/*===-- Lexer.l - Scanner for llvm assembly files --------------*- C++ -*--===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the flex scanner for LLVM assembly languages files. // //===----------------------------------------------------------------------===*/ %option prefix="llvmAsm" %option yylineno %option nostdinit %option never-interactive %option batch %option noyywrap %option nodefault %option 8bit %option outfile="Lexer.cpp" %option ecs %option noreject %option noyymore %{ #include "ParserInternals.h" #include "llvm/Module.h" #include "llvm/Support/MathExtras.h" #include #include "llvmAsmParser.h" #include #include void set_scan_file(FILE * F){ yy_switch_to_buffer(yy_create_buffer( F, YY_BUF_SIZE ) ); } void set_scan_string (const char * str) { yy_scan_string (str); } // Construct a token value for a non-obsolete token #define RET_TOK(type, Enum, sym) \ llvmAsmlval.type = Instruction::Enum; \ return sym // Construct a token value for an obsolete token #define RET_TY(CTYPE, SYM) \ llvmAsmlval.PrimType = CTYPE;\ return SYM namespace llvm { // TODO: All of the static identifiers are figured out by the lexer, // these should be hashed to reduce the lexer size // atoull - Convert an ascii string of decimal digits into the unsigned long // long representation... this does not have to do input error checking, // because we know that the input will be matched by a suitable regex... // static uint64_t atoull(const char *Buffer) { uint64_t Result = 0; for (; *Buffer; Buffer++) { uint64_t OldRes = Result; Result *= 10; Result += *Buffer-'0'; if (Result < OldRes) // Uh, oh, overflow detected!!! GenerateError("constant bigger than 64 bits detected!"); } return Result; } static uint64_t HexIntToVal(const char *Buffer) { uint64_t Result = 0; for (; *Buffer; ++Buffer) { uint64_t OldRes = Result; Result *= 16; char C = *Buffer; if (C >= '0' && C <= '9') Result += C-'0'; else if (C >= 'A' && C <= 'F') Result += C-'A'+10; else if (C >= 'a' && C <= 'f') Result += C-'a'+10; if (Result < OldRes) // Uh, oh, overflow detected!!! GenerateError("constant bigger than 64 bits detected!"); } return Result; } // HexToFP - Convert the ascii string in hexadecimal format to the floating // point representation of it. // static double HexToFP(const char *Buffer) { return BitsToDouble(HexIntToVal(Buffer)); // Cast Hex constant to double } static void HexToIntPair(const char *Buffer, uint64_t Pair[2]) { Pair[0] = 0; for (int i=0; i<16; i++, Buffer++) { assert(*Buffer); Pair[0] *= 16; char C = *Buffer; if (C >= '0' && C <= '9') Pair[0] += C-'0'; else if (C >= 'A' && C <= 'F') Pair[0] += C-'A'+10; else if (C >= 'a' && C <= 'f') Pair[0] += C-'a'+10; } Pair[1] = 0; for (int i=0; i<16 && *Buffer; i++, Buffer++) { Pair[1] *= 16; char C = *Buffer; if (C >= '0' && C <= '9') Pair[1] += C-'0'; else if (C >= 'A' && C <= 'F') Pair[1] += C-'A'+10; else if (C >= 'a' && C <= 'f') Pair[1] += C-'a'+10; } if (*Buffer) GenerateError("constant bigger than 128 bits detected!"); } // UnEscapeLexed - Run through the specified buffer and change \xx codes to the // appropriate character. char *UnEscapeLexed(char *Buffer, char* EndBuffer) { char *BOut = Buffer; for (char *BIn = Buffer; *BIn; ) { if (BIn[0] == '\\') { if (BIn < EndBuffer-1 && BIn[1] == '\\') { *BOut++ = '\\'; // Two \ becomes one BIn += 2; } else if (BIn < EndBuffer-2 && isxdigit(BIn[1]) && isxdigit(BIn[2])) { char Tmp = BIn[3]; BIn[3] = 0; // Terminate string *BOut = (char)strtol(BIn+1, 0, 16); // Convert to number BIn[3] = Tmp; // Restore character BIn += 3; // Skip over handled chars ++BOut; } else { *BOut++ = *BIn++; } } else { *BOut++ = *BIn++; } } return BOut; } } // End llvm namespace using namespace llvm; #define YY_NEVER_INTERACTIVE 1 %} /* Comments start with a ; and go till end of line */ Comment ;.