07e97de1851b1a76f551095841b71275b252f2dd
[firefly-linux-kernel-4.4.55.git] / virt / kvm / arm / vgic.c
1 /*
2  * Copyright (C) 2012 ARM Ltd.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/uaccess.h>
28
29 #include <linux/irqchip/arm-gic.h>
30
31 #include <asm/kvm_emulate.h>
32 #include <asm/kvm_arm.h>
33 #include <asm/kvm_mmu.h>
34
35 /*
36  * How the whole thing works (courtesy of Christoffer Dall):
37  *
38  * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
39  *   something is pending
40  * - VGIC pending interrupts are stored on the vgic.irq_pending vgic
41  *   bitmap (this bitmap is updated by both user land ioctls and guest
42  *   mmio ops, and other in-kernel peripherals such as the
43  *   arch. timers) and indicate the 'wire' state.
44  * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
45  *   recalculated
46  * - To calculate the oracle, we need info for each cpu from
47  *   compute_pending_for_cpu, which considers:
48  *   - PPI: dist->irq_pending & dist->irq_enable
49  *   - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
50  *   - irq_spi_target is a 'formatted' version of the GICD_ICFGR
51  *     registers, stored on each vcpu. We only keep one bit of
52  *     information per interrupt, making sure that only one vcpu can
53  *     accept the interrupt.
54  * - The same is true when injecting an interrupt, except that we only
55  *   consider a single interrupt at a time. The irq_spi_cpu array
56  *   contains the target CPU for each SPI.
57  *
58  * The handling of level interrupts adds some extra complexity. We
59  * need to track when the interrupt has been EOIed, so we can sample
60  * the 'line' again. This is achieved as such:
61  *
62  * - When a level interrupt is moved onto a vcpu, the corresponding
63  *   bit in irq_queued is set. As long as this bit is set, the line
64  *   will be ignored for further interrupts. The interrupt is injected
65  *   into the vcpu with the GICH_LR_EOI bit set (generate a
66  *   maintenance interrupt on EOI).
67  * - When the interrupt is EOIed, the maintenance interrupt fires,
68  *   and clears the corresponding bit in irq_queued. This allows the
69  *   interrupt line to be sampled again.
70  * - Note that level-triggered interrupts can also be set to pending from
71  *   writes to GICD_ISPENDRn and lowering the external input line does not
72  *   cause the interrupt to become inactive in such a situation.
73  *   Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
74  *   inactive as long as the external input line is held high.
75  */
76
77 #define VGIC_ADDR_UNDEF         (-1)
78 #define IS_VGIC_ADDR_UNDEF(_x)  ((_x) == VGIC_ADDR_UNDEF)
79
80 #define PRODUCT_ID_KVM          0x4b    /* ASCII code K */
81 #define IMPLEMENTER_ARM         0x43b
82 #define GICC_ARCH_VERSION_V2    0x2
83
84 #define ACCESS_READ_VALUE       (1 << 0)
85 #define ACCESS_READ_RAZ         (0 << 0)
86 #define ACCESS_READ_MASK(x)     ((x) & (1 << 0))
87 #define ACCESS_WRITE_IGNORED    (0 << 1)
88 #define ACCESS_WRITE_SETBIT     (1 << 1)
89 #define ACCESS_WRITE_CLEARBIT   (2 << 1)
90 #define ACCESS_WRITE_VALUE      (3 << 1)
91 #define ACCESS_WRITE_MASK(x)    ((x) & (3 << 1))
92
93 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
94 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
95 static void vgic_update_state(struct kvm *kvm);
96 static void vgic_kick_vcpus(struct kvm *kvm);
97 static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
98 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
99 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
100 static void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
101 static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
102
103 static const struct vgic_ops *vgic_ops;
104 static const struct vgic_params *vgic;
105
106 /*
107  * struct vgic_bitmap contains unions that provide two views of
108  * the same data. In one case it is an array of registers of
109  * u32's, and in the other case it is a bitmap of unsigned
110  * longs.
111  *
112  * This does not work on 64-bit BE systems, because the bitmap access
113  * will store two consecutive 32-bit words with the higher-addressed
114  * register's bits at the lower index and the lower-addressed register's
115  * bits at the higher index.
116  *
117  * Therefore, swizzle the register index when accessing the 32-bit word
118  * registers to access the right register's value.
