fixed adding file problem
[c11concurrency-benchmarks.git] / gdax-orderbook-hpp / demo / dependencies / libcds-2.3.2 / cds / intrusive / impl / skip_list.h
diff --git a/gdax-orderbook-hpp/demo/dependencies/libcds-2.3.2/cds/intrusive/impl/skip_list.h b/gdax-orderbook-hpp/demo/dependencies/libcds-2.3.2/cds/intrusive/impl/skip_list.h
new file mode 100644 (file)
index 0000000..2264d9e
--- /dev/null
@@ -0,0 +1,1791 @@
+/*
+    This file is a part of libcds - Concurrent Data Structures library
+
+    (C) Copyright Maxim Khizhinsky (libcds.dev@gmail.com) 2006-2017
+
+    Source code repo: http://github.com/khizmax/libcds/
+    Download: http://sourceforge.net/projects/libcds/files/
+
+    Redistribution and use in source and binary forms, with or without
+    modification, are permitted provided that the following conditions are met:
+
+    * Redistributions of source code must retain the above copyright notice, this
+      list of conditions and the following disclaimer.
+
+    * Redistributions in binary form must reproduce the above copyright notice,
+      this list of conditions and the following disclaimer in the documentation
+      and/or other materials provided with the distribution.
+
+    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+    AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+    IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+    DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+    FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+    DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+    SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+    CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+    OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+
+#ifndef CDSLIB_INTRUSIVE_IMPL_SKIP_LIST_H
+#define CDSLIB_INTRUSIVE_IMPL_SKIP_LIST_H
+
+#include <type_traits>
+#include <memory>
+#include <functional>   // ref
+#include <cds/intrusive/details/skip_list_base.h>
+#include <cds/opt/compare.h>
+#include <cds/details/binary_functor_wrapper.h>
+
+namespace cds { namespace intrusive {
+
+    //@cond
+    namespace skip_list { namespace details {
+
+        template <class GC, typename NodeTraits, typename BackOff, bool IsConst>
+        class iterator {
+        public:
+            typedef GC                                  gc;
+            typedef NodeTraits                          node_traits;
+            typedef BackOff                             back_off;
+            typedef typename node_traits::node_type     node_type;
+            typedef typename node_traits::value_type    value_type;
+            static constexpr bool const c_isConst = IsConst;
+
+            typedef typename std::conditional< c_isConst, value_type const&, value_type&>::type   value_ref;
+
+        protected:
+            typedef typename node_type::marked_ptr          marked_ptr;
+            typedef typename node_type::atomic_marked_ptr   atomic_marked_ptr;
+
+            typename gc::Guard      m_guard;
+            node_type *             m_pNode;
+
+        protected:
+            static value_type * gc_protect( marked_ptr p )
+            {
+                return node_traits::to_value_ptr( p.ptr());
+            }
+
+            void next()
+            {
+                typename gc::Guard g;
+                g.copy( m_guard );
+                back_off bkoff;
+
+                for (;;) {
+                    if ( m_pNode->next( m_pNode->height() - 1 ).load( atomics::memory_order_acquire ).bits()) {
+                        // Current node is marked as deleted. So, its next pointer can point to anything
+                        // In this case we interrupt our iteration and returns end() iterator.
+                        *this = iterator();
+                        return;
+                    }
+
+                    marked_ptr p = m_guard.protect( (*m_pNode)[0], gc_protect );
+                    node_type * pp = p.ptr();
+                    if ( p.bits()) {
+                        // p is marked as deleted. Spin waiting for physical removal
+                        bkoff();
+                        continue;
+                    }
+                    else if ( pp && pp->next( pp->height() - 1 ).load( atomics::memory_order_relaxed ).bits()) {
+                        // p is marked as deleted. Spin waiting for physical removal
+                        bkoff();
+                        continue;
+                    }
+
+                    m_pNode = pp;
+                    break;
+                }
+            }
+
+        public: // for internal use only!!!
+            iterator( node_type& refHead )
+                : m_pNode( nullptr )
+            {
+                back_off bkoff;
+
+                for (;;) {
+                    marked_ptr p = m_guard.protect( refHead[0], gc_protect );
+                    if ( !p.ptr()) {
+                        // empty skip-list
+                        m_guard.clear();
+                        break;
+                    }
+
+                    node_type * pp = p.ptr();
+                    // Logically deleted node is marked from highest level
+                    if ( !pp->next( pp->height() - 1 ).load( atomics::memory_order_acquire ).bits()) {
+                        m_pNode = pp;
+                        break;
+                    }
+
+                    bkoff();
+                }
+            }
+
+        public:
+            iterator()
+                : m_pNode( nullptr )
+            {}
+
+            iterator( iterator const& s)
+                : m_pNode( s.m_pNode )
+            {
+                m_guard.assign( node_traits::to_value_ptr(m_pNode));
+            }
+
+            value_type * operator ->() const
+            {
+                assert( m_pNode != nullptr );
+                assert( node_traits::to_value_ptr( m_pNode ) != nullptr );
+
+                return node_traits::to_value_ptr( m_pNode );
+            }
+
+            value_ref operator *() const
+            {
+                assert( m_pNode != nullptr );
+                assert( node_traits::to_value_ptr( m_pNode ) != nullptr );
+
+                return *node_traits::to_value_ptr( m_pNode );
+            }
+
+            /// Pre-increment
+            iterator& operator ++()
+            {
+                next();
+                return *this;
+            }
+
+            iterator& operator =(const iterator& src)
+            {
+                m_pNode = src.m_pNode;
+                m_guard.copy( src.m_guard );
+                return *this;
+            }
+
+            template <typename Bkoff, bool C>
+            bool operator ==(iterator<gc, node_traits, Bkoff, C> const& i ) const
+            {
+                return m_pNode == i.m_pNode;
+            }
+            template <typename Bkoff, bool C>
+            bool operator !=(iterator<gc, node_traits, Bkoff, C> const& i ) const
+            {
+                return !( *this == i );
+            }
+        };
+    }}  // namespace skip_list::details
+    //@endcond
+
+    /// Lock-free skip-list set
+    /** @ingroup cds_intrusive_map
+        @anchor cds_intrusive_SkipListSet_hp
+
+        The implementation of well-known probabilistic data structure called skip-list
+        invented by W.Pugh in his papers:
+            - [1989] W.Pugh Skip Lists: A Probabilistic Alternative to Balanced Trees
+            - [1990] W.Pugh A Skip List Cookbook
+
+        A skip-list is a probabilistic data structure that provides expected logarithmic
+        time search without the need of rebalance. The skip-list is a collection of sorted
+        linked list. Nodes are ordered by key. Each node is linked into a subset of the lists.
+        Each list has a level, ranging from 0 to 32. The bottom-level list contains
+        all the nodes, and each higher-level list is a sublist of the lower-level lists.
+        Each node is created with a random top level (with a random height), and belongs
+        to all lists up to that level. The probability that a node has the height 1 is 1/2.
+        The probability that a node has the height N is 1/2 ** N (more precisely,
+        the distribution depends on an random generator provided, but our generators
+        have this property).
+
+        The lock-free variant of skip-list is implemented according to book
+            - [2008] M.Herlihy, N.Shavit "The Art of Multiprocessor Programming",
+                chapter 14.4 "A Lock-Free Concurrent Skiplist".
+
+        <b>Template arguments</b>:
+            - \p GC - Garbage collector used. Note the \p GC must be the same as the GC used for item type \p T, see \p skip_list::node.
+            - \p T - type to be stored in the list. The type must be based on \p skip_list::node (for \p skip_list::base_hook)
+                or it must have a member of type \p skip_list::node (for \p skip_list::member_hook).
+            - \p Traits - skip-list traits, default is \p skip_list::traits.
+                It is possible to declare option-based list with \p cds::intrusive::skip_list::make_traits metafunction istead of \p Traits
+                template argument.
