; RUN: llc < %s -mcpu=cortex-a9 -verify-coalescing | FileCheck %s target datalayout = "e-p:32:32:32-i1:8:32-i8:8:32-i16:16:32-i32:32:32-i64:32:64-f32:32:32-f64:32:64-v64:32:64-v128:32:128-a0:0:32-n32-S32" target triple = "thumbv7-apple-ios0.0.0" ; CHECK: f ; The vld2 and vst2 are not aligned wrt each other, the second Q loaded is the ; first one stored. ; The coalescer must find a super-register larger than QQ to eliminate the copy ; setting up the vst2 data. ; CHECK: vld2 ; CHECK-NOT: vorr ; CHECK-NOT: vmov ; CHECK: vst2 define void @f(float* %p, i32 %c) nounwind ssp { entry: %0 = bitcast float* %p to i8* %vld2 = tail call { <4 x float>, <4 x float> } @llvm.arm.neon.vld2.v4f32(i8* %0, i32 4) %vld221 = extractvalue { <4 x float>, <4 x float> } %vld2, 1 %add.ptr = getelementptr inbounds float* %p, i32 8 %1 = bitcast float* %add.ptr to i8* tail call void @llvm.arm.neon.vst2.v4f32(i8* %1, <4 x float> %vld221, <4 x float> undef, i32 4) ret void } ; CHECK: f1 ; FIXME: This function still has copies. define void @f1(float* %p, i32 %c) nounwind ssp { entry: %0 = bitcast float* %p to i8* %vld2 = tail call { <4 x float>, <4 x float> } @llvm.arm.neon.vld2.v4f32(i8* %0, i32 4) %vld221 = extractvalue { <4 x float>, <4 x float> } %vld2, 1 %add.ptr = getelementptr inbounds float* %p, i32 8 %1 = bitcast float* %add.ptr to i8* %vld22 = tail call { <4 x float>, <4 x float> } @llvm.arm.neon.vld2.v4f32(i8* %1, i32 4) %vld2215 = extractvalue { <4 x float>, <4 x float> } %vld22, 0 tail call void @llvm.arm.neon.vst2.v4f32(i8* %1, <4 x float> %vld221, <4 x float> %vld2215, i32 4) ret void } ; CHECK: f2 ; FIXME: This function still has copies. define void @f2(float* %p, i32 %c) nounwind ssp { entry: %0 = bitcast float* %p to i8* %vld2 = tail call { <4 x float>, <4 x float> } @llvm.arm.neon.vld2.v4f32(i8* %0, i32 4) %vld224 = extractvalue { <4 x float>, <4 x float> } %vld2, 1 br label %do.body do.body: ; preds = %do.body, %entry %qq0.0.1.0 = phi <4 x float> [ %vld224, %entry ], [ %vld2216, %do.body ] %c.addr.0 = phi i32 [ %c, %entry ], [ %dec, %do.body ] %p.addr.0 = phi float* [ %p, %entry ], [ %add.ptr, %do.body ] %add.ptr = getelementptr inbounds float* %p.addr.0, i32 8 %1 = bitcast float* %add.ptr to i8* %vld22 = tail call { <4 x float>, <4 x float> } @llvm.arm.neon.vld2.v4f32(i8* %1, i32 4) %vld2215 = extractvalue { <4 x float>, <4 x float> } %vld22, 0 %vld2216 = extractvalue { <4 x float>, <4 x float> } %vld22, 1 tail call void @llvm.arm.neon.vst2.v4f32(i8* %1, <4 x float> %qq0.0.1.0, <4 x float> %vld2215, i32 4) %dec = add nsw i32 %c.addr.0, -1 %tobool = icmp eq i32 %dec, 0 br i1 %tobool, label %do.end, label %do.body do.end: ; preds = %do.body ret void } declare { <4 x float>, <4 x float> } @llvm.arm.neon.vld2.v4f32(i8*, i32) nounwind readonly declare void @llvm.arm.neon.vst2.v4f32(i8*, <4 x float>, <4 x float>, i32) nounwind ; CHECK: f3 ; This function has lane insertions that span basic blocks. ; The trivial REG_SEQUENCE lowering can't handle that, but the coalescer can. ; ; void f3(float *p, float *q) { ; float32x2_t x; ; x[1] = p[3]; ; if (q) ; x[0] = q[0] + q[1]; ; else ; x[0] = p[2]; ; vst1_f32(p+4, x); ; } ; ; CHECK-NOT: vmov ; CHECK-NOT: vorr define void @f3(float* %p, float* %q) nounwind ssp { entry: %arrayidx = getelementptr inbounds float* %p, i32 3 %0 = load