
-
-                       /* skip the one with any known suffix */
-                       for (i = 0; suffix_tbl[i]; i++) {
-                               q = end_p - strlen(suffix_tbl[i]);
-                               if (!strncmp(q, suffix_tbl[i],
-                                            strlen(suffix_tbl[i])))
-                                       goto next;
-                       }
-                       ck_cmdline = p;
-               } else {
-                       q = end_p - strlen(suffix);
-                       if (!strncmp(q, suffix, strlen(suffix)))
-                               ck_cmdline = p;
-               }
-next:
-               p = strstr(p+1, name);
-       }
-
-       if (!ck_cmdline)
-               return NULL;
-
-       return ck_cmdline;
-}
-
-static int __init __parse_crashkernel(char *cmdline,
-                            unsigned long long system_ram,
-                            unsigned long long *crash_size,
-                            unsigned long long *crash_base,
-                            const char *name,
-                            const char *suffix)
-{
-       char    *first_colon, *first_space;
-       char    *ck_cmdline;
-
-       BUG_ON(!crash_size || !crash_base);
-       *crash_size = 0;
-       *crash_base = 0;
-
-       ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
-
-       if (!ck_cmdline)
-               return -EINVAL;
-
-       ck_cmdline += strlen(name);
-
-       if (suffix)
-               return parse_crashkernel_suffix(ck_cmdline, crash_size,
-                               crash_base, suffix);
-       /*
-        * if the commandline contains a ':', then that's the extended
-        * syntax -- if not, it must be the classic syntax
-        */
-       first_colon = strchr(ck_cmdline, ':');
-       first_space = strchr(ck_cmdline, ' ');
-       if (first_colon && (!first_space || first_colon < first_space))
-               return parse_crashkernel_mem(ck_cmdline, system_ram,
-                               crash_size, crash_base);
-       else
-               return parse_crashkernel_simple(ck_cmdline, crash_size,
-                               crash_base);
-
-       return 0;
-}
-
-/*
- * That function is the entry point for command line parsing and should be
- * called from the arch-specific code.
- */
-int __init parse_crashkernel(char *cmdline,
-                            unsigned long long system_ram,
-                            unsigned long long *crash_size,
-                            unsigned long long *crash_base)
-{
-       return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
-                                       "crashkernel=", NULL);
-}
-
-int __init parse_crashkernel_high(char *cmdline,
-                            unsigned long long system_ram,
-                            unsigned long long *crash_size,
-                            unsigned long long *crash_base)
-{
-       return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
-                               "crashkernel=", suffix_tbl[SUFFIX_HIGH]);
-}
-
-int __init parse_crashkernel_low(char *cmdline,
-                            unsigned long long system_ram,
-                            unsigned long long *crash_size,
-                            unsigned long long *crash_base)
-{
-       return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
-                               "crashkernel=", suffix_tbl[SUFFIX_LOW]);
-}
-
-static void update_vmcoreinfo_note(void)
-{
-       u32 *buf = vmcoreinfo_note;
-
-       if (!vmcoreinfo_size)
-               return;
-       buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
-                             vmcoreinfo_size);
-       final_note(buf);
-}
-
-void crash_save_vmcoreinfo(void)
-{
-       vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
-       update_vmcoreinfo_note();
-}
-
-void vmcoreinfo_append_str(const char *fmt, ...)
-{
-       va_list args;
-       char buf[0x50];
-       size_t r;
-
-       va_start(args, fmt);
-       r = vsnprintf(buf, sizeof(buf), fmt, args);
-       va_end(args);
-
-       r = min(r, vmcoreinfo_max_size - vmcoreinfo_size);
-
-       memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
-
-       vmcoreinfo_size += r;
-}
-
-/*
- * provide an empty default implementation here -- architecture
- * code may override this
- */
-void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void)
-{}
-
-unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void)
-{
-       return __pa((unsigned long)(char *)&vmcoreinfo_note);
-}
-
-static int __init crash_save_vmcoreinfo_init(void)
-{
-       VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
-       VMCOREINFO_PAGESIZE(PAGE_SIZE);
-
-       VMCOREINFO_SYMBOL(init_uts_ns);
-       VMCOREINFO_SYMBOL(node_online_map);
-#ifdef CONFIG_MMU