+
+        @warning The skip-list requires up to 67 hazard pointers that may be critical for some GCs for which
+            the guard count is limited (like as \p gc::HP). Those GCs should be explicitly initialized with
+            hazard pointer enough: \code cds::gc::HP myhp( 67 ) \endcode. Otherwise an run-time exception may be raised
+            when you try to create skip-list object.
+
+        There are several specializations of \p %SkipListSet for each \p GC. You should include:
+        - <tt><cds/intrusive/skip_list_hp.h></tt> for \p gc::HP garbage collector
+        - <tt><cds/intrusive/skip_list_dhp.h></tt> for \p gc::DHP garbage collector
+        - <tt><cds/intrusive/skip_list_nogc.h></tt> for \ref cds_intrusive_SkipListSet_nogc for append-only set
+        - <tt><cds/intrusive/skip_list_rcu.h></tt> for \ref cds_intrusive_SkipListSet_rcu "RCU type"
+
+        <b>Iterators</b>
+
+        The class supports a forward iterator (\ref iterator and \ref const_iterator).
+        The iteration is ordered.
+        The iterator object is thread-safe: the element pointed by the iterator object is guarded,
+        so, the element cannot be reclaimed while the iterator object is alive.
+        However, passing an iterator object between threads is dangerous.
+
+        @warning Due to concurrent nature of skip-list set it is not guarantee that you can iterate
+        all elements in the set: any concurrent deletion can exclude the element
+        pointed by the iterator from the set, and your iteration can be terminated
+        before end of the set. Therefore, such iteration is more suitable for debugging purpose only
+
+        Remember, each iterator object requires 2 additional hazard pointers, that may be
+        a limited resource for \p GC like as \p gc::HP (for \p gc::DHP the count of
+        guards is unlimited).
+
+        The iterator class supports the following minimalistic interface:
+        \code
+        struct iterator {
+            // Default ctor
+            iterator();
+
+            // Copy ctor
+            iterator( iterator const& s);
+
+            value_type * operator ->() const;
+            value_type& operator *() const;
+
+            // Pre-increment
+            iterator& operator ++();
+
+            // Copy assignment
+            iterator& operator = (const iterator& src);
+
+            bool operator ==(iterator const& i ) const;
+            bool operator !=(iterator const& i ) const;
+        };
+        \endcode
+        Note, the iterator object returned by \p end(), \p cend() member functions points to \p nullptr and should not be dereferenced.
+
+        <b>How to use</b>
+
+        You should incorporate \p skip_list::node into your struct \p T and provide
+        appropriate \p skip_list::traits::hook in your \p Traits template parameters. Usually, for \p Traits you
+        define a struct based on \p skip_list::traits.
+
+        Example for \p gc::HP and base hook:
+        \code
+        // Include GC-related skip-list specialization
+        #include <cds/intrusive/skip_list_hp.h>
+
+        // Data stored in skip list
+        struct my_data: public cds::intrusive::skip_list::node< cds::gc::HP >
+        {
+            // key field
+            std::string     strKey;
+
+            // other data
+            // ...
+        };
+
+        // my_data compare functor
+        struct my_data_cmp {
+            int operator()( const my_data& d1, const my_data& d2 )
+            {
+                return d1.strKey.compare( d2.strKey );
+            }
+
+            int operator()( const my_data& d, const std::string& s )
+            {
+                return d.strKey.compare(s);
+            }
+
+            int operator()( const std::string& s, const my_data& d )
+            {
+                return s.compare( d.strKey );
+            }
+        };
+
+
+        // Declare your traits
+        struct my_traits: public cds::intrusive::skip_list::traits
+        {
+            typedef cds::intrusive::skip_list::base_hook< cds::opt::gc< cds::gc::HP > >   hook;
+            typedef my_data_cmp compare;
+        };
+
+        // Declare skip-list set type
+        typedef cds::intrusive::SkipListSet< cds::gc::HP, my_data, my_traits >     traits_based_set;
+        \endcode
+
+        Equivalent option-based code:
+        \code
+        // GC-related specialization
+        #include <cds/intrusive/skip_list_hp.h>
+
+        struct my_data {
+            // see above
+        };
+        struct compare {
+            // see above
+        };
+
+        // Declare option-based skip-list set
+        typedef cds::intrusive::SkipListSet< cds::gc::HP
+            ,my_data
+            , typename cds::intrusive::skip_list::make_traits<
+                cds::intrusive::opt::hook< cds::intrusive::skip_list::base_hook< cds::opt::gc< cds::gc::HP > > >
+                ,cds::intrusive::opt::compare< my_data_cmp >
+            >::type
+        > option_based_set;
+
+        \endcode
+    */
+    template <
+        class GC
+       ,typename T
+#ifdef CDS_DOXYGEN_INVOKED
+       ,typename Traits = skip_list::traits
+#else
+       ,typename Traits
+#endif
+    >
+    class SkipListSet
+    {
+    public:
+        typedef GC      gc;         ///< Garbage collector
+        typedef T       value_type; ///< type of value stored in the skip-list
+        typedef Traits  traits;     ///< Traits template parameter
+
+        typedef typename traits::hook    hook;      ///< hook type
+        typedef typename hook::node_type node_type; ///< node type
+
+#   ifdef CDS_DOXYGEN_INVOKED
+        typedef implementation_defined key_comparator  ;    ///< key comparison functor based on opt::compare and opt::less option setter.
+#   else
+        typedef typename opt::details::make_comparator< value_type, traits >::type key_comparator;
+#   endif
+
+        typedef typename traits::disposer  disposer;   ///< item disposer
+        typedef typename get_node_traits< value_type, node_type, hook>::type node_traits; ///< node traits
+
+        typedef typename traits::item_counter  item_counter;   ///< Item counting policy
+        typedef typename traits::memory_model  memory_model;   ///< Memory ordering, see \p cds::opt::memory_model option
+        typedef typename traits::random_level_generator random_level_generator; ///< random level generator
+        typedef typename traits::allocator     allocator_type;   ///< allocator for maintaining array of next pointers of the node
+        typedef typename traits::back_off      back_off;   ///< Back-off strategy
+        typedef typename traits::stat          stat;       ///< internal statistics type
+
+    public:
+        typedef typename gc::template guarded_ptr< value_type > guarded_ptr; ///< Guarded pointer
+
+        /// Max node height. The actual node height should be in range <tt>[0 .. c_nMaxHeight)</tt>
+        /**
+            The max height is specified by \ref skip_list::random_level_generator "random level generator" constant \p m_nUpperBound
+            but it should be no more than 32 (\p skip_list::c_nHeightLimit).
+        */
+        static unsigned int const c_nMaxHeight = std::conditional<
+            (random_level_generator::c_nUpperBound <= skip_list::c_nHeightLimit),
+            std::integral_constant< unsigned int, random_level_generator::c_nUpperBound >,
+            std::integral_constant< unsigned int, skip_list::c_nHeightLimit >
+        >::type::value;
+
+        //@cond
+        static unsigned int const c_nMinHeight = 5;
+        //@endcond
+
+        // c_nMaxHeight * 2 - pPred/pSucc guards
+        // + 1 - for erase, unlink
+        // + 1 - for clear
+        // + 1 - for help_remove()
+        static size_t const c_nHazardPtrCount = c_nMaxHeight * 2 + 3; ///< Count of hazard pointer required for the skip-list
+
+    protected:
+        typedef typename node_type::atomic_marked_ptr   atomic_node_ptr;   ///< Atomic marked node pointer
+        typedef typename node_type::marked_ptr          marked_node_ptr;   ///< Node marked pointer
+
+    protected:
+        //@cond
+        typedef skip_list::details::intrusive_node_builder< node_type, atomic_node_ptr, allocator_type > intrusive_node_builder;
+
+        typedef typename std::conditional<
+            std::is_same< typename traits::internal_node_builder, cds::opt::none >::value
+            ,intrusive_node_builder
+            ,typename traits::internal_node_builder
+        >::type node_builder;
+
+        typedef std::unique_ptr< node_type, typename node_builder::node_disposer > scoped_node_ptr;
+
+        struct position {
+            node_type *   pPrev[ c_nMaxHeight ];
+            node_type *   pSucc[ c_nMaxHeight ];
+
+            typename gc::template GuardArray< c_nMaxHeight * 2 > guards;   ///< Guards array for pPrev/pSucc
+            node_type *   pCur;   // guarded by one of guards
+        };
+        //@endcond
+
+    public:
+        /// Default constructor
+        /**
+            The constructor checks whether the count of guards is enough
+            for skip-list and may raise an exception if not.
