Merge tag 'v3.10.72' into linux-linaro-lsk
[firefly-linux-kernel-4.4.55.git] / virt / kvm / arm / vgic.c
1 /*
2  * Copyright (C) 2012 ARM Ltd.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/uaccess.h>
28
29 #include <linux/irqchip/arm-gic.h>
30
31 #include <asm/kvm_emulate.h>
32 #include <asm/kvm_arm.h>
33 #include <asm/kvm_mmu.h>
34
35 /*
36  * How the whole thing works (courtesy of Christoffer Dall):
37  *
38  * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
39  *   something is pending on the CPU interface.
40  * - Interrupts that are pending on the distributor are stored on the
41  *   vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
42  *   ioctls and guest mmio ops, and other in-kernel peripherals such as the
43  *   arch. timers).
44  * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
45  *   recalculated
46  * - To calculate the oracle, we need info for each cpu from
47  *   compute_pending_for_cpu, which considers:
48  *   - PPI: dist->irq_pending & dist->irq_enable
49  *   - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
50  *   - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
51  *     registers, stored on each vcpu. We only keep one bit of
52  *     information per interrupt, making sure that only one vcpu can
53  *     accept the interrupt.
54  * - If any of the above state changes, we must recalculate the oracle.
55  * - The same is true when injecting an interrupt, except that we only
56  *   consider a single interrupt at a time. The irq_spi_cpu array
57  *   contains the target CPU for each SPI.
58  *
59  * The handling of level interrupts adds some extra complexity. We
60  * need to track when the interrupt has been EOIed, so we can sample
61  * the 'line' again. This is achieved as such:
62  *
63  * - When a level interrupt is moved onto a vcpu, the corresponding
64  *   bit in irq_queued is set. As long as this bit is set, the line
65  *   will be ignored for further interrupts. The interrupt is injected
66  *   into the vcpu with the GICH_LR_EOI bit set (generate a
67  *   maintenance interrupt on EOI).
68  * - When the interrupt is EOIed, the maintenance interrupt fires,
69  *   and clears the corresponding bit in irq_queued. This allows the
70  *   interrupt line to be sampled again.
71  * - Note that level-triggered interrupts can also be set to pending from
72  *   writes to GICD_ISPENDRn and lowering the external input line does not
73  *   cause the interrupt to become inactive in such a situation.
74  *   Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
75  *   inactive as long as the external input line is held high.
76  */
77
78 #define VGIC_ADDR_UNDEF         (-1)
79 #define IS_VGIC_ADDR_UNDEF(_x)  ((_x) == VGIC_ADDR_UNDEF)
80
81 #define PRODUCT_ID_KVM          0x4b    /* ASCII code K */
82 #define IMPLEMENTER_ARM         0x43b
83 #define GICC_ARCH_VERSION_V2    0x2
84
85 #define ACCESS_READ_VALUE       (1 << 0)
86 #define ACCESS_READ_RAZ         (0 << 0)
87 #define ACCESS_READ_MASK(x)     ((x) & (1 << 0))
88 #define ACCESS_WRITE_IGNORED    (0 << 1)
89 #define ACCESS_WRITE_SETBIT     (1 << 1)
90 #define ACCESS_WRITE_CLEARBIT   (2 << 1)
91 #define ACCESS_WRITE_VALUE      (3 << 1)
92 #define ACCESS_WRITE_MASK(x)    ((x) & (3 << 1))
93
94 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
95 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
96 static void vgic_update_state(struct kvm *kvm);
97 static void vgic_kick_vcpus(struct kvm *kvm);
98 static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi);
99 static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
100 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
101 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
102 static void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
103 static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
104
105 static const struct vgic_ops *vgic_ops;
106 static const struct vgic_params *vgic;
107
108 /*
109  * struct vgic_bitmap contains a bitmap made of unsigned longs, but
110  * extracts u32s out of them.
111  *
112  * This does not work on 64-bit BE systems, because the bitmap access
113  * will store two consecutive 32-bit words with the higher-addressed
114  * register's bits at the lower index and the lower-addressed register's
115  * bits at the higher index.
116  *
117  * Therefore, swizzle the register index when accessing the 32-bit word
118  * registers to access the right register's value.
119  */
120 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
121 #define REG_OFFSET_SWIZZLE      1
122 #else
123 #define REG_OFFSET_SWIZZLE      0
124 #endif
125
126 static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
127 {
128         int nr_longs;
129
130         nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
131
132         b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
133         if (!b->private)
134                 return -ENOMEM;
135
136         b->shared = b->private + nr_cpus;
137
138         return 0;
139 }
140
141 static void vgic_free_bitmap(struct vgic_bitmap *b)
142 {
143         kfree(b->private);
144         b->private = NULL;
145         b->shared = NULL;
146 }
147
148 static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x,
149                                 int cpuid, u32 offset)
150 {
151         offset >>= 2;
152         if (!offset)
153                 return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
154         else
155                 return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
156 }
157
158 static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
159                                    int cpuid, int irq)
160 {
161         if (irq < VGIC_NR_PRIVATE_IRQS)
162                 return test_bit(irq, x->private + cpuid);
163
164         return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
165 }
166
167 static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
168                                     int irq, int val)
169 {
170         unsigned long *reg;
171
172         if (irq < VGIC_NR_PRIVATE_IRQS) {
173                 reg = x->private + cpuid;
174         } else {
175                 reg = x->shared;
176                 irq -= VGIC_NR_PRIVATE_IRQS;
177         }
178
179         if (val)
180                 set_bit(irq, reg);
181         else
182                 clear_bit(irq, reg);
183 }
184
185 static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
186 {
187         return x->private + cpuid;
188 }
189
190 static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
191 {
192         return x->shared;
193 }
194
195 static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
196 {
197         int size;
198
199         size  = nr_cpus * VGIC_NR_PRIVATE_IRQS;
200         size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
201
202         x->private = kzalloc(size, GFP_KERNEL);
203         if (!x->private)
204                 return -ENOMEM;
205
206         x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
207         return 0;
208 }
209
210 static void vgic_free_bytemap(struct vgic_bytemap *b)
211 {
212         kfree(b->private);
213         b->private = NULL;
214         b->shared = NULL;
215 }
216
217 static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
218 {
219         u32 *reg;
220
221         if (offset < VGIC_NR_PRIVATE_IRQS) {
222                 reg = x->private;
223                 offset += cpuid * VGIC_NR_PRIVATE_IRQS;
224         } else {
225                 reg = x->shared;
226                 offset -= VGIC_NR_PRIVATE_IRQS;
227         }
228
229         return reg + (offset / sizeof(u32));
230 }
231
232 #define VGIC_CFG_LEVEL  0
233 #define VGIC_CFG_EDGE   1
234
235 static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
236 {
237         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
238         int irq_val;
239
240         irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
241         return irq_val == VGIC_CFG_EDGE;
242 }
243
244 static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
245 {
246         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
247
248         return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
249 }
250
251 static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
252 {
253         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
254
255         return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
256 }
257
258 static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
259 {
260         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
261
262         vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
263 }
264
265 static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
266 {
267         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
268
269         vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
270 }
271
272 static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
273 {
274         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
275
276         return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
277 }
278
279 static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
280 {
281         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
282
283         vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
284 }
285
286 static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
287 {
288         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
289
290         vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
291 }
292
293 static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
294 {
295         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
296
297         return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
298 }
299
300 static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
301 {
302         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
303
304         vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
305 }
306
307 static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
308 {
309         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
310
311         return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
312 }
313
314 static void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
315 {
316         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
317
318         vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
319 }
320
321 static void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
322 {
323         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
324
325         vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
326 }
327
328 static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
329 {
330         if (irq < VGIC_NR_PRIVATE_IRQS)
331                 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
332         else
333                 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
334                         vcpu->arch.vgic_cpu.pending_shared);
335 }
336
337 static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
338 {
339         if (irq < VGIC_NR_PRIVATE_IRQS)
340                 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
341         else
342                 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
343                           vcpu->arch.vgic_cpu.pending_shared);
344 }
345
346 static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
347 {
348         return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq);
349 }
350
351 static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
352 {
353         return le32_to_cpu(*((u32 *)mmio->data)) & mask;
354 }
355
356 static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
357 {
358         *((u32 *)mmio->data) = cpu_to_le32(value) & mask;
359 }
360
361 /**
362  * vgic_reg_access - access vgic register
363  * @mmio:   pointer to the data describing the mmio access
364  * @reg:    pointer to the virtual backing of vgic distributor data
365  * @offset: least significant 2 bits used for word offset
366  * @mode:   ACCESS_ mode (see defines above)
367  *
368  * Helper to make vgic register access easier using one of the access
369  * modes defined for vgic register access
370  * (read,raz,write-ignored,setbit,clearbit,write)
371  */
372 static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
373                             phys_addr_t offset, int mode)
374 {
375         int word_offset = (offset & 3) * 8;
376         u32 mask = (1UL << (mmio->len * 8)) - 1;
377         u32 regval;
378
379         /*
380          * Any alignment fault should have been delivered to the guest
381          * directly (ARM ARM B3.12.7 "Prioritization of aborts").