* /* Local Values and Type identifiers start with a % sign */ LocalVarName %[-a-zA-Z$._][-a-zA-Z$._0-9]* /* Global Value identifiers start with an @ sign */ GlobalVarName @[-a-zA-Z$._][-a-zA-Z$._0-9]* /* Label identifiers end with a colon */ Label [-a-zA-Z$._0-9]+: QuoteLabel \"[^\"]+\": /* Quoted names can contain any character except " and \ */ StringConstant \"[^\"]*\" AtStringConstant @\"[^\"]*\" PctStringConstant %\"[^\"]*\" /* LocalVarID/GlobalVarID: match an unnamed local variable slot ID. */ LocalVarID %[0-9]+ GlobalVarID @[0-9]+ /* Integer types are specified with i and a bitwidth */ IntegerType i[0-9]+ /* E[PN]Integer: match positive and negative literal integer values. */ PInteger [0-9]+ NInteger -[0-9]+ /* FPConstant - A Floating point constant. Float and double only. */ FPConstant [-+]?[0-9]+[.][0-9]*([eE][-+]?[0-9]+)? /* HexFPConstant - Floating point constant represented in IEEE format as a * hexadecimal number for when exponential notation is not precise enough. * Float and double only. */ HexFPConstant 0x[0-9A-Fa-f]+ /* F80HexFPConstant - x87 long double in hexadecimal format (10 bytes) */ HexFP80Constant 0xK[0-9A-Fa-f]+ /* F128HexFPConstant - IEEE 128-bit in hexadecimal format (16 bytes) */ HexFP128Constant 0xL[0-9A-Fa-f]+ /* PPC128HexFPConstant - PowerPC 128-bit in hexadecimal format (16 bytes) */ HexPPC128Constant 0xM[0-9A-Fa-f]+ /* HexIntConstant - Hexadecimal constant generated by the CFE to avoid forcing * it to deal with 64 bit numbers. */ HexIntConstant [us]0x[0-9A-Fa-f]+ /* WSNL - shorthand for whitespace followed by newline */ WSNL [ \r\t]*$ %% {Comment} { /* Ignore comments for now */ } begin { return BEGINTOK; } end { return ENDTOK; } true { return TRUETOK; } false { return FALSETOK; } declare { return DECLARE; } define { return DEFINE; } global { return GLOBAL; } constant { return CONSTANT; } internal { return INTERNAL; } linkonce { return LINKONCE; } weak { return WEAK; } appending { return APPENDING; } dllimport { return DLLIMPORT; } dllexport { return DLLEXPORT; } hidden { return HIDDEN; } protected { return PROTECTED; } extern_weak { return EXTERN_WEAK; } external { return EXTERNAL; } thread_local { return THREAD_LOCAL; } zeroinitializer { return ZEROINITIALIZER; } \.\.\. { return DOTDOTDOT; } undef { return UNDEF; } null { return NULL_TOK; } to { return TO; } tail { return TAIL; } target { return TARGET; } triple { return TRIPLE; } deplibs { return DEPLIBS; } datalayout { return DATALAYOUT; } volatile { return VOLATILE; } align { return ALIGN; } section { return SECTION; } alias { return ALIAS; } module { return MODULE; } asm { return ASM_TOK; } sideeffect { return SIDEEFFECT; } cc { return CC_TOK; } ccc { return CCC_TOK; } fastcc { return FASTCC_TOK; } coldcc { return COLDCC_TOK; } x86_stdcallcc { return X86_STDCALLCC_TOK; } x86_fastcallcc { return X86_FASTCALLCC_TOK; } signext { return SIGNEXT; } zeroext { return ZEROEXT; } inreg { return INREG; } sret { return SRET; } nounwind { return NOUNWIND; } noreturn { return NORETURN; } noalias { return NOALIAS; } byval { return BYVAL; } nest { return NEST; } sext{WSNL} { // For