2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
53 #include <asm/processor.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
58 #include "coalesced_mmio.h"
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
73 DEFINE_RAW_SPINLOCK(kvm_lock);
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
85 struct dentry *kvm_debugfs_dir;
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
101 static bool largepages_enabled = true;
103 bool kvm_is_mmio_pfn(pfn_t pfn)
105 if (pfn_valid(pfn)) {
107 struct page *tail = pfn_to_page(pfn);
108 struct page *head = compound_head(tail);
109 reserved = PageReserved(head);
112 * "head" is not a dangling pointer
113 * (compound_head takes care of that)
114 * but the hugepage may have been splitted
115 * from under us (and we may not hold a
116 * reference count on the head page so it can
117 * be reused before we run PageReferenced), so
118 * we've to check PageTail before returning
125 return PageReserved(tail);
132 * Switches to specified vcpu, until a matching vcpu_put()
134 int vcpu_load(struct kvm_vcpu *vcpu)
138 if (mutex_lock_killable(&vcpu->mutex))
140 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
141 /* The thread running this VCPU changed. */
142 struct pid *oldpid = vcpu->pid;
143 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
144 rcu_assign_pointer(vcpu->pid, newpid);
149 preempt_notifier_register(&vcpu->preempt_notifier);
150 kvm_arch_vcpu_load(vcpu, cpu);
155 void vcpu_put(struct kvm_vcpu *vcpu)
158 kvm_arch_vcpu_put(vcpu);
159 preempt_notifier_unregister(&vcpu->preempt_notifier);
161 mutex_unlock(&vcpu->mutex);
164 static void ack_flush(void *_completed)
168 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
173 struct kvm_vcpu *vcpu;
175 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
178 kvm_for_each_vcpu(i, vcpu, kvm) {
179 kvm_make_request(req, vcpu);
182 /* Set ->requests bit before we read ->mode */
185 if (cpus != NULL && cpu != -1 && cpu != me &&
186 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
187 cpumask_set_cpu(cpu, cpus);
189 if (unlikely(cpus == NULL))
190 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
191 else if (!cpumask_empty(cpus))
192 smp_call_function_many(cpus, ack_flush, NULL, 1);
196 free_cpumask_var(cpus);
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
202 long dirty_count = kvm->tlbs_dirty;
205 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
206 ++kvm->stat.remote_tlb_flush;
207 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
210 void kvm_reload_remote_mmus(struct kvm *kvm)
212 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
215 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
217 make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
220 void kvm_make_scan_ioapic_request(struct kvm *kvm)
222 make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
225 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
230 mutex_init(&vcpu->mutex);
235 init_waitqueue_head(&vcpu->wq);
236 kvm_async_pf_vcpu_init(vcpu);
238 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
243 vcpu->run = page_address(page);
245 kvm_vcpu_set_in_spin_loop(vcpu, false);
246 kvm_vcpu_set_dy_eligible(vcpu, false);
247 vcpu->preempted = false;
249 r = kvm_arch_vcpu_init(vcpu);
255 free_page((unsigned long)vcpu->run);
259 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
261 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
264 kvm_arch_vcpu_uninit(vcpu);
265 free_page((unsigned long)vcpu->run);
267 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
269 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
270 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
272 return container_of(mn, struct kvm, mmu_notifier);
275 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
276 struct mm_struct *mm,
277 unsigned long address)
279 struct kvm *kvm = mmu_notifier_to_kvm(mn);
280 int need_tlb_flush, idx;
283 * When ->invalidate_page runs, the linux pte has been zapped
284 * already but the page is still allocated until
285 * ->invalidate_page returns. So if we increase the sequence
286 * here the kvm page fault will notice if the spte can't be
287 * established because the page is going to be freed. If
288 * instead the kvm page fault establishes the spte before
289 * ->invalidate_page runs, kvm_unmap_hva will release it
292 * The sequence increase only need to be seen at spin_unlock
293 * time, and not at spin_lock time.
295 * Increasing the sequence after the spin_unlock would be
296 * unsafe because the kvm page fault could then establish the
297 * pte after kvm_unmap_hva returned, without noticing the page
298 * is going to be freed.
300 idx = srcu_read_lock(&kvm->srcu);
301 spin_lock(&kvm->mmu_lock);
303 kvm->mmu_notifier_seq++;
304 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
305 /* we've to flush the tlb before the pages can be freed */
307 kvm_flush_remote_tlbs(kvm);
309 spin_unlock(&kvm->mmu_lock);
310 srcu_read_unlock(&kvm->srcu, idx);
313 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
314 struct mm_struct *mm,
315 unsigned long address,
318 struct kvm *kvm = mmu_notifier_to_kvm(mn);
321 idx = srcu_read_lock(&kvm->srcu);
322 spin_lock(&kvm->mmu_lock);
323 kvm->mmu_notifier_seq++;
324 kvm_set_spte_hva(kvm, address, pte);
325 spin_unlock(&kvm->mmu_lock);
326 srcu_read_unlock(&kvm->srcu, idx);
329 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
330 struct mm_struct *mm,
334 struct kvm *kvm = mmu_notifier_to_kvm(mn);
335 int need_tlb_flush = 0, idx;
337 idx = srcu_read_lock(&kvm->srcu);
338 spin_lock(&kvm->mmu_lock);
340 * The count increase must become visible at unlock time as no
341 * spte can be established without taking the mmu_lock and
342 * count is also read inside the mmu_lock critical section.
344 kvm->mmu_notifier_count++;
345 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
346 need_tlb_flush |= kvm->tlbs_dirty;
347 /* we've to flush the tlb before the pages can be freed */
349 kvm_flush_remote_tlbs(kvm);
351 spin_unlock(&kvm->mmu_lock);
352 srcu_read_unlock(&kvm->srcu, idx);
355 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
356 struct mm_struct *mm,
360 struct kvm *kvm = mmu_notifier_to_kvm(mn);
362 spin_lock(&kvm->mmu_lock);
364 * This sequence increase will notify the kvm page fault that
365 * the page that is going to be mapped in the spte could have
368 kvm->mmu_notifier_seq++;
371 * The above sequence increase must be visible before the
372 * below count decrease, which is ensured by the smp_wmb above
373 * in conjunction with the smp_rmb in mmu_notifier_retry().