+        */
+        SkipListSet()
+            : m_Head( c_nMaxHeight )
+            , m_nHeight( c_nMinHeight )
+        {
+            static_assert( (std::is_same< gc, typename node_type::gc >::value), "GC and node_type::gc must be the same type" );
+
+            gc::check_available_guards( c_nHazardPtrCount );
+
+            // Barrier for head node
+            atomics::atomic_thread_fence( memory_model::memory_order_release );
+        }
+
+        /// Clears and destructs the skip-list
+        ~SkipListSet()
+        {
+            destroy();
+        }
+
+    public:
+    ///@name Forward iterators (only for debugging purpose)
+    //@{
+        /// Iterator type
+        /**
+            The forward iterator has some features:
+            - it has no post-increment operator
+            - to protect the value, the iterator contains a GC-specific guard + another guard is required locally for increment operator.
+              For some GC (like as \p gc::HP), a guard is a limited resource per thread, so an exception (or assertion) "no free guard"
+              may be thrown if the limit of guard count per thread is exceeded.
+            - The iterator cannot be moved across thread boundary because it contains thread-private GC's guard.
+            - Iterator ensures thread-safety even if you delete the item the iterator points to. However, in case of concurrent
+              deleting operations there is no guarantee that you iterate all item in the list.
+              Moreover, a crash is possible when you try to iterate the next element that has been deleted by concurrent thread.
+
+            @warning Use this iterator on the concurrent container for debugging purpose only.
+
+            The iterator interface:
+            \code
+            class iterator {
+            public:
+                // Default constructor
+                iterator();
+
+                // Copy construtor
+                iterator( iterator const& src );
+
+                // Dereference operator
+                value_type * operator ->() const;
+
+                // Dereference operator
+                value_type& operator *() const;
+
+                // Preincrement operator
+                iterator& operator ++();
+
+                // Assignment operator
+                iterator& operator = (iterator const& src);
+
+                // Equality operators
+                bool operator ==(iterator const& i ) const;
+                bool operator !=(iterator const& i ) const;
+            };
+            \endcode
+        */
+        typedef skip_list::details::iterator< gc, node_traits, back_off, false >  iterator;
+
+        /// Const iterator type
+        typedef skip_list::details::iterator< gc, node_traits, back_off, true >   const_iterator;
+
+        /// Returns a forward iterator addressing the first element in a set
+        iterator begin()
+        {
+            return iterator( *m_Head.head());
+        }
+
+        /// Returns a forward const iterator addressing the first element in a set
+        const_iterator begin() const
+        {
+            return const_iterator( *m_Head.head());
+        }
+        /// Returns a forward const iterator addressing the first element in a set
+        const_iterator cbegin() const
+        {
+            return const_iterator( *m_Head.head());
+        }
+
+        /// Returns a forward iterator that addresses the location succeeding the last element in a set.
+        iterator end()
+        {
+            return iterator();
+        }
+
+        /// Returns a forward const iterator that addresses the location succeeding the last element in a set.
+        const_iterator end() const
+        {
+            return const_iterator();
+        }
+        /// Returns a forward const iterator that addresses the location succeeding the last element in a set.
+        const_iterator cend() const
+        {
+            return const_iterator();
+        }
+    //@}
+
+    public:
+        /// Inserts new node
+        /**
+            The function inserts \p val in the set if it does not contain
+            an item with key equal to \p val.
+
+            Returns \p true if \p val is placed into the set, \p false otherwise.
+        */
+        bool insert( value_type& val )
+        {
+            return insert( val, []( value_type& ) {} );
+        }
+
+        /// Inserts new node
+        /**
+            This function is intended for derived non-intrusive containers.
+
+            The function allows to split creating of new item into two part:
+            - create item with key only
+            - insert new item into the set
+            - if inserting is success, calls  \p f functor to initialize value-field of \p val.
+
+            The functor signature is:
+            \code
+                void func( value_type& val );
+            \endcode
+            where \p val is the item inserted. User-defined functor \p f should guarantee that during changing
+            \p val no any other changes could be made on this set's item by concurrent threads.
+            The user-defined functor is called only if the inserting is success.
+        */
+        template <typename Func>
+        bool insert( value_type& val, Func f )
+        {
+            typename gc::Guard gNew;
+            gNew.assign( &val );
+
+            node_type * pNode = node_traits::to_node_ptr( val );
+            scoped_node_ptr scp( pNode );
+            unsigned int nHeight = pNode->height();
+            bool bTowerOk = pNode->has_tower(); // nHeight > 1 && pNode->get_tower() != nullptr;
+            bool bTowerMade = false;
+
+            position pos;
+            while ( true )
+            {
+                if ( find_position( val, pos, key_comparator(), true )) {
+                    // scoped_node_ptr deletes the node tower if we create it
+                    if ( !bTowerMade )
+                        scp.release();
+
+                    m_Stat.onInsertFailed();
+                    return false;
+                }
+
+                if ( !bTowerOk ) {
+                    build_node( pNode );
+                    nHeight = pNode->height();
+                    bTowerMade = pNode->has_tower();
+                    bTowerOk = true;
+                }
+
+                if ( !insert_at_position( val, pNode, pos, f )) {
+                    m_Stat.onInsertRetry();
+                    continue;
+                }
+
+                increase_height( nHeight );
+                ++m_ItemCounter;
+                m_Stat.onAddNode( nHeight );
+                m_Stat.onInsertSuccess();
+                scp.release();
+                return true;
+            }
+        }
+
+        /// Updates the node
+        /**
+            The operation performs inserting or changing data with lock-free manner.
+
+            If the item \p val is not found in the set, then \p val is inserted into the set
+            iff \p bInsert is \p true.
+            Otherwise, the functor \p func is called with item found.
+            The functor \p func signature is:
+            \code
+                void func( bool bNew, value_type& item, value_type& val );
+            \endcode
+            with arguments:
+            - \p bNew - \p true if the item has been inserted, \p false otherwise
+            - \p item - item of the set
+            - \p val - argument \p val passed into the \p %update() function
+            If new item has been inserted (i.e. \p bNew is \p true) then \p item and \p val arguments
+            refer to the same thing.
+
+            Returns std::pair<bool, bool> where \p first is \p true if operation is successful,
+            i.e. the node has been inserted or updated,
+            \p second is \p true if new item has been added or \p false if the item with \p key
+            already exists.
+
+            @warning See \ref cds_intrusive_item_creating "insert item troubleshooting"
+        */
+        template <typename Func>
+        std::pair<bool, bool> update( value_type& val, Func func, bool bInsert = true )
+        {
+            typename gc::Guard gNew;
+            gNew.assign( &val );
+
+            node_type * pNode = node_traits::to_node_ptr( val );
+            scoped_node_ptr scp( pNode );
+            unsigned int nHeight = pNode->height();
+            bool bTowerOk = pNode->has_tower();
+            bool bTowerMade = false;
+
+            position pos;
+            while ( true )
+            {
+                bool bFound = find_position( val, pos, key_comparator(), true );
+                if ( bFound ) {
+                    // scoped_node_ptr deletes the node tower if we create it before
+                    if ( !bTowerMade )
+                        scp.release();
+
+                    func( false, *node_traits::to_value_ptr(pos.pCur), val );
+                    m_Stat.onUpdateExist();
+                    return std::make_pair( true, false );
+                }
+
+                if ( !bInsert ) {
+                    scp.release();
+                    return std::make_pair( false, false );
+                }
+
+                if ( !bTowerOk ) {
+                    build_node( pNode );
+                    nHeight = pNode->height();
+                    bTowerMade = pNode->has_tower();
+                    bTowerOk = true;
+                }
+
+                if ( !insert_at_position( val, pNode, pos, [&func]( value_type& item ) { func( true, item, item ); })) {
+                    m_Stat.onInsertRetry();
+                    continue;
+                }
+
+                increase_height( nHeight );
+                ++m_ItemCounter;
+                scp.release();
+                m_Stat.onAddNode( nHeight );
+                m_Stat.onUpdateNew();
+                return std::make_pair( true, true );
+            }
+        }
+        //@cond
+        template <typename Func>
+        CDS_DEPRECATED("ensure() is deprecated, use update()")
+        std::pair<bool, bool> ensure( value_type& val, Func func )
+        {
+            return update( val, func, true );
+        }
+        //@endcond
+
+        /// Unlinks the item \p val from the set
+        /**
+            The function searches the item \p val in the set and unlink it from the set
+            if it is found and is equal to \p val.