119  */
120 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
121 #define REG_OFFSET_SWIZZLE      1
122 #else
123 #define REG_OFFSET_SWIZZLE      0
124 #endif
125
126 static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x,
127                                 int cpuid, u32 offset)
128 {
129         offset >>= 2;
130         if (!offset)
131                 return x->percpu[cpuid].reg + (offset ^ REG_OFFSET_SWIZZLE);
132         else
133                 return x->shared.reg + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
134 }
135
136 static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
137                                    int cpuid, int irq)
138 {
139         if (irq < VGIC_NR_PRIVATE_IRQS)
140                 return test_bit(irq, x->percpu[cpuid].reg_ul);
141
142         return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared.reg_ul);
143 }
144
145 static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
146                                     int irq, int val)
147 {
148         unsigned long *reg;
149
150         if (irq < VGIC_NR_PRIVATE_IRQS) {
151                 reg = x->percpu[cpuid].reg_ul;
152         } else {
153                 reg =  x->shared.reg_ul;
154                 irq -= VGIC_NR_PRIVATE_IRQS;
155         }
156
157         if (val)
158                 set_bit(irq, reg);
159         else
160                 clear_bit(irq, reg);
161 }
162
163 static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
164 {
165         if (unlikely(cpuid >= VGIC_MAX_CPUS))
166                 return NULL;
167         return x->percpu[cpuid].reg_ul;
168 }
169
170 static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
171 {
172         return x->shared.reg_ul;
173 }
174
175 static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
176 {
177         offset >>= 2;
178         BUG_ON(offset > (VGIC_NR_IRQS / 4));
179         if (offset < 8)
180                 return x->percpu[cpuid] + offset;
181         else
182                 return x->shared + offset - 8;
183 }
184
185 #define VGIC_CFG_LEVEL  0
186 #define VGIC_CFG_EDGE   1
187
188 static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
189 {
190         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
191         int irq_val;
192
193         irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
194         return irq_val == VGIC_CFG_EDGE;
195 }
196
197 static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
198 {
199         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
200
201         return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
202 }
203
204 static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
205 {
206         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
207
208         return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
209 }
210
211 static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
212 {
213         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
214
215         vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
216 }
217
218 static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
219 {
220         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
221
222         vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
223 }
224
225 static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
226 {
227         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
228
229         return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
230 }
231
232 static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
233 {
234         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
235
236         vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
237 }
238
239 static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
240 {
241         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
242
243         vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
244 }
245
246 static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
247 {
248         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
249
250         return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
251 }
252
253 static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
254 {
255         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
256
257         vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
258 }
259
260 static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
261 {
262         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
263
264         return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
265 }
266
267 static void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
268 {
269         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
270
271         vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
272 }
273
274 static void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
275 {
276         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
277
278         vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
279 }
280
281 static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
282 {
283         if (irq < VGIC_NR_PRIVATE_IRQS)
284                 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
285         else
286                 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
287                         vcpu->arch.vgic_cpu.pending_shared);
288 }
289
290 static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
291 {
292         if (irq < VGIC_NR_PRIVATE_IRQS)
293                 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
294         else
295                 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
296                           vcpu->arch.vgic_cpu.pending_shared);
297 }
298
299 static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
300 {
301         return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq);
302 }
303
304 static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
305 {
306         return le32_to_cpu(*((u32 *)mmio->data)) & mask;
307 }
308
309 static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
310 {
311         *((u32 *)mmio->data) = cpu_to_le32(value) & mask;
312 }
313
314 /**
315  * vgic_reg_access - access vgic register
316  * @mmio:   pointer to the data describing the mmio access
317  * @reg:    pointer to the virtual backing of vgic distributor data
318  * @offset: least significant 2 bits used for word offset
319  * @mode:   ACCESS_ mode (see defines above)
320  *
321  * Helper to make vgic register access easier using one of the access
322  * modes defined for vgic register access
323  * (read,raz,write-ignored,setbit,clearbit,write)
324  */
325 static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
326                             phys_addr_t offset, int mode)
327 {
328         int word_offset = (offset & 3) * 8;
329         u32 mask = (1UL << (mmio->len * 8)) - 1;
330         u32 regval;
331
332         /*
333          * Any alignment fault should have been delivered to the guest
334          * directly (ARM ARM B3.12.7 "Prioritization of aborts").