375 kvm->mmu_notifier_count--;
376 spin_unlock(&kvm->mmu_lock);
378 BUG_ON(kvm->mmu_notifier_count < 0);
381 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
382 struct mm_struct *mm,
383 unsigned long address)
385 struct kvm *kvm = mmu_notifier_to_kvm(mn);
388 idx = srcu_read_lock(&kvm->srcu);
389 spin_lock(&kvm->mmu_lock);
391 young = kvm_age_hva(kvm, address);
393 kvm_flush_remote_tlbs(kvm);
395 spin_unlock(&kvm->mmu_lock);
396 srcu_read_unlock(&kvm->srcu, idx);
401 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
402 struct mm_struct *mm,
403 unsigned long address)
405 struct kvm *kvm = mmu_notifier_to_kvm(mn);
408 idx = srcu_read_lock(&kvm->srcu);
409 spin_lock(&kvm->mmu_lock);
410 young = kvm_test_age_hva(kvm, address);
411 spin_unlock(&kvm->mmu_lock);
412 srcu_read_unlock(&kvm->srcu, idx);
417 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
418 struct mm_struct *mm)
420 struct kvm *kvm = mmu_notifier_to_kvm(mn);
423 idx = srcu_read_lock(&kvm->srcu);
424 kvm_arch_flush_shadow_all(kvm);
425 srcu_read_unlock(&kvm->srcu, idx);
428 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
429 .invalidate_page = kvm_mmu_notifier_invalidate_page,
430 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
431 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
432 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
433 .test_young = kvm_mmu_notifier_test_young,
434 .change_pte = kvm_mmu_notifier_change_pte,
435 .release = kvm_mmu_notifier_release,
438 static int kvm_init_mmu_notifier(struct kvm *kvm)
440 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
441 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
444 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
446 static int kvm_init_mmu_notifier(struct kvm *kvm)
451 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
453 static void kvm_init_memslots_id(struct kvm *kvm)
456 struct kvm_memslots *slots = kvm->memslots;
458 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
459 slots->id_to_index[i] = slots->memslots[i].id = i;
462 static struct kvm *kvm_create_vm(unsigned long type)
465 struct kvm *kvm = kvm_arch_alloc_vm();
468 return ERR_PTR(-ENOMEM);
470 r = kvm_arch_init_vm(kvm, type);
472 goto out_err_nodisable;
474 r = hardware_enable_all();
476 goto out_err_nodisable;
478 #ifdef CONFIG_HAVE_KVM_IRQCHIP
479 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
480 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
483 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
486 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
489 kvm_init_memslots_id(kvm);
490 if (init_srcu_struct(&kvm->srcu))
492 for (i = 0; i < KVM_NR_BUSES; i++) {
493 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
499 spin_lock_init(&kvm->mmu_lock);
500 kvm->mm = current->mm;
501 atomic_inc(&kvm->mm->mm_count);
502 kvm_eventfd_init(kvm);
503 mutex_init(&kvm->lock);
504 mutex_init(&kvm->irq_lock);
505 mutex_init(&kvm->slots_lock);
506 atomic_set(&kvm->users_count, 1);
507 INIT_LIST_HEAD(&kvm->devices);
509 r = kvm_init_mmu_notifier(kvm);
513 raw_spin_lock(&kvm_lock);
514 list_add(&kvm->vm_list, &vm_list);
515 raw_spin_unlock(&kvm_lock);
520 cleanup_srcu_struct(&kvm->srcu);
522 hardware_disable_all();
524 for (i = 0; i < KVM_NR_BUSES; i++)
525 kfree(kvm->buses[i]);
526 kfree(kvm->memslots);
527 kvm_arch_free_vm(kvm);
532 * Avoid using vmalloc for a small buffer.
533 * Should not be used when the size is statically known.
535 void *kvm_kvzalloc(unsigned long size)
537 if (size > PAGE_SIZE)
538 return vzalloc(size);
540 return kzalloc(size, GFP_KERNEL);
543 void kvm_kvfree(const void *addr)
545 if (is_vmalloc_addr(addr))
551 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
553 if (!memslot->dirty_bitmap)
556 kvm_kvfree(memslot->dirty_bitmap);
557 memslot->dirty_bitmap = NULL;
561 * Free any memory in @free but not in @dont.
563 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
564 struct kvm_memory_slot *dont)
566 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
567 kvm_destroy_dirty_bitmap(free);
569 kvm_arch_free_memslot(free, dont);
574 void kvm_free_physmem(struct kvm *kvm)
576 struct kvm_memslots *slots = kvm->memslots;
577 struct kvm_memory_slot *memslot;
579 kvm_for_each_memslot(memslot, slots)
580 kvm_free_physmem_slot(memslot, NULL);
582 kfree(kvm->memslots);
585 static void kvm_destroy_devices(struct kvm *kvm)
587 struct list_head *node, *tmp;
589 list_for_each_safe(node, tmp, &kvm->devices) {
590 struct kvm_device *dev =
591 list_entry(node, struct kvm_device, vm_node);
594 dev->ops->destroy(dev);
598 static void kvm_destroy_vm(struct kvm *kvm)
601 struct mm_struct *mm = kvm->mm;
603 kvm_arch_sync_events(kvm);
604 raw_spin_lock(&kvm_lock);
605 list_del(&kvm->vm_list);
606 raw_spin_unlock(&kvm_lock);
607 kvm_free_irq_routing(kvm);
608 for (i = 0; i < KVM_NR_BUSES; i++)
609 kvm_io_bus_destroy(kvm->buses[i]);
610 kvm_coalesced_mmio_free(kvm);
611 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
612 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
614 kvm_arch_flush_shadow_all(kvm);
616 kvm_arch_destroy_vm(kvm);
617 kvm_destroy_devices(kvm);
618 kvm_free_physmem(kvm);
619 cleanup_srcu_struct(&kvm->srcu);
620 kvm_arch_free_vm(kvm);
621 hardware_disable_all();
625 void kvm_get_kvm(struct kvm *kvm)
627 atomic_inc(&kvm->users_count);
629 EXPORT_SYMBOL_GPL(kvm_get_kvm);
631 void kvm_put_kvm(struct kvm *kvm)
633 if (atomic_dec_and_test(&kvm->users_count))
636 EXPORT_SYMBOL_GPL(kvm_put_kvm);
639 static int kvm_vm_release(struct inode *inode, struct file *filp)
641 struct kvm *kvm = filp->private_data;
643 kvm_irqfd_release(kvm);
650 * Allocation size is twice as large as the actual dirty bitmap size.
651 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
653 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
656 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
658 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
659 if (!memslot->dirty_bitmap)
662 #endif /* !CONFIG_S390 */
666 static int cmp_memslot(const void *slot1, const void *slot2)
668 struct kvm_memory_slot *s1, *s2;
670 s1 = (struct kvm_memory_slot *)slot1;
671 s2 = (struct kvm_memory_slot *)slot2;
673 if (s1->npages < s2->npages)
675 if (s1->npages > s2->npages)
682 * Sort the memslots base on its size, so the larger slots
683 * will get better fit.
685 static void sort_memslots(struct kvm_memslots *slots)
689 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
690 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
692 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
693 slots->id_to_index[slots->memslots[i].id] = i;
696 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new,
701 struct kvm_memory_slot *old = id_to_memslot(slots, id);
702 unsigned long npages = old->npages;
705 if (new->npages != npages)
706 sort_memslots(slots);
709 slots->generation = last_generation + 1;
712 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
714 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
716 #ifdef KVM_CAP_READONLY_MEM
717 valid_flags |= KVM_MEM_READONLY;
720 if (mem->flags & ~valid_flags)
726 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
727 struct kvm_memslots *slots, struct kvm_memory_slot *new)
729 struct kvm_memslots *old_memslots = kvm->memslots;
731 update_memslots(slots, new, kvm->memslots->generation);
732 rcu_assign_pointer(kvm->memslots, slots);
733 synchronize_srcu_expedited(&kvm->srcu);
738 * Allocate some memory and give it an address in the guest physical address
741 * Discontiguous memory is allowed, mostly for framebuffers.
743 * Must be called holding mmap_sem for write.
