; RUN: llc -march=r600 -mcpu=bonaire -verify-machineinstrs < %s | FileCheck -check-prefix=SI %s ; Test that doing a shift of a pointer with a constant add will be ; folded into the constant offset addressing mode even if the add has ; multiple uses. This is relevant to accessing 2 separate, adjacent ; LDS globals. declare i32 @llvm.r600.read.tidig.x() #1 @lds0 = addrspace(3) global [512 x float] zeroinitializer, align 4 @lds1 = addrspace(3) global [512 x float] zeroinitializer, align 4 ; Make sure the (add tid, 2) << 2 gets folded into the ds's offset as (tid << 2) + 8 ; SI-LABEL: @load_shl_base_lds_0 ; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}} ; SI: DS_READ_B32 {{v[0-9]+}}, [[PTR]], 0x8, [M0] ; SI: S_ENDPGM define void @load_shl_base_lds_0(float addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 { %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1 %idx.0 = add nsw i32 %tid.x, 2 %arrayidx0 = getelementptr inbounds [512 x float] addrspace(3)* @lds0, i32 0, i32 %idx.0 %val0 = load float addrspace(3)* %arrayidx0, align 4 store i32 %idx.0, i32 addrspace(1)* %add_use, align 4 store float %val0, float addrspace(1)* %out ret void } ; Make sure once the first use is folded into the addressing mode, the ; remaining add use goes through the normal shl + add constant fold. ; SI-LABEL: @load_shl_base_lds_1 ; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}} ; SI: DS_READ_B32 [[RESULT:v[0-9]+]], [[PTR]], 0x8, [M0] ; SI: V_ADD_I32_e32 [[ADDUSE:v[0-9]+]], 8, v{{[0-9]+}} ; SI-DAG: BUFFER_STORE_DWORD [[RESULT]] ; SI-DAG: BUFFER_STORE_DWORD [[ADDUSE]] ; SI: S_ENDPGM define void @load_shl_base_lds_1(float addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 { %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1 %idx.0 = add nsw i32 %tid.x, 2 %arrayidx0 = getelementptr inbounds [512 x float] addrspace(3)* @lds0, i32 0, i32 %idx.0 %val0 = load float addrspace(3)* %arrayidx0, align 4 %shl_add_use = shl i32 %idx.0, 2 store i32 %shl_add_use, i32 addrspace(1)* %add_use, align 4 store float %val0, float addrspace(1)* %out ret void } @maxlds = addrspace(3) global [65536 x i8] zeroinitializer, align 4 ; SI-LABEL: @load_shl_base_lds_max_offset ; SI: DS_READ_U8 v{{[0-9]+}}, v{{[0-9]+}}, 0xffff ; SI: S_ENDPGM define void @load_shl_base_lds_max_offset(i8 addrspace(1)* %out, i8 addrspace(3)* %lds, i32 addrspace(1)* %add_use) #0 { %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1 %idx.0 = add nsw i32 %tid.x, 65535 %arrayidx0 = getelementptr inbounds [65536 x i8] addrspace(3)* @maxlds, i32 0, i32 %idx.0 %val0 = load i8 addrspace(3)* %arrayidx0 store i32 %idx.0, i32 addrspace(1)* %add_use store i8 %val0, i8 addrspace(1)* %out ret void } ; The two globals are placed adjacent in memory, so the same base ; pointer can be used with an offset into the second one. ; SI-LABEL: @load_shl_base_lds_2 ; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}} ; SI-NEXT: DS_READ_B32 {{v[0-9]+}}, [[PTR]], 0x100, [M0] ; SI-NEXT: DS_READ_B32 {{v[0-9]+}}, [[PTR]], 0x900, [M0] ; SI: S_ENDPGM define void @load_shl_base_lds_2(float addrspace(1)* %out) #0 { %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1 %idx.0 = add nsw i32 %tid.x, 64 %arrayidx0 = getelementptr inbounds [512 x float] addrspace(3)* @lds0, i32 0, i32 %idx.0 %val0 = load float addrspace(3)* %arrayidx0, align 4 %arrayidx1 = getelementptr inbounds [512 x float] addrspace(3)* @lds1, i32 0, i32 %idx.0 %val1 = load float addrspace(3)* %arrayidx1, align 4 %sum = fadd float %val0, %val1 store float %sum, float addrspace(1)* %out, align 4 ret void } ; SI-LABEL: @store_shl_base_lds_0 ; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}} ; SI: DS_WRITE_B32 [[PTR]], {{v[0-9]+}}, 0x8 [M0] ; SI: S_ENDPGM define void @store_shl_base_lds_0(float addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 { %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1 %idx.0 = add nsw i32 %tid.x, 2 %arrayidx0 = getelementptr inbounds [512 