335          */
336
337         if (reg) {
338                 regval = *reg;
339         } else {
340                 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
341                 regval = 0;
342         }
343
344         if (mmio->is_write) {
345                 u32 data = mmio_data_read(mmio, mask) << word_offset;
346                 switch (ACCESS_WRITE_MASK(mode)) {
347                 case ACCESS_WRITE_IGNORED:
348                         return;
349
350                 case ACCESS_WRITE_SETBIT:
351                         regval |= data;
352                         break;
353
354                 case ACCESS_WRITE_CLEARBIT:
355                         regval &= ~data;
356                         break;
357
358                 case ACCESS_WRITE_VALUE:
359                         regval = (regval & ~(mask << word_offset)) | data;
360                         break;
361                 }
362                 *reg = regval;
363         } else {
364                 switch (ACCESS_READ_MASK(mode)) {
365                 case ACCESS_READ_RAZ:
366                         regval = 0;
367                         /* fall through */
368
369                 case ACCESS_READ_VALUE:
370                         mmio_data_write(mmio, mask, regval >> word_offset);
371                 }
372         }
373 }
374
375 static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
376                              struct kvm_exit_mmio *mmio, phys_addr_t offset)
377 {
378         u32 reg;
379         u32 word_offset = offset & 3;
380
381         switch (offset & ~3) {
382         case 0:                 /* GICD_CTLR */
383                 reg = vcpu->kvm->arch.vgic.enabled;
384                 vgic_reg_access(mmio, &reg, word_offset,
385                                 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
386                 if (mmio->is_write) {
387                         vcpu->kvm->arch.vgic.enabled = reg & 1;
388                         vgic_update_state(vcpu->kvm);
389                         return true;
390                 }
391                 break;
392
393         case 4:                 /* GICD_TYPER */
394                 reg  = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
395                 reg |= (VGIC_NR_IRQS >> 5) - 1;
396                 vgic_reg_access(mmio, &reg, word_offset,
397                                 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
398                 break;
399
400         case 8:                 /* GICD_IIDR */
401                 reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
402                 vgic_reg_access(mmio, &reg, word_offset,
403                                 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
404                 break;
405         }
406
407         return false;
408 }
409
410 static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu,
411                                struct kvm_exit_mmio *mmio, phys_addr_t offset)
412 {
413         vgic_reg_access(mmio, NULL, offset,
414                         ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
415         return false;
416 }
417
418 static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
419                                        struct kvm_exit_mmio *mmio,
420                                        phys_addr_t offset)
421 {
422         u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
423                                        vcpu->vcpu_id, offset);
424         vgic_reg_access(mmio, reg, offset,
425                         ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
426         if (mmio->is_write) {
427                 vgic_update_state(vcpu->kvm);
428                 return true;
429         }
430
431         return false;
432 }
433
434 static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
435                                          struct kvm_exit_mmio *mmio,
436                                          phys_addr_t offset)
437 {
438         u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
439                                        vcpu->vcpu_id, offset);
440         vgic_reg_access(mmio, reg, offset,
441                         ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
442         if (mmio->is_write) {
443                 if (offset < 4) /* Force SGI enabled */
444                         *reg |= 0xffff;
445                 vgic_retire_disabled_irqs(vcpu);
446                 vgic_update_state(vcpu->kvm);
447                 return true;
448         }
449
450         return false;
451 }
452
453 static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
454                                         struct kvm_exit_mmio *mmio,
455                                         phys_addr_t offset)
456 {
457         u32 *reg;
458         u32 level_mask;
459         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
460
461         reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu->vcpu_id, offset);
462         level_mask = (~(*reg));
463
464         /* Mark both level and edge triggered irqs as pending */
465         reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset);
466         vgic_reg_access(mmio, reg, offset,
467                         ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
468
469         if (mmio->is_write) {
470                 /* Set the soft-pending flag only for level-triggered irqs */
471                 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
472                                           vcpu->vcpu_id, offset);
473                 vgic_reg_access(mmio, reg, offset,
474                                 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
475                 *reg &= level_mask;
476
477                 vgic_update_state(vcpu->kvm);
478                 return true;
479         }
480
481         return false;
482 }
483
484 static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
485                                           struct kvm_exit_mmio *mmio,
486                                           phys_addr_t offset)
487 {
488         u32 *level_active;
489         u32 *reg;
490         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
491
492         reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset);
493         vgic_reg_access(mmio, reg, offset,
494                         ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
495         if (mmio->is_write) {
496                 /* Re-set level triggered level-active interrupts */
497                 level_active = vgic_bitmap_get_reg(&dist->irq_level,
498                                           vcpu->vcpu_id, offset);
499                 reg = vgic_bitmap_get_reg(&dist->irq_pending,
500                                           vcpu->vcpu_id, offset);
501                 *reg |= *level_active;
502
503                 /* Clear soft-pending flags */
504                 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
505                                           vcpu->vcpu_id, offset);
506                 vgic_reg_access(mmio, reg, offset,
507                                 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
508
509                 vgic_update_state(vcpu->kvm);
510                 return true;
511         }
512
513         return false;
514 }
515
516 static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
517                                      struct kvm_exit_mmio *mmio,
518                                      phys_addr_t offset)
519 {
520         u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
521                                         vcpu->vcpu_id, offset);
522         vgic_reg_access(mmio, reg, offset,
523                         ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
524         return false;
525 }
526
527 #define GICD_ITARGETSR_SIZE     32
528 #define GICD_CPUTARGETS_BITS    8
529 #define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
530 static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
531 {
532         struct vgic_dist *dist = &kvm->arch.vgic;
533         int i;
534         u32 val = 0;
535
536         irq -= VGIC_NR_PRIVATE_IRQS;
537
538         for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
539                 val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8);
540
541         return val;
542 }
543
544 static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
545 {
546         struct vgic_dist *dist = &kvm->arch.vgic;
547         struct kvm_vcpu *vcpu;
548         int i, c;
549         unsigned long *bmap;
550         u32 target;
551
552         irq -= VGIC_NR_PRIVATE_IRQS;
553
554         /*
555          * Pick the LSB in each byte. This ensures we target exactly
556          * one vcpu per IRQ. If the byte is null, assume we target
557          * CPU0.
