phy: rockchip-inno-usb2: don't cancel otg_sm_work when phy exit
[firefly-linux-kernel-4.4.55.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 /* Architectures should define their poll value according to the halt latency */
70 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
71 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
72
73 /* Default doubles per-vcpu halt_poll_ns. */
74 static unsigned int halt_poll_ns_grow = 2;
75 module_param(halt_poll_ns_grow, int, S_IRUGO);
76
77 /* Default resets per-vcpu halt_poll_ns . */
78 static unsigned int halt_poll_ns_shrink;
79 module_param(halt_poll_ns_shrink, int, S_IRUGO);
80
81 /*
82  * Ordering of locks:
83  *
84  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
85  */
86
87 DEFINE_SPINLOCK(kvm_lock);
88 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
89 LIST_HEAD(vm_list);
90
91 static cpumask_var_t cpus_hardware_enabled;
92 static int kvm_usage_count;
93 static atomic_t hardware_enable_failed;
94
95 struct kmem_cache *kvm_vcpu_cache;
96 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
97
98 static __read_mostly struct preempt_ops kvm_preempt_ops;
99
100 struct dentry *kvm_debugfs_dir;
101 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
102
103 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
104                            unsigned long arg);
105 #ifdef CONFIG_KVM_COMPAT
106 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
107                                   unsigned long arg);
108 #endif
109 static int hardware_enable_all(void);
110 static void hardware_disable_all(void);
111
112 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
113
114 static void kvm_release_pfn_dirty(pfn_t pfn);
115 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
116
117 __visible bool kvm_rebooting;
118 EXPORT_SYMBOL_GPL(kvm_rebooting);
119
120 static bool largepages_enabled = true;
121
122 bool kvm_is_reserved_pfn(pfn_t pfn)
123 {
124         if (pfn_valid(pfn))
125                 return PageReserved(pfn_to_page(pfn));
126
127         return true;
128 }
129
130 /*
131  * Switches to specified vcpu, until a matching vcpu_put()
132  */
133 int vcpu_load(struct kvm_vcpu *vcpu)
134 {
135         int cpu;
136
137         if (mutex_lock_killable(&vcpu->mutex))
138                 return -EINTR;
139         cpu = get_cpu();
140         preempt_notifier_register(&vcpu->preempt_notifier);
141         kvm_arch_vcpu_load(vcpu, cpu);
142         put_cpu();
143         return 0;
144 }
145
146 void vcpu_put(struct kvm_vcpu *vcpu)
147 {
148         preempt_disable();
149         kvm_arch_vcpu_put(vcpu);
150         preempt_notifier_unregister(&vcpu->preempt_notifier);
151         preempt_enable();
152         mutex_unlock(&vcpu->mutex);
153 }
154
155 static void ack_flush(void *_completed)
156 {
157 }
158
159 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
160 {
161         int i, cpu, me;
162         cpumask_var_t cpus;
163         bool called = true;
164         struct kvm_vcpu *vcpu;
165
166         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
167
168         me = get_cpu();
169         kvm_for_each_vcpu(i, vcpu, kvm) {
170                 kvm_make_request(req, vcpu);
171                 cpu = vcpu->cpu;
172
173                 /* Set ->requests bit before we read ->mode */
174                 smp_mb();
175
176                 if (cpus != NULL && cpu != -1 && cpu != me &&
177                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
178                         cpumask_set_cpu(cpu, cpus);
179         }
180         if (unlikely(cpus == NULL))
181                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
182         else if (!cpumask_empty(cpus))
183                 smp_call_function_many(cpus, ack_flush, NULL, 1);
184         else
185                 called = false;
186         put_cpu();
187         free_cpumask_var(cpus);
188         return called;
189 }
190
191 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
192 void kvm_flush_remote_tlbs(struct kvm *kvm)
193 {
194         long dirty_count = kvm->tlbs_dirty;
195
196         smp_mb();
197         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
198                 ++kvm->stat.remote_tlb_flush;
199         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
200 }
201 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
202 #endif
203
204 void kvm_reload_remote_mmus(struct kvm *kvm)
205 {
206         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
207 }
208
209 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
210 {
211         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
212 }
213
214 void kvm_make_scan_ioapic_request(struct kvm *kvm)
215 {
216         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
217 }
218
219 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
220 {
221         struct page *page;
222         int r;
223
224         mutex_init(&vcpu->mutex);
225         vcpu->cpu = -1;
226         vcpu->kvm = kvm;
227         vcpu->vcpu_id = id;
228         vcpu->pid = NULL;
229         vcpu->halt_poll_ns = 0;
230         init_waitqueue_head(&vcpu->wq);
231         kvm_async_pf_vcpu_init(vcpu);
232
233         vcpu->pre_pcpu = -1;
234         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
235
236         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
237         if (!page) {
238                 r = -ENOMEM;
239                 goto fail;
240         }
241         vcpu->run = page_address(page);
242
243         kvm_vcpu_set_in_spin_loop(vcpu, false);
244         kvm_vcpu_set_dy_eligible(vcpu, false);
245         vcpu->preempted = false;
246
247         r = kvm_arch_vcpu_init(vcpu);
248         if (r < 0)
249                 goto fail_free_run;
250         return 0;
251
252 fail_free_run:
253         free_page((unsigned long)vcpu->run);
254 fail:
255         return r;
256 }
257 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
258
259 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
260 {
261         put_pid(vcpu->pid);
262         kvm_arch_vcpu_uninit(vcpu);
263         free_page((unsigned long)vcpu->run);
264 }
265 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
266
267 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
268 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
269 {
270         return container_of(mn, struct kvm, mmu_notifier);
271 }
272
273 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
274                                              struct mm_struct *mm,
275                                              unsigned long address)
276 {
277         struct kvm *kvm = mmu_notifier_to_kvm(mn);
278         int need_tlb_flush, idx;
279
280         /*
281          * When ->invalidate_page runs, the linux pte has been zapped
282          * already but the page is still allocated until
283          * ->invalidate_page returns. So if we increase the sequence
284          * here the kvm page fault will notice if the spte can't be
285          * established because the page is going to be freed. If
286          * instead the kvm page fault establishes the spte before
287          * ->invalidate_page runs, kvm_unmap_hva will release it
288          * before returning.
289          *
290          * The sequence increase only need to be seen at spin_unlock
291          * time, and not at spin_lock time.
292          *
293          * Increasing the sequence after the spin_unlock would be
294          * unsafe because the kvm page fault could then establish the
295          * pte after kvm_unmap_hva returned, without noticing the page
296          * is going to be freed.
297          */
298         idx = srcu_read_lock(&kvm->srcu);
299         spin_lock(&kvm->mmu_lock);
300
301         kvm->mmu_notifier_seq++;
302         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
303         /* we've to flush the tlb before the pages can be freed */
304         if (need_tlb_flush)
305                 kvm_flush_remote_tlbs(kvm);
306
307         spin_unlock(&kvm->mmu_lock);
308
309         kvm_arch_mmu_notifier_invalidate_page(kvm, address);
310
311         srcu_read_unlock(&kvm->srcu, idx);
312 }
313
314 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
315                                         struct mm_struct *mm,
316                                         unsigned long address,
317                                         pte_t pte)
318 {
319         struct kvm *kvm = mmu_notifier_to_kvm(mn);
320         int idx;
321
322         idx = srcu_read_lock(&kvm->srcu);
323         spin_lock(&kvm->mmu_lock);
324         kvm->mmu_notifier_seq++;
325         kvm_set_spte_hva(kvm, address, pte);
326         spin_unlock(&kvm->mmu_lock);
327         srcu_read_unlock(&kvm->srcu, idx);
328 }
329
330 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
331                                                     struct mm_struct *mm,
332                                                     unsigned long start,
333                                                     unsigned long end)
334 {
335         struct kvm *kvm = mmu_notifier_to_kvm(mn);
336         int need_tlb_flush = 0, idx;
337
338         idx = srcu_read_lock(&kvm->srcu);
339         spin_lock(&kvm->mmu_lock);
340         /*
341          * The count increase must become visible at unlock time as no
342          * spte can be established without taking the mmu_lock and
343          * count is also read inside the mmu_lock critical section.
344          */
345         kvm->mmu_notifier_count++;
346         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
347         need_tlb_flush |= kvm->tlbs_dirty;
348         /* we've to flush the tlb before the pages can be freed */
349         if (need_tlb_flush)
350                 kvm_flush_remote_tlbs(kvm);
351
352         spin_unlock(&kvm->mmu_lock);
353         srcu_read_unlock(&kvm->srcu, idx);
354 }
355
356 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
357                                                   struct mm_struct *mm,
358                                                   unsigned long start,
359                                                   unsigned long end)
360 {
361         struct kvm *kvm = mmu_notifier_to_kvm(mn);
362
363         spin_lock(&kvm->mmu_lock);
364         /*
365          * This sequence increase will notify the kvm page fault that
366          * the page that is going to be mapped in the spte could have
367          * been freed.
368          */
369         kvm->mmu_notifier_seq++;
370         smp_wmb();
371         /*
372          * The above sequence increase must be visible before the
373          * below count decrease, which is ensured by the smp_wmb above
374          * in conjunction with the smp_rmb in mmu_notifier_retry().
375          */
376         kvm->mmu_notifier_count--;
377         spin_unlock(&kvm->mmu_lock);
378
379         BUG_ON(kvm->mmu_notifier_count < 0);
380 }
381
382 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
383                                               struct mm_struct *mm,
384                                               unsigned long start,
385                                               unsigned long end)
386 {
387         struct kvm *kvm = mmu_notifier_to_kvm(mn);
388         int young, idx;
389
390         idx = srcu_read_lock(&kvm->srcu);
391         spin_lock(&kvm->mmu_lock);
392
393         young = kvm_age_hva(kvm, start, end);
394         if (young)
395                 kvm_flush_remote_tlbs(kvm);
396
397         spin_unlock(&kvm->mmu_lock);
398         srcu_read_unlock(&kvm->srcu, idx);
399
400         return young;
401 }
402
403 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
404                                         struct mm_struct *mm,
405                                         unsigned long start,
406                                         unsigned long end)
407 {
408         struct kvm *kvm = mmu_notifier_to_kvm(mn);
409         int young, idx;
410
411         idx = srcu_read_lock(&kvm->srcu);
412         spin_lock(&kvm->mmu_lock);
413         /*
414          * Even though we do not flush TLB, this will still adversely
415          * affect performance on pre-Haswell Intel EPT, where there is
416          * no EPT Access Bit to clear so that we have to tear down EPT
417          * tables instead. If we find this unacceptable, we can always
418          * add a parameter to kvm_age_hva so that it effectively doesn't
419          * do anything on clear_young.
420          *
421          * Also note that currently we never issue secondary TLB flushes
422          * from clear_young, leaving this job up to the regular system
423          * cadence. If we find this inaccurate, we might come up with a
424          * more sophisticated heuristic later.
425          */
426         young = kvm_age_hva(kvm, start, end);
427         spin_unlock(&kvm->mmu_lock);
428         srcu_read_unlock(&kvm->srcu, idx);
429
430         return young;
431 }
432
433 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
434                                        struct mm_struct *mm,
435                                        unsigned long address)
436 {
437         struct kvm *kvm = mmu_notifier_to_kvm(mn);
438         int young, idx;
439
440         idx = srcu_read_lock(&kvm->srcu);
441         spin_lock(&kvm->mmu_lock);
442         young = kvm_test_age_hva(kvm, address);
443         spin_unlock(&kvm->mmu_lock);
444         srcu_read_unlock(&kvm->srcu, idx);
445
446         return young;
447 }
448
449 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
450                                      struct mm_struct *mm)
451 {
452         struct kvm *kvm = mmu_notifier_to_kvm(mn);
453         int idx;
454
455         idx = srcu_read_lock(&kvm->srcu);
456         kvm_arch_flush_shadow_all(kvm);
457         srcu_read_unlock(&kvm->srcu, idx);
458 }
459
460 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
461         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
462         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
463         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
464         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
465         .clear_young            = kvm_mmu_notifier_clear_young,
466         .test_young             = kvm_mmu_notifier_test_young,
467         .change_pte             = kvm_mmu_notifier_change_pte,
468         .release                = kvm_mmu_notifier_release,
469 };
470
471 static int kvm_init_mmu_notifier(struct kvm *kvm)
472 {
473         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
474         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
475 }
476
477 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
478
479 static int kvm_init_mmu_notifier(struct kvm *kvm)
480 {
481         return 0;
482 }
483
484 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
485
486 static struct kvm_memslots *kvm_alloc_memslots(void)
487 {
488         int i;
489         struct kvm_memslots *slots;
490
491         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
492         if (!slots)
493                 return NULL;
494
495         /*
496          * Init kvm generation close to the maximum to easily test the
497          * code of handling generation number wrap-around.