382          */
383
384         if (reg) {
385                 regval = *reg;
386         } else {
387                 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
388                 regval = 0;
389         }
390
391         if (mmio->is_write) {
392                 u32 data = mmio_data_read(mmio, mask) << word_offset;
393                 switch (ACCESS_WRITE_MASK(mode)) {
394                 case ACCESS_WRITE_IGNORED:
395                         return;
396
397                 case ACCESS_WRITE_SETBIT:
398                         regval |= data;
399                         break;
400
401                 case ACCESS_WRITE_CLEARBIT:
402                         regval &= ~data;
403                         break;
404
405                 case ACCESS_WRITE_VALUE:
406                         regval = (regval & ~(mask << word_offset)) | data;
407                         break;
408                 }
409                 *reg = regval;
410         } else {
411                 switch (ACCESS_READ_MASK(mode)) {
412                 case ACCESS_READ_RAZ:
413                         regval = 0;
414                         /* fall through */
415
416                 case ACCESS_READ_VALUE:
417                         mmio_data_write(mmio, mask, regval >> word_offset);
418                 }
419         }
420 }
421
422 static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
423                              struct kvm_exit_mmio *mmio, phys_addr_t offset)
424 {
425         u32 reg;
426         u32 word_offset = offset & 3;
427
428         switch (offset & ~3) {
429         case 0:                 /* GICD_CTLR */
430                 reg = vcpu->kvm->arch.vgic.enabled;
431                 vgic_reg_access(mmio, &reg, word_offset,
432                                 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
433                 if (mmio->is_write) {
434                         vcpu->kvm->arch.vgic.enabled = reg & 1;
435                         vgic_update_state(vcpu->kvm);
436                         return true;
437                 }
438                 break;
439
440         case 4:                 /* GICD_TYPER */
441                 reg  = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
442                 reg |= (vcpu->kvm->arch.vgic.nr_irqs >> 5) - 1;
443                 vgic_reg_access(mmio, &reg, word_offset,
444                                 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
445                 break;
446
447         case 8:                 /* GICD_IIDR */
448                 reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
449                 vgic_reg_access(mmio, &reg, word_offset,
450                                 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
451                 break;
452         }
453
454         return false;
455 }
456
457 static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu,
458                                struct kvm_exit_mmio *mmio, phys_addr_t offset)
459 {
460         vgic_reg_access(mmio, NULL, offset,
461                         ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
462         return false;
463 }
464
465 static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
466                                        struct kvm_exit_mmio *mmio,
467                                        phys_addr_t offset)
468 {
469         u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
470                                        vcpu->vcpu_id, offset);
471         vgic_reg_access(mmio, reg, offset,
472                         ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
473         if (mmio->is_write) {
474                 vgic_update_state(vcpu->kvm);
475                 return true;
476         }
477
478         return false;
479 }
480
481 static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
482                                          struct kvm_exit_mmio *mmio,
483                                          phys_addr_t offset)
484 {
485         u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
486                                        vcpu->vcpu_id, offset);
487         vgic_reg_access(mmio, reg, offset,
488                         ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
489         if (mmio->is_write) {
490                 if (offset < 4) /* Force SGI enabled */
491                         *reg |= 0xffff;
492                 vgic_retire_disabled_irqs(vcpu);
493                 vgic_update_state(vcpu->kvm);
494                 return true;
495         }
496
497         return false;
498 }
499
500 static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
501                                         struct kvm_exit_mmio *mmio,
502                                         phys_addr_t offset)
503 {
504         u32 *reg, orig;
505         u32 level_mask;
506         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
507
508         reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu->vcpu_id, offset);
509         level_mask = (~(*reg));
510
511         /* Mark both level and edge triggered irqs as pending */
512         reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset);
513         orig = *reg;
514         vgic_reg_access(mmio, reg, offset,
515                         ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
516
517         if (mmio->is_write) {
518                 /* Set the soft-pending flag only for level-triggered irqs */
519                 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
520                                           vcpu->vcpu_id, offset);
521                 vgic_reg_access(mmio, reg, offset,
522                                 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
523                 *reg &= level_mask;
524
525                 /* Ignore writes to SGIs */
526                 if (offset < 2) {
527                         *reg &= ~0xffff;
528                         *reg |= orig & 0xffff;
529                 }
530
531                 vgic_update_state(vcpu->kvm);
532                 return true;
533         }
534
535         return false;
536 }
537
538 static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
539                                           struct kvm_exit_mmio *mmio,
540                                           phys_addr_t offset)
541 {
542         u32 *level_active;
543         u32 *reg, orig;
544         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
545
546         reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset);
547         orig = *reg;
548         vgic_reg_access(mmio, reg, offset,
549                         ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
550         if (mmio->is_write) {
551                 /* Re-set level triggered level-active interrupts */
552                 level_active = vgic_bitmap_get_reg(&dist->irq_level,
553                                           vcpu->vcpu_id, offset);
554                 reg = vgic_bitmap_get_reg(&dist->irq_pending,
555                                           vcpu->vcpu_id, offset);
556                 *reg |= *level_active;
557
558                 /* Ignore writes to SGIs */
559                 if (offset < 2) {
560                         *reg &= ~0xffff;
561                         *reg |= orig & 0xffff;
562                 }
563
564                 /* Clear soft-pending flags */
565                 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
566                                           vcpu->vcpu_id, offset);
567                 vgic_reg_access(mmio, reg, offset,
568                                 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
569
570                 vgic_update_state(vcpu->kvm);
571                 return true;
572         }
573
574         return false;
575 }
576
577 static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
578                                      struct kvm_exit_mmio *mmio,
579                                      phys_addr_t offset)
580 {
581         u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
582                                         vcpu->vcpu_id, offset);
583         vgic_reg_access(mmio, reg, offset,
584                         ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
585         return false;
586 }
587
588 #define GICD_ITARGETSR_SIZE     32
589 #define GICD_CPUTARGETS_BITS    8
590 #define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
591 static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
592 {
593         struct vgic_dist *dist = &kvm->arch.vgic;
594         int i;
595         u32 val = 0;
596
597         irq -= VGIC_NR_PRIVATE_IRQS;
598
599         for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
600                 val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8);
601
602         return val;
603 }
604
605 static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
606 {
607         struct vgic_dist *dist = &kvm->arch.vgic;
608         struct kvm_vcpu *vcpu;
609         int i, c;
610         unsigned long *bmap;
611         u32 target;
612
613         irq -= VGIC_NR_PRIVATE_IRQS;
614
615         /*
616          * Pick the LSB in each byte. This ensures we target exactly
617          * one vcpu per IRQ. If the byte is null, assume we target
618          * CPU0.
619          */
620         for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
621                 int shift = i * GICD_CPUTARGETS_BITS;
622                 target = ffs((val >> shift) & 0xffU);
623                 target = target ? (target - 1) : 0;
624                 dist->irq_spi_cpu[irq + i] = target;
625                 kvm_for_each_vcpu(c, vcpu, kvm) {
626                         bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
627                         if (c == target)
628                                 set_bit(irq + i, bmap);
629                         else
630                                 clear_bit(irq + i, bmap);
631                 }
632         }
633 }
634
635 static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
636                                    struct kvm_exit_mmio *mmio,
637                                    phys_addr_t offset)
638 {
639         u32 reg;
640
641         /* We treat the banked interrupts targets as read-only */
642         if (offset < 32) {
643                 u32 roreg = 1 << vcpu->vcpu_id;
644                 roreg |= roreg << 8;
645                 roreg |= roreg << 16;
646
647                 vgic_reg_access(mmio, &roreg, offset,
648                                 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
649                 return false;
650         }
651
652         reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
653         vgic_reg_access(mmio, &reg, offset,
654                         ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
655         if (mmio->is_write) {
656                 vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
657                 vgic_update_state(vcpu->kvm);
658                 return true;
659         }
660
661         return false;
662 }
663
664 static u32 vgic_cfg_expand(u16 val)
665 {
666         u32 res = 0;
667         int i;
668
669         /*
670          * Turn a 16bit value like abcd...mnop into a 32bit word
671          * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
672          */
673         for (i = 0; i < 16; i++)
674                 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
675
676         return res;
677 }
678
679 static u16 vgic_cfg_compress(u32 val)
680 {
681         u16 res = 0;
682         int i;
683
684         /*
685          * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
686          * abcd...mnop which is what we really care about.