-       VMCOREINFO_SYMBOL(swapper_pg_dir);
-#endif
-       VMCOREINFO_SYMBOL(_stext);
-       VMCOREINFO_SYMBOL(vmap_area_list);
-
-#ifndef CONFIG_NEED_MULTIPLE_NODES
-       VMCOREINFO_SYMBOL(mem_map);
-       VMCOREINFO_SYMBOL(contig_page_data);
-#endif
-#ifdef CONFIG_SPARSEMEM
-       VMCOREINFO_SYMBOL(mem_section);
-       VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
-       VMCOREINFO_STRUCT_SIZE(mem_section);
-       VMCOREINFO_OFFSET(mem_section, section_mem_map);
-#endif
-       VMCOREINFO_STRUCT_SIZE(page);
-       VMCOREINFO_STRUCT_SIZE(pglist_data);
-       VMCOREINFO_STRUCT_SIZE(zone);
-       VMCOREINFO_STRUCT_SIZE(free_area);
-       VMCOREINFO_STRUCT_SIZE(list_head);
-       VMCOREINFO_SIZE(nodemask_t);
-       VMCOREINFO_OFFSET(page, flags);
-       VMCOREINFO_OFFSET(page, _count);
-       VMCOREINFO_OFFSET(page, mapping);
-       VMCOREINFO_OFFSET(page, lru);
-       VMCOREINFO_OFFSET(page, _mapcount);
-       VMCOREINFO_OFFSET(page, private);
-       VMCOREINFO_OFFSET(pglist_data, node_zones);
-       VMCOREINFO_OFFSET(pglist_data, nr_zones);
-#ifdef CONFIG_FLAT_NODE_MEM_MAP
-       VMCOREINFO_OFFSET(pglist_data, node_mem_map);
-#endif
-       VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
-       VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
-       VMCOREINFO_OFFSET(pglist_data, node_id);
-       VMCOREINFO_OFFSET(zone, free_area);
-       VMCOREINFO_OFFSET(zone, vm_stat);
-       VMCOREINFO_OFFSET(zone, spanned_pages);
-       VMCOREINFO_OFFSET(free_area, free_list);
-       VMCOREINFO_OFFSET(list_head, next);
-       VMCOREINFO_OFFSET(list_head, prev);
-       VMCOREINFO_OFFSET(vmap_area, va_start);
-       VMCOREINFO_OFFSET(vmap_area, list);
-       VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
-       log_buf_kexec_setup();
-       VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
-       VMCOREINFO_NUMBER(NR_FREE_PAGES);
-       VMCOREINFO_NUMBER(PG_lru);
-       VMCOREINFO_NUMBER(PG_private);
-       VMCOREINFO_NUMBER(PG_swapcache);
-       VMCOREINFO_NUMBER(PG_slab);
-#ifdef CONFIG_MEMORY_FAILURE
-       VMCOREINFO_NUMBER(PG_hwpoison);
-#endif
-       VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
-
-       arch_crash_save_vmcoreinfo();
-       update_vmcoreinfo_note();
-
-       return 0;
-}
-
-module_init(crash_save_vmcoreinfo_init)
-
-/*
- * Move into place and start executing a preloaded standalone
- * executable.  If nothing was preloaded return an error.
- */
-int kernel_kexec(void)
-{
-       int error = 0;
-
-       if (!mutex_trylock(&kexec_mutex))
-               return -EBUSY;
-       if (!kexec_image) {
-               error = -EINVAL;
-               goto Unlock;
-       }
-
-#ifdef CONFIG_KEXEC_JUMP
-       if (kexec_image->preserve_context) {
-               lock_system_sleep();
-               pm_prepare_console();
-               error = freeze_processes();
-               if (error) {
-                       error = -EBUSY;
-                       goto Restore_console;
-               }
-               suspend_console();
-               error = dpm_suspend_start(PMSG_FREEZE);
-               if (error)
-                       goto Resume_console;
-               /* At this point, dpm_suspend_start() has been called,
-                * but *not* dpm_suspend_end(). We *must* call
-                * dpm_suspend_end() now.  Otherwise, drivers for
-                * some devices (e.g. interrupt controllers) become
-                * desynchronized with the actual state of the
-                * hardware at resume time, and evil weirdness ensues.
-                */
-               error = dpm_suspend_end(PMSG_FREEZE);
-               if (error)
-                       goto Resume_devices;
-               error = disable_nonboot_cpus();
-               if (error)
-                       goto Enable_cpus;
-               local_irq_disable();
-               error = syscore_suspend();
-               if (error)
-                       goto Enable_irqs;
-       } else
-#endif
-       {
-               kernel_restart_prepare(NULL);
-               printk(KERN_EMERG "Starting new kernel\n");
-               machine_shutdown();
-       }
-
-       machine_kexec(kexec_image);
-
-#ifdef CONFIG_KEXEC_JUMP
-       if (kexec_image->preserve_context) {
-               syscore_resume();
- Enable_irqs:
-               local_irq_enable();
- Enable_cpus:
-               enable_nonboot_cpus();
-               dpm_resume_start(PMSG_RESTORE);
- Resume_devices:
-               dpm_resume_end(PMSG_RESTORE);
- Resume_console:
-               resume_console();
-               thaw_processes();
- Restore_console:
-               pm_restore_console();
-               unlock_system_sleep();
-       }
-#endif
-
- Unlock:
-       mutex_unlock(&kexec_mutex);
-       return error;
-}