498          */
499         slots->generation = -150;
500         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
501                 slots->id_to_index[i] = slots->memslots[i].id = i;
502
503         return slots;
504 }
505
506 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
507 {
508         if (!memslot->dirty_bitmap)
509                 return;
510
511         kvfree(memslot->dirty_bitmap);
512         memslot->dirty_bitmap = NULL;
513 }
514
515 /*
516  * Free any memory in @free but not in @dont.
517  */
518 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
519                               struct kvm_memory_slot *dont)
520 {
521         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
522                 kvm_destroy_dirty_bitmap(free);
523
524         kvm_arch_free_memslot(kvm, free, dont);
525
526         free->npages = 0;
527 }
528
529 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
530 {
531         struct kvm_memory_slot *memslot;
532
533         if (!slots)
534                 return;
535
536         kvm_for_each_memslot(memslot, slots)
537                 kvm_free_memslot(kvm, memslot, NULL);
538
539         kvfree(slots);
540 }
541
542 static struct kvm *kvm_create_vm(unsigned long type)
543 {
544         int r, i;
545         struct kvm *kvm = kvm_arch_alloc_vm();
546
547         if (!kvm)
548                 return ERR_PTR(-ENOMEM);
549
550         spin_lock_init(&kvm->mmu_lock);
551         atomic_inc(&current->mm->mm_count);
552         kvm->mm = current->mm;
553         kvm_eventfd_init(kvm);
554         mutex_init(&kvm->lock);
555         mutex_init(&kvm->irq_lock);
556         mutex_init(&kvm->slots_lock);
557         atomic_set(&kvm->users_count, 1);
558         INIT_LIST_HEAD(&kvm->devices);
559
560         r = kvm_arch_init_vm(kvm, type);
561         if (r)
562                 goto out_err_no_disable;
563
564         r = hardware_enable_all();
565         if (r)
566                 goto out_err_no_disable;
567
568 #ifdef CONFIG_HAVE_KVM_IRQFD
569         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
570 #endif
571
572         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
573
574         r = -ENOMEM;
575         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
576                 kvm->memslots[i] = kvm_alloc_memslots();
577                 if (!kvm->memslots[i])
578                         goto out_err_no_srcu;
579         }
580
581         if (init_srcu_struct(&kvm->srcu))
582                 goto out_err_no_srcu;
583         if (init_srcu_struct(&kvm->irq_srcu))
584                 goto out_err_no_irq_srcu;
585         for (i = 0; i < KVM_NR_BUSES; i++) {
586                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
587                                         GFP_KERNEL);
588                 if (!kvm->buses[i])
589                         goto out_err;
590         }
591
592         r = kvm_init_mmu_notifier(kvm);
593         if (r)
594                 goto out_err;
595
596         spin_lock(&kvm_lock);
597         list_add(&kvm->vm_list, &vm_list);
598         spin_unlock(&kvm_lock);
599
600         preempt_notifier_inc();
601
602         return kvm;
603
604 out_err:
605         cleanup_srcu_struct(&kvm->irq_srcu);
606 out_err_no_irq_srcu:
607         cleanup_srcu_struct(&kvm->srcu);
608 out_err_no_srcu:
609         hardware_disable_all();
610 out_err_no_disable:
611         for (i = 0; i < KVM_NR_BUSES; i++)
612                 kfree(kvm->buses[i]);
613         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
614                 kvm_free_memslots(kvm, kvm->memslots[i]);
615         kvm_arch_free_vm(kvm);
616         mmdrop(current->mm);
617         return ERR_PTR(r);
618 }
619
620 /*
621  * Avoid using vmalloc for a small buffer.
622  * Should not be used when the size is statically known.
623  */
624 void *kvm_kvzalloc(unsigned long size)
625 {
626         if (size > PAGE_SIZE)
627                 return vzalloc(size);
628         else
629                 return kzalloc(size, GFP_KERNEL);
630 }
631
632 static void kvm_destroy_devices(struct kvm *kvm)
633 {
634         struct list_head *node, *tmp;
635
636         list_for_each_safe(node, tmp, &kvm->devices) {
637                 struct kvm_device *dev =
638                         list_entry(node, struct kvm_device, vm_node);
639
640                 list_del(node);
641                 dev->ops->destroy(dev);
642         }
643 }
644
645 static void kvm_destroy_vm(struct kvm *kvm)
646 {
647         int i;
648         struct mm_struct *mm = kvm->mm;
649
650         kvm_arch_sync_events(kvm);
651         spin_lock(&kvm_lock);
652         list_del(&kvm->vm_list);
653         spin_unlock(&kvm_lock);
654         kvm_free_irq_routing(kvm);
655         for (i = 0; i < KVM_NR_BUSES; i++)
656                 kvm_io_bus_destroy(kvm->buses[i]);
657         kvm_coalesced_mmio_free(kvm);
658 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
659         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
660 #else
661         kvm_arch_flush_shadow_all(kvm);
662 #endif
663         kvm_arch_destroy_vm(kvm);
664         kvm_destroy_devices(kvm);
665         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
666                 kvm_free_memslots(kvm, kvm->memslots[i]);
667         cleanup_srcu_struct(&kvm->irq_srcu);
668         cleanup_srcu_struct(&kvm->srcu);
669         kvm_arch_free_vm(kvm);
670         preempt_notifier_dec();
671         hardware_disable_all();
672         mmdrop(mm);
673 }
674
675 void kvm_get_kvm(struct kvm *kvm)
676 {
677         atomic_inc(&kvm->users_count);
678 }
679 EXPORT_SYMBOL_GPL(kvm_get_kvm);
680
681 void kvm_put_kvm(struct kvm *kvm)
682 {
683         if (atomic_dec_and_test(&kvm->users_count))
684                 kvm_destroy_vm(kvm);
685 }
686 EXPORT_SYMBOL_GPL(kvm_put_kvm);
687
688
689 static int kvm_vm_release(struct inode *inode, struct file *filp)
690 {
691         struct kvm *kvm = filp->private_data;
692
693         kvm_irqfd_release(kvm);
694
695         kvm_put_kvm(kvm);
696         return 0;
697 }
698
699 /*
700  * Allocation size is twice as large as the actual dirty bitmap size.
701  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
702  */
703 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
704 {
705         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
706
707         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
708         if (!memslot->dirty_bitmap)
709                 return -ENOMEM;
710
711         return 0;
712 }
713
714 /*
715  * Insert memslot and re-sort memslots based on their GFN,
716  * so binary search could be used to lookup GFN.
717  * Sorting algorithm takes advantage of having initially
718  * sorted array and known changed memslot position.
719  */
720 static void update_memslots(struct kvm_memslots *slots,
721                             struct kvm_memory_slot *new)
722 {
723         int id = new->id;
724         int i = slots->id_to_index[id];
725         struct kvm_memory_slot *mslots = slots->memslots;
726
727         WARN_ON(mslots[i].id != id);
728         if (!new->npages) {
729                 WARN_ON(!mslots[i].npages);
730                 if (mslots[i].npages)
731                         slots->used_slots--;
732         } else {
733                 if (!mslots[i].npages)
734                         slots->used_slots++;
735         }
736
737         while (i < KVM_MEM_SLOTS_NUM - 1 &&
738                new->base_gfn <= mslots[i + 1].base_gfn) {
739                 if (!mslots[i + 1].npages)
740                         break;
741                 mslots[i] = mslots[i + 1];
742                 slots->id_to_index[mslots[i].id] = i;
743                 i++;
744         }
745
746         /*
747          * The ">=" is needed when creating a slot with base_gfn == 0,
748          * so that it moves before all those with base_gfn == npages == 0.
749          *
750          * On the other hand, if new->npages is zero, the above loop has
751          * already left i pointing to the beginning of the empty part of
752          * mslots, and the ">=" would move the hole backwards in this
753          * case---which is wrong.  So skip the loop when deleting a slot.
754          */
755         if (new->npages) {
756                 while (i > 0 &&
757                        new->base_gfn >= mslots[i - 1].base_gfn) {
758                         mslots[i] = mslots[i - 1];
759                         slots->id_to_index[mslots[i].id] = i;
760                         i--;
761                 }
762         } else
763                 WARN_ON_ONCE(i != slots->used_slots);
764
765         mslots[i] = *new;
766         slots->id_to_index[mslots[i].id] = i;
767 }
768
769 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
770 {
771         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
772
773 #ifdef __KVM_HAVE_READONLY_MEM
774         valid_flags |= KVM_MEM_READONLY;
775 #endif
776
777         if (mem->flags & ~valid_flags)
778                 return -EINVAL;
779
780         return 0;
781 }
782
783 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
784                 int as_id, struct kvm_memslots *slots)
785 {
786         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
787
788         /*
789          * Set the low bit in the generation, which disables SPTE caching
790          * until the end of synchronize_srcu_expedited.
791          */
792         WARN_ON(old_memslots->generation & 1);
793         slots->generation = old_memslots->generation + 1;
794
795         rcu_assign_pointer(kvm->memslots[as_id], slots);
796         synchronize_srcu_expedited(&kvm->srcu);
797
798         /*
799          * Increment the new memslot generation a second time. This prevents
800          * vm exits that race with memslot updates from caching a memslot
801          * generation that will (potentially) be valid forever.
802          */
803         slots->generation++;
804
805         kvm_arch_memslots_updated(kvm, slots);
806
807         return old_memslots;
808 }
809
810 /*
811  * Allocate some memory and give it an address in the guest physical address
812  * space.
813  *
814  * Discontiguous memory is allowed, mostly for framebuffers.
815  *
816  * Must be called holding kvm->slots_lock for write.
817  */
818 int __kvm_set_memory_region(struct kvm *kvm,
819                             const struct kvm_userspace_memory_region *mem)
820 {
821         int r;
822         gfn_t base_gfn;
823         unsigned long npages;
824         struct kvm_memory_slot *slot;
825         struct kvm_memory_slot old, new;
826         struct kvm_memslots *slots = NULL, *old_memslots;
827         int as_id, id;
828         enum kvm_mr_change change;
829
830         r = check_memory_region_flags(mem);
831         if (r)
832                 goto out;
833
834         r = -EINVAL;
835         as_id = mem->slot >> 16;
836         id = (u16)mem->slot;
837
838         /* General sanity checks */
839         if (mem->memory_size & (PAGE_SIZE - 1))
840                 goto out;
841         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
842                 goto out;
843         /* We can read the guest memory with __xxx_user() later on. */
844         if ((id < KVM_USER_MEM_SLOTS) &&
845             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
846              !access_ok(VERIFY_WRITE,
847                         (void __user *)(unsigned long)mem->userspace_addr,
848                         mem->memory_size)))
849                 goto out;
850         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
851                 goto out;
852         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
853                 goto out;
854
855         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
856         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
857         npages = mem->memory_size >> PAGE_SHIFT;
858
859         if (npages > KVM_MEM_MAX_NR_PAGES)
860                 goto out;
861
862         new = old = *slot;
863
864         new.id = id;
865         new.base_gfn = base_gfn;
866         new.npages = npages;
867         new.flags = mem->flags;
868
869         if (npages) {
870                 if (!old.npages)
871                         change = KVM_MR_CREATE;
872                 else { /* Modify an existing slot. */
873                         if ((mem->userspace_addr != old.userspace_addr) ||
874                             (npages != old.npages) ||
875                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
876                                 goto out;
877
878                         if (base_gfn != old.base_gfn)
879                                 change = KVM_MR_MOVE;
880                         else if (new.flags != old.flags)
881                                 change = KVM_MR_FLAGS_ONLY;
882                         else { /* Nothing to change. */
883                                 r = 0;
884                                 goto out;
885                         }
886                 }
887         } else {
888                 if (!old.npages)
889                         goto out;
890
891                 change = KVM_MR_DELETE;
892                 new.base_gfn = 0;
893                 new.flags = 0;
894         }
895
896         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
897                 /* Check for overlaps */
898                 r = -EEXIST;
899                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
900                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
901                             (slot->id == id))
902                                 continue;
903                         if (!((base_gfn + npages <= slot->base_gfn) ||
904                               (base_gfn >= slot->base_gfn + slot->npages)))
905                                 goto out;
906                 }
907         }
908
909         /* Free page dirty bitmap if unneeded */
910         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
911                 new.dirty_bitmap = NULL;
912
913         r = -ENOMEM;
914         if (change == KVM_MR_CREATE) {
915                 new.userspace_addr = mem->userspace_addr;
916
917                 if (kvm_arch_create_memslot(kvm, &new, npages))
918                         goto out_free;
919         }
920
921         /* Allocate page dirty bitmap if needed */
922         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
923                 if (kvm_create_dirty_bitmap(&new) < 0)
924                         goto out_free;
925         }
926
927         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
928         if (!slots)
929                 goto out_free;
930         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
931
932         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
933                 slot = id_to_memslot(slots, id);
934                 slot->flags |= KVM_MEMSLOT_INVALID;
935
936                 old_memslots = install_new_memslots(kvm, as_id, slots);
937
938                 /* slot was deleted or moved, clear iommu mapping */
939                 kvm_iommu_unmap_pages(kvm, &old);
940                 /* From this point no new shadow pages pointing to a deleted,
941                  * or moved, memslot will be created.