687          */
688         for (i = 0; i < 16; i++)
689                 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
690
691         return res;
692 }
693
694 /*
695  * The distributor uses 2 bits per IRQ for the CFG register, but the
696  * LSB is always 0. As such, we only keep the upper bit, and use the
697  * two above functions to compress/expand the bits
698  */
699 static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
700                                 struct kvm_exit_mmio *mmio, phys_addr_t offset)
701 {
702         u32 val;
703         u32 *reg;
704
705         reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
706                                   vcpu->vcpu_id, offset >> 1);
707
708         if (offset & 4)
709                 val = *reg >> 16;
710         else
711                 val = *reg & 0xffff;
712
713         val = vgic_cfg_expand(val);
714         vgic_reg_access(mmio, &val, offset,
715                         ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
716         if (mmio->is_write) {
717                 if (offset < 8) {
718                         *reg = ~0U; /* Force PPIs/SGIs to 1 */
719                         return false;
720                 }
721
722                 val = vgic_cfg_compress(val);
723                 if (offset & 4) {
724                         *reg &= 0xffff;
725                         *reg |= val << 16;
726                 } else {
727                         *reg &= 0xffff << 16;
728                         *reg |= val;
729                 }
730         }
731
732         return false;
733 }
734
735 static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
736                                 struct kvm_exit_mmio *mmio, phys_addr_t offset)
737 {
738         u32 reg;
739         vgic_reg_access(mmio, &reg, offset,
740                         ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
741         if (mmio->is_write) {
742                 vgic_dispatch_sgi(vcpu, reg);
743                 vgic_update_state(vcpu->kvm);
744                 return true;
745         }
746
747         return false;
748 }
749
750 /**
751  * vgic_unqueue_irqs - move pending IRQs from LRs to the distributor
752  * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
753  *
754  * Move any pending IRQs that have already been assigned to LRs back to the
755  * emulated distributor state so that the complete emulated state can be read
756  * from the main emulation structures without investigating the LRs.
757  *
758  * Note that IRQs in the active state in the LRs get their pending state moved
759  * to the distributor but the active state stays in the LRs, because we don't
760  * track the active state on the distributor side.
761  */
762 static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
763 {
764         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
765         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
766         int vcpu_id = vcpu->vcpu_id;
767         int i;
768
769         for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
770                 struct vgic_lr lr = vgic_get_lr(vcpu, i);
771
772                 /*
773                  * There are three options for the state bits:
774                  *
775                  * 01: pending
776                  * 10: active
777                  * 11: pending and active
778                  *
779                  * If the LR holds only an active interrupt (not pending) then
780                  * just leave it alone.
781                  */
782                 if ((lr.state & LR_STATE_MASK) == LR_STATE_ACTIVE)
783                         continue;
784
785                 /*
786                  * Reestablish the pending state on the distributor and the
787                  * CPU interface.  It may have already been pending, but that
788                  * is fine, then we are only setting a few bits that were
789                  * already set.
790                  */
791                 vgic_dist_irq_set_pending(vcpu, lr.irq);
792                 if (lr.irq < VGIC_NR_SGIS)
793                         *vgic_get_sgi_sources(dist, vcpu_id, lr.irq) |= 1 << lr.source;
794                 lr.state &= ~LR_STATE_PENDING;
795                 vgic_set_lr(vcpu, i, lr);
796
797                 /*
798                  * If there's no state left on the LR (it could still be
799                  * active), then the LR does not hold any useful info and can
800                  * be marked as free for other use.
801                  */
802                 if (!(lr.state & LR_STATE_MASK)) {
803                         vgic_retire_lr(i, lr.irq, vcpu);
804                         vgic_irq_clear_queued(vcpu, lr.irq);
805                 }
806
807                 /* Finally update the VGIC state. */
808                 vgic_update_state(vcpu->kvm);
809         }
810 }
811
812 /* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */
813 static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
814                                         struct kvm_exit_mmio *mmio,
815                                         phys_addr_t offset)
816 {
817         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
818         int sgi;
819         int min_sgi = (offset & ~0x3);
820         int max_sgi = min_sgi + 3;
821         int vcpu_id = vcpu->vcpu_id;
822         u32 reg = 0;
823
824         /* Copy source SGIs from distributor side */
825         for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
826                 int shift = 8 * (sgi - min_sgi);
827                 reg |= ((u32)*vgic_get_sgi_sources(dist, vcpu_id, sgi)) << shift;
828         }
829
830         mmio_data_write(mmio, ~0, reg);
831         return false;
832 }
833
834 static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
835                                          struct kvm_exit_mmio *mmio,
836                                          phys_addr_t offset, bool set)
837 {
838         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
839         int sgi;
840         int min_sgi = (offset & ~0x3);
841         int max_sgi = min_sgi + 3;
842         int vcpu_id = vcpu->vcpu_id;
843         u32 reg;
844         bool updated = false;
845
846         reg = mmio_data_read(mmio, ~0);
847
848         /* Clear pending SGIs on the distributor */
849         for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
850                 u8 mask = reg >> (8 * (sgi - min_sgi));
851                 u8 *src = vgic_get_sgi_sources(dist, vcpu_id, sgi);
852                 if (set) {
853                         if ((*src & mask) != mask)
854                                 updated = true;
855                         *src |= mask;
856                 } else {
857                         if (*src & mask)
858                                 updated = true;
859                         *src &= ~mask;
860                 }
861         }
862
863         if (updated)
864                 vgic_update_state(vcpu->kvm);
865
866         return updated;
867 }
868
869 static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu,
870                                 struct kvm_exit_mmio *mmio,
871                                 phys_addr_t offset)
872 {
873         if (!mmio->is_write)
874                 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
875         else
876                 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true);
877 }
878
879 static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu,
880                                   struct kvm_exit_mmio *mmio,
881                                   phys_addr_t offset)
882 {
883         if (!mmio->is_write)
884                 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
885         else
886                 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false);
887 }
888
889 /*
890  * I would have liked to use the kvm_bus_io_*() API instead, but it
891  * cannot cope with banked registers (only the VM pointer is passed
892  * around, and we need the vcpu). One of these days, someone please
893  * fix it!
894  */
895 struct mmio_range {
896         phys_addr_t base;
897         unsigned long len;
898         int bits_per_irq;
899         bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
900                             phys_addr_t offset);
901 };
902
903 static const struct mmio_range vgic_dist_ranges[] = {
904         {
905                 .base           = GIC_DIST_CTRL,
906                 .len            = 12,
907                 .bits_per_irq   = 0,
908                 .handle_mmio    = handle_mmio_misc,
909         },
910         {
911                 .base           = GIC_DIST_IGROUP,
912                 .len            = VGIC_MAX_IRQS / 8,
913                 .bits_per_irq   = 1,
914                 .handle_mmio    = handle_mmio_raz_wi,
915         },
916         {
917                 .base           = GIC_DIST_ENABLE_SET,
918                 .len            = VGIC_MAX_IRQS / 8,
919                 .bits_per_irq   = 1,
920                 .handle_mmio    = handle_mmio_set_enable_reg,
921         },
922         {
923                 .base           = GIC_DIST_ENABLE_CLEAR,
924                 .len            = VGIC_MAX_IRQS / 8,
925                 .bits_per_irq   = 1,
926                 .handle_mmio    = handle_mmio_clear_enable_reg,
927         },
928         {
929                 .base           = GIC_DIST_PENDING_SET,
930                 .len            = VGIC_MAX_IRQS / 8,
931                 .bits_per_irq   = 1,
932                 .handle_mmio    = handle_mmio_set_pending_reg,
933         },
934         {
935                 .base           = GIC_DIST_PENDING_CLEAR,
936                 .len            = VGIC_MAX_IRQS / 8,
937                 .bits_per_irq   = 1,
938                 .handle_mmio    = handle_mmio_clear_pending_reg,
939         },
940         {
941                 .base           = GIC_DIST_ACTIVE_SET,
942                 .len            = VGIC_MAX_IRQS / 8,
943                 .bits_per_irq   = 1,
944                 .handle_mmio    = handle_mmio_raz_wi,
945         },
946         {
947                 .base           = GIC_DIST_ACTIVE_CLEAR,
948                 .len            = VGIC_MAX_IRQS / 8,
949                 .bits_per_irq   = 1,
950                 .handle_mmio    = handle_mmio_raz_wi,
951         },
952         {
953                 .base           = GIC_DIST_PRI,
954                 .len            = VGIC_MAX_IRQS,
955                 .bits_per_irq   = 8,
956                 .handle_mmio    = handle_mmio_priority_reg,
957         },
958         {
959                 .base           = GIC_DIST_TARGET,
960                 .len            = VGIC_MAX_IRQS,
961                 .bits_per_irq   = 8,
962                 .handle_mmio    = handle_mmio_target_reg,
963         },
964         {
965                 .base           = GIC_DIST_CONFIG,
966                 .len            = VGIC_MAX_IRQS / 4,
967                 .bits_per_irq   = 2,
968                 .handle_mmio    = handle_mmio_cfg_reg,
969         },
970         {
971                 .base           = GIC_DIST_SOFTINT,
972                 .len            = 4,
973                 .handle_mmio    = handle_mmio_sgi_reg,
974         },
975         {
976                 .base           = GIC_DIST_SGI_PENDING_CLEAR,
977                 .len            = VGIC_NR_SGIS,
978                 .handle_mmio    = handle_mmio_sgi_clear,
979         },
980         {
981                 .base           = GIC_DIST_SGI_PENDING_SET,
982                 .len            = VGIC_NR_SGIS,
983                 .handle_mmio    = handle_mmio_sgi_set,
984         },
985         {}
986 };
987
988 static const
989 struct mmio_range *find_matching_range(const struct mmio_range *ranges,
990                                        struct kvm_exit_mmio *mmio,
991                                        phys_addr_t offset)
992 {
993         const struct mmio_range *r = ranges;
994
995         while (r->len) {
996                 if (offset >= r->base &&
997                     (offset + mmio->len) <= (r->base + r->len))
998                         return r;
999                 r++;
1000         }
1001
1002         return NULL;
1003 }
1004
1005 static bool vgic_validate_access(const struct vgic_dist *dist,
1006                                  const struct mmio_range *range,
1007                                  unsigned long offset)
1008 {
1009         int irq;
1010
1011         if (!range->bits_per_irq)
1012                 return true;    /* Not an irq-based access */
1013
1014         irq = offset * 8 / range->bits_per_irq;
1015         if (irq >= dist->nr_irqs)
1016                 return false;
1017
1018         return true;
1019 }
1020
1021 /**
1022  * vgic_handle_mmio - handle an in-kernel MMIO access
1023  * @vcpu:       pointer to the vcpu performing the access
1024  * @run:        pointer to the kvm_run structure
1025  * @mmio:       pointer to the data describing the access
1026  *
1027  * returns true if the MMIO access has been performed in kernel space,
1028  * and false if it needs to be emulated in user space.