745 int __kvm_set_memory_region(struct kvm *kvm,
746 struct kvm_userspace_memory_region *mem)
750 unsigned long npages;
751 struct kvm_memory_slot *slot;
752 struct kvm_memory_slot old, new;
753 struct kvm_memslots *slots = NULL, *old_memslots;
754 enum kvm_mr_change change;
756 r = check_memory_region_flags(mem);
761 /* General sanity checks */
762 if (mem->memory_size & (PAGE_SIZE - 1))
764 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
766 /* We can read the guest memory with __xxx_user() later on. */
767 if ((mem->slot < KVM_USER_MEM_SLOTS) &&
768 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
769 !access_ok(VERIFY_WRITE,
770 (void __user *)(unsigned long)mem->userspace_addr,
773 if (mem->slot >= KVM_MEM_SLOTS_NUM)
775 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
778 slot = id_to_memslot(kvm->memslots, mem->slot);
779 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
780 npages = mem->memory_size >> PAGE_SHIFT;
783 if (npages > KVM_MEM_MAX_NR_PAGES)
787 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
792 new.base_gfn = base_gfn;
794 new.flags = mem->flags;
799 change = KVM_MR_CREATE;
800 else { /* Modify an existing slot. */
801 if ((mem->userspace_addr != old.userspace_addr) ||
802 (npages != old.npages) ||
803 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
806 if (base_gfn != old.base_gfn)
807 change = KVM_MR_MOVE;
808 else if (new.flags != old.flags)
809 change = KVM_MR_FLAGS_ONLY;
810 else { /* Nothing to change. */
815 } else if (old.npages) {
816 change = KVM_MR_DELETE;
817 } else /* Modify a non-existent slot: disallowed. */
820 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
821 /* Check for overlaps */
823 kvm_for_each_memslot(slot, kvm->memslots) {
824 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
825 (slot->id == mem->slot))
827 if (!((base_gfn + npages <= slot->base_gfn) ||
828 (base_gfn >= slot->base_gfn + slot->npages)))
833 /* Free page dirty bitmap if unneeded */
834 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
835 new.dirty_bitmap = NULL;
838 if (change == KVM_MR_CREATE) {
839 new.userspace_addr = mem->userspace_addr;
841 if (kvm_arch_create_memslot(&new, npages))
845 /* Allocate page dirty bitmap if needed */
846 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
847 if (kvm_create_dirty_bitmap(&new) < 0)
851 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
853 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
857 slot = id_to_memslot(slots, mem->slot);
858 slot->flags |= KVM_MEMSLOT_INVALID;
860 old_memslots = install_new_memslots(kvm, slots, NULL);
862 /* slot was deleted or moved, clear iommu mapping */
863 kvm_iommu_unmap_pages(kvm, &old);
864 /* From this point no new shadow pages pointing to a deleted,
865 * or moved, memslot will be created.
867 * validation of sp->gfn happens in:
868 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
869 * - kvm_is_visible_gfn (mmu_check_roots)
871 kvm_arch_flush_shadow_memslot(kvm, slot);
872 slots = old_memslots;
875 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
881 * We can re-use the old_memslots from above, the only difference
882 * from the currently installed memslots is the invalid flag. This
883 * will get overwritten by update_memslots anyway.
886 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
893 * IOMMU mapping: New slots need to be mapped. Old slots need to be
894 * un-mapped and re-mapped if their base changes. Since base change
895 * unmapping is handled above with slot deletion, mapping alone is
896 * needed here. Anything else the iommu might care about for existing
897 * slots (size changes, userspace addr changes and read-only flag
898 * changes) is disallowed above, so any other attribute changes getting
899 * here can be skipped.
901 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
902 r = kvm_iommu_map_pages(kvm, &new);
907 /* actual memory is freed via old in kvm_free_physmem_slot below */
908 if (change == KVM_MR_DELETE) {
909 new.dirty_bitmap = NULL;
910 memset(&new.arch, 0, sizeof(new.arch));
913 old_memslots = install_new_memslots(kvm, slots, &new);
915 kvm_arch_commit_memory_region(kvm, mem, &old, change);
917 kvm_free_physmem_slot(&old, &new);
925 kvm_free_physmem_slot(&new, &old);
929 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
931 int kvm_set_memory_region(struct kvm *kvm,
932 struct kvm_userspace_memory_region *mem)
936 mutex_lock(&kvm->slots_lock);
937 r = __kvm_set_memory_region(kvm, mem);
938 mutex_unlock(&kvm->slots_lock);
941 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
943 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
944 struct kvm_userspace_memory_region *mem)
946 if (mem->slot >= KVM_USER_MEM_SLOTS)
948 return kvm_set_memory_region(kvm, mem);
951 int kvm_get_dirty_log(struct kvm *kvm,
952 struct kvm_dirty_log *log, int *is_dirty)
954 struct kvm_memory_slot *memslot;
957 unsigned long any = 0;
960 if (log->slot >= KVM_USER_MEM_SLOTS)
963 memslot = id_to_memslot(kvm->memslots, log->slot);
965 if (!memslot->dirty_bitmap)
968 n = kvm_dirty_bitmap_bytes(memslot);
970 for (i = 0; !any && i < n/sizeof(long); ++i)
971 any = memslot->dirty_bitmap[i];
974 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
985 bool kvm_largepages_enabled(void)
987 return largepages_enabled;
990 void kvm_disable_largepages(void)
992 largepages_enabled = false;
994 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
996 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
998 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1000 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1002 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1004 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1006 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1007 memslot->flags & KVM_MEMSLOT_INVALID)
1012 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1014 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1016 struct vm_area_struct *vma;
1017 unsigned long addr, size;
1021 addr = gfn_to_hva(kvm, gfn);
1022 if (kvm_is_error_hva(addr))
1025 down_read(¤t->mm->mmap_sem);
1026 vma = find_vma(current->mm, addr);
1030 size = vma_kernel_pagesize(vma);
1033 up_read(¤t->mm->mmap_sem);
1038 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1040 return slot->flags & KVM_MEM_READONLY;
1043 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1044 gfn_t *nr_pages, bool write)
1046 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1047 return KVM_HVA_ERR_BAD;
1049 if (memslot_is_readonly(slot) && write)
1050 return KVM_HVA_ERR_RO_BAD;
1053 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1055 return __gfn_to_hva_memslot(slot, gfn);
1058 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1061 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1064 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1067 return gfn_to_hva_many(slot, gfn, NULL);
1069 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1071 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1073 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1075 EXPORT_SYMBOL_GPL(gfn_to_hva);
1078 * The hva returned by this function is only allowed to be read.
1079 * It should pair with kvm_read_hva() or kvm_read_hva_atomic().
1081 static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn)
1083 return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false);
1086 static int kvm_read_hva(void *data, void __user *hva, int len)
1088 return __copy_from_user(data, hva, len);
1091 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1093 return __copy_from_user_inatomic(data, hva, len);
1096 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1097 unsigned long start, int write, struct page **page)
1099 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1102 flags |= FOLL_WRITE;
1104 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1107 static inline int check_user_page_hwpoison(unsigned long addr)
1109 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1111 rc = __get_user_pages(current, current->mm, addr, 1,
1112 flags, NULL, NULL, NULL);
1113 return rc == -EHWPOISON;
1117 * The atomic path to get the writable pfn which will be stored in @pfn,
1118 * true indicates success, otherwise false is returned.
1120 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1121 bool write_fault, bool *writable, pfn_t *pfn)
1123 struct page *page[1];
1126 if (!(async || atomic))
1130 * Fast pin a writable pfn only if it is a write fault request
1131 * or the caller allows to map a writable pfn for a read fault
1134 if (!(write_fault || writable))
1137 npages = __get_user_pages_fast(addr, 1, 1, page);
1139 *pfn = page_to_pfn(page[0]);
1150 * The slow path to get the pfn of the specified host virtual address,
1151 * 1 indicates success, -errno is returned if error is detected.