942                  *
943                  * validation of sp->gfn happens in:
944                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
945                  *      - kvm_is_visible_gfn (mmu_check_roots)
946                  */
947                 kvm_arch_flush_shadow_memslot(kvm, slot);
948
949                 /*
950                  * We can re-use the old_memslots from above, the only difference
951                  * from the currently installed memslots is the invalid flag.  This
952                  * will get overwritten by update_memslots anyway.
953                  */
954                 slots = old_memslots;
955         }
956
957         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
958         if (r)
959                 goto out_slots;
960
961         /* actual memory is freed via old in kvm_free_memslot below */
962         if (change == KVM_MR_DELETE) {
963                 new.dirty_bitmap = NULL;
964                 memset(&new.arch, 0, sizeof(new.arch));
965         }
966
967         update_memslots(slots, &new);
968         old_memslots = install_new_memslots(kvm, as_id, slots);
969
970         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
971
972         kvm_free_memslot(kvm, &old, &new);
973         kvfree(old_memslots);
974
975         /*
976          * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
977          * un-mapped and re-mapped if their base changes.  Since base change
978          * unmapping is handled above with slot deletion, mapping alone is
979          * needed here.  Anything else the iommu might care about for existing
980          * slots (size changes, userspace addr changes and read-only flag
981          * changes) is disallowed above, so any other attribute changes getting
982          * here can be skipped.
983          */
984         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
985                 r = kvm_iommu_map_pages(kvm, &new);
986                 return r;
987         }
988
989         return 0;
990
991 out_slots:
992         kvfree(slots);
993 out_free:
994         kvm_free_memslot(kvm, &new, &old);
995 out:
996         return r;
997 }
998 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
999
1000 int kvm_set_memory_region(struct kvm *kvm,
1001                           const struct kvm_userspace_memory_region *mem)
1002 {
1003         int r;
1004
1005         mutex_lock(&kvm->slots_lock);
1006         r = __kvm_set_memory_region(kvm, mem);
1007         mutex_unlock(&kvm->slots_lock);
1008         return r;
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1011
1012 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1013                                           struct kvm_userspace_memory_region *mem)
1014 {
1015         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1016                 return -EINVAL;
1017
1018         return kvm_set_memory_region(kvm, mem);
1019 }
1020
1021 int kvm_get_dirty_log(struct kvm *kvm,
1022                         struct kvm_dirty_log *log, int *is_dirty)
1023 {
1024         struct kvm_memslots *slots;
1025         struct kvm_memory_slot *memslot;
1026         int r, i, as_id, id;
1027         unsigned long n;
1028         unsigned long any = 0;
1029
1030         r = -EINVAL;
1031         as_id = log->slot >> 16;
1032         id = (u16)log->slot;
1033         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1034                 goto out;
1035
1036         slots = __kvm_memslots(kvm, as_id);
1037         memslot = id_to_memslot(slots, id);
1038         r = -ENOENT;
1039         if (!memslot->dirty_bitmap)
1040                 goto out;
1041
1042         n = kvm_dirty_bitmap_bytes(memslot);
1043
1044         for (i = 0; !any && i < n/sizeof(long); ++i)
1045                 any = memslot->dirty_bitmap[i];
1046
1047         r = -EFAULT;
1048         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1049                 goto out;
1050
1051         if (any)
1052                 *is_dirty = 1;
1053
1054         r = 0;
1055 out:
1056         return r;
1057 }
1058 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1059
1060 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1061 /**
1062  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1063  *      are dirty write protect them for next write.
1064  * @kvm:        pointer to kvm instance
1065  * @log:        slot id and address to which we copy the log
1066  * @is_dirty:   flag set if any page is dirty
1067  *
1068  * We need to keep it in mind that VCPU threads can write to the bitmap
1069  * concurrently. So, to avoid losing track of dirty pages we keep the
1070  * following order:
1071  *
1072  *    1. Take a snapshot of the bit and clear it if needed.
1073  *    2. Write protect the corresponding page.
1074  *    3. Copy the snapshot to the userspace.
1075  *    4. Upon return caller flushes TLB's if needed.
1076  *
1077  * Between 2 and 4, the guest may write to the page using the remaining TLB
1078  * entry.  This is not a problem because the page is reported dirty using
1079  * the snapshot taken before and step 4 ensures that writes done after
1080  * exiting to userspace will be logged for the next call.
1081  *
1082  */
1083 int kvm_get_dirty_log_protect(struct kvm *kvm,
1084                         struct kvm_dirty_log *log, bool *is_dirty)
1085 {
1086         struct kvm_memslots *slots;
1087         struct kvm_memory_slot *memslot;
1088         int r, i, as_id, id;
1089         unsigned long n;
1090         unsigned long *dirty_bitmap;
1091         unsigned long *dirty_bitmap_buffer;
1092
1093         r = -EINVAL;
1094         as_id = log->slot >> 16;
1095         id = (u16)log->slot;
1096         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1097                 goto out;
1098
1099         slots = __kvm_memslots(kvm, as_id);
1100         memslot = id_to_memslot(slots, id);
1101
1102         dirty_bitmap = memslot->dirty_bitmap;
1103         r = -ENOENT;
1104         if (!dirty_bitmap)
1105                 goto out;
1106
1107         n = kvm_dirty_bitmap_bytes(memslot);
1108
1109         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1110         memset(dirty_bitmap_buffer, 0, n);
1111
1112         spin_lock(&kvm->mmu_lock);
1113         *is_dirty = false;
1114         for (i = 0; i < n / sizeof(long); i++) {
1115                 unsigned long mask;
1116                 gfn_t offset;
1117
1118                 if (!dirty_bitmap[i])
1119                         continue;
1120
1121                 *is_dirty = true;
1122
1123                 mask = xchg(&dirty_bitmap[i], 0);
1124                 dirty_bitmap_buffer[i] = mask;
1125
1126                 if (mask) {
1127                         offset = i * BITS_PER_LONG;
1128                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1129                                                                 offset, mask);
1130                 }
1131         }
1132
1133         spin_unlock(&kvm->mmu_lock);
1134
1135         r = -EFAULT;
1136         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1137                 goto out;
1138
1139         r = 0;
1140 out:
1141         return r;
1142 }
1143 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1144 #endif
1145
1146 bool kvm_largepages_enabled(void)
1147 {
1148         return largepages_enabled;
1149 }
1150
1151 void kvm_disable_largepages(void)
1152 {
1153         largepages_enabled = false;
1154 }
1155 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1156
1157 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1158 {
1159         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1160 }
1161 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1162
1163 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1164 {
1165         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1166 }
1167
1168 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1169 {
1170         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1171
1172         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1173               memslot->flags & KVM_MEMSLOT_INVALID)
1174                 return 0;
1175
1176         return 1;
1177 }
1178 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1179
1180 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1181 {
1182         struct vm_area_struct *vma;
1183         unsigned long addr, size;
1184
1185         size = PAGE_SIZE;
1186
1187         addr = gfn_to_hva(kvm, gfn);
1188         if (kvm_is_error_hva(addr))
1189                 return PAGE_SIZE;
1190
1191         down_read(&current->mm->mmap_sem);
1192         vma = find_vma(current->mm, addr);
1193         if (!vma)
1194                 goto out;
1195
1196         size = vma_kernel_pagesize(vma);
1197
1198 out:
1199         up_read(&current->mm->mmap_sem);
1200
1201         return size;
1202 }
1203
1204 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1205 {
1206         return slot->flags & KVM_MEM_READONLY;
1207 }
1208
1209 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1210                                        gfn_t *nr_pages, bool write)
1211 {
1212         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1213                 return KVM_HVA_ERR_BAD;
1214
1215         if (memslot_is_readonly(slot) && write)
1216                 return KVM_HVA_ERR_RO_BAD;
1217
1218         if (nr_pages)
1219                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1220
1221         return __gfn_to_hva_memslot(slot, gfn);
1222 }
1223
1224 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1225                                      gfn_t *nr_pages)
1226 {
1227         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1228 }
1229
1230 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1231                                         gfn_t gfn)
1232 {
1233         return gfn_to_hva_many(slot, gfn, NULL);
1234 }
1235 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1236
1237 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1238 {
1239         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1240 }
1241 EXPORT_SYMBOL_GPL(gfn_to_hva);
1242
1243 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1244 {
1245         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1246 }
1247 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1248
1249 /*
1250  * If writable is set to false, the hva returned by this function is only
1251  * allowed to be read.
1252  */
1253 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1254                                       gfn_t gfn, bool *writable)
1255 {
1256         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1257
1258         if (!kvm_is_error_hva(hva) && writable)
1259                 *writable = !memslot_is_readonly(slot);
1260
1261         return hva;
1262 }
1263
1264 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1265 {
1266         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1267
1268         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1269 }
1270
1271 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1272 {
1273         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1274
1275         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1276 }
1277
1278 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1279         unsigned long start, int write, struct page **page)
1280 {
1281         int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1282
1283         if (write)
1284                 flags |= FOLL_WRITE;
1285
1286         return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1287 }
1288
1289 static inline int check_user_page_hwpoison(unsigned long addr)
1290 {
1291         int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1292
1293         rc = __get_user_pages(current, current->mm, addr, 1,
1294                               flags, NULL, NULL, NULL);
1295         return rc == -EHWPOISON;
1296 }
1297
1298 /*
1299  * The atomic path to get the writable pfn which will be stored in @pfn,
1300  * true indicates success, otherwise false is returned.
1301  */
1302 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1303                             bool write_fault, bool *writable, pfn_t *pfn)
1304 {
1305         struct page *page[1];
1306         int npages;
1307
1308         if (!(async || atomic))
1309                 return false;
1310
1311         /*
1312          * Fast pin a writable pfn only if it is a write fault request
1313          * or the caller allows to map a writable pfn for a read fault
1314          * request.
1315          */
1316         if (!(write_fault || writable))
1317                 return false;
1318
1319         npages = __get_user_pages_fast(addr, 1, 1, page);
1320         if (npages == 1) {
1321                 *pfn = page_to_pfn(page[0]);
1322
1323                 if (writable)
1324                         *writable = true;
1325                 return true;
1326         }
1327
1328         return false;
1329 }
1330
1331 /*
1332  * The slow path to get the pfn of the specified host virtual address,
1333  * 1 indicates success, -errno is returned if error is detected.
1334  */
1335 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1336                            bool *writable, pfn_t *pfn)
1337 {
1338         struct page *page[1];
1339         int npages = 0;
1340
1341         might_sleep();
1342
1343         if (writable)
1344                 *writable = write_fault;
1345
1346         if (async) {
1347                 down_read(&current->mm->mmap_sem);
1348                 npages = get_user_page_nowait(current, current->mm,
1349                                               addr, write_fault, page);
1350                 up_read(&current->mm->mmap_sem);
1351         } else
1352                 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1353                                                    write_fault, 0, page,
1354                                                    FOLL_TOUCH|FOLL_HWPOISON);
1355         if (npages != 1)
1356                 return npages;
1357
1358         /* map read fault as writable if possible */
1359         if (unlikely(!write_fault) && writable) {
1360                 struct page *wpage[1];
1361
1362                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1363                 if (npages == 1) {
1364                         *writable = true;
1365                         put_page(page[0]);
1366                         page[0] = wpage[0];
1367                 }
1368
1369                 npages = 1;
1370         }
1371         *pfn = page_to_pfn(page[0]);
1372         return npages;
1373 }
1374
1375 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1376 {
1377         if (unlikely(!(vma->vm_flags & VM_READ)))
1378                 return false;
1379
1380         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1381                 return false;
1382
1383         return true;
1384 }
1385
1386 /*
1387  * Pin guest page in memory and return its pfn.