1029  */
1030 bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
1031                       struct kvm_exit_mmio *mmio)
1032 {
1033         const struct mmio_range *range;
1034         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1035         unsigned long base = dist->vgic_dist_base;
1036         bool updated_state;
1037         unsigned long offset;
1038
1039         if (!irqchip_in_kernel(vcpu->kvm) ||
1040             mmio->phys_addr < base ||
1041             (mmio->phys_addr + mmio->len) > (base + KVM_VGIC_V2_DIST_SIZE))
1042                 return false;
1043
1044         /* We don't support ldrd / strd or ldm / stm to the emulated vgic */
1045         if (mmio->len > 4) {
1046                 kvm_inject_dabt(vcpu, mmio->phys_addr);
1047                 return true;
1048         }
1049
1050         offset = mmio->phys_addr - base;
1051         range = find_matching_range(vgic_dist_ranges, mmio, offset);
1052         if (unlikely(!range || !range->handle_mmio)) {
1053                 pr_warn("Unhandled access %d %08llx %d\n",
1054                         mmio->is_write, mmio->phys_addr, mmio->len);
1055                 return false;
1056         }
1057
1058         spin_lock(&vcpu->kvm->arch.vgic.lock);
1059         offset = mmio->phys_addr - range->base - base;
1060         if (vgic_validate_access(dist, range, offset)) {
1061                 updated_state = range->handle_mmio(vcpu, mmio, offset);
1062         } else {
1063                 vgic_reg_access(mmio, NULL, offset,
1064                                 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
1065                 updated_state = false;
1066         }
1067         spin_unlock(&vcpu->kvm->arch.vgic.lock);
1068         kvm_prepare_mmio(run, mmio);
1069         kvm_handle_mmio_return(vcpu, run);
1070
1071         if (updated_state)
1072                 vgic_kick_vcpus(vcpu->kvm);
1073
1074         return true;
1075 }
1076
1077 static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi)
1078 {
1079         return dist->irq_sgi_sources + vcpu_id * VGIC_NR_SGIS + sgi;
1080 }
1081
1082 static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
1083 {
1084         struct kvm *kvm = vcpu->kvm;
1085         struct vgic_dist *dist = &kvm->arch.vgic;
1086         int nrcpus = atomic_read(&kvm->online_vcpus);
1087         u8 target_cpus;
1088         int sgi, mode, c, vcpu_id;
1089
1090         vcpu_id = vcpu->vcpu_id;
1091
1092         sgi = reg & 0xf;
1093         target_cpus = (reg >> 16) & 0xff;
1094         mode = (reg >> 24) & 3;
1095
1096         switch (mode) {
1097         case 0:
1098                 if (!target_cpus)
1099                         return;
1100                 break;
1101
1102         case 1:
1103                 target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
1104                 break;
1105
1106         case 2:
1107                 target_cpus = 1 << vcpu_id;
1108                 break;
1109         }
1110
1111         kvm_for_each_vcpu(c, vcpu, kvm) {
1112                 if (target_cpus & 1) {
1113                         /* Flag the SGI as pending */
1114                         vgic_dist_irq_set_pending(vcpu, sgi);
1115                         *vgic_get_sgi_sources(dist, c, sgi) |= 1 << vcpu_id;
1116                         kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
1117                 }
1118
1119                 target_cpus >>= 1;
1120         }
1121 }
1122
1123 static int vgic_nr_shared_irqs(struct vgic_dist *dist)
1124 {
1125         return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
1126 }
1127
1128 static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
1129 {
1130         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1131         unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
1132         unsigned long pending_private, pending_shared;
1133         int nr_shared = vgic_nr_shared_irqs(dist);
1134         int vcpu_id;
1135
1136         vcpu_id = vcpu->vcpu_id;
1137         pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
1138         pend_shared = vcpu->arch.vgic_cpu.pending_shared;
1139
1140         pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
1141         enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
1142         bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
1143
1144         pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
1145         enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
1146         bitmap_and(pend_shared, pending, enabled, nr_shared);
1147         bitmap_and(pend_shared, pend_shared,
1148                    vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
1149                    nr_shared);
1150
1151         pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
1152         pending_shared = find_first_bit(pend_shared, nr_shared);
1153         return (pending_private < VGIC_NR_PRIVATE_IRQS ||
1154                 pending_shared < vgic_nr_shared_irqs(dist));
1155 }
1156
1157 /*
1158  * Update the interrupt state and determine which CPUs have pending
1159  * interrupts. Must be called with distributor lock held.
1160  */
1161 static void vgic_update_state(struct kvm *kvm)
1162 {
1163         struct vgic_dist *dist = &kvm->arch.vgic;
1164         struct kvm_vcpu *vcpu;
1165         int c;
1166
1167         if (!dist->enabled) {
1168                 set_bit(0, dist->irq_pending_on_cpu);
1169                 return;
1170         }
1171
1172         kvm_for_each_vcpu(c, vcpu, kvm) {
1173                 if (compute_pending_for_cpu(vcpu)) {
1174                         pr_debug("CPU%d has pending interrupts\n", c);
1175                         set_bit(c, dist->irq_pending_on_cpu);
1176                 }
1177         }
1178 }
1179
1180 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
1181 {
1182         return vgic_ops->get_lr(vcpu, lr);
1183 }
1184
1185 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
1186                                struct vgic_lr vlr)
1187 {
1188         vgic_ops->set_lr(vcpu, lr, vlr);
1189 }
1190
1191 static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
1192                                struct vgic_lr vlr)
1193 {
1194         vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
1195 }
1196
1197 static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
1198 {
1199         return vgic_ops->get_elrsr(vcpu);
1200 }
1201
1202 static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
1203 {
1204         return vgic_ops->get_eisr(vcpu);
1205 }
1206
1207 static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
1208 {
1209         return vgic_ops->get_interrupt_status(vcpu);
1210 }
1211
1212 static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
1213 {
1214         vgic_ops->enable_underflow(vcpu);
1215 }
1216
1217 static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
1218 {
1219         vgic_ops->disable_underflow(vcpu);
1220 }
1221
1222 static inline void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1223 {
1224         vgic_ops->get_vmcr(vcpu, vmcr);
1225 }
1226
1227 static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1228 {
1229         vgic_ops->set_vmcr(vcpu, vmcr);
1230 }
1231
1232 static inline void vgic_enable(struct kvm_vcpu *vcpu)
1233 {
1234         vgic_ops->enable(vcpu);
1235 }
1236
1237 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
1238 {
1239         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1240         struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
1241
1242         vlr.state = 0;
1243         vgic_set_lr(vcpu, lr_nr, vlr);
1244         clear_bit(lr_nr, vgic_cpu->lr_used);
1245         vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1246 }
1247
1248 /*
1249  * An interrupt may have been disabled after being made pending on the
1250  * CPU interface (the classic case is a timer running while we're
1251  * rebooting the guest - the interrupt would kick as soon as the CPU
1252  * interface gets enabled, with deadly consequences).
1253  *
1254  * The solution is to examine already active LRs, and check the
1255  * interrupt is still enabled. If not, just retire it.
1256  */
1257 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1258 {
1259         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1260         int lr;
1261
1262         for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
1263                 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1264
1265                 if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
1266                         vgic_retire_lr(lr, vlr.irq, vcpu);
1267                         if (vgic_irq_is_queued(vcpu, vlr.irq))
1268                                 vgic_irq_clear_queued(vcpu, vlr.irq);
1269                 }
1270         }
1271 }
1272
1273 /*
1274  * Queue an interrupt to a CPU virtual interface. Return true on success,
1275  * or false if it wasn't possible to queue it.