x float] addrspace(3)* @lds0, i32 0, i32 %idx.0 store float 1.0, float addrspace(3)* %arrayidx0, align 4 store i32 %idx.0, i32 addrspace(1)* %add_use, align 4 ret void } ; -------------------------------------------------------------------------------- ; Atomics. @lds2 = addrspace(3) global [512 x i32] zeroinitializer, align 4 ; define void @atomic_load_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 { ; %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1 ; %idx.0 = add nsw i32 %tid.x, 2 ; %arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0 ; %val = load atomic i32 addrspace(3)* %arrayidx0 seq_cst, align 4 ; store i32 %val, i32 addrspace(1)* %out, align 4 ; store i32 %idx.0, i32 addrspace(1)* %add_use, align 4 ; ret void ; } ; SI-LABEL: @atomic_cmpxchg_shl_base_lds_0 ; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}} ; SI: DS_CMPST_RTN_B32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}}, {{v[0-9]+}}, 0x8 ; SI: S_ENDPGM define void @atomic_cmpxchg_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use, i32 %swap) #0 { %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1 %idx.0 = add nsw i32 %tid.x, 2 %arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0 %pair = cmpxchg i32 addrspace(3)* %arrayidx0, i32 7, i32 %swap seq_cst monotonic %result = extractvalue { i32, i1 } %pair, 0 store i32 %result, i32 addrspace(1)* %out, align 4 store i32 %idx.0, i32 addrspace(1)* %add_use, align 4 ret void } ; SI-LABEL: @atomic_swap_shl_base_lds_0 ; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}} ; SI: DS_WRXCHG_RTN_B32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}}, 0x8 ; SI: S_ENDPGM define void @atomic_swap_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 { %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1 %idx.0 = add nsw i32 %tid.x, 2 %arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0 %val = atomicrmw xchg i32 addrspace(3)* %arrayidx0, i32 3 seq_cst store i32 %val, i32 addrspace(1)* %out, align 4 store i32 %idx.0, i32 addrspace(1)* %add_use, align 4 ret void } ; SI-LABEL: @atomic_add_shl_base_lds_0 ; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}} ; SI: DS_ADD_RTN_U32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}}, 0x8 ; SI: S_ENDPGM define void @atomic_add_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 { %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1 %idx.0 = add nsw i32 %tid.x, 2 %arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0 %val = atomicrmw add i32 addrspace(3)* %arrayidx0, i32 3 seq_cst store i32 %val, i32 addrspace(1)* %out, align 4 store i32 %idx.0, i32 addrspace(1)* %add_use, align 4 ret void } ; SI-LABEL: @atomic_sub_shl_base_lds_0 ; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}} ; SI: DS_SUB_RTN_U32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}}, 0x8 ; SI: S_ENDPGM define void @atomic_sub_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 { %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1 %idx.0 = add nsw i32 %tid.x, 2 %arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0 %val = atomicrmw sub i32 addrspace(3)* %arrayidx0, i32 3 seq_cst store i32 %val, i32 addrspace(1)* %out, align 4 store i32 %idx.0, i32 addrspace(1)* %add_use, align 4 ret void } ; SI-LABEL: @atomic_and_shl_base_lds_0 ; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}} ; SI: DS_AND_RTN_B32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}}, 0x8 ; SI: S_ENDPGM define void @atomic_and_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 { %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1 %idx.0 = add nsw i32 %tid.x, 2 %arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0 %val = atomicrmw and i32 addrspace(3)* %arrayidx0, i32 3 seq_cst store i32 %val, i32 addrspace(1)* %out, align 4 store i32 %idx.0, i32 addrspace(1)* %add_use, align 4 ret void } ; SI-LABEL: @atomic_or_shl_base_lds_0 ; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}} ; SI: DS_OR_RTN_B32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}}, 0x8 ; SI: S_ENDPGM define void @atomic_or_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 { %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1 %idx.0 = add nsw i32 %tid.x, 2 %arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0 %val = atomicrmw or i32 addrspace(3)* %arrayidx0, i32 3 seq_cst store i32 %val, i32 addrspace(1)* %out, align 4 store i32 %idx.0, i32 addrspace(1)* %add_use, align 4 ret void } ; SI-LABEL: @atomic_xor_shl_base_lds_0 ; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}} ; SI: DS_XOR_RTN_B32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}}, 0x8 ; SI: S_ENDPGM define void @atomic_xor_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 { %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1 %idx.0 = add nsw i32 %tid.x, 2 %arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0 %val = atomicrmw xor i32 addrspace(3)* %arrayidx0, i32 3 seq_cst store i32 %val, i32 addrspace(1)* %out, align 4 store i32 %idx.0, i32 addrspace(1)* %add_use, align 4 ret void } ; define void @atomic_nand_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 { ; %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1 ; %idx.0 = add nsw i32 %tid.x, 2 ; %arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0 ; %val = atomicrmw nand i32 addrspace(3)* %arrayidx0, i32 3 seq_cst ; store i32 %val, i32 addrspace(1)* %out, align 4 ; store i32 %idx.0, i32 addrspace(1)* %add_use, align 4 ; ret void ; } ; SI-LABEL: @atomic_min_shl_base_lds_0 ; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}} ; SI: DS_MIN_RTN_I32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}}, 0x8 ; SI: S_ENDPGM define void @atomic_min_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 { %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1 %idx.0 = add nsw i32 %tid.x, 2 %arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0 %val = atomicrmw min i32 addrspace(3)* %arrayidx0, i32 3 seq_cst store i32 %val, i32 addrspace(1)* %out, align 4 store i32 %idx.0, i32 addrspace(1)* %add_use, align 4 ret void } ; SI-LABEL: @atomic_max_shl_base_lds_0 ; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}} ; SI: DS_MAX_RTN_I32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}}, 0x8 ; SI: S_ENDPGM define void @atomic_max_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 { %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1 %idx.0 = add nsw i32 %tid.x, 2 %arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0 %val = atomicrmw max i32 addrspace(3)* %arrayidx0, i32 3 seq_cst store i32 %val, i32 addrspace(1)* %out, align 4 store i32 %idx.0, i32 addrspace(1)* %add_use, align 4 ret void } ; SI-LABEL: @atomic_umin_shl_base_lds_0 ; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}} ; SI: DS_MIN_RTN_U32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}}, 0x8 ; SI: S_ENDPGM define void @atomic_umin_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 { %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1 %idx.0 = add nsw i32 %tid.x, 2 %arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0 %val = atomicrmw umin i32 addrspace(3)* %arrayidx0, i32 3 seq_cst store i32 %val, i32 addrspace(1)* %out, align 4 store i32 %idx.0, i32 addrspace(1)* %add_use, align 4 ret void } ; SI-LABEL: @atomic_umax_shl_base_lds_0 ; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}} ; SI: DS_MAX_RTN_U32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}}, 0x8 ; SI: S_ENDPGM define void @atomic_umax_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 { %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1 %idx.0 = add nsw i32 %tid.x, 2 %arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0 %val = atomicrmw umax i32 addrspace(3)* %arrayidx0, i32 3 seq_cst store i32 %val, i32 addrspace(1)* %out, align 4 store i32 %idx.0, i32 addrspace(1)* %add_use, align 4 ret void } attributes #0 = { nounwind } attributes #1 = { nounwind readnone }