+
+            Difference between \p erase() and \p %unlink() functions: \p %erase() finds <i>a key</i>
+            and deletes the item found. \p %unlink() finds an item by key and deletes it
+            only if \p val is an item of that set, i.e. the pointer to item found
+            is equal to <tt> &val </tt>.
+
+            The \p disposer specified in \p Traits class template parameter is called
+            by garbage collector \p GC asynchronously.
+
+            The function returns \p true if success and \p false otherwise.
+        */
+        bool unlink( value_type& val )
+        {
+            position pos;
+
+            if ( !find_position( val, pos, key_comparator(), false )) {
+                m_Stat.onUnlinkFailed();
+                return false;
+            }
+
+            node_type * pDel = pos.pCur;
+            assert( key_comparator()( *node_traits::to_value_ptr( pDel ), val ) == 0 );
+
+            unsigned int nHeight = pDel->height();
+            typename gc::Guard gDel;
+            gDel.assign( node_traits::to_value_ptr(pDel));
+
+            if ( node_traits::to_value_ptr( pDel ) == &val && try_remove_at( pDel, pos, [](value_type const&) {} )) {
+                --m_ItemCounter;
+                m_Stat.onRemoveNode( nHeight );
+                m_Stat.onUnlinkSuccess();
+                return true;
+            }
+
+            m_Stat.onUnlinkFailed();
+            return false;
+        }
+
+        /// Extracts the item from the set with specified \p key
+        /** \anchor cds_intrusive_SkipListSet_hp_extract
+            The function searches an item with key equal to \p key in the set,
+            unlinks it from the set, and returns it as \p guarded_ptr object.
+            If \p key is not found the function returns an empty guarded pointer.
+
+            Note the compare functor should accept a parameter of type \p Q that can be not the same as \p value_type.
+
+            The \p disposer specified in \p Traits class template parameter is called automatically
+            by garbage collector \p GC specified in class' template parameters when returned \p guarded_ptr object
+            will be destroyed or released.
+            @note Each \p guarded_ptr object uses the GC's guard that can be limited resource.
+
+            Usage:
+            \code
+            typedef cds::intrusive::SkipListSet< cds::gc::HP, foo, my_traits >  skip_list;
+            skip_list theList;
+            // ...
+            {
+                skip_list::guarded_ptr gp(theList.extract( 5 ));
+                if ( gp ) {
+                    // Deal with gp
+                    // ...
+                }
+                // Destructor of gp releases internal HP guard
+            }
+            \endcode
+        */
+        template <typename Q>
+        guarded_ptr extract( Q const& key )
+        {
+            return extract_( key, key_comparator());
+        }
+
+        /// Extracts the item from the set with comparing functor \p pred
+        /**
+            The function is an analog of \ref cds_intrusive_SkipListSet_hp_extract "extract(Q const&)"
+            but \p pred predicate is used for key comparing.
+
+            \p Less functor has the semantics like \p std::less but should take arguments of type \ref value_type and \p Q
+            in any order.
+            \p pred must imply the same element order as the comparator used for building the set.
+        */
+        template <typename Q, typename Less>
+        guarded_ptr extract_with( Q const& key, Less pred )
+        {
+            CDS_UNUSED( pred );
+            return extract_( key, cds::opt::details::make_comparator_from_less<Less>());
+        }
+
+        /// Extracts an item with minimal key from the list
+        /**
+            The function searches an item with minimal key, unlinks it, and returns it as \p guarded_ptr object.
+            If the skip-list is empty the function returns an empty guarded pointer.
+
+            @note Due the concurrent nature of the list, the function extracts <i>nearly</i> minimum key.
+            It means that the function gets leftmost item and tries to unlink it.
+            During unlinking, a concurrent thread may insert an item with key less than leftmost item's key.
+            So, the function returns the item with minimum key at the moment of list traversing.
+
+            The \p disposer specified in \p Traits class template parameter is called
+            by garbage collector \p GC automatically when returned \p guarded_ptr object
+            will be destroyed or released.
+            @note Each \p guarded_ptr object uses the GC's guard that can be limited resource.
+
+            Usage:
+            \code
+            typedef cds::intrusive::SkipListSet< cds::gc::HP, foo, my_traits >  skip_list;
+            skip_list theList;
+            // ...
+            {
+                skip_list::guarded_ptr gp(theList.extract_min());
+                if ( gp ) {
+                    // Deal with gp
+                    //...
+                }
+                // Destructor of gp releases internal HP guard
+            }
+            \endcode
+        */
+        guarded_ptr extract_min()
+        {
+            return extract_min_();
+        }
+
+        /// Extracts an item with maximal key from the list
+        /**
+            The function searches an item with maximal key, unlinks it, and returns the pointer to item
+            as \p guarded_ptr object.
+            If the skip-list is empty the function returns an empty \p guarded_ptr.
+
+            @note Due the concurrent nature of the list, the function extracts <i>nearly</i> maximal key.
+            It means that the function gets rightmost item and tries to unlink it.
+            During unlinking, a concurrent thread may insert an item with key greater than rightmost item's key.
+            So, the function returns the item with maximum key at the moment of list traversing.
+
+            The \p disposer specified in \p Traits class template parameter is called
+            by garbage collector \p GC asynchronously when returned \ref guarded_ptr object
+            will be destroyed or released.
+            @note Each \p guarded_ptr object uses the GC's guard that can be limited resource.
+
+            Usage:
+            \code
+            typedef cds::intrusive::SkipListSet< cds::gc::HP, foo, my_traits > skip_list;
+            skip_list theList;
+            // ...
+            {
+                skip_list::guarded_ptr gp( theList.extract_max( gp ));
+                if ( gp ) {
+                    // Deal with gp
+                    //...
+                }
+                // Destructor of gp releases internal HP guard
+            }
+            \endcode
+        */
+        guarded_ptr extract_max()
+        {
+            return extract_max_();
+        }
+
+        /// Deletes the item from the set
+        /** \anchor cds_intrusive_SkipListSet_hp_erase
+            The function searches an item with key equal to \p key in the set,
+            unlinks it from the set, and returns \p true.
+            If the item with key equal to \p key is not found the function return \p false.
+
+            Note the compare functor should accept a parameter of type \p Q that can be not the same as \p value_type.
+        */
+        template <typename Q>
+        bool erase( Q const& key )
+        {
+            return erase_( key, key_comparator(), [](value_type const&) {} );
+        }
+
+        /// Deletes the item from the set with comparing functor \p pred
+        /**
+            The function is an analog of \ref cds_intrusive_SkipListSet_hp_erase "erase(Q const&)"
+            but \p pred predicate is used for key comparing.
+
+            \p Less functor has the semantics like \p std::less but should take arguments of type \ref value_type and \p Q
+            in any order.
+            \p pred must imply the same element order as the comparator used for building the set.