1388  * @addr: host virtual address which maps memory to the guest
1389  * @atomic: whether this function can sleep
1390  * @async: whether this function need to wait IO complete if the
1391  *         host page is not in the memory
1392  * @write_fault: whether we should get a writable host page
1393  * @writable: whether it allows to map a writable host page for !@write_fault
1394  *
1395  * The function will map a writable host page for these two cases:
1396  * 1): @write_fault = true
1397  * 2): @write_fault = false && @writable, @writable will tell the caller
1398  *     whether the mapping is writable.
1399  */
1400 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1401                         bool write_fault, bool *writable)
1402 {
1403         struct vm_area_struct *vma;
1404         pfn_t pfn = 0;
1405         int npages;
1406
1407         /* we can do it either atomically or asynchronously, not both */
1408         BUG_ON(atomic && async);
1409
1410         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1411                 return pfn;
1412
1413         if (atomic)
1414                 return KVM_PFN_ERR_FAULT;
1415
1416         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1417         if (npages == 1)
1418                 return pfn;
1419
1420         down_read(&current->mm->mmap_sem);
1421         if (npages == -EHWPOISON ||
1422               (!async && check_user_page_hwpoison(addr))) {
1423                 pfn = KVM_PFN_ERR_HWPOISON;
1424                 goto exit;
1425         }
1426
1427         vma = find_vma_intersection(current->mm, addr, addr + 1);
1428
1429         if (vma == NULL)
1430                 pfn = KVM_PFN_ERR_FAULT;
1431         else if ((vma->vm_flags & VM_PFNMAP)) {
1432                 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1433                         vma->vm_pgoff;
1434                 BUG_ON(!kvm_is_reserved_pfn(pfn));
1435         } else {
1436                 if (async && vma_is_valid(vma, write_fault))
1437                         *async = true;
1438                 pfn = KVM_PFN_ERR_FAULT;
1439         }
1440 exit:
1441         up_read(&current->mm->mmap_sem);
1442         return pfn;
1443 }
1444
1445 pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1446                            bool *async, bool write_fault, bool *writable)
1447 {
1448         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1449
1450         if (addr == KVM_HVA_ERR_RO_BAD)
1451                 return KVM_PFN_ERR_RO_FAULT;
1452
1453         if (kvm_is_error_hva(addr))
1454                 return KVM_PFN_NOSLOT;
1455
1456         /* Do not map writable pfn in the readonly memslot. */
1457         if (writable && memslot_is_readonly(slot)) {
1458                 *writable = false;
1459                 writable = NULL;
1460         }
1461
1462         return hva_to_pfn(addr, atomic, async, write_fault,
1463                           writable);
1464 }
1465 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1466
1467 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1468                       bool *writable)
1469 {
1470         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1471                                     write_fault, writable);
1472 }
1473 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1474
1475 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1476 {
1477         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1478 }
1479 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1480
1481 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1482 {
1483         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1484 }
1485 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1486
1487 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1488 {
1489         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1490 }
1491 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1492
1493 pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1494 {
1495         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1496 }
1497 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1498
1499 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1500 {
1501         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1502 }
1503 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1504
1505 pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1506 {
1507         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1508 }
1509 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1510
1511 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1512                             struct page **pages, int nr_pages)
1513 {
1514         unsigned long addr;
1515         gfn_t entry;
1516
1517         addr = gfn_to_hva_many(slot, gfn, &entry);
1518         if (kvm_is_error_hva(addr))
1519                 return -1;
1520
1521         if (entry < nr_pages)
1522                 return 0;
1523
1524         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1525 }
1526 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1527
1528 static struct page *kvm_pfn_to_page(pfn_t pfn)
1529 {
1530         if (is_error_noslot_pfn(pfn))
1531                 return KVM_ERR_PTR_BAD_PAGE;
1532
1533         if (kvm_is_reserved_pfn(pfn)) {
1534                 WARN_ON(1);
1535                 return KVM_ERR_PTR_BAD_PAGE;
1536         }
1537
1538         return pfn_to_page(pfn);
1539 }
1540
1541 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1542 {
1543         pfn_t pfn;
1544
1545         pfn = gfn_to_pfn(kvm, gfn);
1546
1547         return kvm_pfn_to_page(pfn);
1548 }
1549 EXPORT_SYMBOL_GPL(gfn_to_page);
1550
1551 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1552 {
1553         pfn_t pfn;
1554
1555         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1556
1557         return kvm_pfn_to_page(pfn);
1558 }
1559 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1560
1561 void kvm_release_page_clean(struct page *page)
1562 {
1563         WARN_ON(is_error_page(page));
1564
1565         kvm_release_pfn_clean(page_to_pfn(page));
1566 }
1567 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1568
1569 void kvm_release_pfn_clean(pfn_t pfn)
1570 {
1571         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1572                 put_page(pfn_to_page(pfn));
1573 }
1574 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1575
1576 void kvm_release_page_dirty(struct page *page)
1577 {
1578         WARN_ON(is_error_page(page));
1579
1580         kvm_release_pfn_dirty(page_to_pfn(page));
1581 }
1582 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1583
1584 static void kvm_release_pfn_dirty(pfn_t pfn)
1585 {
1586         kvm_set_pfn_dirty(pfn);
1587         kvm_release_pfn_clean(pfn);
1588 }
1589
1590 void kvm_set_pfn_dirty(pfn_t pfn)
1591 {
1592         if (!kvm_is_reserved_pfn(pfn)) {
1593                 struct page *page = pfn_to_page(pfn);
1594
1595                 if (!PageReserved(page))
1596                         SetPageDirty(page);
1597         }
1598 }
1599 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1600
1601 void kvm_set_pfn_accessed(pfn_t pfn)
1602 {
1603         if (!kvm_is_reserved_pfn(pfn))
1604                 mark_page_accessed(pfn_to_page(pfn));
1605 }
1606 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1607
1608 void kvm_get_pfn(pfn_t pfn)
1609 {
1610         if (!kvm_is_reserved_pfn(pfn))
1611                 get_page(pfn_to_page(pfn));
1612 }
1613 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1614
1615 static int next_segment(unsigned long len, int offset)
1616 {
1617         if (len > PAGE_SIZE - offset)
1618                 return PAGE_SIZE - offset;
1619         else
1620                 return len;
1621 }
1622
1623 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1624                                  void *data, int offset, int len)
1625 {
1626         int r;
1627         unsigned long addr;
1628
1629         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1630         if (kvm_is_error_hva(addr))
1631                 return -EFAULT;
1632         r = __copy_from_user(data, (void __user *)addr + offset, len);
1633         if (r)
1634                 return -EFAULT;
1635         return 0;
1636 }
1637
1638 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1639                         int len)
1640 {
1641         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1642
1643         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1644 }
1645 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1646
1647 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1648                              int offset, int len)
1649 {
1650         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1651
1652         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1653 }
1654 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1655
1656 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1657 {
1658         gfn_t gfn = gpa >> PAGE_SHIFT;
1659         int seg;
1660         int offset = offset_in_page(gpa);
1661         int ret;
1662
1663         while ((seg = next_segment(len, offset)) != 0) {
1664                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1665                 if (ret < 0)
1666                         return ret;
1667                 offset = 0;
1668                 len -= seg;
1669                 data += seg;
1670                 ++gfn;
1671         }
1672         return 0;
1673 }
1674 EXPORT_SYMBOL_GPL(kvm_read_guest);
1675
1676 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1677 {
1678         gfn_t gfn = gpa >> PAGE_SHIFT;
1679         int seg;
1680         int offset = offset_in_page(gpa);
1681         int ret;
1682
1683         while ((seg = next_segment(len, offset)) != 0) {
1684                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1685                 if (ret < 0)
1686                         return ret;
1687                 offset = 0;
1688                 len -= seg;
1689                 data += seg;
1690                 ++gfn;
1691         }
1692         return 0;
1693 }
1694 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1695
1696 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1697                                    void *data, int offset, unsigned long len)
1698 {
1699         int r;
1700         unsigned long addr;
1701
1702         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1703         if (kvm_is_error_hva(addr))
1704                 return -EFAULT;
1705         pagefault_disable();
1706         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1707         pagefault_enable();
1708         if (r)
1709                 return -EFAULT;
1710         return 0;
1711 }
1712
1713 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1714                           unsigned long len)
1715 {
1716         gfn_t gfn = gpa >> PAGE_SHIFT;
1717         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1718         int offset = offset_in_page(gpa);
1719
1720         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1721 }
1722 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1723
1724 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1725                                void *data, unsigned long len)
1726 {
1727         gfn_t gfn = gpa >> PAGE_SHIFT;
1728         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1729         int offset = offset_in_page(gpa);
1730
1731         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1732 }
1733 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1734
1735 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1736                                   const void *data, int offset, int len)
1737 {
1738         int r;
1739         unsigned long addr;
1740
1741         addr = gfn_to_hva_memslot(memslot, gfn);
1742         if (kvm_is_error_hva(addr))
1743                 return -EFAULT;
1744         r = __copy_to_user((void __user *)addr + offset, data, len);
1745         if (r)
1746                 return -EFAULT;
1747         mark_page_dirty_in_slot(memslot, gfn);
1748         return 0;
1749 }
1750
1751 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1752                          const void *data, int offset, int len)
1753 {
1754         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1755
1756         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1757 }
1758 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1759
1760 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1761                               const void *data, int offset, int len)
1762 {
1763         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1764
1765         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1766 }
1767 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1768
1769 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1770                     unsigned long len)
1771 {
1772         gfn_t gfn = gpa >> PAGE_SHIFT;
1773         int seg;
1774         int offset = offset_in_page(gpa);
1775         int ret;
1776
1777         while ((seg = next_segment(len, offset)) != 0) {
1778                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1779                 if (ret < 0)
1780                         return ret;
1781                 offset = 0;
1782                 len -= seg;
1783                 data += seg;
1784                 ++gfn;
1785         }
1786         return 0;
1787 }
1788 EXPORT_SYMBOL_GPL(kvm_write_guest);
1789
1790 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1791                          unsigned long len)
1792 {
1793         gfn_t gfn = gpa >> PAGE_SHIFT;
1794         int seg;
1795         int offset = offset_in_page(gpa);
1796         int ret;
1797
1798         while ((seg = next_segment(len, offset)) != 0) {
1799                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1800                 if (ret < 0)
1801                         return ret;
1802                 offset = 0;
1803                 len -= seg;
1804                 data += seg;
1805                 ++gfn;
1806         }
1807         return 0;
1808 }
1809 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1810
1811 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1812                               gpa_t gpa, unsigned long len)
1813 {
1814         struct kvm_memslots *slots = kvm_memslots(kvm);
1815         int offset = offset_in_page(gpa);
1816         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1817         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1818         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1819         gfn_t nr_pages_avail;
1820
1821         ghc->gpa = gpa;
1822         ghc->generation = slots->generation;
1823         ghc->len = len;
1824         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1825         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1826         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1827                 ghc->hva += offset;
1828         } else {
1829                 /*
1830                  * If the requested region crosses two memslots, we still
1831                  * verify that the entire region is valid here.
