; RUN: llc %s -o - -enable-shrink-wrap=true | FileCheck %s --check-prefix=CHECK --check-prefix=ENABLE ; RUN: llc %s -o - -enable-shrink-wrap=false | FileCheck %s --check-prefix=CHECK --check-prefix=DISABLE ; ; Note: Lots of tests use inline asm instead of regular calls. ; This allows to have a better control on what the allocation will do. ; Otherwise, we may have spill right in the entry block, defeating ; shrink-wrapping. Moreover, some of the inline asm statement (nop) ; are here to ensure that the related paths do not end up as critical ; edges. target datalayout = "e-m:o-i64:64-i128:128-n32:64-S128" target triple = "x86_64-apple-macosx" ; Initial motivating example: Simple diamond with a call just on one side. ; CHECK-LABEL: foo: ; ; Compare the arguments and jump to exit. ; No prologue needed. ; ENABLE: movl %edi, [[ARG0CPY:%e[a-z]+]] ; ENABLE-NEXT: cmpl %esi, [[ARG0CPY]] ; ENABLE-NEXT: jge [[EXIT_LABEL:LBB[0-9_]+]] ; ; Prologue code. ; (What we push does not matter. It should be some random sratch register.) ; CHECK: pushq ; ; Compare the arguments and jump to exit. ; After the prologue is set. ; DISABLE: movl %edi, [[ARG0CPY:%e[a-z]+]] ; DISABLE-NEXT: cmpl %esi, [[ARG0CPY]] ; DISABLE-NEXT: jge [[EXIT_LABEL:LBB[0-9_]+]] ; ; Store %a in the alloca. ; CHECK: movl [[ARG0CPY]], 4(%rsp) ; Set the alloca address in the second argument. ; CHECK-NEXT: leaq 4(%rsp), %rsi ; Set the first argument to zero. ; CHECK-NEXT: xorl %edi, %edi ; CHECK-NEXT: callq _doSomething ; ; With shrink-wrapping, epilogue is just after the call. ; ENABLE-NEXT: addq $8, %rsp ; ; CHECK: [[EXIT_LABEL]]: ; ; Without shrink-wrapping, epilogue is in the exit block. ; Epilogue code. (What we pop does not matter.) ; DISABLE-NEXT: popq ; ; CHECK-NEXT: retq define i32 @foo(i32 %a, i32 %b) { %tmp = alloca i32, align 4 %tmp2 = icmp slt i32 %a, %b br i1 %tmp2, label %true, label %false true: store i32 %a, i32* %tmp, align 4 %tmp4 = call i32 @doSomething(i32 0, i32* %tmp) br label %false false: %tmp.0 = phi i32 [ %tmp4, %true ], [ %a, %0 ] ret i32 %tmp.0 } ; Function Attrs: optsize declare i32 @doSomething(i32, i32*) ; Check that we do not perform the restore inside the loop whereas the save ; is outside. ; CHECK-LABEL: freqSaveAndRestoreOutsideLoop: ; ; Shrink-wrapping allows to skip the prologue in the else case. ; ENABLE: testl %edi, %edi ; ENABLE: je [[ELSE_LABEL:LBB[0-9_]+]] ; ; Prologue code. ; Make sure we save the CSR used in the inline asm: rbx. ; CHECK: pushq %rbx ; ; DISABLE: testl %edi, %edi ; DISABLE: je [[ELSE_LABEL:LBB[0-9_]+]] ; ; SUM is in %esi because it is coalesced with the second ; argument on the else path. ; CHECK: xorl [[SUM:%esi]], [[SUM]] ; CHECK-NEXT: movl $10, [[IV:%e[a-z]+]] ; ; Next BB. ; CHECK: [[LOOP:LBB[0-9_]+]]: ## %for.body ; CHECK: movl $1, [[TMP:%e[a-z]+]] ; CHECK: addl [[TMP]], [[SUM]] ; CHECK-NEXT: decl [[IV]] ; CHECK-NEXT: jne [[LOOP]] ; ; Next BB. ; SUM << 3. ; CHECK: shll $3, [[SUM]] ; ; Jump to epilogue. ; DISABLE: jmp [[EPILOG_BB:LBB[0-9_]+]] ; ; DISABLE: [[ELSE_LABEL]]: ## %if.else ; Shift second argument by one and store into returned register. ; DISABLE: addl %esi, %esi ; DISABLE: [[EPILOG_BB]]: ## %if.end ; ; Epilogue code. ; CHECK-DAG: popq %rbx ; CHECK-DAG: movl %esi, %eax ; CHECK: retq ; ; ENABLE: [[ELSE_LABEL]]: ## %if.else ; Shift second argument by one and store into returned register. ; ENABLE: addl %esi, %esi ; ENABLE-NEXT: movl %esi, %eax ; ENABLE-NEXT: retq define i32 @freqSaveAndRestoreOutsideLoop(i32 %cond, i32 %N) { entry: %tobool = icmp eq i32 %cond, 0 br i1 %tobool, label %if.else, label %for.preheader for.preheader: tail call void asm "nop", ""() br label %for.body for.body: ; preds = %entry, %for.body %i.05 = phi i32 [ %inc, %for.body ], [ 0, %for.preheader ] %sum.04 = phi i32 [ %add, %for.body ], [ 0, %for.preheader ] %call = tail call i32 asm "movl $$1, $0", "=r,~{ebx}"() %add = add nsw i32 %call, %sum.04 %inc = add nuw nsw i32 %i.05, 1 %exitcond = icmp eq i32 %inc, 10 br i1 %exitcond, label %for.end, label %for.body for.end: ; preds = %for.body %shl = shl i32 %add, 3 br label %if.end if.else: ; preds = %entry %mul = shl nsw i32 %N, 1 br label %if.end if.end: ; preds = %if.else, %for.end %sum.1 = phi i32 [ %shl, %for.end ], [ %mul, %if.else ] ret i32 %sum.1 } declare i32 @something(...) ; Check that we do not perform the shrink-wrapping inside the loop even ; though that would be legal. The cost model must prevent that. ; CHECK-LABEL: freqSaveAndRestoreOutsideLoop2: ; Prologue code. ; Make sure we save the CSR used in the inline asm: rbx. ; CHECK: pushq %rbx ; CHECK: nop ; CHECK: xorl [[SUM:%e[a-z]+]], [[SUM]] ; CHECK-NEXT: movl $10, [[IV:%e[a-z]+]] ; Next BB. ; CHECK: [[LOOP_LABEL:LBB[0-9_]+]]: ## %for.body ; CHECK: movl $1, [[TMP:%e[a-z]+]] ; CHECK: addl [[TMP]], [[SUM]] ; CHECK-NEXT: decl [[IV]] ; CHECK-NEXT: jne [[LOOP_LABEL]] ; Next BB. ; CHECK: ## %for.exit ; CHECK: nop ; CHECK: popq %rbx ; CHECK-NEXT: retq define i32 @freqSaveAndRestoreOutsideLoop2(i32 %cond) { entry: br label %for.preheader for.preheader: tail call void asm "nop", ""() br label %for.body for.body: ; preds = %for.body, %entry %i.04 = phi i32 [ 0, %for.preheader ], [ %inc, %for.body ] %sum.03 = phi i32 [ 0, %for.preheader ], [ %add, %for.body ] %call = tail call i32 asm "movl $$1, $0", "=r,~{ebx}"() %add = add nsw i32 %call, %sum.03 %inc = add nuw nsw i32 %i.04, 1 %exitcond = icmp eq i32 %inc, 10 br i1 %exitcond, label %for.exit, label %for.body for.exit: tail call void asm "nop", ""() br label %for.end for.end: ; preds = %for.body ret i32 %add } ; Check with a more complex case that we do not have save within the loop and ; restore outside. ; CHECK-LABEL: loopInfoSaveOutsideLoop: ; ; ENABLE: testl %edi, %edi ; ENABLE-NEXT: je [[ELSE_LABEL:LBB[0-9_]+]] ; ; Prologue code. ; Make sure we save the CSR used in the inline asm: rbx. ; CHECK: pushq %rbx ; ; DISABLE: testl %edi, %edi ; DISABLE-NEXT: je [[ELSE_LABEL:LBB[0-9_]+]] ; ; CHECK: nop ; CHECK: xorl [[SUM:%esi]], [[SUM]] ; CHECK-NEXT: movl $10, [[IV:%e[a-z]+]] ; ; CHECK: [[LOOP_LABEL:LBB[0-9_]+]]: ## %for.body ; CHECK: movl $1, [[TMP:%e[a-z]+]] ; CHECK: addl [[TMP]], [[SUM]] ; CHECK-NEXT: decl [[IV]] ; CHECK-NEXT: jne [[LOOP_LABEL]] ; Next BB. ; CHECK: nop ; CHECK: shll $3, [[SUM]] ; ; DISABLE: jmp [[EPILOG_BB:LBB[0-9_]+]] ; ; DISABLE: [[ELSE_LABEL]]: ## %if.else ; Shift second argument by one and store into returned register. ; DISABLE: addl %esi, %esi ; DISABLE: [[EPILOG_BB]]: ## %if.end ; ; Epilogue code. ; CHECK-DAG: popq %rbx ; CHECK-DAG: movl %esi, %eax ; CHECK: retq ; ; ENABLE: [[ELSE_LABEL]]: ## %if.else ; Shift second argument by one and store into returned register. ; ENABLE: addl %esi, %esi ; ENABLE-NEXT: movl %esi, %eax ; ENABLE-NEXT: retq define i32 @loopInfoSaveOutsideLoop(i32 %cond, i32 %N) { entry: %tobool = icmp eq i32 %cond, 0 br i1 %tobool, label %if.else, label %for.preheader for.preheader: tail call void asm "nop", ""() br label %for.body for.body: ; preds = %entry, %for.body %i.05 = phi i32 [ %inc, %for.body ], [ 0, %for.preheader ] %sum.04 = phi i32 [ %add, %for.body ], [ 0, %for.preheader ] %call = tail call i32 asm "movl $$1, $0", "=r,~{ebx}"() %add = add nsw i32 %call, %sum.04 %inc = add nuw nsw i32 %i.05, 1 %exitcond = icmp eq i32 %inc, 10 br i1 %exitcond, label %for.end, label %for.body for.end: ; preds = %for.body tail call void asm "nop", "~{ebx}"() %shl = shl i32 %add, 3 br label %if.end if.else: ; preds = %entry %mul = shl nsw i32 %N, 1 br label %if.end if.end: ; preds = %if.else, %for.end %sum.1 = phi i32 [ %shl, %for.end ], [ %mul, %if.else ] ret i32 %sum.1 } declare void @somethingElse(...) ; Check with a more complex case that we do not have restore within the loop and ; save outside. ; CHECK-LABEL: loopInfoRestoreOutsideLoop: ; ; ENABLE: testl %edi, %edi ; ENABLE-NEXT: je [[ELSE_LABEL:LBB[0-9_]+]] ; ; Prologue code. ; Make sure we save the CSR used in the inline asm: rbx. ; CHECK: pushq %rbx ; ; DISABLE: testl %edi, %edi ; DISABLE-NEXT: je [[ELSE_LABEL:LBB[0-9_]+]] ; ; CHECK: nop ; CHECK: xorl [[SUM:%esi]], [[SUM]] ; CHECK-NEXT: movl $10, [[IV:%e[a-z]+]] ; ; CHECK: [[LOOP_LABEL:LBB[0-9_]+]]: ## %for.body ; CHECK: movl $1, [[TMP:%e[a-z]+]] ; CHECK: addl [[TMP]], [[SUM]] ; CHECK-NEXT: decl [[IV]] ; CHECK-NEXT: jne [[LOOP_LABEL]] ; Next BB. ; CHECK: shll $3, [[SUM]] ; ; DISABLE: jmp [[EPILOG_BB:LBB[0-9_]+]] ; ; DISABLE: [[ELSE_LABEL]]: ## %if.else ; Shift second argument by one and store into returned register. ; DISABLE: addl %esi, %esi ; DISABLE: [[EPILOG_BB]]: ## %if.end ; ; Epilogue code. ; CHECK-DAG: popq %rbx ; CHECK-DAG: movl %esi, %eax ; CHECK: retq ; ; ENABLE: [[ELSE_LABEL]]: ## %if.else ; Shift second argument by one and store into returned register. ; ENABLE: addl %esi, %esi ; ENABLE-NEXT: movl %esi, %eax ; ENABLE-NEXT: retq define i32 @loopInfoRestoreOutsideLoop(i32 %cond, i32 %N) #0 { entry: %tobool = icmp eq i32 %cond, 0 br i1 %tobool, label %if.else, label %if.then if.then: ; preds = %entry tail call void asm "nop", "~{ebx}"() br label %for.body for.body: ; preds = %for.body, %if.then %i.05 = phi i32 [ 0, %if.then ], [ %inc, %for.body ] %sum.04 = phi i32 [ 0, %if.then ], [ %add, %for.body ] %call = tail call i32 asm "movl $$1, $0", "=r,~{ebx}"() %add = add nsw i32 %call, %sum.04 %inc = add nuw nsw i32 %i.05, 1 %exitcond = icmp eq i32 %inc, 10 br i1 %exitcond, label %for.end, label %for.body for.end: ; preds = %for.body %shl = shl i32 %add, 3 br label %if.end if.else: ; preds = %entry %mul = shl nsw i32 %N, 1 br label %if.end if.end: ; preds = %if.else, %for.end %sum.1 = phi i32 [ %shl, %for.end ], [ %mul, %if.else ] ret i32 %sum.1 } ; Check that we handle function with no frame information correctly. ; CHECK-LABEL: emptyFrame: ; CHECK: ## %entry ; CHECK-NEXT: xorl %eax, %eax ; CHECK-NEXT: retq define i32 @emptyFrame() { entry: ret i32 0 } ; Check that we handle inline asm correctly. ; CHECK-LABEL: inlineAsm: ; ; ENABLE: testl %edi, %edi ; ENABLE-NEXT: je [[ELSE_LABEL:LBB[0-9_]+]] ; ; Prologue code. ; Make sure we save the CSR used in the inline asm: rbx. ; CHECK: pushq %rbx ; ; DISABLE: testl %edi, %edi ; DISABLE-NEXT: je [[ELSE_LABEL:LBB[0-9_]+]] ; ; CHECK: nop ; CHECK: movl $10, [[IV:%e[a-z]+]] ; ; CHECK: [[LOOP_LABEL:LBB[0-9_]+]]: ## %for.body ; Inline asm statement. ; CHECK: addl $1, %ebx ; CHECK: decl [[IV]] ; CHECK-NEXT: jne [[LOOP_LABEL]] ; Next BB. ; CHECK: nop ; CHECK: xorl %esi, %esi ; ; DISABLE: jmp [[EPILOG_BB:LBB[0-9_]+]] ; ; DISABLE: [[ELSE_LABEL]]: ## %if.else ; Shift second argument by one and store into returned register. ; DISABLE: addl %esi, %esi ; DISABLE: [[EPILOG_BB]]: ## %if.end ; ; Epilogue code. ; CHECK-DAG: popq %rbx ; CHECK-DAG: movl %esi, %eax ; CHECK: retq ; ; ENABLE: [[ELSE_LABEL]]: ## %if.else ; Shift second argument by one and store into returned register. ; ENABLE: addl %esi, %esi ; ENABLE-NEXT: movl %esi, %eax ; ENABLE-NEXT: retq define i32 @inlineAsm(i32 %cond, i32 %N) { entry: %tobool = icmp eq i32 %cond, 0 br i1 %tobool, label %if.else, label %for.preheader for.preheader: tail call void asm "nop", ""() br label %for.body for.body: ; preds = %entry, %for.body %i.03 = phi i32 [ %inc, %for.body ], [ 0, %for.preheader ] tail call void asm "addl $$1, %ebx", "~{ebx}"() %inc = add nuw nsw i32 %i.03, 1 %exitcond = icmp eq i32 %inc, 10 br i1 %exitcond, label %for.exit, label %for.body for.exit: tail call void asm "nop", ""() br label %if.end if.else: ; preds = %entry %mul = shl nsw i32 %N, 1 br label %if.end if.end: ; preds = %for.body, %if.else %sum.0 = phi i32 [ %mul, %if.else ], [ 0, %for.exit ] ret i32 %sum.0 } ; Check that we handle calls to variadic functions correctly. ; CHECK-LABEL: callVariadicFunc: ; ; ENABLE: testl %edi, %edi ; ENABLE-NEXT: je [[ELSE_LABEL:LBB[0-9_]+]] ; ; Prologue code. ; CHECK: pushq ; ; DISABLE: testl %edi, %edi ; DISABLE-NEXT: je [[ELSE_LABEL:LBB[0-9_]+]] ; ; Setup of the varags. ; CHECK: movl %esi, (%rsp) ; CHECK-NEXT: xorl %eax, %eax ; CHECK-NEXT: %esi, %edi ; CHECK-NEXT: %esi, %edx ; CHECK-NEXT: %esi, %r8d ; CHECK-NEXT: %esi, %r9d ; CHECK-NEXT: %esi, %ecx ; CHECK-NEXT: callq _someVariadicFunc ; CHECK-NEXT: movl %eax, %esi ; CHECK-NEXT: shll $3, %esi ; ; ENABLE-NEXT: addq $8, %rsp ; ENABLE-NEXT: movl %esi, %eax ; ENABLE-NEXT: retq ; ; DISABLE: jmp [[IFEND_LABEL:LBB[0-9_]+]] ; ; CHECK: [[ELSE_LABEL]]: ## %if.else ; Shift second argument by one and store into returned register. ; CHECK: addl %esi, %esi ; ; DISABLE: [[IFEND_LABEL]]: ## %if.end ; ; Epilogue code. ; CHECK-NEXT: movl %esi, %eax ; DISABLE-NEXT: popq ; CHECK-NEXT: retq define i32 @callVariadicFunc(i32 %cond, i32 %N) { entry: %tobool = icmp eq i32 %cond, 0 br i1 %tobool, label %if.else, label %if.then if.then: ; preds = %entry %call = tail call i32 (i32, ...) @someVariadicFunc(i32 %N, i32 %N, i32 %N, i32 %N, i32 %N, i32 %N, i32 %N) %shl = shl i32 %call, 3 br label %if.end if.else: ; preds = %entry %mul = shl nsw i32 %N, 1 br label %if.end if.end: ; preds = %if.else, %if.then %sum.0 = phi i32 [ %shl, %if.then ], [ %mul, %if.else ] ret i32 %sum.0 } declare i32 @someVariadicFunc(i32, ...) ; Check that we use LEA not to clobber EFLAGS. %struct.temp_slot = type { %struct.temp_slot*, %struct.rtx_def*, %struct.rtx_def*, i32, i64, %union.tree_node*, %union.tree_node*, i8, i8, i32, i32, i64, i64 } %union.tree_node = type { %struct.tree_decl } %struct.tree_decl = type { %struct.tree_common, i8*, i32, i32, %union.tree_node*, i48, %union.anon, %union.tree_node*, %union.tree_node*, %union.tree_node*, %union.tree_node*, %union.tree_node*, %union.tree_node*, %union.tree_node*, %union.tree_node*, %union.tree_node*, %union.tree_node*, %struct.rtx_def*, %struct.rtx_def*, %union.anon.1, %union.tree_node*, %union.tree_node*, %union.tree_node*, i64, %struct.lang_decl* } %struct.tree_common = type { %union.tree_node*, %union.tree_node*, i32 } %union.anon = type { i64 } %union.anon.1 = type { %struct.function* } %struct.function = type { %struct.eh_status*, %struct.stmt_status*, %struct.expr_status*, %struct.emit_status*, %struct.varasm_status*, i8*, %union.tree_node*, %struct.function*, i32, i32, i32, i32, %struct.rtx_def*, %struct.ix86_args, %struct.rtx_def*, %struct.rtx_def*, i8*, %struct.initial_value_struct*, i32, %union.tree_node*, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def*, %union.tree_node*, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def*, i64, %union.tree_node*, %union.tree_node*, %struct.rtx_def*, %struct.rtx_def*, i32, %struct.rtx_def**, %struct.temp_slot*, i32, i32, i32, %struct.var_refs_queue*, i32, i32, i8*, %union.tree_node*, %struct.rtx_def*, i32, i32, %struct.machine_function*, i32, i32, %struct.language_function*, %struct.rtx_def*, i24 } %struct.eh_status = type opaque %struct.stmt_status = type opaque %struct.expr_status = type { i32, i32, i32, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def*, %struct.rtx_def* } %struct.emit_status = type { i32, i32, %struct.rtx_def*, %struct.rtx_def*, %union.tree_node*, %struct.sequence_stack*, i32, i32, i8*, i32, i8*, %union.tree_node**, %struct.rtx_def** } %struct.sequence_stack = type { %struct.rtx_def*, %struct.rtx_def*, %union.tree_node*, %struct.sequence_stack* } %struct.varasm_status = type opaque %struct.ix86_args = type { i32, i32, i32, i32, i32, i32, i32 } %struct.initial_value_struct = type opaque %struct.var_refs_queue = type { %struct.rtx_def*, i32, i32, %struct.var_refs_queue* } %struct.machine_function = type opaque %struct.language_function = type opaque %struct.lang_decl = type opaque %struct.rtx_def = type { i32, [1 x %union.rtunion_def] } %union.rtunion_def = type { i64 } declare hidden fastcc %struct.temp_slot* @find_temp_slot_from_address(%struct.rtx_def* readonly) ; CHECK-LABEL: useLEA: ; DISABLE: pushq ; ; CHECK: testq %rdi, %rdi ; CHECK-NEXT: je [[CLEANUP:LBB[0-9_]+]] ; ; CHECK: movzwl (%rdi), [[BF_LOAD:%e[a-z]+]] ; CHECK-NEXT: cmpl $66, [[BF_LOAD]] ; CHECK-NEXT: jne [[CLEANUP]] ; ; CHECK: movq 8(%rdi), %rdi ; CHECK-NEXT: movzwl (%rdi), %e[[BF_LOAD2:[a-z]+]] ; CHECK-NEXT: leal -54(%r[[BF_LOAD2]]), [[TMP:%e[a-z]+]] ; CHECK-NEXT: cmpl $14, [[TMP]] ; CHECK-NEXT: ja [[LOR_LHS_FALSE:LBB[0-9_]+]] ; ; CHECK: movl $24599, [[TMP2:%e[a-z]+]] ; CHECK-NEXT: btl [[TMP]], [[TMP2]] ; CHECK-NEXT: jae [[LOR_LHS_FALSE:LBB[0-9_]+]] ; ; CHECK: [[CLEANUP]]: ## %cleanup ; DISABLE: popq ; CHECK-NEXT: retq ; ; CHECK: [[LOR_LHS_FALSE]]: ## %lor.lhs.false ; CHECK: cmpl $134, %e[[BF_LOAD2]] ; CHECK-NEXT: je [[CLEANUP]] ; ; CHECK: cmpl $140, %e[[BF_LOAD2]] ; CHECK-NEXT: je [[CLEANUP]] ; ; ENABLE: pushq ; CHECK: callq _find_temp_slot_from_address ; CHECK-NEXT: testq %rax, %rax ; ; The adjustment must use LEA here (or be moved above the test). ; ENABLE-NEXT: leaq 8(%rsp), %rsp ; ; CHECK-NEXT: je [[CLEANUP]] ; ; CHECK: movb $1, 57(%rax) define void @useLEA(%struct.rtx_def* readonly %x) { entry: %cmp = icmp eq %struct.rtx_def* %x, null br i1 %cmp, label %cleanup, label %if.end if.end: ; preds = %entry %tmp = getelementptr inbounds %struct.rtx_def, %struct.rtx_def* %x, i64 0, i32 0 %bf.load = load i32, i32* %tmp, align 8 %bf.clear = and i32 %bf.load, 65535 %cmp1 = icmp eq i32 %bf.clear, 66 br i1 %cmp1, label %lor.lhs.false, label %cleanup lor.lhs.false: ; preds = %if.end %arrayidx = getelementptr