+        */
+        template <typename Q, typename Less>
+        bool erase_with( Q const& key, Less pred )
+        {
+            CDS_UNUSED( pred );
+            return erase_( key, cds::opt::details::make_comparator_from_less<Less>(), [](value_type const&) {} );
+        }
+
+        /// Deletes the item from the set
+        /** \anchor cds_intrusive_SkipListSet_hp_erase_func
+            The function searches an item with key equal to \p key in the set,
+            call \p f functor with item found, unlinks it from the set, and returns \p true.
+            The \ref disposer specified in \p Traits class template parameter is called
+            by garbage collector \p GC asynchronously.
+
+            The \p Func interface is
+            \code
+            struct functor {
+                void operator()( value_type const& item );
+            };
+            \endcode
+
+            If the item with key equal to \p key is not found the function return \p false.
+
+            Note the compare functor should accept a parameter of type \p Q that can be not the same as \p value_type.
+        */
+        template <typename Q, typename Func>
+        bool erase( Q const& key, Func f )
+        {
+            return erase_( key, key_comparator(), f );
+        }
+
+        /// Deletes the item from the set with comparing functor \p pred
+        /**
+            The function is an analog of \ref cds_intrusive_SkipListSet_hp_erase_func "erase(Q const&, Func)"
+            but \p pred predicate is used for key comparing.
+
+            \p Less functor has the semantics like \p std::less but should take arguments of type \ref value_type and \p Q
+            in any order.
+            \p pred must imply the same element order as the comparator used for building the set.
+        */
+        template <typename Q, typename Less, typename Func>
+        bool erase_with( Q const& key, Less pred, Func f )
+        {
+            CDS_UNUSED( pred );
+            return erase_( key, cds::opt::details::make_comparator_from_less<Less>(), f );
+        }
+
+        /// Finds \p key
+        /** \anchor cds_intrusive_SkipListSet_hp_find_func
+            The function searches the item with key equal to \p key and calls the functor \p f for item found.
+            The interface of \p Func functor is:
+            \code
+            struct functor {
+                void operator()( value_type& item, Q& key );
+            };
+            \endcode
+            where \p item is the item found, \p key is the <tt>find</tt> function argument.
+
+            The functor can change non-key fields of \p item. Note that the functor is only guarantee
+            that \p item cannot be disposed during functor is executing.
+            The functor does not serialize simultaneous access to the set \p item. If such access is
+            possible you must provide your own synchronization on item level to exclude unsafe item modifications.
+
+            Note the compare functor specified for class \p Traits template parameter
+            should accept a parameter of type \p Q that can be not the same as \p value_type.
+
+            The function returns \p true if \p key is found, \p false otherwise.
+        */
+        template <typename Q, typename Func>
+        bool find( Q& key, Func f )
+        {
+            return find_with_( key, key_comparator(), f );
+        }
+        //@cond
+        template <typename Q, typename Func>
+        bool find( Q const& key, Func f )
+        {
+            return find_with_( key, key_comparator(), f );
+        }
+        //@endcond
+
+        /// Finds the key \p key with \p pred predicate for comparing
+        /**
+            The function is an analog of \ref cds_intrusive_SkipListSet_hp_find_func "find(Q&, Func)"
+            but \p pred is used for key compare.
+
+            \p Less functor has the semantics like \p std::less but should take arguments of type \ref value_type and \p Q
+            in any order.
+            \p pred must imply the same element order as the comparator used for building the set.
+        */
+        template <typename Q, typename Less, typename Func>
+        bool find_with( Q& key, Less pred, Func f )
+        {
+            CDS_UNUSED( pred );
+            return find_with_( key, cds::opt::details::make_comparator_from_less<Less>(), f );
+        }
+        //@cond
+        template <typename Q, typename Less, typename Func>
+        bool find_with( Q const& key, Less pred, Func f )
+        {
+            CDS_UNUSED( pred );
+            return find_with_( key, cds::opt::details::make_comparator_from_less<Less>(), f );
+        }
+        //@endcond
+
+        /// Checks whether the set contains \p key
+        /**
+            The function searches the item with key equal to \p key
+            and returns \p true if it is found, and \p false otherwise.
+        */
+        template <typename Q>
+        bool contains( Q const& key )
+        {
+            return find_with_( key, key_comparator(), [](value_type& , Q const& ) {} );
+        }
+        //@cond
+        template <typename Q>
+        CDS_DEPRECATED("deprecated, use contains()")
+        bool find( Q const& key )
+        {
+            return contains( key );
+        }
+        //@endcond
+
+        /// Checks whether the set contains \p key using \p pred predicate for searching
+        /**
+            The function is similar to <tt>contains( key )</tt> but \p pred is used for key comparing.
+            \p Less functor has the interface like \p std::less.
+            \p Less must imply the same element order as the comparator used for building the set.
+        */
+        template <typename Q, typename Less>
+        bool contains( Q const& key, Less pred )
+        {
+            CDS_UNUSED( pred );
+            return find_with_( key, cds::opt::details::make_comparator_from_less<Less>(), [](value_type& , Q const& ) {} );
+        }
+        //@cond
+        template <typename Q, typename Less>
+        CDS_DEPRECATED("deprecated, use contains()")
+        bool find_with( Q const& key, Less pred )
+        {
+            return contains( key, pred );
+        }
+        //@endcond
+
+        /// Finds \p key and return the item found
+        /** \anchor cds_intrusive_SkipListSet_hp_get
+            The function searches the item with key equal to \p key
+            and returns the pointer to the item found as \p guarded_ptr.
+            If \p key is not found the function returns an empt guarded pointer.
+
+            The \p disposer specified in \p Traits class template parameter is called
+            by garbage collector \p GC asynchronously when returned \ref guarded_ptr object
+            will be destroyed or released.
+            @note Each \p guarded_ptr object uses one GC's guard which can be limited resource.
+
+            Usage:
+            \code
+            typedef cds::intrusive::SkipListSet< cds::gc::HP, foo, my_traits >  skip_list;
+            skip_list theList;
+            // ...
+            {
+                skip_list::guarded_ptr gp(theList.get( 5 ));
+                if ( gp ) {
+                    // Deal with gp
+                    //...
+                }
+                // Destructor of guarded_ptr releases internal HP guard
+            }
+            \endcode
+
+            Note the compare functor specified for class \p Traits template parameter
+            should accept a parameter of type \p Q that can be not the same as \p value_type.
+        */
+        template <typename Q>
+        guarded_ptr get( Q const& key )
+        {
+            return get_with_( key, key_comparator());
+        }
+
+        /// Finds \p key and return the item found
+        /**
+            The function is an analog of \ref cds_intrusive_SkipListSet_hp_get "get( Q const&)"
+            but \p pred is used for comparing the keys.
+
+            \p Less functor has the semantics like \p std::less but should take arguments of type \ref value_type and \p Q
+            in any order.
+            \p pred must imply the same element order as the comparator used for building the set.
+        */
+        template <typename Q, typename Less>
+        guarded_ptr get_with( Q const& key, Less pred )
+        {
+            CDS_UNUSED( pred );
+            return get_with_( key, cds::opt::details::make_comparator_from_less<Less>());
+        }
+
+        /// Returns item count in the set
+        /**
+            The value returned depends on item counter type provided by \p Traits template parameter.
+            If it is \p atomicity::empty_item_counter this function always returns 0.
+            Therefore, the function is not suitable for checking the set emptiness, use \p empty()
+            for this purpose.
+        */
+        size_t size() const
+        {
+            return m_ItemCounter;
+        }
+
+        /// Checks if the set is empty
+        bool empty() const
+        {
+            return m_Head.head()->next( 0 ).load( memory_model::memory_order_relaxed ) == nullptr;
+        }
+
+        /// Clears the set (not atomic)
+        /**
+            The function unlink all items from the set.
+            The function is not atomic, i.e., in multi-threaded environment with parallel insertions
+            this sequence
+            \code
+            set.clear();
+            assert( set.empty());
+            \endcode
+            the assertion could be raised.
+
+            For each item the \ref disposer will be called after unlinking.