1832                  */
1833                 while (start_gfn <= end_gfn) {
1834                         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1835                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1836                                                    &nr_pages_avail);
1837                         if (kvm_is_error_hva(ghc->hva))
1838                                 return -EFAULT;
1839                         start_gfn += nr_pages_avail;
1840                 }
1841                 /* Use the slow path for cross page reads and writes. */
1842                 ghc->memslot = NULL;
1843         }
1844         return 0;
1845 }
1846 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1847
1848 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1849                            void *data, unsigned long len)
1850 {
1851         struct kvm_memslots *slots = kvm_memslots(kvm);
1852         int r;
1853
1854         BUG_ON(len > ghc->len);
1855
1856         if (slots->generation != ghc->generation)
1857                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1858
1859         if (unlikely(!ghc->memslot))
1860                 return kvm_write_guest(kvm, ghc->gpa, data, len);
1861
1862         if (kvm_is_error_hva(ghc->hva))
1863                 return -EFAULT;
1864
1865         r = __copy_to_user((void __user *)ghc->hva, data, len);
1866         if (r)
1867                 return -EFAULT;
1868         mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1869
1870         return 0;
1871 }
1872 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1873
1874 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1875                            void *data, unsigned long len)
1876 {
1877         struct kvm_memslots *slots = kvm_memslots(kvm);
1878         int r;
1879
1880         BUG_ON(len > ghc->len);
1881
1882         if (slots->generation != ghc->generation)
1883                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1884
1885         if (unlikely(!ghc->memslot))
1886                 return kvm_read_guest(kvm, ghc->gpa, data, len);
1887
1888         if (kvm_is_error_hva(ghc->hva))
1889                 return -EFAULT;
1890
1891         r = __copy_from_user(data, (void __user *)ghc->hva, len);
1892         if (r)
1893                 return -EFAULT;
1894
1895         return 0;
1896 }
1897 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1898
1899 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1900 {
1901         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1902
1903         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1904 }
1905 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1906
1907 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1908 {
1909         gfn_t gfn = gpa >> PAGE_SHIFT;
1910         int seg;
1911         int offset = offset_in_page(gpa);
1912         int ret;
1913
1914         while ((seg = next_segment(len, offset)) != 0) {
1915                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1916                 if (ret < 0)
1917                         return ret;
1918                 offset = 0;
1919                 len -= seg;
1920                 ++gfn;
1921         }
1922         return 0;
1923 }
1924 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1925
1926 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1927                                     gfn_t gfn)
1928 {
1929         if (memslot && memslot->dirty_bitmap) {
1930                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1931
1932                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1933         }
1934 }
1935
1936 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1937 {
1938         struct kvm_memory_slot *memslot;
1939
1940         memslot = gfn_to_memslot(kvm, gfn);
1941         mark_page_dirty_in_slot(memslot, gfn);
1942 }
1943 EXPORT_SYMBOL_GPL(mark_page_dirty);
1944
1945 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
1946 {
1947         struct kvm_memory_slot *memslot;
1948
1949         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1950         mark_page_dirty_in_slot(memslot, gfn);
1951 }
1952 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
1953
1954 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
1955 {
1956         int old, val;
1957
1958         old = val = vcpu->halt_poll_ns;
1959         /* 10us base */
1960         if (val == 0 && halt_poll_ns_grow)
1961                 val = 10000;
1962         else
1963                 val *= halt_poll_ns_grow;
1964
1965         if (val > halt_poll_ns)
1966                 val = halt_poll_ns;
1967
1968         vcpu->halt_poll_ns = val;
1969         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
1970 }
1971
1972 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
1973 {
1974         int old, val;
1975
1976         old = val = vcpu->halt_poll_ns;
1977         if (halt_poll_ns_shrink == 0)
1978                 val = 0;
1979         else
1980                 val /= halt_poll_ns_shrink;
1981
1982         vcpu->halt_poll_ns = val;
1983         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
1984 }
1985
1986 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1987 {
1988         if (kvm_arch_vcpu_runnable(vcpu)) {
1989                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1990                 return -EINTR;
1991         }
1992         if (kvm_cpu_has_pending_timer(vcpu))
1993                 return -EINTR;
1994         if (signal_pending(current))
1995                 return -EINTR;
1996
1997         return 0;
1998 }
1999
2000 /*
2001  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2002  */
2003 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2004 {
2005         ktime_t start, cur;
2006         DEFINE_WAIT(wait);
2007         bool waited = false;
2008         u64 block_ns;
2009
2010         start = cur = ktime_get();
2011         if (vcpu->halt_poll_ns) {
2012                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2013
2014                 ++vcpu->stat.halt_attempted_poll;
2015                 do {
2016                         /*
2017                          * This sets KVM_REQ_UNHALT if an interrupt
2018                          * arrives.
2019                          */
2020                         if (kvm_vcpu_check_block(vcpu) < 0) {
2021                                 ++vcpu->stat.halt_successful_poll;
2022                                 goto out;
2023                         }
2024                         cur = ktime_get();
2025                 } while (single_task_running() && ktime_before(cur, stop));
2026         }
2027
2028         kvm_arch_vcpu_blocking(vcpu);
2029
2030         for (;;) {
2031                 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2032
2033                 if (kvm_vcpu_check_block(vcpu) < 0)
2034                         break;
2035
2036                 waited = true;
2037                 schedule();
2038         }
2039
2040         finish_wait(&vcpu->wq, &wait);
2041         cur = ktime_get();
2042
2043         kvm_arch_vcpu_unblocking(vcpu);
2044 out:
2045         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2046
2047         if (halt_poll_ns) {
2048                 if (block_ns <= vcpu->halt_poll_ns)
2049                         ;
2050                 /* we had a long block, shrink polling */
2051                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2052                         shrink_halt_poll_ns(vcpu);
2053                 /* we had a short halt and our poll time is too small */
2054                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2055                         block_ns < halt_poll_ns)
2056                         grow_halt_poll_ns(vcpu);
2057         } else
2058                 vcpu->halt_poll_ns = 0;
2059
2060         trace_kvm_vcpu_wakeup(block_ns, waited);
2061 }
2062 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2063
2064 #ifndef CONFIG_S390
2065 /*
2066  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2067  */
2068 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2069 {
2070         int me;
2071         int cpu = vcpu->cpu;
2072         wait_queue_head_t *wqp;
2073
2074         wqp = kvm_arch_vcpu_wq(vcpu);
2075         if (waitqueue_active(wqp)) {
2076                 wake_up_interruptible(wqp);
2077                 ++vcpu->stat.halt_wakeup;
2078         }
2079
2080         me = get_cpu();
2081         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2082                 if (kvm_arch_vcpu_should_kick(vcpu))
2083                         smp_send_reschedule(cpu);
2084         put_cpu();
2085 }
2086 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2087 #endif /* !CONFIG_S390 */
2088
2089 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2090 {
2091         struct pid *pid;
2092         struct task_struct *task = NULL;
2093         int ret = 0;
2094
2095         rcu_read_lock();
2096         pid = rcu_dereference(target->pid);
2097         if (pid)
2098                 task = get_pid_task(pid, PIDTYPE_PID);
2099         rcu_read_unlock();
2100         if (!task)
2101                 return ret;
2102         ret = yield_to(task, 1);
2103         put_task_struct(task);
2104
2105         return ret;
2106 }
2107 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2108
2109 /*
2110  * Helper that checks whether a VCPU is eligible for directed yield.
2111  * Most eligible candidate to yield is decided by following heuristics:
2112  *
2113  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2114  *  (preempted lock holder), indicated by @in_spin_loop.
2115  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2116  *
2117  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2118  *  chance last time (mostly it has become eligible now since we have probably
2119  *  yielded to lockholder in last iteration. This is done by toggling
2120  *  @dy_eligible each time a VCPU checked for eligibility.)
2121  *
2122  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2123  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2124  *  burning. Giving priority for a potential lock-holder increases lock
2125  *  progress.
2126  *
2127  *  Since algorithm is based on heuristics, accessing another VCPU data without
2128  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2129  *  and continue with next VCPU and so on.
2130  */
2131 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2132 {
2133 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2134         bool eligible;
2135
2136         eligible = !vcpu->spin_loop.in_spin_loop ||
2137                     vcpu->spin_loop.dy_eligible;
2138
2139         if (vcpu->spin_loop.in_spin_loop)
2140                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2141
2142         return eligible;
2143 #else
2144         return true;
2145 #endif
2146 }
2147
2148 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2149 {
2150         struct kvm *kvm = me->kvm;
2151         struct kvm_vcpu *vcpu;
2152         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2153         int yielded = 0;
2154         int try = 3;
2155         int pass;
2156         int i;
2157
2158         kvm_vcpu_set_in_spin_loop(me, true);
2159         /*
2160          * We boost the priority of a VCPU that is runnable but not
2161          * currently running, because it got preempted by something
2162          * else and called schedule in __vcpu_run.  Hopefully that
2163          * VCPU is holding the lock that we need and will release it.
2164          * We approximate round-robin by starting at the last boosted VCPU.
2165          */
2166         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2167                 kvm_for_each_vcpu(i, vcpu, kvm) {
2168                         if (!pass && i <= last_boosted_vcpu) {
2169                                 i = last_boosted_vcpu;
2170                                 continue;
2171                         } else if (pass && i > last_boosted_vcpu)
2172                                 break;
2173                         if (!ACCESS_ONCE(vcpu->preempted))
2174                                 continue;
2175                         if (vcpu == me)
2176                                 continue;
2177                         if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2178                                 continue;
2179                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2180                                 continue;
2181
2182                         yielded = kvm_vcpu_yield_to(vcpu);
2183                         if (yielded > 0) {
2184                                 kvm->last_boosted_vcpu = i;
2185                                 break;
2186                         } else if (yielded < 0) {
2187                                 try--;
2188                                 if (!try)
2189                                         break;
2190                         }
2191                 }
2192         }
2193         kvm_vcpu_set_in_spin_loop(me, false);
2194
2195         /* Ensure vcpu is not eligible during next spinloop */
2196         kvm_vcpu_set_dy_eligible(me, false);
2197 }
2198 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2199
2200 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2201 {
2202         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2203         struct page *page;
2204
2205         if (vmf->pgoff == 0)
2206                 page = virt_to_page(vcpu->run);
2207 #ifdef CONFIG_X86
2208         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2209                 page = virt_to_page(vcpu->arch.pio_data);
2210 #endif
2211 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2212         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2213                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2214 #endif
2215         else
2216                 return kvm_arch_vcpu_fault(vcpu, vmf);
2217         get_page(page);
2218         vmf->page = page;
2219         return 0;
2220 }
2221
2222 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2223         .fault = kvm_vcpu_fault,
2224 };
2225
2226 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2227 {
2228         vma->vm_ops = &kvm_vcpu_vm_ops;
2229         return 0;
2230 }
2231
2232 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2233 {
2234         struct kvm_vcpu *vcpu = filp->private_data;
2235
2236         kvm_put_kvm(vcpu->kvm);
2237         return 0;
2238 }
2239
2240 static struct file_operations kvm_vcpu_fops = {
2241         .release        = kvm_vcpu_release,
2242         .unlocked_ioctl = kvm_vcpu_ioctl,
2243 #ifdef CONFIG_KVM_COMPAT
2244         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2245 #endif
2246         .mmap           = kvm_vcpu_mmap,
2247         .llseek         = noop_llseek,
2248 };
2249
2250 /*
2251  * Allocates an inode for the vcpu.
2252  */
2253 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2254 {
2255         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2256 }
2257
2258 /*
2259  * Creates some virtual cpus.  Good luck creating more than one.
2260  */
2261 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2262 {
2263         int r;
2264         struct kvm_vcpu *vcpu, *v;
2265
2266         if (id >= KVM_MAX_VCPUS)
2267                 return -EINVAL;
2268
2269         vcpu = kvm_arch_vcpu_create(kvm, id);
2270         if (IS_ERR(vcpu))
2271                 return PTR_ERR(vcpu);
2272
2273         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2274
2275         r = kvm_arch_vcpu_setup(vcpu);
2276         if (r)
2277                 goto vcpu_destroy;
2278
2279         mutex_lock(&kvm->lock);
2280         if (!kvm_vcpu_compatible(vcpu)) {
2281                 r = -EINVAL;
2282                 goto unlock_vcpu_destroy;
2283         }
2284         if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2285                 r = -EINVAL;
2286                 goto unlock_vcpu_destroy;
2287         }
2288
2289         kvm_for_each_vcpu(r, v, kvm)
2290                 if (v->vcpu_id == id) {
2291                         r = -EEXIST;
2292                         goto unlock_vcpu_destroy;
2293                 }
2294
2295         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2296
2297         /* Now it's all set up, let userspace reach it */
2298         kvm_get_kvm(kvm);
2299         r = create_vcpu_fd(vcpu);
2300         if (r < 0) {
2301                 kvm_put_kvm(kvm);
2302                 goto unlock_vcpu_destroy;
2303         }
2304
2305         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2306
2307         /*
2308          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2309          * before kvm->online_vcpu's incremented value.