1276  */
1277 static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
1278 {
1279         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1280         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1281         struct vgic_lr vlr;
1282         int lr;
1283
1284         /* Sanitize the input... */
1285         BUG_ON(sgi_source_id & ~7);
1286         BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
1287         BUG_ON(irq >= dist->nr_irqs);
1288
1289         kvm_debug("Queue IRQ%d\n", irq);
1290
1291         lr = vgic_cpu->vgic_irq_lr_map[irq];
1292
1293         /* Do we have an active interrupt for the same CPUID? */
1294         if (lr != LR_EMPTY) {
1295                 vlr = vgic_get_lr(vcpu, lr);
1296                 if (vlr.source == sgi_source_id) {
1297                         kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
1298                         BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
1299                         vlr.state |= LR_STATE_PENDING;
1300                         vgic_set_lr(vcpu, lr, vlr);
1301                         return true;
1302                 }
1303         }
1304
1305         /* Try to use another LR for this interrupt */
1306         lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
1307                                vgic->nr_lr);
1308         if (lr >= vgic->nr_lr)
1309                 return false;
1310
1311         kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
1312         vgic_cpu->vgic_irq_lr_map[irq] = lr;
1313         set_bit(lr, vgic_cpu->lr_used);
1314
1315         vlr.irq = irq;
1316         vlr.source = sgi_source_id;
1317         vlr.state = LR_STATE_PENDING;
1318         if (!vgic_irq_is_edge(vcpu, irq))
1319                 vlr.state |= LR_EOI_INT;
1320
1321         vgic_set_lr(vcpu, lr, vlr);
1322
1323         return true;
1324 }
1325
1326 static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq)
1327 {
1328         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1329         unsigned long sources;
1330         int vcpu_id = vcpu->vcpu_id;
1331         int c;
1332
1333         sources = *vgic_get_sgi_sources(dist, vcpu_id, irq);
1334
1335         for_each_set_bit(c, &sources, dist->nr_cpus) {
1336                 if (vgic_queue_irq(vcpu, c, irq))
1337                         clear_bit(c, &sources);
1338         }
1339
1340         *vgic_get_sgi_sources(dist, vcpu_id, irq) = sources;
1341
1342         /*
1343          * If the sources bitmap has been cleared it means that we
1344          * could queue all the SGIs onto link registers (see the
1345          * clear_bit above), and therefore we are done with them in
1346          * our emulated gic and can get rid of them.
1347          */
1348         if (!sources) {
1349                 vgic_dist_irq_clear_pending(vcpu, irq);
1350                 vgic_cpu_irq_clear(vcpu, irq);
1351                 return true;
1352         }
1353
1354         return false;
1355 }
1356
1357 static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1358 {
1359         if (!vgic_can_sample_irq(vcpu, irq))
1360                 return true; /* level interrupt, already queued */
1361
1362         if (vgic_queue_irq(vcpu, 0, irq)) {
1363                 if (vgic_irq_is_edge(vcpu, irq)) {
1364                         vgic_dist_irq_clear_pending(vcpu, irq);
1365                         vgic_cpu_irq_clear(vcpu, irq);
1366                 } else {
1367                         vgic_irq_set_queued(vcpu, irq);
1368                 }
1369
1370                 return true;
1371         }
1372
1373         return false;
1374 }
1375
1376 /*
1377  * Fill the list registers with pending interrupts before running the
1378  * guest.
1379  */
1380 static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1381 {
1382         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1383         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1384         int i, vcpu_id;
1385         int overflow = 0;
1386
1387         vcpu_id = vcpu->vcpu_id;
1388
1389         /*
1390          * We may not have any pending interrupt, or the interrupts
1391          * may have been serviced from another vcpu. In all cases,
1392          * move along.
1393          */
1394         if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
1395                 pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
1396                 goto epilog;
1397         }
1398
1399         /* SGIs */
1400         for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
1401                 if (!vgic_queue_sgi(vcpu, i))
1402                         overflow = 1;
1403         }
1404
1405         /* PPIs */
1406         for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
1407                 if (!vgic_queue_hwirq(vcpu, i))
1408                         overflow = 1;
1409         }
1410
1411         /* SPIs */
1412         for_each_set_bit(i, vgic_cpu->pending_shared, vgic_nr_shared_irqs(dist)) {
1413                 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1414                         overflow = 1;
1415         }
1416
1417 epilog:
1418         if (overflow) {
1419                 vgic_enable_underflow(vcpu);
1420         } else {
1421                 vgic_disable_underflow(vcpu);
1422                 /*
1423                  * We're about to run this VCPU, and we've consumed
1424                  * everything the distributor had in store for
1425                  * us. Claim we don't have anything pending. We'll
1426                  * adjust that if needed while exiting.
1427                  */
1428                 clear_bit(vcpu_id, dist->irq_pending_on_cpu);
1429         }
1430 }
1431
1432 static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1433 {
1434         u32 status = vgic_get_interrupt_status(vcpu);
1435         bool level_pending = false;
1436
1437         kvm_debug("STATUS = %08x\n", status);
1438
1439         if (status & INT_STATUS_EOI) {
1440                 /*
1441                  * Some level interrupts have been EOIed. Clear their
1442                  * active bit.
1443                  */
1444                 u64 eisr = vgic_get_eisr(vcpu);
1445                 unsigned long *eisr_ptr = (unsigned long *)&eisr;
1446                 int lr;
1447
1448                 for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
1449                         struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1450                         WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
1451
1452                         vgic_irq_clear_queued(vcpu, vlr.irq);
1453                         WARN_ON(vlr.state & LR_STATE_MASK);
1454                         vlr.state = 0;
1455                         vgic_set_lr(vcpu, lr, vlr);
1456
1457                         /*
1458                          * If the IRQ was EOIed it was also ACKed and we we
1459                          * therefore assume we can clear the soft pending
1460                          * state (should it had been set) for this interrupt.
1461                          *
1462                          * Note: if the IRQ soft pending state was set after
1463                          * the IRQ was acked, it actually shouldn't be
1464                          * cleared, but we have no way of knowing that unless
1465                          * we start trapping ACKs when the soft-pending state
1466                          * is set.
1467                          */
1468                         vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
1469
1470                         /* Any additional pending interrupt? */
1471                         if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
1472                                 vgic_cpu_irq_set(vcpu, vlr.irq);
1473                                 level_pending = true;
1474                         } else {
1475                                 vgic_dist_irq_clear_pending(vcpu, vlr.irq);
1476                                 vgic_cpu_irq_clear(vcpu, vlr.irq);
1477                         }
1478
1479                         /*
1480                          * Despite being EOIed, the LR may not have
1481                          * been marked as empty.
1482                          */
1483                         vgic_sync_lr_elrsr(vcpu, lr, vlr);
1484                 }
1485         }
1486
1487         if (status & INT_STATUS_UNDERFLOW)
1488                 vgic_disable_underflow(vcpu);
1489
1490         return level_pending;
1491 }
1492
1493 /*
1494  * Sync back the VGIC state after a guest run. The distributor lock is
1495  * needed so we don't get preempted in the middle of the state processing.
1496  */
1497 static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1498 {
1499         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1500         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1501         u64 elrsr;
1502         unsigned long *elrsr_ptr;
1503         int lr, pending;
1504         bool level_pending;
1505
1506         level_pending = vgic_process_maintenance(vcpu);
1507         elrsr = vgic_get_elrsr(vcpu);
1508         elrsr_ptr = (unsigned long *)&elrsr;
1509
1510         /* Clear mappings for empty LRs */
1511         for_each_set_bit(lr, elrsr_ptr, vgic->nr_lr) {
1512                 struct vgic_lr vlr;
1513
1514                 if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1515                         continue;
1516
1517                 vlr = vgic_get_lr(vcpu, lr);
1518
1519                 BUG_ON(vlr.irq >= dist->nr_irqs);
1520                 vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
1521         }
1522
1523         /* Check if we still have something up our sleeve... */
1524         pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1525         if (level_pending || pending < vgic->nr_lr)
1526                 set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1527 }
1528
1529 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1530 {
1531         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1532
1533         if (!irqchip_in_kernel(vcpu->kvm))
1534                 return;
1535
1536         spin_lock(&dist->lock);
1537         __kvm_vgic_flush_hwstate(vcpu);
1538         spin_unlock(&dist->lock);
1539 }
1540
1541 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1542 {
1543         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1544
1545         if (!irqchip_in_kernel(vcpu->kvm))
1546                 return;
1547
1548         spin_lock(&dist->lock);
1549         __kvm_vgic_sync_hwstate(vcpu);
1550         spin_unlock(&dist->lock);
1551 }
1552
1553 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1554 {
1555         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1556
1557         if (!irqchip_in_kernel(vcpu->kvm))
1558                 return 0;
1559
1560         return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1561 }
1562
1563 static void vgic_kick_vcpus(struct kvm *kvm)
1564 {
1565         struct kvm_vcpu *vcpu;
1566         int c;
1567
1568         /*
1569          * We've injected an interrupt, time to find out who deserves
1570          * a good kick...