+        */
+        void clear()
+        {
+            while ( extract_min_());
+        }
+
+        /// Returns maximum height of skip-list. The max height is a constant for each object and does not exceed 32.
+        static constexpr unsigned int max_height() noexcept
+        {
+            return c_nMaxHeight;
+        }
+
+        /// Returns const reference to internal statistics
+        stat const& statistics() const
+        {
+            return m_Stat;
+        }
+
+    protected:
+        //@cond
+        unsigned int random_level()
+        {
+            // Random generator produces a number from range [0..31]
+            // We need a number from range [1..32]
+            return m_RandomLevelGen() + 1;
+        }
+
+        template <typename Q>
+        node_type * build_node( Q v )
+        {
+            return node_builder::make_tower( v, m_RandomLevelGen );
+        }
+
+        static value_type * gc_protect( marked_node_ptr p )
+        {
+            return node_traits::to_value_ptr( p.ptr());
+        }
+
+        static void dispose_node( void* p )
+        {
+            assert( p != nullptr );
+            value_type* pVal = reinterpret_cast<value_type*>( p );
+            typename node_builder::node_disposer()( node_traits::to_node_ptr( pVal ));
+            disposer()( pVal );
+        }
+
+        void help_remove( int nLevel, node_type* pPred, marked_node_ptr pCur )
+        {
+            if ( pCur->is_upper_level( nLevel )) {
+                marked_node_ptr p( pCur.ptr());
+                typename gc::Guard hp;
+                marked_node_ptr pSucc = hp.protect( pCur->next( nLevel ), gc_protect );
+
+                if ( pSucc.bits() &&
+                     pPred->next( nLevel ).compare_exchange_strong( p, marked_node_ptr( pSucc.ptr()),
+                        memory_model::memory_order_acquire, atomics::memory_order_relaxed ))
+                {
+                    if ( pCur->level_unlinked()) {
+                        gc::retire( node_traits::to_value_ptr( pCur.ptr()), dispose_node );
+                        m_Stat.onEraseWhileFind();
+                    }
+                }
+            }
+        }
+
+        template <typename Q, typename Compare >
+        bool find_position( Q const& val, position& pos, Compare cmp, bool bStopIfFound )
+        {
+            node_type * pPred;
+            marked_node_ptr pSucc;
+            marked_node_ptr pCur;
+
+            // Hazard pointer array:
+            //  pPred: [nLevel * 2]
+            //  pSucc: [nLevel * 2 + 1]
+
+        retry:
+            pPred = m_Head.head();
+            int nCmp = 1;
+
+            for ( int nLevel = static_cast<int>( c_nMaxHeight - 1 ); nLevel >= 0; --nLevel ) {
+                pos.guards.assign( nLevel * 2, node_traits::to_value_ptr( pPred ));
+                while ( true ) {
+                    pCur = pos.guards.protect( nLevel * 2 + 1, pPred->next( nLevel ), gc_protect );
+                    if ( pCur.bits()) {
+                        // pCur.bits() means that pPred is logically deleted
+                        goto retry;
+                    }
+
+                    if ( pCur.ptr() == nullptr ) {
+                        // end of list at level nLevel - goto next level
+                        break;
+                    }
+
+                    // pSucc contains deletion mark for pCur
+                    pSucc = pCur->next( nLevel ).load( memory_model::memory_order_acquire );
+
+                    if ( pPred->next( nLevel ).load( memory_model::memory_order_acquire ).all() != pCur.ptr())
+                        goto retry;
+
+                    if ( pSucc.bits()) {
+                        // pCur is marked, i.e. logically deleted
+                        // try to help deleting pCur
+                        help_remove( nLevel, pPred, pCur );
+                        goto retry;
+                    }
+                    else {
+                        nCmp = cmp( *node_traits::to_value_ptr( pCur.ptr()), val );
+                        if ( nCmp < 0 ) {
+                            pPred = pCur.ptr();
+                            pos.guards.copy( nLevel * 2, nLevel * 2 + 1 );   // pPrev guard := cur guard
+                        }
+                        else if ( nCmp == 0 && bStopIfFound )
+                            goto found;
+                        else
+                            break;
+                    }
+                }
+
+                // Next level
+                pos.pPrev[nLevel] = pPred;
+                pos.pSucc[nLevel] = pCur.ptr();
+            }
+
+            if ( nCmp != 0 )
+                return false;
+
+        found:
+            pos.pCur = pCur.ptr();
+            return pCur.ptr() && nCmp == 0;
+        }
+
+        bool find_min_position( position& pos )
+        {
+            node_type * pPred;
+            marked_node_ptr pSucc;
+            marked_node_ptr pCur;
+
+            // Hazard pointer array:
+            //  pPred: [nLevel * 2]
+            //  pSucc: [nLevel * 2 + 1]
+
+        retry:
+            pPred = m_Head.head();
+
+            for ( int nLevel = static_cast<int>( c_nMaxHeight - 1 ); nLevel >= 0; --nLevel ) {
+                pos.guards.assign( nLevel * 2, node_traits::to_value_ptr( pPred ));
+                pCur = pos.guards.protect( nLevel * 2 + 1, pPred->next( nLevel ), gc_protect );
+
+                // pCur.bits() means that pPred is logically deleted
+                // head cannot be deleted
+                assert( pCur.bits() == 0 );
+
+                if ( pCur.ptr()) {
+
+                    // pSucc contains deletion mark for pCur
+                    pSucc = pCur->next( nLevel ).load( memory_model::memory_order_acquire );
+
+                    if ( pPred->next( nLevel ).load( memory_model::memory_order_acquire ).all() != pCur.ptr())
+                        goto retry;
+
+                    if ( pSucc.bits()) {
+                        // pCur is marked, i.e. logically deleted.
+                        // try to help deleting pCur
+                        help_remove( nLevel, pPred, pCur );
+                        goto retry;
+                    }
+                }
+
+                // Next level
+                pos.pPrev[nLevel] = pPred;
+                pos.pSucc[nLevel] = pCur.ptr();
+            }
+
+            return ( pos.pCur = pCur.ptr()) != nullptr;
+        }
+
+        bool find_max_position( position& pos )
+        {
+            node_type * pPred;
+            marked_node_ptr pSucc;
+            marked_node_ptr pCur;
+
+            // Hazard pointer array:
+            //  pPred: [nLevel * 2]
+            //  pSucc: [nLevel * 2 + 1]
+
+        retry:
+            pPred = m_Head.head();
+
+            for ( int nLevel = static_cast<int>( c_nMaxHeight - 1 ); nLevel >= 0; --nLevel ) {
+                pos.guards.assign( nLevel * 2, node_traits::to_value_ptr( pPred ));
+                while ( true ) {
+                    pCur = pos.guards.protect( nLevel * 2 + 1, pPred->next( nLevel ), gc_protect );
+                    if ( pCur.bits()) {
+                        // pCur.bits() means that pPred is logically deleted
+                        goto retry;
+                    }
+
+                    if ( pCur.ptr() == nullptr ) {
+                        // end of the list at level nLevel - goto next level
+                        break;
+                    }
+
+                    // pSucc contains deletion mark for pCur
+                    pSucc = pCur->next( nLevel ).load( memory_model::memory_order_acquire );
+
+                    if ( pPred->next( nLevel ).load( memory_model::memory_order_acquire ).all() != pCur.ptr())
+                        goto retry;
+
+                    if ( pSucc.bits()) {
+                        // pCur is marked, i.e. logically deleted.