2310          */
2311         smp_wmb();
2312         atomic_inc(&kvm->online_vcpus);
2313
2314         mutex_unlock(&kvm->lock);
2315         kvm_arch_vcpu_postcreate(vcpu);
2316         return r;
2317
2318 unlock_vcpu_destroy:
2319         mutex_unlock(&kvm->lock);
2320 vcpu_destroy:
2321         kvm_arch_vcpu_destroy(vcpu);
2322         return r;
2323 }
2324
2325 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2326 {
2327         if (sigset) {
2328                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2329                 vcpu->sigset_active = 1;
2330                 vcpu->sigset = *sigset;
2331         } else
2332                 vcpu->sigset_active = 0;
2333         return 0;
2334 }
2335
2336 static long kvm_vcpu_ioctl(struct file *filp,
2337                            unsigned int ioctl, unsigned long arg)
2338 {
2339         struct kvm_vcpu *vcpu = filp->private_data;
2340         void __user *argp = (void __user *)arg;
2341         int r;
2342         struct kvm_fpu *fpu = NULL;
2343         struct kvm_sregs *kvm_sregs = NULL;
2344
2345         if (vcpu->kvm->mm != current->mm)
2346                 return -EIO;
2347
2348         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2349                 return -EINVAL;
2350
2351 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2352         /*
2353          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2354          * so vcpu_load() would break it.
2355          */
2356         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2357                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2358 #endif
2359
2360
2361         r = vcpu_load(vcpu);
2362         if (r)
2363                 return r;
2364         switch (ioctl) {
2365         case KVM_RUN:
2366                 r = -EINVAL;
2367                 if (arg)
2368                         goto out;
2369                 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2370                         /* The thread running this VCPU changed. */
2371                         struct pid *oldpid = vcpu->pid;
2372                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2373
2374                         rcu_assign_pointer(vcpu->pid, newpid);
2375                         if (oldpid)
2376                                 synchronize_rcu();
2377                         put_pid(oldpid);
2378                 }
2379                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2380                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2381                 break;
2382         case KVM_GET_REGS: {
2383                 struct kvm_regs *kvm_regs;
2384
2385                 r = -ENOMEM;
2386                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2387                 if (!kvm_regs)
2388                         goto out;
2389                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2390                 if (r)
2391                         goto out_free1;
2392                 r = -EFAULT;
2393                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2394                         goto out_free1;
2395                 r = 0;
2396 out_free1:
2397                 kfree(kvm_regs);
2398                 break;
2399         }
2400         case KVM_SET_REGS: {
2401                 struct kvm_regs *kvm_regs;
2402
2403                 r = -ENOMEM;
2404                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2405                 if (IS_ERR(kvm_regs)) {
2406                         r = PTR_ERR(kvm_regs);
2407                         goto out;
2408                 }
2409                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2410                 kfree(kvm_regs);
2411                 break;
2412         }
2413         case KVM_GET_SREGS: {
2414                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2415                 r = -ENOMEM;
2416                 if (!kvm_sregs)
2417                         goto out;
2418                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2419                 if (r)
2420                         goto out;
2421                 r = -EFAULT;
2422                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2423                         goto out;
2424                 r = 0;
2425                 break;
2426         }
2427         case KVM_SET_SREGS: {
2428                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2429                 if (IS_ERR(kvm_sregs)) {
2430                         r = PTR_ERR(kvm_sregs);
2431                         kvm_sregs = NULL;
2432                         goto out;
2433                 }
2434                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2435                 break;
2436         }
2437         case KVM_GET_MP_STATE: {
2438                 struct kvm_mp_state mp_state;
2439
2440                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2441                 if (r)
2442                         goto out;
2443                 r = -EFAULT;
2444                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2445                         goto out;
2446                 r = 0;
2447                 break;
2448         }
2449         case KVM_SET_MP_STATE: {
2450                 struct kvm_mp_state mp_state;
2451
2452                 r = -EFAULT;
2453                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2454                         goto out;
2455                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2456                 break;
2457         }
2458         case KVM_TRANSLATE: {
2459                 struct kvm_translation tr;
2460
2461                 r = -EFAULT;
2462                 if (copy_from_user(&tr, argp, sizeof(tr)))
2463                         goto out;
2464                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2465                 if (r)
2466                         goto out;
2467                 r = -EFAULT;
2468                 if (copy_to_user(argp, &tr, sizeof(tr)))
2469                         goto out;
2470                 r = 0;
2471                 break;
2472         }
2473         case KVM_SET_GUEST_DEBUG: {
2474                 struct kvm_guest_debug dbg;
2475
2476                 r = -EFAULT;
2477                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2478                         goto out;
2479                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2480                 break;
2481         }
2482         case KVM_SET_SIGNAL_MASK: {
2483                 struct kvm_signal_mask __user *sigmask_arg = argp;
2484                 struct kvm_signal_mask kvm_sigmask;
2485                 sigset_t sigset, *p;
2486
2487                 p = NULL;
2488                 if (argp) {
2489                         r = -EFAULT;
2490                         if (copy_from_user(&kvm_sigmask, argp,
2491                                            sizeof(kvm_sigmask)))
2492                                 goto out;
2493                         r = -EINVAL;
2494                         if (kvm_sigmask.len != sizeof(sigset))
2495                                 goto out;
2496                         r = -EFAULT;
2497                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2498                                            sizeof(sigset)))
2499                                 goto out;
2500                         p = &sigset;
2501                 }
2502                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2503                 break;
2504         }
2505         case KVM_GET_FPU: {
2506                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2507                 r = -ENOMEM;
2508                 if (!fpu)
2509                         goto out;
2510                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2511                 if (r)
2512                         goto out;
2513                 r = -EFAULT;
2514                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2515                         goto out;
2516                 r = 0;
2517                 break;
2518         }
2519         case KVM_SET_FPU: {
2520                 fpu = memdup_user(argp, sizeof(*fpu));
2521                 if (IS_ERR(fpu)) {
2522                         r = PTR_ERR(fpu);
2523                         fpu = NULL;
2524                         goto out;
2525                 }
2526                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2527                 break;
2528         }
2529         default:
2530                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2531         }
2532 out:
2533         vcpu_put(vcpu);
2534         kfree(fpu);
2535         kfree(kvm_sregs);
2536         return r;
2537 }
2538
2539 #ifdef CONFIG_KVM_COMPAT
2540 static long kvm_vcpu_compat_ioctl(struct file *filp,
2541                                   unsigned int ioctl, unsigned long arg)
2542 {
2543         struct kvm_vcpu *vcpu = filp->private_data;
2544         void __user *argp = compat_ptr(arg);
2545         int r;
2546
2547         if (vcpu->kvm->mm != current->mm)
2548                 return -EIO;
2549
2550         switch (ioctl) {
2551         case KVM_SET_SIGNAL_MASK: {
2552                 struct kvm_signal_mask __user *sigmask_arg = argp;
2553                 struct kvm_signal_mask kvm_sigmask;
2554                 compat_sigset_t csigset;
2555                 sigset_t sigset;
2556
2557                 if (argp) {
2558                         r = -EFAULT;
2559                         if (copy_from_user(&kvm_sigmask, argp,
2560                                            sizeof(kvm_sigmask)))
2561                                 goto out;
2562                         r = -EINVAL;
2563                         if (kvm_sigmask.len != sizeof(csigset))
2564                                 goto out;
2565                         r = -EFAULT;
2566                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2567                                            sizeof(csigset)))
2568                                 goto out;
2569                         sigset_from_compat(&sigset, &csigset);
2570                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2571                 } else
2572                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2573                 break;
2574         }
2575         default:
2576                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2577         }
2578
2579 out:
2580         return r;
2581 }
2582 #endif
2583
2584 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2585                                  int (*accessor)(struct kvm_device *dev,
2586                                                  struct kvm_device_attr *attr),
2587                                  unsigned long arg)
2588 {
2589         struct kvm_device_attr attr;
2590
2591         if (!accessor)
2592                 return -EPERM;
2593
2594         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2595                 return -EFAULT;
2596
2597         return accessor(dev, &attr);
2598 }
2599
2600 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2601                              unsigned long arg)
2602 {
2603         struct kvm_device *dev = filp->private_data;
2604
2605         switch (ioctl) {
2606         case KVM_SET_DEVICE_ATTR:
2607                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2608         case KVM_GET_DEVICE_ATTR:
2609                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2610         case KVM_HAS_DEVICE_ATTR:
2611                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2612         default:
2613                 if (dev->ops->ioctl)
2614                         return dev->ops->ioctl(dev, ioctl, arg);
2615
2616                 return -ENOTTY;
2617         }
2618 }
2619
2620 static int kvm_device_release(struct inode *inode, struct file *filp)
2621 {
2622         struct kvm_device *dev = filp->private_data;
2623         struct kvm *kvm = dev->kvm;
2624
2625         kvm_put_kvm(kvm);
2626         return 0;
2627 }
2628
2629 static const struct file_operations kvm_device_fops = {
2630         .unlocked_ioctl = kvm_device_ioctl,
2631 #ifdef CONFIG_KVM_COMPAT
2632         .compat_ioctl = kvm_device_ioctl,
2633 #endif
2634         .release = kvm_device_release,
2635 };
2636
2637 struct kvm_device *kvm_device_from_filp(struct file *filp)
2638 {
2639         if (filp->f_op != &kvm_device_fops)
2640                 return NULL;
2641
2642         return filp->private_data;
2643 }
2644
2645 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2646 #ifdef CONFIG_KVM_MPIC
2647         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2648         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2649 #endif
2650
2651 #ifdef CONFIG_KVM_XICS
2652         [KVM_DEV_TYPE_XICS]             = &kvm_xics_ops,
2653 #endif
2654 };
2655
2656 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2657 {
2658         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2659                 return -ENOSPC;
2660
2661         if (kvm_device_ops_table[type] != NULL)
2662                 return -EEXIST;
2663
2664         kvm_device_ops_table[type] = ops;
2665         return 0;
2666 }
2667
2668 void kvm_unregister_device_ops(u32 type)
2669 {
2670         if (kvm_device_ops_table[type] != NULL)
2671                 kvm_device_ops_table[type] = NULL;
2672 }
2673
2674 static int kvm_ioctl_create_device(struct kvm *kvm,
2675                                    struct kvm_create_device *cd)
2676 {
2677         struct kvm_device_ops *ops = NULL;
2678         struct kvm_device *dev;
2679         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2680         int ret;
2681
2682         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2683                 return -ENODEV;
2684
2685         ops = kvm_device_ops_table[cd->type];
2686         if (ops == NULL)
2687                 return -ENODEV;
2688
2689         if (test)
2690                 return 0;
2691
2692         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2693         if (!dev)
2694                 return -ENOMEM;
2695
2696         dev->ops = ops;
2697         dev->kvm = kvm;
2698
2699         ret = ops->create(dev, cd->type);
2700         if (ret < 0) {
2701                 kfree(dev);
2702                 return ret;
2703         }
2704
2705         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2706         if (ret < 0) {
2707                 ops->destroy(dev);
2708                 return ret;
2709         }
2710
2711         list_add(&dev->vm_node, &kvm->devices);
2712         kvm_get_kvm(kvm);
2713         cd->fd = ret;
2714         return 0;
2715 }
2716
2717 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2718 {
2719         switch (arg) {
2720         case KVM_CAP_USER_MEMORY:
2721         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2722         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2723         case KVM_CAP_INTERNAL_ERROR_DATA:
2724 #ifdef CONFIG_HAVE_KVM_MSI
2725         case KVM_CAP_SIGNAL_MSI:
2726 #endif
2727 #ifdef CONFIG_HAVE_KVM_IRQFD
2728         case KVM_CAP_IRQFD:
2729         case KVM_CAP_IRQFD_RESAMPLE:
2730 #endif
2731         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2732         case KVM_CAP_CHECK_EXTENSION_VM:
2733                 return 1;
2734 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2735         case KVM_CAP_IRQ_ROUTING:
2736                 return KVM_MAX_IRQ_ROUTES;
2737 #endif
2738 #if KVM_ADDRESS_SPACE_NUM > 1
2739         case KVM_CAP_MULTI_ADDRESS_SPACE:
2740                 return KVM_ADDRESS_SPACE_NUM;
2741 #endif
2742         default:
2743                 break;
2744         }
2745         return kvm_vm_ioctl_check_extension(kvm, arg);
2746 }
2747
2748 static long kvm_vm_ioctl(struct file *filp,
2749                            unsigned int ioctl, unsigned long arg)
2750 {
2751         struct kvm *kvm = filp->private_data;
2752         void __user *argp = (void __user *)arg;
2753         int r;
2754
2755         if (kvm->mm != current->mm)
2756                 return -EIO;
2757         switch (ioctl) {
2758         case KVM_CREATE_VCPU:
2759                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2760                 break;
2761         case KVM_SET_USER_MEMORY_REGION: {
2762                 struct kvm_userspace_memory_region kvm_userspace_mem;
2763
2764                 r = -EFAULT;
2765                 if (copy_from_user(&kvm_userspace_mem, argp,
2766                                                 sizeof(kvm_userspace_mem)))
2767                         goto out;
2768
2769                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2770                 break;
2771         }
2772         case KVM_GET_DIRTY_LOG: {
2773                 struct kvm_dirty_log log;
2774
2775                 r = -EFAULT;
2776                 if (copy_from_user(&log, argp, sizeof(log)))
2777                         goto out;
2778                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2779                 break;
2780         }
2781 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2782         case KVM_REGISTER_COALESCED_MMIO: {
2783                 struct kvm_coalesced_mmio_zone zone;
2784
2785                 r = -EFAULT;
2786                 if (copy_from_user(&zone, argp, sizeof(zone)))
2787                         goto out;
2788                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2789                 break;
2790         }
2791         case KVM_UNREGISTER_COALESCED_MMIO: {
2792                 struct kvm_coalesced_mmio_zone zone;
2793
2794                 r = -EFAULT;
2795                 if (copy_from_user(&zone, argp, sizeof(zone)))
2796                         goto out;
2797                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2798                 break;
2799         }
2800 #endif
2801         case KVM_IRQFD: {
2802                 struct kvm_irqfd data;
2803
2804                 r = -EFAULT;
2805                 if (copy_from_user(&data, argp, sizeof(data)))
2806                         goto out;
2807                 r = kvm_irqfd(kvm, &data);
2808                 break;
2809         }
2810         case KVM_IOEVENTFD: {
2811                 struct kvm_ioeventfd data;
2812
2813                 r = -EFAULT;
2814                 if (copy_from_user(&data, argp, sizeof(data)))
2815                         goto out;
2816                 r = kvm_ioeventfd(kvm, &data);
2817                 break;
2818         }
2819 #ifdef CONFIG_HAVE_KVM_MSI
2820         case KVM_SIGNAL_MSI: {
2821                 struct kvm_msi msi;
2822
2823                 r = -EFAULT;
2824                 if (copy_from_user(&msi, argp, sizeof(msi)))
2825                         goto out;
2826                 r = kvm_send_userspace_msi(kvm, &msi);
2827                 break;
2828         }
2829 #endif
2830 #ifdef __KVM_HAVE_IRQ_LINE
2831         case KVM_IRQ_LINE_STATUS:
2832         case KVM_IRQ_LINE: {
2833                 struct kvm_irq_level irq_event;
2834
2835                 r = -EFAULT;
2836                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2837                         goto out;
2838
2839                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2840                                         ioctl == KVM_IRQ_LINE_STATUS);
2841                 if (r)
2842                         goto out;
2843
2844                 r = -EFAULT;
2845                 if (ioctl == KVM_IRQ_LINE_STATUS) {
2846                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2847                                 goto out;
2848                 }
2849
2850                 r = 0;
2851                 break;
2852         }
2853 #endif
2854 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2855         case KVM_SET_GSI_ROUTING: {
2856                 struct kvm_irq_routing routing;
2857                 struct kvm_irq_routing __user *urouting;
2858                 struct kvm_irq_routing_entry *entries;
2859
2860                 r = -EFAULT;
2861                 if (copy_from_user(&routing, argp, sizeof(routing)))
2862                         goto out;
2863                 r = -EINVAL;
2864                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
2865                         goto out;
2866                 if (routing.flags)
2867                         goto out;
2868                 r = -ENOMEM;
2869                 entries = vmalloc(routing.nr * sizeof(*entries));
2870                 if (!entries)
2871                         goto out;
2872                 r = -EFAULT;
2873                 urouting = argp;
2874                 if (copy_from_user(entries, urouting->entries,
2875                                    routing.nr * sizeof(*entries)))
2876                         goto out_free_irq_routing;
2877                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2878                                         routing.flags);
2879 out_free_irq_routing:
2880                 vfree(entries);
2881                 break;
2882         }
2883 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2884         case KVM_CREATE_DEVICE: {
2885                 struct kvm_create_device cd;
2886
2887                 r = -EFAULT;
2888                 if (copy_from_user(&cd, argp, sizeof(cd)))
2889                         goto out;
2890
2891                 r = kvm_ioctl_create_device(kvm, &cd);
2892                 if (r)
2893                         goto out;
2894
2895                 r = -EFAULT;
2896                 if (copy_to_user(argp, &cd, sizeof(cd)))
2897                         goto out;
2898
2899                 r = 0;
2900                 break;
2901         }
2902         case KVM_CHECK_EXTENSION:
2903                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2904                 break;
2905         default:
2906                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2907         }
2908 out:
2909         return r;
2910 }
2911
2912 #ifdef CONFIG_KVM_COMPAT
2913 struct compat_kvm_dirty_log {
2914         __u32 slot;
2915         __u32 padding1;
2916         union {
2917                 compat_uptr_t dirty_bitmap; /* one bit per page */
2918                 __u64 padding2;
2919         };
2920 };
2921
2922 static long kvm_vm_compat_ioctl(struct file *filp,
2923                            unsigned int ioctl, unsigned long arg)
2924 {
2925         struct kvm *kvm = filp->private_data;
2926         int r;
2927
2928         if (kvm->mm != current->mm)
2929                 return -EIO;
2930         switch (ioctl) {
2931         case KVM_GET_DIRTY_LOG: {
2932                 struct compat_kvm_dirty_log compat_log;
2933                 struct kvm_dirty_log log;
2934
2935                 r = -EFAULT;
2936                 if (copy_from_user(&compat_log, (void __user *)arg,
2937                                    sizeof(compat_log)))
2938                         goto out;
2939                 log.slot         = compat_log.slot;
2940                 log.padding1     = compat_log.padding1;
2941                 log.padding2     = compat_log.padding2;
2942                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2943
2944                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2945                 break;
2946         }
2947         default:
2948                 r = kvm_vm_ioctl(filp, ioctl, arg);
2949         }
2950
2951 out:
2952         return r;
2953 }
2954 #endif
2955
2956 static struct file_operations kvm_vm_fops = {
2957         .release        = kvm_vm_release,
2958         .unlocked_ioctl = kvm_vm_ioctl,
2959 #ifdef CONFIG_KVM_COMPAT
2960         .compat_ioctl   = kvm_vm_compat_ioctl,
2961 #endif
2962         .llseek         = noop_llseek,
2963 };
2964
2965 static int kvm_dev_ioctl_create_vm(unsigned long type)
2966 {
2967         int r;
2968         struct kvm *kvm;
2969
2970         kvm = kvm_create_vm(type);
2971         if (IS_ERR(kvm))
2972                 return PTR_ERR(kvm);
2973 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2974         r = kvm_coalesced_mmio_init(kvm);
2975         if (r < 0) {
2976                 kvm_put_kvm(kvm);
2977                 return r;
2978         }
2979 #endif
2980         r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2981         if (r < 0)
2982                 kvm_put_kvm(kvm);
2983
2984         return r;
2985 }
2986
2987 static long kvm_dev_ioctl(struct file *filp,
2988                           unsigned int ioctl, unsigned long arg)
2989 {
2990         long r = -EINVAL;
2991
2992         switch (ioctl) {
2993         case KVM_GET_API_VERSION:
2994                 if (arg)
2995                         goto out;
2996                 r = KVM_API_VERSION;
2997                 break;
2998         case KVM_CREATE_VM:
2999                 r = kvm_dev_ioctl_create_vm(arg);
3000                 break;
3001         case KVM_CHECK_EXTENSION:
3002                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3003                 break;
3004         case KVM_GET_VCPU_MMAP_SIZE:
3005                 if (arg)
3006                         goto out;
3007                 r = PAGE_SIZE;     /* struct kvm_run */
3008 #ifdef CONFIG_X86
3009                 r += PAGE_SIZE;    /* pio data page */
3010 #endif
3011 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3012                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3013 #endif
3014                 break;
3015         case KVM_TRACE_ENABLE:
3016         case KVM_TRACE_PAUSE:
3017         case KVM_TRACE_DISABLE:
3018                 r = -EOPNOTSUPP;
3019                 break;
3020         default:
3021                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3022         }
3023 out:
3024         return r;
3025 }
3026
3027 static struct file_operations kvm_chardev_ops = {
3028         .unlocked_ioctl = kvm_dev_ioctl,
3029         .compat_ioctl   = kvm_dev_ioctl,
3030         .llseek         = noop_llseek,
3031 };
3032
3033 static struct miscdevice kvm_dev = {
3034         KVM_MINOR,
3035         "kvm",
3036         &kvm_chardev_ops,
3037 };
3038
3039 static void hardware_enable_nolock(void *junk)
3040 {
3041         int cpu = raw_smp_processor_id();
3042         int r;
3043
3044         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3045                 return;
3046
3047         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3048
3049         r = kvm_arch_hardware_enable();
3050
3051         if (r) {
3052                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3053                 atomic_inc(&hardware_enable_failed);
3054                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3055         }
3056 }
3057
3058 static void hardware_enable(void)
3059 {
3060         raw_spin_lock(&kvm_count_lock);
3061         if (kvm_usage_count)
3062                 hardware_enable_nolock(NULL);
3063         raw_spin_unlock(&kvm_count_lock);
3064 }
3065
3066 static void hardware_disable_nolock(void *junk)
3067 {
3068         int cpu = raw_smp_processor_id();
3069
3070         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3071                 return;
3072         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3073         kvm_arch_hardware_disable();
3074 }
3075
3076 static void hardware_disable(void)
3077 {
3078         raw_spin_lock(&kvm_count_lock);
3079         if (kvm_usage_count)
3080                 hardware_disable_nolock(NULL);
3081         raw_spin_unlock(&kvm_count_lock);
3082 }
3083
3084 static void hardware_disable_all_nolock(void)
3085 {
3086         BUG_ON(!kvm_usage_count);
3087
3088         kvm_usage_count--;
3089         if (!kvm_usage_count)
3090                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3091 }
3092
3093 static void hardware_disable_all(void)
3094 {
3095         raw_spin_lock(&kvm_count_lock);
3096         hardware_disable_all_nolock();
3097         raw_spin_unlock(&kvm_count_lock);
3098 }
3099
3100 static int hardware_enable_all(void)
3101 {
3102         int r = 0;
3103
3104         raw_spin_lock(&kvm_count_lock);
3105
3106         kvm_usage_count++;
3107         if (kvm_usage_count == 1) {
3108                 atomic_set(&hardware_enable_failed, 0);
3109                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3110
3111                 if (atomic_read(&hardware_enable_failed)) {
3112                         hardware_disable_all_nolock();
3113                         r = -EBUSY;
3114                 }
3115         }
3116
3117         raw_spin_unlock(&kvm_count_lock);
3118
3119         return r;
3120 }
3121
3122 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3123                            void *v)
3124 {
3125         val &= ~CPU_TASKS_FROZEN;
3126         switch (val) {
3127         case CPU_DYING:
3128                 hardware_disable();
3129                 break;
3130         case CPU_STARTING:
3131                 hardware_enable();
3132                 break;
3133         }
3134         return NOTIFY_OK;
3135 }
3136
3137 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3138                       void *v)
3139 {
3140         /*
3141          * Some (well, at least mine) BIOSes hang on reboot if
3142          * in vmx root mode.
3143          *
3144          * And Intel TXT required VMX off for all cpu when system shutdown.
3145          */
3146         pr_info("kvm: exiting hardware virtualization\n");
3147         kvm_rebooting = true;
3148         on_each_cpu(hardware_disable_nolock, NULL, 1);
3149         return NOTIFY_OK;
3150 }
3151
3152 static struct notifier_block kvm_reboot_notifier = {
3153         .notifier_call = kvm_reboot,
3154         .priority = 0,
3155 };
3156
3157 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3158 {
3159         int i;
3160
3161         for (i = 0; i < bus->dev_count; i++) {
3162                 struct kvm_io_device *pos = bus->range[i].dev;
3163
3164                 kvm_iodevice_destructor(pos);
3165         }
3166         kfree(bus);
3167 }
3168
3169 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3170                                  const struct kvm_io_range *r2)
3171 {
3172         gpa_t addr1 = r1->addr;
3173         gpa_t addr2 = r2->addr;
3174
3175         if (addr1 < addr2)
3176                 return -1;
3177
3178         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3179          * accept any overlapping write.  Any order is acceptable for
3180          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3181          * we process all of them.
