//===-- X86InstructionInfo.def - X86 Instruction Information ----*- C++ -*-===// // // This file describes all of the instructions that the X86 backend uses. It // relys on an external 'I' macro being defined that takes the arguments // specified below, and is used to make all of the information relevant to an // instruction be in one place. // // Note that X86 Instructions always have the destination register listed as // operand 0, unless it does not produce a value (in which case the TSFlags will // include X86II::Void). // //===----------------------------------------------------------------------===// // NOTE: No include guards desired #ifndef I #errror "Must define I macro before including X86/X86InstructionInfo.def!" #endif // Arguments to be passed into the I macro // #1: Enum name - This ends up being the opcode symbol in the X86 namespace // #2: Opcode name, as used by the gnu assembler // #3: Instruction Flags - This should be a field or'd together that contains // constants from the MachineInstrInfo.h file. // #4: Target Specific Flags - Another bitfield containing X86 specific flags // that we are interested in for each instruction. These should be flags // defined in X86InstrInfo.h in the X86II namespace. // // The first instruction must always be the PHI instruction: (FIXME, not yet) I(PHI , "phi", 0, 0) // The second instruction must always be the noop instruction: (FIXME, not yet) I(NOOP , "nop", 0, X86II::Void) // nop 90 // Flow control instructions I(RET , "ret", M_RET_FLAG, X86II::Void) // ret CB I(JMP , "jmp", M_BRANCH_FLAG, X86II::Void) // jmp foo EB|E9 cb|w // Move instructions I(MOVrr8 , "movb", 0, 0) // R8 = R8 88/r I(MOVrr16 , "movw", 0, 0) // R16 = R16 89/r I(MOVrr32 , "movl", 0, 0) // R32 = R32 89/r I(MOVir8 , "movb", 0, 0) // R8 = imm8 B0+ rb I(MOVir16 , "movw", 0, 0) // R16 = imm16 B8+ rw I(MOVir32 , "movl", 0, 0) // R32 = imm32 B8+ rd // Arithmetic instructions I(ADDrr8 , "addb", 0, 0) // R8 += R8 00/r I(ADDrr16 , "addw", 0, 0) // R16 += R16 01/r I(ADDrr32 , "addl", 0, 0) // R32 += R32 01/r I(SUBrr8 , "subb", 0, 0) // R8 -= R8 2A/r I(SUBrr16 , "subw", 0, 0) // R16 -= R16 2B/r I(SUBrr32 , "subl", 0, 0) // R32 -= R32 2B/r I(MULrr8 , "mulb", 0, 0) // AX = AL*R8 F6/4 I(MULrr16 , "mulw", 0, 0) // DX:AX= AX*R16 F7/4 I(MULrr32 , "mull", 0, 0) // ED:EA= EA*R32 F7/4 // Logical operators I(ANDrr8 , "andb", 0, 0) // R8 &= R8 20/r I(ANDrr16 , "andw", 0, 0) // R16 &= R16 21/r I(ANDrr32 , "andl", 0, 0) // R32 &= R32 21/r I(ORrr8 , "orb", 0, 0) // R8 |= R8 08/r I(ORrr16 , "orw", 0, 0) // R16 |= R16 09/r I(ORrr32 , "orl", 0, 0) // R32 |= R32 09/r I(XORrr8 , "xorb", 0, 0) // R8 ^= R8 30/r I(XORrr16 , "xorw", 0, 0) // R16 ^= R16 31/r I(XORrr32 , "xorl", 0, 0) // R32 ^= R32 31/r // Shift instructions I(SHLrr8 , "shlb", 0, 0) // R8 <<= cl D2/4 I(SHLir8 , "shlb", 0, 0) // R8 <<= imm8 C0/4 ib I(SHLrr16 , "shlw", 0, 0) // R16 <<= cl D3/4 I(SHLir16 , "shlw", 0, 0) // R16 <<= imm8 C1/4 ib I(SHLrr32 , "shll", 0, 0) // R32 <<= cl D3/4 I(SHLir32 , "shll", 0, 0) // R32 <<= imm8 C1/4 ib I(SHRrr8 , "shrb", 0, 0) // R8 >>>= cl D2/5 I(SHRir8 , "shrb", 0, 0) // R8 >>>= imm8 C0/5 ib I(SHRrr16 , "shrw", 0, 0) // R16 >>>= cl D3/5 I(SHRir16 , "shrw", 0, 0) // R16 >>>= imm8 C1/5 ib I(SHRrr32 , "shrl", 0, 0) // R32 >>>= cl D3/5 I(SHRir32 , "shrl", 0, 0) // R32 >>>= imm8 C1/5 ib I(SARrr8 , "sarb", 0, 0) // R8 >>= cl D2/7 I(SARir8 , "sarb", 0, 0) // R8 >>= imm8 C0/7 ib I(SARrr16 , "sarw", 0, 0) // R16 >>= cl D3/7 I(SARir16 , "sarw", 0, 0) // R16 >>= imm8 C1/7 ib I(SARrr32 , "sarl", 0, 0) // R32 >>= cl D3/7 I(SARir32 , "sarl", 0, 0) // R32 >>= imm8 C1/7 ib // At this point, I is dead, so undefine the macro #undef I