+                        // try to help deleting pCur
+                        help_remove( nLevel, pPred, pCur );
+                        goto retry;
+                    }
+                    else {
+                        if ( !pSucc.ptr())
+                            break;
+
+                        pPred = pCur.ptr();
+                        pos.guards.copy( nLevel * 2, nLevel * 2 + 1 );
+                    }
+                }
+
+                // Next level
+                pos.pPrev[nLevel] = pPred;
+                pos.pSucc[nLevel] = pCur.ptr();
+            }
+
+            return ( pos.pCur = pCur.ptr()) != nullptr;
+        }
+
+        bool renew_insert_position( value_type& val, node_type * pNode, position& pos )
+        {
+            node_type * pPred;
+            marked_node_ptr pSucc;
+            marked_node_ptr pCur;
+            key_comparator cmp;
+
+            // Hazard pointer array:
+            //  pPred: [nLevel * 2]
+            //  pSucc: [nLevel * 2 + 1]
+
+        retry:
+            pPred = m_Head.head();
+            int nCmp = 1;
+
+            for ( int nLevel = static_cast<int>( c_nMaxHeight - 1 ); nLevel >= 0; --nLevel ) {
+                pos.guards.assign( nLevel * 2, node_traits::to_value_ptr( pPred ));
+                while ( true ) {
+                    pCur = pos.guards.protect( nLevel * 2 + 1, pPred->next( nLevel ), gc_protect );
+                    if ( pCur.bits()) {
+                        // pCur.bits() means that pPred is logically deleted
+                        goto retry;
+                    }
+
+                    if ( pCur.ptr() == nullptr ) {
+                        // end of list at level nLevel - goto next level
+                        break;
+                    }
+
+                    // pSucc contains deletion mark for pCur
+                    pSucc = pCur->next( nLevel ).load( memory_model::memory_order_acquire );
+
+                    if ( pPred->next( nLevel ).load( memory_model::memory_order_acquire ).all() != pCur.ptr())
+                        goto retry;
+
+                    if ( pSucc.bits()) {
+                        // pCur is marked, i.e. logically deleted
+                        if ( pCur.ptr() == pNode ) {
+                            // Node is removing while we are inserting it
+                            return false;
+                        }
+                        // try to help deleting pCur
+                        help_remove( nLevel, pPred, pCur );
+                        goto retry;
+                    }
+                    else {
+                        nCmp = cmp( *node_traits::to_value_ptr( pCur.ptr()), val );
+                        if ( nCmp < 0 ) {
+                            pPred = pCur.ptr();
+                            pos.guards.copy( nLevel * 2, nLevel * 2 + 1 );   // pPrev guard := cur guard
+                        }
+                        else
+                            break;
+                    }
+                }
+
+                // Next level
+                pos.pPrev[nLevel] = pPred;
+                pos.pSucc[nLevel] = pCur.ptr();
+            }
+
+            return nCmp == 0;
+        }
+
+        template <typename Func>
+        bool insert_at_position( value_type& val, node_type * pNode, position& pos, Func f )
+        {
+            unsigned int const nHeight = pNode->height();
+
+            for ( unsigned int nLevel = 1; nLevel < nHeight; ++nLevel )
+                pNode->next( nLevel ).store( marked_node_ptr(), memory_model::memory_order_relaxed );
+
+            // Insert at level 0
+            {
+                marked_node_ptr p( pos.pSucc[0] );
+                pNode->next( 0 ).store( p, memory_model::memory_order_release );
+                if ( !pos.pPrev[0]->next( 0 ).compare_exchange_strong( p, marked_node_ptr( pNode ), memory_model::memory_order_release, atomics::memory_order_relaxed ))
+                    return false;
+
+                f( val );
+            }
+
+            // Insert at level 1..max
+            for ( unsigned int nLevel = 1; nLevel < nHeight; ++nLevel ) {
+                marked_node_ptr p;
+                while ( true ) {
+                    marked_node_ptr pSucc( pos.pSucc[nLevel] );
+
+                    // Set pNode->next
+                    // pNode->next can have "logical deleted" flag if another thread is removing pNode right now
+                    if ( !pNode->next( nLevel ).compare_exchange_strong( p, pSucc,
+                        memory_model::memory_order_release, atomics::memory_order_acquire ))
+                    {
+                        // pNode has been marked as removed while we are inserting it
+                        // Stop inserting
+                        assert( p.bits() != 0 );
+
+                        // Here pNode is linked at least level 0 so level_unlinked() cannot returns true
+                        CDS_VERIFY_FALSE( pNode->level_unlinked( nHeight - nLevel ));
+
+                        // pNode is linked up to nLevel - 1
+                        // Remove it via find_position()
+                        find_position( val, pos, key_comparator(), false );
+
+                        m_Stat.onLogicDeleteWhileInsert();
+                        return true;
+                    }
+                    p = pSucc;
+
+                    // Link pNode into the list at nLevel
+                    if ( pos.pPrev[nLevel]->next( nLevel ).compare_exchange_strong( pSucc, marked_node_ptr( pNode ),
+                        memory_model::memory_order_release, atomics::memory_order_relaxed ))
+                    {
+                        // go to next level
+                        break;
+                    }
+
+                    // Renew insert position
+                    m_Stat.onRenewInsertPosition();
+
+                    if ( !renew_insert_position( val, pNode, pos )) {
+                        // The node has been deleted while we are inserting it
+                        // Update current height for concurent removing
+                        CDS_VERIFY_FALSE( pNode->level_unlinked( nHeight - nLevel ));
+
+                        m_Stat.onRemoveWhileInsert();
+
+                        // help to removing val
+                        find_position( val, pos, key_comparator(), false );
+                        return true;
+                    }
+                }
+            }
+            return true;
+        }
+
+        template <typename Func>
+        bool try_remove_at( node_type * pDel, position& pos, Func f )
+        {
+            assert( pDel != nullptr );
+
+            marked_node_ptr pSucc;
+            back_off bkoff;
+
+            // logical deletion (marking)
+            for ( unsigned int nLevel = pDel->height() - 1; nLevel > 0; --nLevel ) {
+                pSucc = pDel->next( nLevel ).load( memory_model::memory_order_relaxed );
+                if ( pSucc.bits() == 0 ) {
+                    bkoff.reset();
+                    while ( !( pDel->next( nLevel ).compare_exchange_weak( pSucc, pSucc | 1,
+                        memory_model::memory_order_release, atomics::memory_order_acquire )
+                        || pSucc.bits() != 0 ))
+                    {
+                        bkoff();
+                        m_Stat.onMarkFailed();
+                    }
+                }
+            }
+
+            marked_node_ptr p( pDel->next( 0 ).load( memory_model::memory_order_relaxed ).ptr());
+            while ( true ) {
+                if ( pDel->next( 0 ).compare_exchange_strong( p, p | 1, memory_model::memory_order_release, atomics::memory_order_acquire ))
+                {
+                    f( *node_traits::to_value_ptr( pDel ));
+
+                    // Physical deletion
+                    // try fast erase
+                    p = pDel;
+
+                    for ( int nLevel = static_cast<int>( pDel->height() - 1 ); nLevel >= 0; --nLevel ) {
+
+                        pSucc = pDel->next( nLevel ).load( memory_model::memory_order_acquire );
+                        if ( pos.pPrev[nLevel]->next( nLevel ).compare_exchange_strong( p, marked_node_ptr( pSucc.ptr()),
+                            memory_model::memory_order_acq_rel, atomics::memory_order_relaxed ))
+                        {
+                            pDel->level_unlinked();
+                        }
+                        else {
+                            // Make slow erase
+#       ifdef CDS_DEBUG
+                            if ( find_position( *node_traits::to_value_ptr( pDel ), pos, key_comparator(), false ))
+                                assert( pDel != pos.pCur );
+#       else
+                            find_position( *node_traits::to_value_ptr( pDel ), pos, key_comparator(), false );
+#       endif
+                            m_Stat.onSlowErase();
+                            return true;
+                        }
+                    }
+
+                    // Fast erasing success