1153 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1154 bool *writable, pfn_t *pfn)
1156 struct page *page[1];
1162 *writable = write_fault;
1165 down_read(¤t->mm->mmap_sem);
1166 npages = get_user_page_nowait(current, current->mm,
1167 addr, write_fault, page);
1168 up_read(¤t->mm->mmap_sem);
1170 npages = get_user_pages_fast(addr, 1, write_fault,
1175 /* map read fault as writable if possible */
1176 if (unlikely(!write_fault) && writable) {
1177 struct page *wpage[1];
1179 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1188 *pfn = page_to_pfn(page[0]);
1192 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1194 if (unlikely(!(vma->vm_flags & VM_READ)))
1197 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1204 * Pin guest page in memory and return its pfn.
1205 * @addr: host virtual address which maps memory to the guest
1206 * @atomic: whether this function can sleep
1207 * @async: whether this function need to wait IO complete if the
1208 * host page is not in the memory
1209 * @write_fault: whether we should get a writable host page
1210 * @writable: whether it allows to map a writable host page for !@write_fault
1212 * The function will map a writable host page for these two cases:
1213 * 1): @write_fault = true
1214 * 2): @write_fault = false && @writable, @writable will tell the caller
1215 * whether the mapping is writable.
1217 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1218 bool write_fault, bool *writable)
1220 struct vm_area_struct *vma;
1224 /* we can do it either atomically or asynchronously, not both */
1225 BUG_ON(atomic && async);
1227 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1231 return KVM_PFN_ERR_FAULT;
1233 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1237 down_read(¤t->mm->mmap_sem);
1238 if (npages == -EHWPOISON ||
1239 (!async && check_user_page_hwpoison(addr))) {
1240 pfn = KVM_PFN_ERR_HWPOISON;
1244 vma = find_vma_intersection(current->mm, addr, addr + 1);
1247 pfn = KVM_PFN_ERR_FAULT;
1248 else if ((vma->vm_flags & VM_PFNMAP)) {
1249 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1251 BUG_ON(!kvm_is_mmio_pfn(pfn));
1253 if (async && vma_is_valid(vma, write_fault))
1255 pfn = KVM_PFN_ERR_FAULT;
1258 up_read(¤t->mm->mmap_sem);
1263 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1264 bool *async, bool write_fault, bool *writable)
1266 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1268 if (addr == KVM_HVA_ERR_RO_BAD)
1269 return KVM_PFN_ERR_RO_FAULT;
1271 if (kvm_is_error_hva(addr))
1272 return KVM_PFN_NOSLOT;
1274 /* Do not map writable pfn in the readonly memslot. */
1275 if (writable && memslot_is_readonly(slot)) {
1280 return hva_to_pfn(addr, atomic, async, write_fault,
1284 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1285 bool write_fault, bool *writable)
1287 struct kvm_memory_slot *slot;
1292 slot = gfn_to_memslot(kvm, gfn);
1294 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1298 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1300 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1302 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1304 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1305 bool write_fault, bool *writable)
1307 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1309 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1311 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1313 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1315 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1317 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1320 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1322 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1324 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1326 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1329 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1331 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1333 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1335 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1341 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1342 if (kvm_is_error_hva(addr))
1345 if (entry < nr_pages)
1348 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1350 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1352 static struct page *kvm_pfn_to_page(pfn_t pfn)
1354 if (is_error_noslot_pfn(pfn))
1355 return KVM_ERR_PTR_BAD_PAGE;
1357 if (kvm_is_mmio_pfn(pfn)) {
1359 return KVM_ERR_PTR_BAD_PAGE;
1362 return pfn_to_page(pfn);
1365 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1369 pfn = gfn_to_pfn(kvm, gfn);
1371 return kvm_pfn_to_page(pfn);
1374 EXPORT_SYMBOL_GPL(gfn_to_page);
1376 void kvm_release_page_clean(struct page *page)
1378 WARN_ON(is_error_page(page));
1380 kvm_release_pfn_clean(page_to_pfn(page));
1382 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1384 void kvm_release_pfn_clean(pfn_t pfn)
1386 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1387 put_page(pfn_to_page(pfn));
1389 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1391 void kvm_release_page_dirty(struct page *page)
1393 WARN_ON(is_error_page(page));
1395 kvm_release_pfn_dirty(page_to_pfn(page));
1397 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1399 void kvm_release_pfn_dirty(pfn_t pfn)
1401 kvm_set_pfn_dirty(pfn);
1402 kvm_release_pfn_clean(pfn);
1404 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1406 void kvm_set_page_dirty(struct page *page)
1408 kvm_set_pfn_dirty(page_to_pfn(page));
1410 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1412 void kvm_set_pfn_dirty(pfn_t pfn)
1414 if (!kvm_is_mmio_pfn(pfn)) {
1415 struct page *page = pfn_to_page(pfn);
1416 if (!PageReserved(page))
1420 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1422 void kvm_set_pfn_accessed(pfn_t pfn)
1424 if (!kvm_is_mmio_pfn(pfn))
1425 mark_page_accessed(pfn_to_page(pfn));
1427 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1429 void kvm_get_pfn(pfn_t pfn)
1431 if (!kvm_is_mmio_pfn(pfn))
1432 get_page(pfn_to_page(pfn));
1434 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1436 static int next_segment(unsigned long len, int offset)
1438 if (len > PAGE_SIZE - offset)
1439 return PAGE_SIZE - offset;
1444 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1450 addr = gfn_to_hva_read(kvm, gfn);
1451 if (kvm_is_error_hva(addr))
1453 r = kvm_read_hva(data, (void __user *)addr + offset, len);
1458 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1460 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1462 gfn_t gfn = gpa >> PAGE_SHIFT;
1464 int offset = offset_in_page(gpa);
1467 while ((seg = next_segment(len, offset)) != 0) {
1468 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1478 EXPORT_SYMBOL_GPL(kvm_read_guest);
1480 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1485 gfn_t gfn = gpa >> PAGE_SHIFT;
1486 int offset = offset_in_page(gpa);
1488 addr = gfn_to_hva_read(kvm, gfn);
1489 if (kvm_is_error_hva(addr))
1491 pagefault_disable();
1492 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1498 EXPORT_SYMBOL(kvm_read_guest_atomic);
1500 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1501 int offset, int len)
1506 addr = gfn_to_hva(kvm, gfn);
1507 if (kvm_is_error_hva(addr))
1509 r = __copy_to_user((void __user *)addr + offset, data, len);
1512 mark_page_dirty(kvm, gfn);
1515 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1517 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1520 gfn_t gfn = gpa >> PAGE_SHIFT;
1522 int offset = offset_in_page(gpa);
1525 while ((seg = next_segment(len, offset)) != 0) {
1526 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1537 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1538 gpa_t gpa, unsigned long len)
1540 struct kvm_memslots *slots = kvm_memslots(kvm);
1541 int offset = offset_in_page(gpa);
1542 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1543 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1544 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1545 gfn_t nr_pages_avail;
1548 ghc->generation = slots->generation;
1550 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1551 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1552 if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1556 * If the requested region crosses two memslots, we still
1557 * verify that the entire region is valid here.