float* %arrayidx, align 4 %vecins = insertelement <2 x float> undef, float %0, i32 1 %tobool = icmp eq float* %q, null br i1 %tobool, label %if.else, label %if.then if.then: ; preds = %entry %1 = load float* %q, align 4 %arrayidx2 = getelementptr inbounds float* %q, i32 1 %2 = load float* %arrayidx2, align 4 %add = fadd float %1, %2 %vecins3 = insertelement <2 x float> %vecins, float %add, i32 0 br label %if.end if.else: ; preds = %entry %arrayidx4 = getelementptr inbounds float* %p, i32 2 %3 = load float* %arrayidx4, align 4 %vecins5 = insertelement <2 x float> %vecins, float %3, i32 0 br label %if.end if.end: ; preds = %if.else, %if.then %x.0 = phi <2 x float> [ %vecins3, %if.then ], [ %vecins5, %if.else ] %add.ptr = getelementptr inbounds float* %p, i32 4 %4 = bitcast float* %add.ptr to i8* tail call void @llvm.arm.neon.vst1.v2f32(i8* %4, <2 x float> %x.0, i32 4) ret void } declare void @llvm.arm.neon.vst1.v2f32(i8*, <2 x float>, i32) nounwind declare <2 x float> @llvm.arm.neon.vld1.v2f32(i8*, i32) nounwind readonly ; CHECK: f4 ; This function inserts a lane into a fully defined vector. ; The destination lane isn't read, so the subregs can coalesce. ; CHECK-NOT: vmov ; CHECK-NOT: vorr define void @f4(float* %p, float* %q) nounwind ssp { entry: %0 = bitcast float* %p to i8* %vld1 = tail call <2 x float> @llvm.arm.neon.vld1.v2f32(i8* %0, i32 4) %tobool = icmp eq float* %q, null br i1 %tobool, label %if.end, label %if.then if.then: ; preds = %entry %1 = load float* %q, align 4 %arrayidx1 = getelementptr inbounds float* %q, i32 1 %2 = load float* %arrayidx1, align 4 %add = fadd float %1, %2 %vecins = insertelement <2 x float> %vld1, float %add, i32 1 br label %if.end if.end: ; preds = %entry, %if.then %x.0 = phi <2 x float> [ %vecins, %if.then ], [ %vld1, %entry ] tail call void @llvm.arm.neon.vst1.v2f32(i8* %0, <2 x float> %x.0, i32 4) ret void } ; CHECK: f5 ; Coalesce vector lanes through phis. ; CHECK: vmov.f32 {{.*}}, #1.0 ; CHECK-NOT: vmov ; CHECK-NOT: vorr ; CHECK: %if.end ; We may leave the last insertelement in the if.end block. ; It is inserting the %add value into a dead lane, but %add causes interference ; in the entry block, and we don't do dead lane checks across basic blocks. define void @f5(float* %p, float* %q) nounwind ssp { entry: %0 = bitcast float* %p to i8* %vld1 = tail call <4 x float> @llvm.arm.neon.vld1.v4f32(i8* %0, i32 4) %vecext = extractelement <4 x float> %vld1, i32 0 %vecext1 = extractelement <4 x float> %vld1, i32 1 %vecext2 = extractelement <4 x float> %vld1, i32 2 %vecext3 = extractelement <4 x float> %vld1, i32 3 %add = fadd float %vecext3, 1.000000e+00 %tobool = icmp eq float* %q, null br i1 %tobool, label %if.end, label %if.then if.then: ; preds = %entry %arrayidx = getelementptr inbounds float* %q, i32 1 %1 = load float* %arrayidx, align 4 %add4 = fadd float %vecext, %1 %2 = load float* %q, align 4 %add6 = fadd float %vecext1, %2 %arrayidx7 = getelementptr inbounds float* %q, i32 2 %3 = load float* %arrayidx7, align 4 %add8 = fadd float %vecext2, %3 br label %if.end if.end: ; preds = %entry, %if.then %a.0 = phi float [ %add4, %if.then ], [ %vecext, %entry ] %b.0 = phi float [ %add6, %if.then ], [ %vecext1, %entry ] %c.0 = phi float [ %add8, %if.then ], [ %vecext2, %entry ] %vecinit = insertelement <4 x float> undef, float %a.0, i32 0 %vecinit9 = insertelement <4 x float> %vecinit, float %b.0, i32 1 %vecinit10 = insertelement <4 x float> %vecinit9, float %c.0, i32 2 %vecinit11 = insertelement <4 x float> %vecinit10, float %add, i32 3 tail call void @llvm.arm.neon.vst1.v4f32(i8* %0, <4 x float> %vecinit11, i32 4) ret void } declare <4 x float> @llvm.arm.neon.vld1.v4f32(i8*, i32) nounwind readonly declare void @llvm.arm.neon.vst1.v4f32(i8*, <4 x float>, i32) nounwind ; CHECK: pr13999 define void @pr13999() nounwind readonly { entry: br i1 true, label %outer_loop, label %loop.end outer_loop: %d = phi double [ 0.0, %entry ], [ %add, %after_inner_loop ] %0 = insertelement <2 x double> , double %d, i32 0 br i1 undef, label %after_inner_loop, label %inner_loop inner_loop: br i1 true, label %after_inner_loop, label %inner_loop after_inner_loop: %1 = phi <2 x double> [ %0, %outer_loop ], [ , %inner_loop ] %2 = extractelement <2 x double> %1, i32 1 %add = fadd double 1.0, %2 br i1 false, label %loop.end, label %outer_loop loop.end: %d.end = phi double [ 0.0, %entry ], [ %add, %after_inner_loop ] ret void } ; CHECK: pr14078 define arm_aapcs_vfpcc i32 @pr14078(i8* nocapture %arg, i8* nocapture %arg1, i32 %arg2) nounwind uwtable readonly { bb: br i1 undef, label %bb31, label %bb3 bb3: ; preds = %bb12, %bb %tmp = shufflevector <2 x i64> undef, <2 x i64> undef, <1 x i32> zeroinitializer %tmp4 = bitcast <1 x i64> %tmp to <2 x float> %tmp5 = shufflevector <2 x float> %tmp4, <2 x float> undef, <4 x i32> zeroinitializer %tmp6 = bitcast <4 x float> %tmp5 to <2 x i64> %tmp7 = shufflevector <2 x i64> %tmp6, <2 x i64> undef, <1 x i32> zeroinitializer %tmp8 = bitcast <1 x i64> %tmp7 to <2 x float> %tmp9 = tail call <2 x float> @baz(<2 x float> , <2 x float> %tmp8, <2 x float> zeroinitializer) nounwind br i1 undef, label %bb10, label %bb12 bb10: ; preds = %bb3 %tmp11 = load <4 x float>* undef, align 8 br label %bb12 bb12: ; preds = %bb10, %bb3 %tmp13 = shufflevector <2 x float> %tmp9, <2 x float> zeroinitializer, <2 x i32> %tmp14 = bitcast <2 x float> %tmp13 to <1 x i64> %tmp15 = shufflevector <1 x i64> %tmp14, <1 x i64> zeroinitializer, <2 x i32> %tmp16 = bitcast <2 x i64> %tmp15 to <4 x float> %tmp17 = fmul <4 x float> zeroinitializer, %tmp16 %tmp18 = bitcast <4 x float> %tmp17 to <2 x i64> %tmp19 = shufflevector <2 x i64> %tmp18, <2 x i64> undef, <1 x i32> zeroinitializer %tmp20 = bitcast <1 x i64> %tmp19 to <2 x float> %tmp21 = tail call <2 x float> @baz67(<2 x float> %tmp20, <2 x float> undef) nounwind %tmp22 = tail call <2 x float> @baz67(<2 x float> %tmp21, <2 x float> %tmp21) nounwind %tmp23 = shufflevector <2 x float> %tmp22, <2 x float> undef, <4 x i32> zeroinitializer %tmp24 = bitcast <4 x float> %tmp23 to <2 x i64> %tmp25 = shufflevector <2 x i64> %tmp24, <2 x i64> undef, <1 x i32> zeroinitializer %tmp26 = bitcast <1 x i64> %tmp25 to <2 x float> %tmp27 = extractelement <2 x float> %tmp26, i32 0 %tmp28 = fcmp olt float %tmp27, 0.000000e+00 %tmp29 = select i1 %tmp28, i32 0, i32 undef %tmp30 = icmp ult i32 undef, %arg2 br i1 %tmp30, label %bb3, label %bb31 bb31: ; preds = %bb12, %bb %tmp32 = phi i32 [ 1, %bb ], [ %tmp29, %bb12 ] ret i32 %tmp32 } declare <2 x float> @baz(<2 x float>, <2 x float>, <2 x float>) nounwind readnone declare <2 x float> @baz67(<2 x float>, <2 x float>) nounwind readnone