1571          */
1572         kvm_for_each_vcpu(c, vcpu, kvm) {
1573                 if (kvm_vgic_vcpu_pending_irq(vcpu))
1574                         kvm_vcpu_kick(vcpu);
1575         }
1576 }
1577
1578 static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1579 {
1580         int edge_triggered = vgic_irq_is_edge(vcpu, irq);
1581
1582         /*
1583          * Only inject an interrupt if:
1584          * - edge triggered and we have a rising edge
1585          * - level triggered and we change level
1586          */
1587         if (edge_triggered) {
1588                 int state = vgic_dist_irq_is_pending(vcpu, irq);
1589                 return level > state;
1590         } else {
1591                 int state = vgic_dist_irq_get_level(vcpu, irq);
1592                 return level != state;
1593         }
1594 }
1595
1596 static bool vgic_update_irq_pending(struct kvm *kvm, int cpuid,
1597                                   unsigned int irq_num, bool level)
1598 {
1599         struct vgic_dist *dist = &kvm->arch.vgic;
1600         struct kvm_vcpu *vcpu;
1601         int edge_triggered, level_triggered;
1602         int enabled;
1603         bool ret = true;
1604
1605         spin_lock(&dist->lock);
1606
1607         vcpu = kvm_get_vcpu(kvm, cpuid);
1608         edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1609         level_triggered = !edge_triggered;
1610
1611         if (!vgic_validate_injection(vcpu, irq_num, level)) {
1612                 ret = false;
1613                 goto out;
1614         }
1615
1616         if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1617                 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1618                 vcpu = kvm_get_vcpu(kvm, cpuid);
1619         }
1620
1621         kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1622
1623         if (level) {
1624                 if (level_triggered)
1625                         vgic_dist_irq_set_level(vcpu, irq_num);
1626                 vgic_dist_irq_set_pending(vcpu, irq_num);
1627         } else {
1628                 if (level_triggered) {
1629                         vgic_dist_irq_clear_level(vcpu, irq_num);
1630                         if (!vgic_dist_irq_soft_pend(vcpu, irq_num))
1631                                 vgic_dist_irq_clear_pending(vcpu, irq_num);
1632                 } else {
1633                         vgic_dist_irq_clear_pending(vcpu, irq_num);
1634                 }
1635         }
1636
1637         enabled = vgic_irq_is_enabled(vcpu, irq_num);
1638
1639         if (!enabled) {
1640                 ret = false;
1641                 goto out;
1642         }
1643
1644         if (!vgic_can_sample_irq(vcpu, irq_num)) {
1645                 /*
1646                  * Level interrupt in progress, will be picked up
1647                  * when EOId.
1648                  */
1649                 ret = false;
1650                 goto out;
1651         }
1652
1653         if (level) {
1654                 vgic_cpu_irq_set(vcpu, irq_num);
1655                 set_bit(cpuid, dist->irq_pending_on_cpu);
1656         }
1657
1658 out:
1659         spin_unlock(&dist->lock);
1660
1661         return ret;
1662 }
1663
1664 /**
1665  * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1666  * @kvm:     The VM structure pointer
1667  * @cpuid:   The CPU for PPIs
1668  * @irq_num: The IRQ number that is assigned to the device
1669  * @level:   Edge-triggered:  true:  to trigger the interrupt
1670  *                            false: to ignore the call
1671  *           Level-sensitive  true:  activates an interrupt
1672  *                            false: deactivates an interrupt
1673  *
1674  * The GIC is not concerned with devices being active-LOW or active-HIGH for
1675  * level-sensitive interrupts.  You can think of the level parameter as 1
1676  * being HIGH and 0 being LOW and all devices being active-HIGH.
1677  */
1678 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1679                         bool level)
1680 {
1681         if (likely(vgic_initialized(kvm)) &&
1682             vgic_update_irq_pending(kvm, cpuid, irq_num, level))
1683                 vgic_kick_vcpus(kvm);
1684
1685         return 0;
1686 }
1687
1688 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1689 {
1690         /*
1691          * We cannot rely on the vgic maintenance interrupt to be
1692          * delivered synchronously. This means we can only use it to
1693          * exit the VM, and we perform the handling of EOIed
1694          * interrupts on the exit path (see vgic_process_maintenance).
1695          */
1696         return IRQ_HANDLED;
1697 }
1698
1699 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
1700 {
1701         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1702
1703         kfree(vgic_cpu->pending_shared);
1704         kfree(vgic_cpu->vgic_irq_lr_map);
1705         vgic_cpu->pending_shared = NULL;
1706         vgic_cpu->vgic_irq_lr_map = NULL;
1707 }
1708
1709 static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
1710 {
1711         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1712
1713         int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
1714         vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
1715         vgic_cpu->vgic_irq_lr_map = kzalloc(nr_irqs, GFP_KERNEL);
1716
1717         if (!vgic_cpu->pending_shared || !vgic_cpu->vgic_irq_lr_map) {
1718                 kvm_vgic_vcpu_destroy(vcpu);
1719                 return -ENOMEM;
1720         }
1721
1722         return 0;
1723 }
1724
1725 /**
1726  * kvm_vgic_vcpu_init - Initialize per-vcpu VGIC state
1727  * @vcpu: pointer to the vcpu struct
1728  *
1729  * Initialize the vgic_cpu struct and vgic_dist struct fields pertaining to
1730  * this vcpu and enable the VGIC for this VCPU
1731  */
1732 static void kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
1733 {
1734         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1735         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1736         int i;
1737
1738         for (i = 0; i < dist->nr_irqs; i++) {
1739                 if (i < VGIC_NR_PPIS)
1740                         vgic_bitmap_set_irq_val(&dist->irq_enabled,
1741                                                 vcpu->vcpu_id, i, 1);
1742                 if (i < VGIC_NR_PRIVATE_IRQS)
1743                         vgic_bitmap_set_irq_val(&dist->irq_cfg,
1744                                                 vcpu->vcpu_id, i, VGIC_CFG_EDGE);
1745
1746                 vgic_cpu->vgic_irq_lr_map[i] = LR_EMPTY;
1747         }
1748
1749         /*
1750          * Store the number of LRs per vcpu, so we don't have to go
1751          * all the way to the distributor structure to find out. Only
1752          * assembly code should use this one.
1753          */
1754         vgic_cpu->nr_lr = vgic->nr_lr;
1755
1756         vgic_enable(vcpu);
1757 }
1758
1759 void kvm_vgic_destroy(struct kvm *kvm)
1760 {
1761         struct vgic_dist *dist = &kvm->arch.vgic;
1762         struct kvm_vcpu *vcpu;
1763         int i;
1764
1765         kvm_for_each_vcpu(i, vcpu, kvm)
1766                 kvm_vgic_vcpu_destroy(vcpu);
1767
1768         vgic_free_bitmap(&dist->irq_enabled);
1769         vgic_free_bitmap(&dist->irq_level);
1770         vgic_free_bitmap(&dist->irq_pending);
1771         vgic_free_bitmap(&dist->irq_soft_pend);
1772         vgic_free_bitmap(&dist->irq_queued);
1773         vgic_free_bitmap(&dist->irq_cfg);
1774         vgic_free_bytemap(&dist->irq_priority);
1775         if (dist->irq_spi_target) {
1776                 for (i = 0; i < dist->nr_cpus; i++)
1777                         vgic_free_bitmap(&dist->irq_spi_target[i]);
1778         }
1779         kfree(dist->irq_sgi_sources);
1780         kfree(dist->irq_spi_cpu);
1781         kfree(dist->irq_spi_target);
1782         kfree(dist->irq_pending_on_cpu);
1783         dist->irq_sgi_sources = NULL;
1784         dist->irq_spi_cpu = NULL;
1785         dist->irq_spi_target = NULL;
1786         dist->irq_pending_on_cpu = NULL;
1787 }
1788
1789 /*
1790  * Allocate and initialize the various data structures. Must be called
1791  * with kvm->lock held!
1792  */
1793 static int vgic_init_maps(struct kvm *kvm)
1794 {
1795         struct vgic_dist *dist = &kvm->arch.vgic;
1796         struct kvm_vcpu *vcpu;
1797         int nr_cpus, nr_irqs;
1798         int ret, i;
1799
1800         if (dist->nr_cpus)      /* Already allocated */
1801                 return 0;
1802
1803         nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
1804         if (!nr_cpus)           /* No vcpus? Can't be good... */
1805                 return -EINVAL;
1806
1807         /*
1808          * If nobody configured the number of interrupts, use the
1809          * legacy one.
1810          */
1811         if (!dist->nr_irqs)
1812                 dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
1813
1814         nr_irqs = dist->nr_irqs;
1815
1816         ret  = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
1817         ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
1818         ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
1819         ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
1820         ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
1821         ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
1822         ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
1823
1824         if (ret)
1825                 goto out;
1826
1827         dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
1828         dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
1829         dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
1830                                        GFP_KERNEL);
1831         dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
1832                                            GFP_KERNEL);
1833         if (!dist->irq_sgi_sources ||
1834             !dist->irq_spi_cpu ||
1835             !dist->irq_spi_target ||
1836             !dist->irq_pending_on_cpu) {
1837                 ret = -ENOMEM;
1838                 goto out;
1839         }
1840
1841         for (i = 0; i < nr_cpus; i++)
1842                 ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
1843                                         nr_cpus, nr_irqs);
1844
1845         if (ret)
1846                 goto out;
1847
1848         kvm_for_each_vcpu(i, vcpu, kvm) {
1849                 ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
1850                 if (ret) {
1851                         kvm_err("VGIC: Failed to allocate vcpu memory\n");
1852                         break;
1853                 }
1854         }
1855
1856         for (i = VGIC_NR_PRIVATE_IRQS; i < dist->nr_irqs; i += 4)
1857                 vgic_set_target_reg(kvm, 0, i);
1858
1859 out:
1860         if (ret)
1861                 kvm_vgic_destroy(kvm);
1862
1863         return ret;
1864 }
1865
1866 /**
1867  * kvm_vgic_init - Initialize global VGIC state before running any VCPUs
1868  * @kvm: pointer to the kvm struct
1869  *
1870  * Map the virtual CPU interface into the VM before running any VCPUs.  We
1871  * can't do this at creation time, because user space must first set the
1872  * virtual CPU interface address in the guest physical address space.  Also
1873  * initialize the ITARGETSRn regs to 0 on the emulated distributor.