1559 while (start_gfn <= end_gfn) {
1560 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1561 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1563 if (kvm_is_error_hva(ghc->hva))
1565 start_gfn += nr_pages_avail;
1567 /* Use the slow path for cross page reads and writes. */
1568 ghc->memslot = NULL;
1572 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1574 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1575 void *data, unsigned long len)
1577 struct kvm_memslots *slots = kvm_memslots(kvm);
1580 BUG_ON(len > ghc->len);
1582 if (slots->generation != ghc->generation)
1583 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1585 if (unlikely(!ghc->memslot))
1586 return kvm_write_guest(kvm, ghc->gpa, data, len);
1588 if (kvm_is_error_hva(ghc->hva))
1591 r = __copy_to_user((void __user *)ghc->hva, data, len);
1594 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1598 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1600 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1601 void *data, unsigned long len)
1603 struct kvm_memslots *slots = kvm_memslots(kvm);
1606 BUG_ON(len > ghc->len);
1608 if (slots->generation != ghc->generation)
1609 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1611 if (unlikely(!ghc->memslot))
1612 return kvm_read_guest(kvm, ghc->gpa, data, len);
1614 if (kvm_is_error_hva(ghc->hva))
1617 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1623 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1625 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1627 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1630 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1632 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1634 gfn_t gfn = gpa >> PAGE_SHIFT;
1636 int offset = offset_in_page(gpa);
1639 while ((seg = next_segment(len, offset)) != 0) {
1640 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1649 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1651 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1654 if (memslot && memslot->dirty_bitmap) {
1655 unsigned long rel_gfn = gfn - memslot->base_gfn;
1657 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1661 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1663 struct kvm_memory_slot *memslot;
1665 memslot = gfn_to_memslot(kvm, gfn);
1666 mark_page_dirty_in_slot(kvm, memslot, gfn);
1670 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1672 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1677 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1679 if (kvm_arch_vcpu_runnable(vcpu)) {
1680 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1683 if (kvm_cpu_has_pending_timer(vcpu))
1685 if (signal_pending(current))
1691 finish_wait(&vcpu->wq, &wait);
1696 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1698 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1701 int cpu = vcpu->cpu;
1702 wait_queue_head_t *wqp;
1704 wqp = kvm_arch_vcpu_wq(vcpu);
1705 if (waitqueue_active(wqp)) {
1706 wake_up_interruptible(wqp);
1707 ++vcpu->stat.halt_wakeup;
1711 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1712 if (kvm_arch_vcpu_should_kick(vcpu))
1713 smp_send_reschedule(cpu);
1716 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1717 #endif /* !CONFIG_S390 */
1719 void kvm_resched(struct kvm_vcpu *vcpu)
1721 if (!need_resched())
1725 EXPORT_SYMBOL_GPL(kvm_resched);
1727 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1730 struct task_struct *task = NULL;
1734 pid = rcu_dereference(target->pid);
1736 task = get_pid_task(target->pid, PIDTYPE_PID);
1740 if (task->flags & PF_VCPU) {
1741 put_task_struct(task);
1744 ret = yield_to(task, 1);
1745 put_task_struct(task);
1749 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1751 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1753 * Helper that checks whether a VCPU is eligible for directed yield.
1754 * Most eligible candidate to yield is decided by following heuristics:
1756 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1757 * (preempted lock holder), indicated by @in_spin_loop.
1758 * Set at the beiginning and cleared at the end of interception/PLE handler.
1760 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1761 * chance last time (mostly it has become eligible now since we have probably
1762 * yielded to lockholder in last iteration. This is done by toggling
1763 * @dy_eligible each time a VCPU checked for eligibility.)
1765 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1766 * to preempted lock-holder could result in wrong VCPU selection and CPU
1767 * burning. Giving priority for a potential lock-holder increases lock
1770 * Since algorithm is based on heuristics, accessing another VCPU data without
1771 * locking does not harm. It may result in trying to yield to same VCPU, fail
1772 * and continue with next VCPU and so on.
1774 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1778 eligible = !vcpu->spin_loop.in_spin_loop ||
1779 (vcpu->spin_loop.in_spin_loop &&
1780 vcpu->spin_loop.dy_eligible);
1782 if (vcpu->spin_loop.in_spin_loop)
1783 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1789 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1791 struct kvm *kvm = me->kvm;
1792 struct kvm_vcpu *vcpu;
1793 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1799 kvm_vcpu_set_in_spin_loop(me, true);
1801 * We boost the priority of a VCPU that is runnable but not
1802 * currently running, because it got preempted by something
1803 * else and called schedule in __vcpu_run. Hopefully that
1804 * VCPU is holding the lock that we need and will release it.
1805 * We approximate round-robin by starting at the last boosted VCPU.
1807 for (pass = 0; pass < 2 && !yielded && try; pass++) {
1808 kvm_for_each_vcpu(i, vcpu, kvm) {
1809 if (!pass && i <= last_boosted_vcpu) {
1810 i = last_boosted_vcpu;
1812 } else if (pass && i > last_boosted_vcpu)
1814 if (!ACCESS_ONCE(vcpu->preempted))
1818 if (waitqueue_active(&vcpu->wq))
1820 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1823 yielded = kvm_vcpu_yield_to(vcpu);
1825 kvm->last_boosted_vcpu = i;
1827 } else if (yielded < 0) {
1834 kvm_vcpu_set_in_spin_loop(me, false);
1836 /* Ensure vcpu is not eligible during next spinloop */
1837 kvm_vcpu_set_dy_eligible(me, false);
1839 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1841 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1843 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1846 if (vmf->pgoff == 0)
1847 page = virt_to_page(vcpu->run);
1849 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1850 page = virt_to_page(vcpu->arch.pio_data);
1852 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1853 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1854 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1857 return kvm_arch_vcpu_fault(vcpu, vmf);
1863 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1864 .fault = kvm_vcpu_fault,
1867 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1869 vma->vm_ops = &kvm_vcpu_vm_ops;
1873 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1875 struct kvm_vcpu *vcpu = filp->private_data;
1877 kvm_put_kvm(vcpu->kvm);
1881 static struct file_operations kvm_vcpu_fops = {
1882 .release = kvm_vcpu_release,
1883 .unlocked_ioctl = kvm_vcpu_ioctl,
1884 #ifdef CONFIG_COMPAT
1885 .compat_ioctl = kvm_vcpu_compat_ioctl,
1887 .mmap = kvm_vcpu_mmap,
1888 .llseek = noop_llseek,
1892 * Allocates an inode for the vcpu.
1894 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1896 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1900 * Creates some virtual cpus. Good luck creating more than one.
1902 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1905 struct kvm_vcpu *vcpu, *v;
1907 if (id >= KVM_MAX_VCPUS)
1910 vcpu = kvm_arch_vcpu_create(kvm, id);
1912 return PTR_ERR(vcpu);
1914 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1916 r = kvm_arch_vcpu_setup(vcpu);
1920 mutex_lock(&kvm->lock);
1921 if (!kvm_vcpu_compatible(vcpu)) {
1923 goto unlock_vcpu_destroy;
1925 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1927 goto unlock_vcpu_destroy;
1930 kvm_for_each_vcpu(r, v, kvm)
1931 if (v->vcpu_id == id) {
1933 goto unlock_vcpu_destroy;
1936 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1938 /* Now it's all set up, let userspace reach it */
1940 r = create_vcpu_fd(vcpu);
1943 goto unlock_vcpu_destroy;
1946 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1948 atomic_inc(&kvm->online_vcpus);
1950 mutex_unlock(&kvm->lock);
1951 kvm_arch_vcpu_postcreate(vcpu);
1954 unlock_vcpu_destroy:
1955 mutex_unlock(&kvm->lock);
1957 kvm_arch_vcpu_destroy(vcpu);
1961 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1964 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1965 vcpu->sigset_active = 1;
1966 vcpu->sigset = *sigset;
1968 vcpu->sigset_active = 0;
1972 static long kvm_vcpu_ioctl(struct file *filp,
1973 unsigned int ioctl, unsigned long arg)
1975 struct kvm_vcpu *vcpu = filp->private_data;
1976 void __user *argp = (void __user *)arg;
1978 struct kvm_fpu *fpu = NULL;
1979 struct kvm_sregs *kvm_sregs = NULL;
1981 if (vcpu->kvm->mm != current->mm)
1984 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1986 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1987 * so vcpu_load() would break it.