+                    gc::retire( node_traits::to_value_ptr( pDel ), dispose_node );
+                    m_Stat.onFastErase();
+                    return true;
+                }
+                else if ( p.bits()) {
+                    // Another thread is deleting pDel right now
+                    m_Stat.onEraseContention();
+                    return false;
+                }
+                m_Stat.onEraseRetry();
+                bkoff();
+            }
+        }
+
+        enum finsd_fastpath_result {
+            find_fastpath_found,
+            find_fastpath_not_found,
+            find_fastpath_abort
+        };
+        template <typename Q, typename Compare, typename Func>
+        finsd_fastpath_result find_fastpath( Q& val, Compare cmp, Func f )
+        {
+            node_type * pPred;
+            marked_node_ptr pCur;
+            marked_node_ptr pNull;
+
+            // guard array:
+            // 0 - pPred on level N
+            // 1 - pCur on level N
+            typename gc::template GuardArray<2> guards;
+            back_off bkoff;
+            unsigned attempt = 0;
+
+        try_again:
+            pPred = m_Head.head();
+            for ( int nLevel = static_cast<int>( m_nHeight.load( memory_model::memory_order_relaxed ) - 1 ); nLevel >= 0; --nLevel ) {
+                pCur = guards.protect( 1, pPred->next( nLevel ), gc_protect );
+
+                while ( pCur != pNull ) {
+                    if ( pCur.bits()) {
+                        // pPred is being removed
+                        if ( ++attempt < 4 ) {
+                            bkoff();
+                            goto try_again;
+                        }
+
+                        return find_fastpath_abort;
+                    }
+
+                    if ( pCur.ptr()) {
+                        int nCmp = cmp( *node_traits::to_value_ptr( pCur.ptr()), val );
+                        if ( nCmp < 0 ) {
+                            guards.copy( 0, 1 );
+                            pPred = pCur.ptr();
+                            pCur = guards.protect( 1, pCur->next( nLevel ), gc_protect );
+                        }
+                        else if ( nCmp == 0 ) {
+                            // found
+                            f( *node_traits::to_value_ptr( pCur.ptr()), val );
+                            return find_fastpath_found;
+                        }
+                        else {
+                            // pCur > val - go down
+                            break;
+                        }
+                    }
+                }
+            }
+
+            return find_fastpath_not_found;
+        }
+
+        template <typename Q, typename Compare, typename Func>
+        bool find_slowpath( Q& val, Compare cmp, Func f )
+        {
+            position pos;
+            if ( find_position( val, pos, cmp, true )) {
+                assert( cmp( *node_traits::to_value_ptr( pos.pCur ), val ) == 0 );
+
+                f( *node_traits::to_value_ptr( pos.pCur ), val );
+                return true;
+            }
+            else
+                return false;
+        }
+
+        template <typename Q, typename Compare, typename Func>
+        bool find_with_( Q& val, Compare cmp, Func f )
+        {
+            switch ( find_fastpath( val, cmp, f )) {
+            case find_fastpath_found:
+                m_Stat.onFindFastSuccess();
+                return true;
+            case find_fastpath_not_found:
+                m_Stat.onFindFastFailed();
+                return false;
+            default:
+                break;
+            }
+
+            if ( find_slowpath( val, cmp, f )) {
+                m_Stat.onFindSlowSuccess();
+                return true;
+            }
+
+            m_Stat.onFindSlowFailed();
+            return false;
+        }
+
+        template <typename Q, typename Compare>
+        guarded_ptr get_with_( Q const& val, Compare cmp )
+        {
+            guarded_ptr gp;
+            if ( find_with_( val, cmp, [&gp]( value_type& found, Q const& ) { gp.reset( &found ); } ))
+                return gp;
+            return guarded_ptr();
+        }
+
+        template <typename Q, typename Compare, typename Func>
+        bool erase_( Q const& val, Compare cmp, Func f )
+        {
+            position pos;
+
+            if ( !find_position( val, pos, cmp, false )) {
+                m_Stat.onEraseFailed();
+                return false;
+            }
+
+            node_type * pDel = pos.pCur;
+            typename gc::Guard gDel;
+            gDel.assign( node_traits::to_value_ptr( pDel ));
+            assert( cmp( *node_traits::to_value_ptr( pDel ), val ) == 0 );
+
+            unsigned int nHeight = pDel->height();
+            if ( try_remove_at( pDel, pos, f )) {
+                --m_ItemCounter;
+                m_Stat.onRemoveNode( nHeight );
+                m_Stat.onEraseSuccess();
+                return true;
+            }
+
+            m_Stat.onEraseFailed();
+            return false;
+        }
+
+        template <typename Q, typename Compare>
+        guarded_ptr extract_( Q const& val, Compare cmp )
+        {
+            position pos;
+
+            guarded_ptr gp;
+            for (;;) {
+                if ( !find_position( val, pos, cmp, false )) {
+                    m_Stat.onExtractFailed();
+                    return guarded_ptr();
+                }
+
+                node_type * pDel = pos.pCur;
+                gp.reset( node_traits::to_value_ptr( pDel ));
+                assert( cmp( *node_traits::to_value_ptr( pDel ), val ) == 0 );
+
+                unsigned int nHeight = pDel->height();
+                if ( try_remove_at( pDel, pos, []( value_type const& ) {} )) {
+                    --m_ItemCounter;
+                    m_Stat.onRemoveNode( nHeight );
+                    m_Stat.onExtractSuccess();
+                    return gp;
+                }
+                m_Stat.onExtractRetry();
+            }
+        }
+
+        guarded_ptr extract_min_()
+        {
+            position pos;
+
+            guarded_ptr gp;
+            for ( ;;) {
+                if ( !find_min_position( pos )) {
+                    // The list is empty
+                    m_Stat.onExtractMinFailed();
+                    return guarded_ptr();
+                }
+
+                node_type * pDel = pos.pCur;
+
+                unsigned int nHeight = pDel->height();
+                gp.reset( node_traits::to_value_ptr( pDel ));
+
+                if ( try_remove_at( pDel, pos, []( value_type const& ) {} )) {
+                    --m_ItemCounter;
+                    m_Stat.onRemoveNode( nHeight );
+                    m_Stat.onExtractMinSuccess();
+                    return gp;
+                }
+
+                m_Stat.onExtractMinRetry();
+            }
+        }
+
+        guarded_ptr extract_max_()
+        {
+            position pos;
+
+            guarded_ptr gp;
+            for ( ;;) {
+                if ( !find_max_position( pos )) {
+                    // The list is empty
+                    m_Stat.onExtractMaxFailed();
+                    return guarded_ptr();
+                }
+
+                node_type * pDel = pos.pCur;
+
+                unsigned int nHeight = pDel->height();
+                gp.reset( node_traits::to_value_ptr( pDel ));
+
+                if ( try_remove_at( pDel, pos, []( value_type const& ) {} )) {
+                    --m_ItemCounter;
+                    m_Stat.onRemoveNode( nHeight );
+                    m_Stat.onExtractMaxSuccess();
+                    return gp;
+                }
+
+                m_Stat.onExtractMaxRetry();
+            }
+        }
+
+        void increase_height( unsigned int nHeight )
+        {
+            unsigned int nCur = m_nHeight.load( memory_model::memory_order_relaxed );
+            if ( nCur < nHeight )
+                m_nHeight.compare_exchange_strong( nCur, nHeight, memory_model::memory_order_relaxed, atomics::memory_order_relaxed );
+        }
+
+        void destroy()
+        {
+            node_type* p = m_Head.head()->next( 0 ).load( atomics::memory_order_relaxed ).ptr();
+            while ( p ) {
+                node_type* pNext = p->next( 0 ).load( atomics::memory_order_relaxed ).ptr();
+                dispose_node( node_traits::to_value_ptr( p ));
+                p = pNext;
+            }
+        }
+
+        //@endcond
+
+    private:
+        //@cond
+        skip_list::details::head_node< node_type > m_Head;   ///< head tower (max height)
+
+        random_level_generator      m_RandomLevelGen; ///< random level generator instance
+        atomics::atomic<unsigned int> m_nHeight;      ///< estimated high level
+        item_counter                m_ItemCounter;    ///< item counter
+        mutable stat                m_Stat;           ///< internal statistics
+        //@endcond
+    };
+
+}} // namespace cds::intrusive
+
+
+#endif // #ifndef CDSLIB_INTRUSIVE_IMPL_SKIP_LIST_H