1874  */
1875 int kvm_vgic_init(struct kvm *kvm)
1876 {
1877         struct kvm_vcpu *vcpu;
1878         int ret = 0, i;
1879
1880         if (!irqchip_in_kernel(kvm))
1881                 return 0;
1882
1883         mutex_lock(&kvm->lock);
1884
1885         if (vgic_initialized(kvm))
1886                 goto out;
1887
1888         if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
1889             IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
1890                 kvm_err("Need to set vgic cpu and dist addresses first\n");
1891                 ret = -ENXIO;
1892                 goto out;
1893         }
1894
1895         ret = vgic_init_maps(kvm);
1896         if (ret) {
1897                 kvm_err("Unable to allocate maps\n");
1898                 goto out;
1899         }
1900
1901         ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
1902                                     vgic->vcpu_base, KVM_VGIC_V2_CPU_SIZE);
1903         if (ret) {
1904                 kvm_err("Unable to remap VGIC CPU to VCPU\n");
1905                 goto out;
1906         }
1907
1908         kvm_for_each_vcpu(i, vcpu, kvm)
1909                 kvm_vgic_vcpu_init(vcpu);
1910
1911         kvm->arch.vgic.ready = true;
1912 out:
1913         if (ret)
1914                 kvm_vgic_destroy(kvm);
1915         mutex_unlock(&kvm->lock);
1916         return ret;
1917 }
1918
1919 int kvm_vgic_create(struct kvm *kvm)
1920 {
1921         int i, vcpu_lock_idx = -1, ret = 0;
1922         struct kvm_vcpu *vcpu;
1923
1924         mutex_lock(&kvm->lock);
1925
1926         if (kvm->arch.vgic.vctrl_base) {
1927                 ret = -EEXIST;
1928                 goto out;
1929         }
1930
1931         /*
1932          * Any time a vcpu is run, vcpu_load is called which tries to grab the
1933          * vcpu->mutex.  By grabbing the vcpu->mutex of all VCPUs we ensure
1934          * that no other VCPUs are run while we create the vgic.
1935          */
1936         kvm_for_each_vcpu(i, vcpu, kvm) {
1937                 if (!mutex_trylock(&vcpu->mutex))
1938                         goto out_unlock;
1939                 vcpu_lock_idx = i;
1940         }
1941
1942         kvm_for_each_vcpu(i, vcpu, kvm) {
1943                 if (vcpu->arch.has_run_once) {
1944                         ret = -EBUSY;
1945                         goto out_unlock;
1946                 }
1947         }
1948
1949         spin_lock_init(&kvm->arch.vgic.lock);
1950         kvm->arch.vgic.in_kernel = true;
1951         kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
1952         kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
1953         kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
1954
1955 out_unlock:
1956         for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1957                 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1958                 mutex_unlock(&vcpu->mutex);
1959         }
1960
1961 out:
1962         mutex_unlock(&kvm->lock);
1963         return ret;
1964 }
1965
1966 static int vgic_ioaddr_overlap(struct kvm *kvm)
1967 {
1968         phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
1969         phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
1970
1971         if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
1972                 return 0;
1973         if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
1974             (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
1975                 return -EBUSY;
1976         return 0;
1977 }
1978
1979 static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
1980                               phys_addr_t addr, phys_addr_t size)
1981 {
1982         int ret;
1983
1984         if (addr & ~KVM_PHYS_MASK)
1985                 return -E2BIG;
1986
1987         if (addr & (SZ_4K - 1))
1988                 return -EINVAL;
1989
1990         if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
1991                 return -EEXIST;
1992         if (addr + size < addr)
1993                 return -EINVAL;
1994
1995         *ioaddr = addr;
1996         ret = vgic_ioaddr_overlap(kvm);
1997         if (ret)
1998                 *ioaddr = VGIC_ADDR_UNDEF;
1999
2000         return ret;
2001 }
2002
2003 /**
2004  * kvm_vgic_addr - set or get vgic VM base addresses
2005  * @kvm:   pointer to the vm struct
2006  * @type:  the VGIC addr type, one of KVM_VGIC_V2_ADDR_TYPE_XXX
2007  * @addr:  pointer to address value
2008  * @write: if true set the address in the VM address space, if false read the
2009  *          address
2010  *
2011  * Set or get the vgic base addresses for the distributor and the virtual CPU
2012  * interface in the VM physical address space.  These addresses are properties
2013  * of the emulated core/SoC and therefore user space initially knows this
2014  * information.
2015  */
2016 int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
2017 {
2018         int r = 0;
2019         struct vgic_dist *vgic = &kvm->arch.vgic;
2020
2021         mutex_lock(&kvm->lock);
2022         switch (type) {
2023         case KVM_VGIC_V2_ADDR_TYPE_DIST:
2024                 if (write) {
2025                         r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
2026                                                *addr, KVM_VGIC_V2_DIST_SIZE);
2027                 } else {
2028                         *addr = vgic->vgic_dist_base;
2029                 }
2030                 break;
2031         case KVM_VGIC_V2_ADDR_TYPE_CPU:
2032                 if (write) {
2033                         r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
2034                                                *addr, KVM_VGIC_V2_CPU_SIZE);
2035                 } else {
2036                         *addr = vgic->vgic_cpu_base;
2037                 }
2038                 break;
2039         default:
2040                 r = -ENODEV;
2041         }
2042
2043         mutex_unlock(&kvm->lock);
2044         return r;
2045 }
2046
2047 static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu,
2048                                  struct kvm_exit_mmio *mmio, phys_addr_t offset)
2049 {
2050         bool updated = false;
2051         struct vgic_vmcr vmcr;
2052         u32 *vmcr_field;
2053         u32 reg;
2054
2055         vgic_get_vmcr(vcpu, &vmcr);
2056
2057         switch (offset & ~0x3) {
2058         case GIC_CPU_CTRL:
2059                 vmcr_field = &vmcr.ctlr;
2060                 break;
2061         case GIC_CPU_PRIMASK:
2062                 vmcr_field = &vmcr.pmr;
2063                 break;
2064         case GIC_CPU_BINPOINT:
2065                 vmcr_field = &vmcr.bpr;
2066                 break;
2067         case GIC_CPU_ALIAS_BINPOINT:
2068                 vmcr_field = &vmcr.abpr;
2069                 break;
2070         default:
2071                 BUG();
2072         }
2073
2074         if (!mmio->is_write) {
2075                 reg = *vmcr_field;
2076                 mmio_data_write(mmio, ~0, reg);
2077         } else {
2078                 reg = mmio_data_read(mmio, ~0);
2079                 if (reg != *vmcr_field) {
2080                         *vmcr_field = reg;
2081                         vgic_set_vmcr(vcpu, &vmcr);
2082                         updated = true;
2083                 }
2084         }
2085         return updated;
2086 }
2087
2088 static bool handle_mmio_abpr(struct kvm_vcpu *vcpu,
2089                              struct kvm_exit_mmio *mmio, phys_addr_t offset)
2090 {
2091         return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT);
2092 }
2093
2094 static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu,
2095                                   struct kvm_exit_mmio *mmio,
2096                                   phys_addr_t offset)
2097 {
2098         u32 reg;
2099
2100         if (mmio->is_write)
2101                 return false;
2102
2103         /* GICC_IIDR */
2104         reg = (PRODUCT_ID_KVM << 20) |
2105               (GICC_ARCH_VERSION_V2 << 16) |
2106               (IMPLEMENTER_ARM << 0);
2107         mmio_data_write(mmio, ~0, reg);
2108         return false;
2109 }
2110
2111 /*
2112  * CPU Interface Register accesses - these are not accessed by the VM, but by
2113  * user space for saving and restoring VGIC state.