1989 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1990 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1994 r = vcpu_load(vcpu);
2002 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2003 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2005 case KVM_GET_REGS: {
2006 struct kvm_regs *kvm_regs;
2009 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2012 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2016 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2023 case KVM_SET_REGS: {
2024 struct kvm_regs *kvm_regs;
2027 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2028 if (IS_ERR(kvm_regs)) {
2029 r = PTR_ERR(kvm_regs);
2032 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2036 case KVM_GET_SREGS: {
2037 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2041 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2045 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2050 case KVM_SET_SREGS: {
2051 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2052 if (IS_ERR(kvm_sregs)) {
2053 r = PTR_ERR(kvm_sregs);
2057 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2060 case KVM_GET_MP_STATE: {
2061 struct kvm_mp_state mp_state;
2063 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2067 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2072 case KVM_SET_MP_STATE: {
2073 struct kvm_mp_state mp_state;
2076 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2078 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2081 case KVM_TRANSLATE: {
2082 struct kvm_translation tr;
2085 if (copy_from_user(&tr, argp, sizeof tr))
2087 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2091 if (copy_to_user(argp, &tr, sizeof tr))
2096 case KVM_SET_GUEST_DEBUG: {
2097 struct kvm_guest_debug dbg;
2100 if (copy_from_user(&dbg, argp, sizeof dbg))
2102 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2105 case KVM_SET_SIGNAL_MASK: {
2106 struct kvm_signal_mask __user *sigmask_arg = argp;
2107 struct kvm_signal_mask kvm_sigmask;
2108 sigset_t sigset, *p;
2113 if (copy_from_user(&kvm_sigmask, argp,
2114 sizeof kvm_sigmask))
2117 if (kvm_sigmask.len != sizeof sigset)
2120 if (copy_from_user(&sigset, sigmask_arg->sigset,
2125 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2129 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2133 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2137 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2143 fpu = memdup_user(argp, sizeof(*fpu));
2149 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2153 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2162 #ifdef CONFIG_COMPAT
2163 static long kvm_vcpu_compat_ioctl(struct file *filp,
2164 unsigned int ioctl, unsigned long arg)
2166 struct kvm_vcpu *vcpu = filp->private_data;
2167 void __user *argp = compat_ptr(arg);
2170 if (vcpu->kvm->mm != current->mm)
2174 case KVM_SET_SIGNAL_MASK: {
2175 struct kvm_signal_mask __user *sigmask_arg = argp;
2176 struct kvm_signal_mask kvm_sigmask;
2177 compat_sigset_t csigset;
2182 if (copy_from_user(&kvm_sigmask, argp,
2183 sizeof kvm_sigmask))
2186 if (kvm_sigmask.len != sizeof csigset)
2189 if (copy_from_user(&csigset, sigmask_arg->sigset,
2192 sigset_from_compat(&sigset, &csigset);
2193 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2195 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2199 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2207 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2208 int (*accessor)(struct kvm_device *dev,
2209 struct kvm_device_attr *attr),
2212 struct kvm_device_attr attr;
2217 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2220 return accessor(dev, &attr);
2223 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2226 struct kvm_device *dev = filp->private_data;
2229 case KVM_SET_DEVICE_ATTR:
2230 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2231 case KVM_GET_DEVICE_ATTR:
2232 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2233 case KVM_HAS_DEVICE_ATTR:
2234 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2236 if (dev->ops->ioctl)
2237 return dev->ops->ioctl(dev, ioctl, arg);
2243 static int kvm_device_release(struct inode *inode, struct file *filp)
2245 struct kvm_device *dev = filp->private_data;
2246 struct kvm *kvm = dev->kvm;
2252 static const struct file_operations kvm_device_fops = {
2253 .unlocked_ioctl = kvm_device_ioctl,
2254 #ifdef CONFIG_COMPAT
2255 .compat_ioctl = kvm_device_ioctl,
2257 .release = kvm_device_release,
2260 struct kvm_device *kvm_device_from_filp(struct file *filp)
2262 if (filp->f_op != &kvm_device_fops)
2265 return filp->private_data;
2268 static int kvm_ioctl_create_device(struct kvm *kvm,
2269 struct kvm_create_device *cd)
2271 struct kvm_device_ops *ops = NULL;
2272 struct kvm_device *dev;
2273 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2277 #ifdef CONFIG_KVM_MPIC
2278 case KVM_DEV_TYPE_FSL_MPIC_20:
2279 case KVM_DEV_TYPE_FSL_MPIC_42:
2280 ops = &kvm_mpic_ops;
2283 #ifdef CONFIG_KVM_XICS
2284 case KVM_DEV_TYPE_XICS:
2285 ops = &kvm_xics_ops;
2295 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2302 ret = ops->create(dev, cd->type);
2308 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR);
2314 list_add(&dev->vm_node, &kvm->devices);
2320 static long kvm_vm_ioctl(struct file *filp,
2321 unsigned int ioctl, unsigned long arg)
2323 struct kvm *kvm = filp->private_data;
2324 void __user *argp = (void __user *)arg;
2327 if (kvm->mm != current->mm)
2330 case KVM_CREATE_VCPU:
2331 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2333 case KVM_SET_USER_MEMORY_REGION: {
2334 struct kvm_userspace_memory_region kvm_userspace_mem;
2337 if (copy_from_user(&kvm_userspace_mem, argp,
2338 sizeof kvm_userspace_mem))
2341 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2344 case KVM_GET_DIRTY_LOG: {
2345 struct kvm_dirty_log log;
2348 if (copy_from_user(&log, argp, sizeof log))
2350 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2353 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2354 case KVM_REGISTER_COALESCED_MMIO: {
2355 struct kvm_coalesced_mmio_zone zone;
2357 if (copy_from_user(&zone, argp, sizeof zone))
2359 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2362 case KVM_UNREGISTER_COALESCED_MMIO: {
2363 struct kvm_coalesced_mmio_zone zone;
2365 if (copy_from_user(&zone, argp, sizeof zone))
2367 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2372 struct kvm_irqfd data;
2375 if (copy_from_user(&data, argp, sizeof data))
2377 r = kvm_irqfd(kvm, &data);
2380 case KVM_IOEVENTFD: {
2381 struct kvm_ioeventfd data;
2384 if (copy_from_user(&data, argp, sizeof data))
2386 r = kvm_ioeventfd(kvm, &data);
2389 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2390 case KVM_SET_BOOT_CPU_ID:
2392 mutex_lock(&kvm->lock);
2393 if (atomic_read(&kvm->online_vcpus) != 0)
2396 kvm->bsp_vcpu_id = arg;
2397 mutex_unlock(&kvm->lock);
2400 #ifdef CONFIG_HAVE_KVM_MSI