inbounds %struct.rtx_def, %struct.rtx_def* %x, i64 0, i32 1, i64 0 %rtx = bitcast %union.rtunion_def* %arrayidx to %struct.rtx_def** %tmp1 = load %struct.rtx_def*, %struct.rtx_def** %rtx, align 8 %tmp2 = getelementptr inbounds %struct.rtx_def, %struct.rtx_def* %tmp1, i64 0, i32 0 %bf.load2 = load i32, i32* %tmp2, align 8 %bf.clear3 = and i32 %bf.load2, 65535 switch i32 %bf.clear3, label %if.end.55 [ i32 67, label %cleanup i32 68, label %cleanup i32 54, label %cleanup i32 55, label %cleanup i32 58, label %cleanup i32 134, label %cleanup i32 56, label %cleanup i32 140, label %cleanup ] if.end.55: ; preds = %lor.lhs.false %call = tail call fastcc %struct.temp_slot* @find_temp_slot_from_address(%struct.rtx_def* %tmp1) #2 %cmp59 = icmp eq %struct.temp_slot* %call, null br i1 %cmp59, label %cleanup, label %if.then.60 if.then.60: ; preds = %if.end.55 %addr_taken = getelementptr inbounds %struct.temp_slot, %struct.temp_slot* %call, i64 0, i32 8 store i8 1, i8* %addr_taken, align 1 br label %cleanup cleanup: ; preds = %if.then.60, %if.end.55, %lor.lhs.false, %lor.lhs.false, %lor.lhs.false, %lor.lhs.false, %lor.lhs.false, %lor.lhs.false, %lor.lhs.false, %lor.lhs.false, %if.end, %entry ret void } ; Make sure we do not insert unreachable code after noreturn function. ; Although this is not incorrect to insert such code, it is useless ; and it hurts the binary size. ; ; CHECK-LABEL: noreturn: ; DISABLE: pushq ; ; CHECK: testb %dil, %dil ; CHECK-NEXT: jne [[ABORT:LBB[0-9_]+]] ; ; CHECK: movl $42, %eax ; ; DISABLE-NEXT: popq ; ; CHECK-NEXT: retq ; ; CHECK: [[ABORT]]: ## %if.abort ; ; ENABLE: pushq ; ; CHECK: callq _abort ; ENABLE-NOT: popq define i32 @noreturn(i8 signext %bad_thing) { entry: %tobool = icmp eq i8 %bad_thing, 0 br i1 %tobool, label %if.end, label %if.abort if.abort: tail call void @abort() #0 unreachable if.end: ret i32 42 } declare void @abort() #0 attributes #0 = { noreturn nounwind } ; Make sure that we handle infinite loops properly When checking that the Save ; and Restore blocks are control flow equivalent, the loop searches for the ; immediate (post) dominator for the (restore) save blocks. When either the Save ; or Restore block is located in an infinite loop the only immediate (post) ; dominator is itself. In this case, we cannot perform shrink wrapping, but we ; should return gracefully and continue compilation. ; The only condition for this test is the compilation finishes correctly. ; ; CHECK-LABEL: infiniteloop ; CHECK: retq define void @infiniteloop() { entry: br i1 undef, label %if.then, label %if.end if.then: %ptr = alloca i32, i32 4 br label %for.body for.body: ; preds = %for.body, %entry %sum.03 = phi i32 [ 0, %if.then ], [ %add, %for.body ] %call = tail call i32 asm "movl $$1, $0", "=r,~{ebx}"() %add = add nsw i32 %call, %sum.03 store i32 %add, i32* %ptr br label %for.body if.end: ret void }