2114  */
2115 static const struct mmio_range vgic_cpu_ranges[] = {
2116         {
2117                 .base           = GIC_CPU_CTRL,
2118                 .len            = 12,
2119                 .handle_mmio    = handle_cpu_mmio_misc,
2120         },
2121         {
2122                 .base           = GIC_CPU_ALIAS_BINPOINT,
2123                 .len            = 4,
2124                 .handle_mmio    = handle_mmio_abpr,
2125         },
2126         {
2127                 .base           = GIC_CPU_ACTIVEPRIO,
2128                 .len            = 16,
2129                 .handle_mmio    = handle_mmio_raz_wi,
2130         },
2131         {
2132                 .base           = GIC_CPU_IDENT,
2133                 .len            = 4,
2134                 .handle_mmio    = handle_cpu_mmio_ident,
2135         },
2136 };
2137
2138 static int vgic_attr_regs_access(struct kvm_device *dev,
2139                                  struct kvm_device_attr *attr,
2140                                  u32 *reg, bool is_write)
2141 {
2142         const struct mmio_range *r = NULL, *ranges;
2143         phys_addr_t offset;
2144         int ret, cpuid, c;
2145         struct kvm_vcpu *vcpu, *tmp_vcpu;
2146         struct vgic_dist *vgic;
2147         struct kvm_exit_mmio mmio;
2148
2149         offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
2150         cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
2151                 KVM_DEV_ARM_VGIC_CPUID_SHIFT;
2152
2153         mutex_lock(&dev->kvm->lock);
2154
2155         ret = vgic_init_maps(dev->kvm);
2156         if (ret)
2157                 goto out;
2158
2159         if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) {
2160                 ret = -EINVAL;
2161                 goto out;
2162         }
2163
2164         vcpu = kvm_get_vcpu(dev->kvm, cpuid);
2165         vgic = &dev->kvm->arch.vgic;
2166
2167         mmio.len = 4;
2168         mmio.is_write = is_write;
2169         if (is_write)
2170                 mmio_data_write(&mmio, ~0, *reg);
2171         switch (attr->group) {
2172         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2173                 mmio.phys_addr = vgic->vgic_dist_base + offset;
2174                 ranges = vgic_dist_ranges;
2175                 break;
2176         case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
2177                 mmio.phys_addr = vgic->vgic_cpu_base + offset;
2178                 ranges = vgic_cpu_ranges;
2179                 break;
2180         default:
2181                 BUG();
2182         }
2183         r = find_matching_range(ranges, &mmio, offset);
2184
2185         if (unlikely(!r || !r->handle_mmio)) {
2186                 ret = -ENXIO;
2187                 goto out;
2188         }
2189
2190
2191         spin_lock(&vgic->lock);
2192
2193         /*
2194          * Ensure that no other VCPU is running by checking the vcpu->cpu
2195          * field.  If no other VPCUs are running we can safely access the VGIC
2196          * state, because even if another VPU is run after this point, that
2197          * VCPU will not touch the vgic state, because it will block on
2198          * getting the vgic->lock in kvm_vgic_sync_hwstate().
2199          */
2200         kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) {
2201                 if (unlikely(tmp_vcpu->cpu != -1)) {
2202                         ret = -EBUSY;
2203                         goto out_vgic_unlock;
2204                 }
2205         }
2206
2207         /*
2208          * Move all pending IRQs from the LRs on all VCPUs so the pending
2209          * state can be properly represented in the register state accessible
2210          * through this API.
2211          */
2212         kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm)
2213                 vgic_unqueue_irqs(tmp_vcpu);
2214
2215         offset -= r->base;
2216         r->handle_mmio(vcpu, &mmio, offset);
2217
2218         if (!is_write)
2219                 *reg = mmio_data_read(&mmio, ~0);
2220
2221         ret = 0;
2222 out_vgic_unlock:
2223         spin_unlock(&vgic->lock);
2224 out:
2225         mutex_unlock(&dev->kvm->lock);
2226         return ret;
2227 }
2228
2229 static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2230 {
2231         int r;
2232
2233         switch (attr->group) {
2234         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2235                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2236                 u64 addr;
2237                 unsigned long type = (unsigned long)attr->attr;
2238
2239                 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2240                         return -EFAULT;
2241
2242                 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
2243                 return (r == -ENODEV) ? -ENXIO : r;
2244         }
2245
2246         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2247         case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
2248                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2249                 u32 reg;
2250
2251                 if (get_user(reg, uaddr))
2252                         return -EFAULT;
2253
2254                 return vgic_attr_regs_access(dev, attr, &reg, true);
2255         }
2256         case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2257                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2258                 u32 val;
2259                 int ret = 0;
2260
2261                 if (get_user(val, uaddr))
2262                         return -EFAULT;
2263
2264                 /*
2265                  * We require:
2266                  * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
2267                  * - at most 1024 interrupts
2268                  * - a multiple of 32 interrupts
2269                  */
2270                 if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
2271                     val > VGIC_MAX_IRQS ||
2272                     (val & 31))
2273                         return -EINVAL;
2274
2275                 mutex_lock(&dev->kvm->lock);
2276
2277                 if (vgic_initialized(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
2278                         ret = -EBUSY;
2279                 else
2280                         dev->kvm->arch.vgic.nr_irqs = val;
2281
2282                 mutex_unlock(&dev->kvm->lock);
2283
2284                 return ret;
2285         }
2286
2287         }
2288
2289         return -ENXIO;
2290 }
2291
2292 static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2293 {
2294         int r = -ENXIO;
2295
2296         switch (attr->group) {
2297         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2298                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2299                 u64 addr;
2300                 unsigned long type = (unsigned long)attr->attr;
2301
2302                 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
2303                 if (r)
2304                         return (r == -ENODEV) ? -ENXIO : r;
2305
2306                 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2307                         return -EFAULT;
2308                 break;
2309         }
2310
2311         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2312         case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
2313                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2314                 u32 reg = 0;
2315
2316                 r = vgic_attr_regs_access(dev, attr, &reg, false);
2317                 if (r)
2318                         return r;
2319                 r = put_user(reg, uaddr);
2320                 break;
2321         }
2322         case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2323                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2324                 r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
2325                 break;
2326         }
2327
2328         }
2329
2330         return r;
2331 }
2332
2333 static int vgic_has_attr_regs(const struct mmio_range *ranges,
2334                               phys_addr_t offset)
2335 {
2336         struct kvm_exit_mmio dev_attr_mmio;
2337
2338         dev_attr_mmio.len = 4;
2339         if (find_matching_range(ranges, &dev_attr_mmio, offset))
2340                 return 0;
2341         else
2342                 return -ENXIO;
2343 }
2344
2345 static int vgic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2346 {
2347         phys_addr_t offset;
2348
2349         switch (attr->group) {
2350         case KVM_DEV_ARM_VGIC_GRP_ADDR:
2351                 switch (attr->attr) {
2352                 case KVM_VGIC_V2_ADDR_TYPE_DIST:
2353                 case KVM_VGIC_V2_ADDR_TYPE_CPU:
2354                         return 0;
2355                 }
2356                 break;
2357         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2358                 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
2359                 return vgic_has_attr_regs(vgic_dist_ranges, offset);
2360         case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
2361                 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
2362                 return vgic_has_attr_regs(vgic_cpu_ranges, offset);
2363         case KVM_DEV_ARM_VGIC_GRP_NR_IRQS:
2364                 return 0;
2365         }
2366         return -ENXIO;
2367 }
2368
2369 static void vgic_destroy(struct kvm_device *dev)
2370 {
2371         kfree(dev);
2372 }
2373
2374 static int vgic_create(struct kvm_device *dev, u32 type)
2375 {
2376         return kvm_vgic_create(dev->kvm);
2377 }
2378
2379 static struct kvm_device_ops kvm_arm_vgic_v2_ops = {
2380         .name = "kvm-arm-vgic",
2381         .create = vgic_create,
2382         .destroy = vgic_destroy,
2383         .set_attr = vgic_set_attr,
2384         .get_attr = vgic_get_attr,
2385         .has_attr = vgic_has_attr,
2386 };
2387
2388 static void vgic_init_maintenance_interrupt(void *info)
2389 {
2390         enable_percpu_irq(vgic->maint_irq, 0);
2391 }
2392
2393 static int vgic_cpu_notify(struct notifier_block *self,
2394                            unsigned long action, void *cpu)
2395 {
2396         switch (action) {
2397         case CPU_STARTING:
2398         case CPU_STARTING_FROZEN:
2399                 vgic_init_maintenance_interrupt(NULL);
2400                 break;
2401         case CPU_DYING:
2402         case CPU_DYING_FROZEN:
2403                 disable_percpu_irq(vgic->maint_irq);
2404                 break;
2405         }
2406
2407         return NOTIFY_OK;
2408 }
2409
2410 static struct notifier_block vgic_cpu_nb = {
2411         .notifier_call = vgic_cpu_notify,
2412 };
2413
2414 static const struct of_device_id vgic_ids[] = {
2415         { .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, },
2416         { .compatible = "arm,gic-v3", .data = vgic_v3_probe, },
2417         {},
2418 };
2419
2420 int kvm_vgic_hyp_init(void)
2421 {
2422         const struct of_device_id *matched_id;
2423         int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
2424                           const struct vgic_params **);
2425         struct device_node *vgic_node;
2426         int ret;
2427
2428         vgic_node = of_find_matching_node_and_match(NULL,
2429                                                     vgic_ids, &matched_id);
2430         if (!vgic_node) {
2431                 kvm_err("error: no compatible GIC node found\n");
2432                 return -ENODEV;
2433         }
2434
2435         vgic_probe = matched_id->data;
2436         ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
2437         if (ret)
2438                 return ret;
2439
2440         ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
2441                                  "vgic", kvm_get_running_vcpus());
2442         if (ret) {
2443                 kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
2444                 return ret;
2445         }
2446
2447         ret = register_cpu_notifier(&vgic_cpu_nb);
2448         if (ret) {
2449                 kvm_err("Cannot register vgic CPU notifier\n");
2450                 goto out_free_irq;
2451         }
2452
2453         /* Callback into for arch code for setup */
2454         vgic_arch_setup(vgic);
2455
2456         on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
2457
2458         return kvm_register_device_ops(&kvm_arm_vgic_v2_ops,
2459                                        KVM_DEV_TYPE_ARM_VGIC_V2);
2460
2461 out_free_irq:
2462         free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
2463         return ret;
2464 }