2401 case KVM_SIGNAL_MSI: {
2405 if (copy_from_user(&msi, argp, sizeof msi))
2407 r = kvm_send_userspace_msi(kvm, &msi);
2411 #ifdef __KVM_HAVE_IRQ_LINE
2412 case KVM_IRQ_LINE_STATUS:
2413 case KVM_IRQ_LINE: {
2414 struct kvm_irq_level irq_event;
2417 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2420 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2421 ioctl == KVM_IRQ_LINE_STATUS);
2426 if (ioctl == KVM_IRQ_LINE_STATUS) {
2427 if (copy_to_user(argp, &irq_event, sizeof irq_event))
2435 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2436 case KVM_SET_GSI_ROUTING: {
2437 struct kvm_irq_routing routing;
2438 struct kvm_irq_routing __user *urouting;
2439 struct kvm_irq_routing_entry *entries;
2442 if (copy_from_user(&routing, argp, sizeof(routing)))
2445 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2450 entries = vmalloc(routing.nr * sizeof(*entries));
2455 if (copy_from_user(entries, urouting->entries,
2456 routing.nr * sizeof(*entries)))
2457 goto out_free_irq_routing;
2458 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2460 out_free_irq_routing:
2464 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2465 case KVM_CREATE_DEVICE: {
2466 struct kvm_create_device cd;
2469 if (copy_from_user(&cd, argp, sizeof(cd)))
2472 r = kvm_ioctl_create_device(kvm, &cd);
2477 if (copy_to_user(argp, &cd, sizeof(cd)))
2484 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2486 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2492 #ifdef CONFIG_COMPAT
2493 struct compat_kvm_dirty_log {
2497 compat_uptr_t dirty_bitmap; /* one bit per page */
2502 static long kvm_vm_compat_ioctl(struct file *filp,
2503 unsigned int ioctl, unsigned long arg)
2505 struct kvm *kvm = filp->private_data;
2508 if (kvm->mm != current->mm)
2511 case KVM_GET_DIRTY_LOG: {
2512 struct compat_kvm_dirty_log compat_log;
2513 struct kvm_dirty_log log;
2516 if (copy_from_user(&compat_log, (void __user *)arg,
2517 sizeof(compat_log)))
2519 log.slot = compat_log.slot;
2520 log.padding1 = compat_log.padding1;
2521 log.padding2 = compat_log.padding2;
2522 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2524 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2528 r = kvm_vm_ioctl(filp, ioctl, arg);
2536 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2538 struct page *page[1];
2541 gfn_t gfn = vmf->pgoff;
2542 struct kvm *kvm = vma->vm_file->private_data;
2544 addr = gfn_to_hva(kvm, gfn);
2545 if (kvm_is_error_hva(addr))
2546 return VM_FAULT_SIGBUS;
2548 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2550 if (unlikely(npages != 1))
2551 return VM_FAULT_SIGBUS;
2553 vmf->page = page[0];
2557 static const struct vm_operations_struct kvm_vm_vm_ops = {
2558 .fault = kvm_vm_fault,
2561 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2563 vma->vm_ops = &kvm_vm_vm_ops;
2567 static struct file_operations kvm_vm_fops = {
2568 .release = kvm_vm_release,
2569 .unlocked_ioctl = kvm_vm_ioctl,
2570 #ifdef CONFIG_COMPAT
2571 .compat_ioctl = kvm_vm_compat_ioctl,
2573 .mmap = kvm_vm_mmap,
2574 .llseek = noop_llseek,
2577 static int kvm_dev_ioctl_create_vm(unsigned long type)
2582 kvm = kvm_create_vm(type);
2584 return PTR_ERR(kvm);
2585 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2586 r = kvm_coalesced_mmio_init(kvm);
2592 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2599 static long kvm_dev_ioctl_check_extension_generic(long arg)
2602 case KVM_CAP_USER_MEMORY:
2603 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2604 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2605 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2606 case KVM_CAP_SET_BOOT_CPU_ID:
2608 case KVM_CAP_INTERNAL_ERROR_DATA:
2609 #ifdef CONFIG_HAVE_KVM_MSI
2610 case KVM_CAP_SIGNAL_MSI:
2612 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2613 case KVM_CAP_IRQFD_RESAMPLE:
2616 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2617 case KVM_CAP_IRQ_ROUTING:
2618 return KVM_MAX_IRQ_ROUTES;
2623 return kvm_dev_ioctl_check_extension(arg);
2626 static long kvm_dev_ioctl(struct file *filp,
2627 unsigned int ioctl, unsigned long arg)
2632 case KVM_GET_API_VERSION:
2636 r = KVM_API_VERSION;
2639 r = kvm_dev_ioctl_create_vm(arg);
2641 case KVM_CHECK_EXTENSION:
2642 r = kvm_dev_ioctl_check_extension_generic(arg);
2644 case KVM_GET_VCPU_MMAP_SIZE:
2648 r = PAGE_SIZE; /* struct kvm_run */
2650 r += PAGE_SIZE; /* pio data page */
2652 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2653 r += PAGE_SIZE; /* coalesced mmio ring page */
2656 case KVM_TRACE_ENABLE:
2657 case KVM_TRACE_PAUSE:
2658 case KVM_TRACE_DISABLE:
2662 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2668 static struct file_operations kvm_chardev_ops = {
2669 .unlocked_ioctl = kvm_dev_ioctl,
2670 .compat_ioctl = kvm_dev_ioctl,
2671 .llseek = noop_llseek,
2674 static struct miscdevice kvm_dev = {
2680 static void hardware_enable_nolock(void *junk)
2682 int cpu = raw_smp_processor_id();
2685 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2688 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2690 r = kvm_arch_hardware_enable(NULL);
2693 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2694 atomic_inc(&hardware_enable_failed);
2695 printk(KERN_INFO "kvm: enabling virtualization on "
2696 "CPU%d failed\n", cpu);
2700 static void hardware_enable(void *junk)
2702 raw_spin_lock(&kvm_lock);
2703 hardware_enable_nolock(junk);
2704 raw_spin_unlock(&kvm_lock);
2707 static void hardware_disable_nolock(void *junk)
2709 int cpu = raw_smp_processor_id();
2711 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2713 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2714 kvm_arch_hardware_disable(NULL);
2717 static void hardware_disable(void *junk)
2719 raw_spin_lock(&kvm_lock);
2720 hardware_disable_nolock(junk);
2721 raw_spin_unlock(&kvm_lock);
2724 static void hardware_disable_all_nolock(void)
2726 BUG_ON(!kvm_usage_count);
2729 if (!kvm_usage_count)
2730 on_each_cpu(hardware_disable_nolock, NULL, 1);
2733 static void hardware_disable_all(void)
2735 raw_spin_lock(&kvm_lock);
2736 hardware_disable_all_nolock();
2737 raw_spin_unlock(&kvm_lock);
2740 static int hardware_enable_all(void)
2744 raw_spin_lock(&kvm_lock);
2747 if (kvm_usage_count == 1) {
2748 atomic_set(&hardware_enable_failed, 0);
2749 on_each_cpu(hardware_enable_nolock, NULL, 1);
2751 if (atomic_read(&hardware_enable_failed)) {
2752 hardware_disable_all_nolock();
2757 raw_spin_unlock(&kvm_lock);
2762 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2767 if (!kvm_usage_count)
2770 val &= ~CPU_TASKS_FROZEN;
2773 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2775 hardware_disable(NULL);
2778 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2780 hardware_enable(NULL);
2786 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2790 * Some (well, at least mine) BIOSes hang on reboot if
2793 * And Intel TXT required VMX off for all cpu when system shutdown.