3182          */
3183         if (r2->len) {
3184                 addr1 += r1->len;
3185                 addr2 += r2->len;
3186         }
3187
3188         if (addr1 > addr2)
3189                 return 1;
3190
3191         return 0;
3192 }
3193
3194 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3195 {
3196         return kvm_io_bus_cmp(p1, p2);
3197 }
3198
3199 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3200                           gpa_t addr, int len)
3201 {
3202         bus->range[bus->dev_count++] = (struct kvm_io_range) {
3203                 .addr = addr,
3204                 .len = len,
3205                 .dev = dev,
3206         };
3207
3208         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3209                 kvm_io_bus_sort_cmp, NULL);
3210
3211         return 0;
3212 }
3213
3214 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3215                              gpa_t addr, int len)
3216 {
3217         struct kvm_io_range *range, key;
3218         int off;
3219
3220         key = (struct kvm_io_range) {
3221                 .addr = addr,
3222                 .len = len,
3223         };
3224
3225         range = bsearch(&key, bus->range, bus->dev_count,
3226                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3227         if (range == NULL)
3228                 return -ENOENT;
3229
3230         off = range - bus->range;
3231
3232         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3233                 off--;
3234
3235         return off;
3236 }
3237
3238 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3239                               struct kvm_io_range *range, const void *val)
3240 {
3241         int idx;
3242
3243         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3244         if (idx < 0)
3245                 return -EOPNOTSUPP;
3246
3247         while (idx < bus->dev_count &&
3248                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3249                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3250                                         range->len, val))
3251                         return idx;
3252                 idx++;
3253         }
3254
3255         return -EOPNOTSUPP;
3256 }
3257
3258 /* kvm_io_bus_write - called under kvm->slots_lock */
3259 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3260                      int len, const void *val)
3261 {
3262         struct kvm_io_bus *bus;
3263         struct kvm_io_range range;
3264         int r;
3265
3266         range = (struct kvm_io_range) {
3267                 .addr = addr,
3268                 .len = len,
3269         };
3270
3271         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3272         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3273         return r < 0 ? r : 0;
3274 }
3275
3276 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3277 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3278                             gpa_t addr, int len, const void *val, long cookie)
3279 {
3280         struct kvm_io_bus *bus;
3281         struct kvm_io_range range;
3282
3283         range = (struct kvm_io_range) {
3284                 .addr = addr,
3285                 .len = len,
3286         };
3287
3288         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3289
3290         /* First try the device referenced by cookie. */
3291         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3292             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3293                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3294                                         val))
3295                         return cookie;
3296
3297         /*
3298          * cookie contained garbage; fall back to search and return the
3299          * correct cookie value.
3300          */
3301         return __kvm_io_bus_write(vcpu, bus, &range, val);
3302 }
3303
3304 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3305                              struct kvm_io_range *range, void *val)
3306 {
3307         int idx;
3308
3309         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3310         if (idx < 0)
3311                 return -EOPNOTSUPP;
3312
3313         while (idx < bus->dev_count &&
3314                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3315                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3316                                        range->len, val))
3317                         return idx;
3318                 idx++;
3319         }
3320
3321         return -EOPNOTSUPP;
3322 }
3323 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3324
3325 /* kvm_io_bus_read - called under kvm->slots_lock */
3326 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3327                     int len, void *val)
3328 {
3329         struct kvm_io_bus *bus;
3330         struct kvm_io_range range;
3331         int r;
3332
3333         range = (struct kvm_io_range) {
3334                 .addr = addr,
3335                 .len = len,
3336         };
3337
3338         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3339         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3340         return r < 0 ? r : 0;
3341 }
3342
3343
3344 /* Caller must hold slots_lock. */
3345 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3346                             int len, struct kvm_io_device *dev)
3347 {
3348         struct kvm_io_bus *new_bus, *bus;
3349
3350         bus = kvm->buses[bus_idx];
3351         /* exclude ioeventfd which is limited by maximum fd */
3352         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3353                 return -ENOSPC;
3354
3355         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3356                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3357         if (!new_bus)
3358                 return -ENOMEM;
3359         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3360                sizeof(struct kvm_io_range)));
3361         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3362         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3363         synchronize_srcu_expedited(&kvm->srcu);
3364         kfree(bus);
3365
3366         return 0;
3367 }
3368
3369 /* Caller must hold slots_lock. */
3370 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3371                               struct kvm_io_device *dev)
3372 {
3373         int i, r;
3374         struct kvm_io_bus *new_bus, *bus;
3375
3376         bus = kvm->buses[bus_idx];
3377         r = -ENOENT;
3378         for (i = 0; i < bus->dev_count; i++)
3379                 if (bus->range[i].dev == dev) {
3380                         r = 0;
3381                         break;
3382                 }
3383
3384         if (r)
3385                 return r;
3386
3387         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3388                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3389         if (!new_bus)
3390                 return -ENOMEM;
3391
3392         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3393         new_bus->dev_count--;
3394         memcpy(new_bus->range + i, bus->range + i + 1,
3395                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3396
3397         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3398         synchronize_srcu_expedited(&kvm->srcu);
3399         kfree(bus);
3400         return r;
3401 }
3402
3403 static struct notifier_block kvm_cpu_notifier = {
3404         .notifier_call = kvm_cpu_hotplug,
3405 };
3406
3407 static int vm_stat_get(void *_offset, u64 *val)
3408 {
3409         unsigned offset = (long)_offset;
3410         struct kvm *kvm;
3411
3412         *val = 0;
3413         spin_lock(&kvm_lock);
3414         list_for_each_entry(kvm, &vm_list, vm_list)
3415                 *val += *(u32 *)((void *)kvm + offset);
3416         spin_unlock(&kvm_lock);
3417         return 0;
3418 }
3419
3420 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3421
3422 static int vcpu_stat_get(void *_offset, u64 *val)
3423 {
3424         unsigned offset = (long)_offset;
3425         struct kvm *kvm;
3426         struct kvm_vcpu *vcpu;
3427         int i;
3428
3429         *val = 0;
3430         spin_lock(&kvm_lock);
3431         list_for_each_entry(kvm, &vm_list, vm_list)
3432                 kvm_for_each_vcpu(i, vcpu, kvm)
3433                         *val += *(u32 *)((void *)vcpu + offset);
3434
3435         spin_unlock(&kvm_lock);
3436         return 0;
3437 }
3438
3439 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3440
3441 static const struct file_operations *stat_fops[] = {
3442         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3443         [KVM_STAT_VM]   = &vm_stat_fops,
3444 };
3445
3446 static int kvm_init_debug(void)
3447 {
3448         int r = -EEXIST;
3449         struct kvm_stats_debugfs_item *p;
3450
3451         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3452         if (kvm_debugfs_dir == NULL)
3453                 goto out;
3454
3455         for (p = debugfs_entries; p->name; ++p) {
3456                 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3457                                                 (void *)(long)p->offset,
3458                                                 stat_fops[p->kind]);
3459                 if (p->dentry == NULL)
3460                         goto out_dir;
3461         }
3462
3463         return 0;
3464
3465 out_dir:
3466         debugfs_remove_recursive(kvm_debugfs_dir);
3467 out:
3468         return r;
3469 }
3470
3471 static void kvm_exit_debug(void)
3472 {
3473         struct kvm_stats_debugfs_item *p;
3474
3475         for (p = debugfs_entries; p->name; ++p)
3476                 debugfs_remove(p->dentry);
3477         debugfs_remove(kvm_debugfs_dir);
3478 }
3479
3480 static int kvm_suspend(void)
3481 {
3482         if (kvm_usage_count)
3483                 hardware_disable_nolock(NULL);
3484         return 0;
3485 }
3486
3487 static void kvm_resume(void)
3488 {
3489         if (kvm_usage_count) {
3490                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3491                 hardware_enable_nolock(NULL);
3492         }
3493 }
3494
3495 static struct syscore_ops kvm_syscore_ops = {
3496         .suspend = kvm_suspend,
3497         .resume = kvm_resume,
3498 };
3499
3500 static inline
3501 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3502 {
3503         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3504 }
3505
3506 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3507 {
3508         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3509
3510         if (vcpu->preempted)
3511                 vcpu->preempted = false;
3512
3513         kvm_arch_sched_in(vcpu, cpu);
3514
3515         kvm_arch_vcpu_load(vcpu, cpu);
3516 }
3517
3518 static void kvm_sched_out(struct preempt_notifier *pn,
3519                           struct task_struct *next)
3520 {
3521         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3522
3523         if (current->state == TASK_RUNNING)
3524                 vcpu->preempted = true;
3525         kvm_arch_vcpu_put(vcpu);
3526 }
3527
3528 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3529                   struct module *module)
3530 {
3531         int r;
3532         int cpu;
3533
3534         r = kvm_arch_init(opaque);
3535         if (r)
3536                 goto out_fail;
3537
3538         /*
3539          * kvm_arch_init makes sure there's at most one caller
3540          * for architectures that support multiple implementations,
3541          * like intel and amd on x86.
3542          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3543          * conflicts in case kvm is already setup for another implementation.
3544          */
3545         r = kvm_irqfd_init();
3546         if (r)
3547                 goto out_irqfd;
3548
3549         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3550                 r = -ENOMEM;
3551                 goto out_free_0;
3552         }
3553
3554         r = kvm_arch_hardware_setup();
3555         if (r < 0)
3556                 goto out_free_0a;
3557
3558         for_each_online_cpu(cpu) {
3559                 smp_call_function_single(cpu,
3560                                 kvm_arch_check_processor_compat,
3561                                 &r, 1);
3562                 if (r < 0)
3563                         goto out_free_1;
3564         }
3565
3566         r = register_cpu_notifier(&kvm_cpu_notifier);
3567         if (r)
3568                 goto out_free_2;
3569         register_reboot_notifier(&kvm_reboot_notifier);
3570
3571         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3572         if (!vcpu_align)
3573                 vcpu_align = __alignof__(struct kvm_vcpu);
3574         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3575                                            0, NULL);
3576         if (!kvm_vcpu_cache) {
3577                 r = -ENOMEM;
3578                 goto out_free_3;
3579         }
3580
3581         r = kvm_async_pf_init();
3582         if (r)
3583                 goto out_free;
3584
3585         kvm_chardev_ops.owner = module;
3586         kvm_vm_fops.owner = module;
3587         kvm_vcpu_fops.owner = module;
3588
3589         r = misc_register(&kvm_dev);
3590         if (r) {
3591                 pr_err("kvm: misc device register failed\n");
3592                 goto out_unreg;
3593         }
3594
3595         register_syscore_ops(&kvm_syscore_ops);
3596
3597         kvm_preempt_ops.sched_in = kvm_sched_in;
3598         kvm_preempt_ops.sched_out = kvm_sched_out;
3599
3600         r = kvm_init_debug();
3601         if (r) {
3602                 pr_err("kvm: create debugfs files failed\n");
3603                 goto out_undebugfs;
3604         }
3605
3606         r = kvm_vfio_ops_init();
3607         WARN_ON(r);
3608
3609         return 0;
3610
3611 out_undebugfs:
3612         unregister_syscore_ops(&kvm_syscore_ops);
3613         misc_deregister(&kvm_dev);
3614 out_unreg:
3615         kvm_async_pf_deinit();
3616 out_free:
3617         kmem_cache_destroy(kvm_vcpu_cache);
3618 out_free_3:
3619         unregister_reboot_notifier(&kvm_reboot_notifier);
3620         unregister_cpu_notifier(&kvm_cpu_notifier);
3621 out_free_2:
3622 out_free_1:
3623         kvm_arch_hardware_unsetup();
3624 out_free_0a:
3625         free_cpumask_var(cpus_hardware_enabled);
3626 out_free_0:
3627         kvm_irqfd_exit();
3628 out_irqfd:
3629         kvm_arch_exit();
3630 out_fail:
3631         return r;
3632 }
3633 EXPORT_SYMBOL_GPL(kvm_init);
3634
3635 void kvm_exit(void)
3636 {
3637         kvm_exit_debug();
3638         misc_deregister(&kvm_dev);
3639         kmem_cache_destroy(kvm_vcpu_cache);
3640         kvm_async_pf_deinit();
3641         unregister_syscore_ops(&kvm_syscore_ops);
3642         unregister_reboot_notifier(&kvm_reboot_notifier);
3643         unregister_cpu_notifier(&kvm_cpu_notifier);
3644         on_each_cpu(hardware_disable_nolock, NULL, 1);
3645         kvm_arch_hardware_unsetup();
3646         kvm_arch_exit();
3647         kvm_irqfd_exit();
3648         free_cpumask_var(cpus_hardware_enabled);
3649         kvm_vfio_ops_exit();
3650 }
3651 EXPORT_SYMBOL_GPL(kvm_exit);