auto-upgrade only, drop in LLVM 3.0 return SIGNEXT; } zext{WSNL} { // For auto-upgrade only, drop in LLVM 3.0 return ZEROEXT; } void { RET_TY(Type::VoidTy, VOID); } float { RET_TY(Type::FloatTy, FLOAT); } double { RET_TY(Type::DoubleTy,DOUBLE);} x86_fp80 { RET_TY(Type::X86_FP80Ty, X86_FP80);} fp128 { RET_TY(Type::FP128Ty, FP128);} ppc_fp128 { RET_TY(Type::PPC_FP128Ty, PPC_FP128);} label { RET_TY(Type::LabelTy, LABEL); } type { return TYPE; } opaque { return OPAQUE; } {IntegerType} { uint64_t NumBits = atoull(yytext+1); if (NumBits < IntegerType::MIN_INT_BITS || NumBits > IntegerType::MAX_INT_BITS) GenerateError("Bitwidth for integer type out of range!"); const Type* Ty = IntegerType::get(NumBits); RET_TY(Ty, INTTYPE); } add { RET_TOK(BinaryOpVal, Add, ADD); } sub { RET_TOK(BinaryOpVal, Sub, SUB); } mul { RET_TOK(BinaryOpVal, Mul, MUL); } udiv { RET_TOK(BinaryOpVal, UDiv, UDIV); } sdiv { RET_TOK(BinaryOpVal, SDiv, SDIV); } fdiv { RET_TOK(BinaryOpVal, FDiv, FDIV); } urem { RET_TOK(BinaryOpVal, URem, UREM); } srem { RET_TOK(BinaryOpVal, SRem, SREM); } frem { RET_TOK(BinaryOpVal, FRem, FREM); } shl { RET_TOK(BinaryOpVal, Shl, SHL); } lshr { RET_TOK(BinaryOpVal, LShr, LSHR); } ashr { RET_TOK(BinaryOpVal, AShr, ASHR); } and { RET_TOK(BinaryOpVal, And, AND); } or { RET_TOK(BinaryOpVal, Or , OR ); } xor { RET_TOK(BinaryOpVal, Xor, XOR); } icmp { RET_TOK(OtherOpVal, ICmp, ICMP); } fcmp { RET_TOK(OtherOpVal, FCmp, FCMP); } eq { return EQ; } ne { return NE; } slt { return SLT; } sgt { return SGT; } sle { return SLE; } sge { return SGE; } ult { return ULT; } ugt { return UGT; } ule { return ULE; } uge { return UGE; } oeq { return OEQ; } one { return ONE; } olt { return OLT; } ogt { return OGT; } ole { return OLE; } oge { return OGE; } ord { return ORD; } uno { return UNO; } ueq { return UEQ; } une { return UNE; } phi { RET_TOK(OtherOpVal, PHI, PHI_TOK); } call { RET_TOK(OtherOpVal, Call, CALL); } trunc { RET_TOK(CastOpVal, Trunc, TRUNC); } zext { RET_TOK(CastOpVal, ZExt, ZEXT); } sext { RET_TOK(CastOpVal, SExt, SEXT); } fptrunc { RET_TOK(CastOpVal, FPTrunc, FPTRUNC); } fpext { RET_TOK(CastOpVal, FPExt, FPEXT); } uitofp { RET_TOK(CastOpVal, UIToFP, UITOFP); } sitofp { RET_TOK(CastOpVal, SIToFP, SITOFP); } fptoui { RET_TOK(CastOpVal, FPToUI, FPTOUI); } fptosi { RET_TOK(CastOpVal, FPToSI, FPTOSI); } inttoptr { RET_TOK(CastOpVal, IntToPtr, INTTOPTR); } ptrtoint { RET_TOK(CastOpVal, PtrToInt, PTRTOINT); } bitcast { RET_TOK(CastOpVal, BitCast, BITCAST); } select { RET_TOK(OtherOpVal, Select, SELECT); } va_arg { RET_TOK(OtherOpVal, VAArg , VAARG); } ret { RET_TOK(TermOpVal, Ret, RET); } br { RET_TOK(TermOpVal, Br, BR); } switch { RET_TOK(TermOpVal, Switch, SWITCH); } invoke { RET_TOK(TermOpVal, Invoke, INVOKE); } unwind { RET_TOK(TermOpVal, Unwind, UNWIND); } unreachable { RET_TOK(TermOpVal, Unreachable, UNREACHABLE); } malloc { RET_TOK(MemOpVal, Malloc, MALLOC); } alloca { RET_TOK(MemOpVal, Alloca, ALLOCA); } free { RET_TOK(MemOpVal, Free, FREE); } load { RET_TOK(MemOpVal, Load, LOAD); } store { RET_TOK(MemOpVal, Store, STORE); } getelementptr { RET_TOK(MemOpVal, GetElementPtr, GETELEMENTPTR); } extractelement { RET_TOK(OtherOpVal, ExtractElement, EXTRACTELEMENT); } insertelement { RET_TOK(OtherOpVal, InsertElement, INSERTELEMENT); } shufflevector { RET_TOK(OtherOpVal, ShuffleVector, SHUFFLEVECTOR); } {LocalVarName} { llvmAsmlval.StrVal = new std::string(yytext+1); // Skip % return LOCALVAR; } {GlobalVarName} { llvmAsmlval.StrVal = new std::string(yytext+1); // Skip @ return GLOBALVAR; } {Label} { yytext[yyleng-1] = 0; // nuke colon llvmAsmlval.StrVal = new std::string(yytext); return LABELSTR; } {QuoteLabel} { yytext[yyleng-2] = 0; // nuke colon, end quote const char* EndChar = UnEscapeLexed(yytext+1, yytext+yyleng); llvmAsmlval.StrVal = new std::string(yytext+1, EndChar - yytext - 1); return LABELSTR; } {StringConstant} { yytext[yyleng-1] = 0; // nuke end quote const char* EndChar = UnEscapeLexed(yytext+1, yytext+yyleng); llvmAsmlval.StrVal = new std::string(yytext+1, EndChar - yytext - 1); return STRINGCONSTANT; } {AtStringConstant} { yytext[yyleng-1] = 0; // nuke end quote const char* EndChar = UnEscapeLexed(yytext+2, yytext+yyleng); llvmAsmlval.StrVal = new std::string(yytext+2, EndChar - yytext - 2); return ATSTRINGCONSTANT; } {PctStringConstant} { yytext[yyleng-1] = 0; // nuke end quote const char* EndChar = UnEscapeLexed(yytext+2, yytext+yyleng); llvmAsmlval.StrVal = new std::string(yytext+2, EndChar - yytext - 2); return PCTSTRINGCONSTANT; } {PInteger} { uint32_t numBits = ((yyleng * 64) / 19) + 1; APInt Tmp(numBits, yytext, yyleng, 10); uint32_t activeBits = Tmp.getActiveBits(); if (activeBits > 0 && activeBits < numBits) Tmp.trunc(activeBits); if (Tmp.getBitWidth() > 64) { llvmAsmlval.APIntVal = new APInt(Tmp); return EUAPINTVAL; } else { llvmAsmlval.UInt64Val = Tmp.getZExtValue(); return EUINT64VAL; } } {NInteger} { uint32_t numBits = (((yyleng-1) * 64) / 19) + 2; APInt Tmp(numBits, yytext, yyleng, 10); uint32_t minBits = Tmp.getMinSignedBits(); if (minBits > 0 && minBits < numBits) Tmp.trunc(minBits); if (Tmp.getBitWidth() > 64) { llvmAsmlval.APIntVal = new APInt(Tmp); return ESAPINTVAL; } else { llvmAsmlval.SInt64Val = Tmp.getSExtValue(); return ESINT64VAL; } } {HexIntConstant} { int len = yyleng - 3; uint32_t bits = len * 4; APInt Tmp(bits, yytext+3, len, 16); uint32_t activeBits = Tmp.getActiveBits(); if (activeBits > 0 && activeBits < bits) Tmp.trunc(activeBits); if (Tmp.getBitWidth() > 64) { llvmAsmlval.APIntVal = new APInt(Tmp); return yytext[0] == 's' ? ESAPINTVAL : EUAPINTVAL; } else if (yytext[0] == 's') { llvmAsmlval.SInt64Val = Tmp.getSExtValue(); return ESINT64VAL; } else { llvmAsmlval.UInt64Val = Tmp.getZExtValue(); return EUINT64VAL; } } {LocalVarID} { uint64_t Val = atoull(yytext+1); if ((unsigned)Val != Val) GenerateError("Invalid value number (too large)!"); llvmAsmlval.UIntVal = unsigned(Val); return LOCALVAL_ID; } {GlobalVarID} { uint64_t Val = atoull(yytext+1); if ((unsigned)Val != Val) GenerateError("Invalid value number (too large)!"); llvmAsmlval.UIntVal = unsigned(Val); return GLOBALVAL_ID; } {FPConstant} { llvmAsmlval.FPVal = new APFloat(atof(yytext)); return FPVAL; } {HexFPConstant} { llvmAsmlval.FPVal = new APFloat(HexToFP(yytext+2)); return FPVAL; } {HexFP80Constant} { uint64_t Pair[2]; HexToIntPair(yytext+3, Pair); llvmAsmlval.FPVal = new APFloat(APInt(80, 2, Pair)); return FPVAL; } {HexFP128Constant} { uint64_t Pair[2]; HexToIntPair(yytext+3, Pair); llvmAsmlval.FPVal = new APFloat(APInt(128, 2, Pair)); return FPVAL; } {HexPPC128Constant} { uint64_t Pair[2]; HexToIntPair(yytext+3, Pair); llvmAsmlval.FPVal = new APFloat(APInt(128, 2, Pair)); return FPVAL; } <> { /* Make sure to free the internal buffers for flex when we are * done reading our input! */ yy_delete_buffer(YY_CURRENT_BUFFER); return EOF; } [ \r\t\n] { /* Ignore whitespace */ } . { return yytext[0]; } %%