2795 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2796 kvm_rebooting = true;
2797 on_each_cpu(hardware_disable_nolock, NULL, 1);
2801 static struct notifier_block kvm_reboot_notifier = {
2802 .notifier_call = kvm_reboot,
2806 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2810 for (i = 0; i < bus->dev_count; i++) {
2811 struct kvm_io_device *pos = bus->range[i].dev;
2813 kvm_iodevice_destructor(pos);
2818 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2820 const struct kvm_io_range *r1 = p1;
2821 const struct kvm_io_range *r2 = p2;
2823 if (r1->addr < r2->addr)
2825 if (r1->addr + r1->len > r2->addr + r2->len)
2830 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2831 gpa_t addr, int len)
2833 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2839 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2840 kvm_io_bus_sort_cmp, NULL);
2845 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2846 gpa_t addr, int len)
2848 struct kvm_io_range *range, key;
2851 key = (struct kvm_io_range) {
2856 range = bsearch(&key, bus->range, bus->dev_count,
2857 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2861 off = range - bus->range;
2863 while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2869 /* kvm_io_bus_write - called under kvm->slots_lock */
2870 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2871 int len, const void *val)
2874 struct kvm_io_bus *bus;
2875 struct kvm_io_range range;
2877 range = (struct kvm_io_range) {
2882 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2883 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2887 while (idx < bus->dev_count &&
2888 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2889 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2897 /* kvm_io_bus_read - called under kvm->slots_lock */
2898 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2902 struct kvm_io_bus *bus;
2903 struct kvm_io_range range;
2905 range = (struct kvm_io_range) {
2910 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2911 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2915 while (idx < bus->dev_count &&
2916 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2917 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2925 /* Caller must hold slots_lock. */
2926 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2927 int len, struct kvm_io_device *dev)
2929 struct kvm_io_bus *new_bus, *bus;
2931 bus = kvm->buses[bus_idx];
2932 if (bus->dev_count > NR_IOBUS_DEVS - 1)
2935 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2936 sizeof(struct kvm_io_range)), GFP_KERNEL);
2939 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2940 sizeof(struct kvm_io_range)));
2941 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2942 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2943 synchronize_srcu_expedited(&kvm->srcu);
2949 /* Caller must hold slots_lock. */
2950 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2951 struct kvm_io_device *dev)
2954 struct kvm_io_bus *new_bus, *bus;
2956 bus = kvm->buses[bus_idx];
2958 for (i = 0; i < bus->dev_count; i++)
2959 if (bus->range[i].dev == dev) {
2967 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2968 sizeof(struct kvm_io_range)), GFP_KERNEL);
2972 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2973 new_bus->dev_count--;
2974 memcpy(new_bus->range + i, bus->range + i + 1,
2975 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2977 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2978 synchronize_srcu_expedited(&kvm->srcu);
2983 static struct notifier_block kvm_cpu_notifier = {
2984 .notifier_call = kvm_cpu_hotplug,
2987 static int vm_stat_get(void *_offset, u64 *val)
2989 unsigned offset = (long)_offset;
2993 raw_spin_lock(&kvm_lock);
2994 list_for_each_entry(kvm, &vm_list, vm_list)
2995 *val += *(u32 *)((void *)kvm + offset);
2996 raw_spin_unlock(&kvm_lock);
3000 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3002 static int vcpu_stat_get(void *_offset, u64 *val)
3004 unsigned offset = (long)_offset;
3006 struct kvm_vcpu *vcpu;
3010 raw_spin_lock(&kvm_lock);
3011 list_for_each_entry(kvm, &vm_list, vm_list)
3012 kvm_for_each_vcpu(i, vcpu, kvm)
3013 *val += *(u32 *)((void *)vcpu + offset);
3015 raw_spin_unlock(&kvm_lock);
3019 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3021 static const struct file_operations *stat_fops[] = {
3022 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3023 [KVM_STAT_VM] = &vm_stat_fops,
3026 static int kvm_init_debug(void)
3029 struct kvm_stats_debugfs_item *p;
3031 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3032 if (kvm_debugfs_dir == NULL)
3035 for (p = debugfs_entries; p->name; ++p) {
3036 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3037 (void *)(long)p->offset,
3038 stat_fops[p->kind]);
3039 if (p->dentry == NULL)
3046 debugfs_remove_recursive(kvm_debugfs_dir);
3051 static void kvm_exit_debug(void)
3053 struct kvm_stats_debugfs_item *p;
3055 for (p = debugfs_entries; p->name; ++p)
3056 debugfs_remove(p->dentry);
3057 debugfs_remove(kvm_debugfs_dir);
3060 static int kvm_suspend(void)
3062 if (kvm_usage_count)
3063 hardware_disable_nolock(NULL);
3067 static void kvm_resume(void)
3069 if (kvm_usage_count) {
3070 WARN_ON(raw_spin_is_locked(&kvm_lock));
3071 hardware_enable_nolock(NULL);
3075 static struct syscore_ops kvm_syscore_ops = {
3076 .suspend = kvm_suspend,
3077 .resume = kvm_resume,
3081 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3083 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3086 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3088 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3089 if (vcpu->preempted)
3090 vcpu->preempted = false;
3092 kvm_arch_vcpu_load(vcpu, cpu);
3095 static void kvm_sched_out(struct preempt_notifier *pn,
3096 struct task_struct *next)
3098 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3100 if (current->state == TASK_RUNNING)
3101 vcpu->preempted = true;
3102 kvm_arch_vcpu_put(vcpu);
3105 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3106 struct module *module)
3111 r = kvm_arch_init(opaque);
3116 * kvm_arch_init makes sure there's at most one caller
3117 * for architectures that support multiple implementations,
3118 * like intel and amd on x86.
3119 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3120 * conflicts in case kvm is already setup for another implementation.
3122 r = kvm_irqfd_init();
3126 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3131 r = kvm_arch_hardware_setup();
3135 for_each_online_cpu(cpu) {
3136 smp_call_function_single(cpu,
3137 kvm_arch_check_processor_compat,
3143 r = register_cpu_notifier(&kvm_cpu_notifier);
3146 register_reboot_notifier(&kvm_reboot_notifier);
3148 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3150 vcpu_align = __alignof__(struct kvm_vcpu);
3151 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3153 if (!kvm_vcpu_cache) {
3158 r = kvm_async_pf_init();
3162 kvm_chardev_ops.owner = module;
3163 kvm_vm_fops.owner = module;
3164 kvm_vcpu_fops.owner = module;
3166 r = misc_register(&kvm_dev);
3168 printk(KERN_ERR "kvm: misc device register failed\n");
3172 register_syscore_ops(&kvm_syscore_ops);
3174 kvm_preempt_ops.sched_in = kvm_sched_in;
3175 kvm_preempt_ops.sched_out = kvm_sched_out;
3177 r = kvm_init_debug();
3179 printk(KERN_ERR "kvm: create debugfs files failed\n");
3186 unregister_syscore_ops(&kvm_syscore_ops);
3188 kvm_async_pf_deinit();
3190 kmem_cache_destroy(kvm_vcpu_cache);
3192 unregister_reboot_notifier(&kvm_reboot_notifier);
3193 unregister_cpu_notifier(&kvm_cpu_notifier);
3196 kvm_arch_hardware_unsetup();
3198 free_cpumask_var(cpus_hardware_enabled);
3206 EXPORT_SYMBOL_GPL(kvm_init);
3211 misc_deregister(&kvm_dev);
3212 kmem_cache_destroy(kvm_vcpu_cache);
3213 kvm_async_pf_deinit();
3214 unregister_syscore_ops(&kvm_syscore_ops);
3215 unregister_reboot_notifier(&kvm_reboot_notifier);
3216 unregister_cpu_notifier(&kvm_cpu_notifier);
3217 on_each_cpu(hardware_disable_nolock, NULL, 1);
3218 kvm_arch_hardware_unsetup();
3221 free_cpumask_var(cpus_hardware_enabled);
3223 EXPORT_SYMBOL_GPL(kvm_exit);