558          */
559         for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
560                 int shift = i * GICD_CPUTARGETS_BITS;
561                 target = ffs((val >> shift) & 0xffU);
562                 target = target ? (target - 1) : 0;
563                 dist->irq_spi_cpu[irq + i] = target;
564                 kvm_for_each_vcpu(c, vcpu, kvm) {
565                         bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
566                         if (c == target)
567                                 set_bit(irq + i, bmap);
568                         else
569                                 clear_bit(irq + i, bmap);
570                 }
571         }
572 }
573
574 static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
575                                    struct kvm_exit_mmio *mmio,
576                                    phys_addr_t offset)
577 {
578         u32 reg;
579
580         /* We treat the banked interrupts targets as read-only */
581         if (offset < 32) {
582                 u32 roreg = 1 << vcpu->vcpu_id;
583                 roreg |= roreg << 8;
584                 roreg |= roreg << 16;
585
586                 vgic_reg_access(mmio, &roreg, offset,
587                                 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
588                 return false;
589         }
590
591         reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
592         vgic_reg_access(mmio, &reg, offset,
593                         ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
594         if (mmio->is_write) {
595                 vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
596                 vgic_update_state(vcpu->kvm);
597                 return true;
598         }
599
600         return false;
601 }
602
603 static u32 vgic_cfg_expand(u16 val)
604 {
605         u32 res = 0;
606         int i;
607
608         /*
609          * Turn a 16bit value like abcd...mnop into a 32bit word
610          * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
611          */
612         for (i = 0; i < 16; i++)
613                 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
614
615         return res;
616 }
617
618 static u16 vgic_cfg_compress(u32 val)
619 {
620         u16 res = 0;
621         int i;
622
623         /*
624          * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
625          * abcd...mnop which is what we really care about.
626          */
627         for (i = 0; i < 16; i++)
628                 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
629
630         return res;
631 }
632
633 /*
634  * The distributor uses 2 bits per IRQ for the CFG register, but the
635  * LSB is always 0. As such, we only keep the upper bit, and use the
636  * two above functions to compress/expand the bits
637  */
638 static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
639                                 struct kvm_exit_mmio *mmio, phys_addr_t offset)
640 {
641         u32 val;
642         u32 *reg;
643
644         reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
645                                   vcpu->vcpu_id, offset >> 1);
646
647         if (offset & 4)
648                 val = *reg >> 16;
649         else
650                 val = *reg & 0xffff;
651
652         val = vgic_cfg_expand(val);
653         vgic_reg_access(mmio, &val, offset,
654                         ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
655         if (mmio->is_write) {
656                 if (offset < 8) {
657                         *reg = ~0U; /* Force PPIs/SGIs to 1 */
658                         return false;
659                 }
660
661                 val = vgic_cfg_compress(val);
662                 if (offset & 4) {
663                         *reg &= 0xffff;
664                         *reg |= val << 16;
665                 } else {
666                         *reg &= 0xffff << 16;
667                         *reg |= val;
668                 }
669         }
670
671         return false;
672 }
673
674 static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
675                                 struct kvm_exit_mmio *mmio, phys_addr_t offset)
676 {
677         u32 reg;
678         vgic_reg_access(mmio, &reg, offset,
679                         ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
680         if (mmio->is_write) {
681                 vgic_dispatch_sgi(vcpu, reg);
682                 vgic_update_state(vcpu->kvm);
683                 return true;
684         }
685
686         return false;
687 }
688
689 /**
690  * vgic_unqueue_irqs - move pending IRQs from LRs to the distributor
691  * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
692  *
693  * Move any pending IRQs that have already been assigned to LRs back to the
694  * emulated distributor state so that the complete emulated state can be read
695  * from the main emulation structures without investigating the LRs.
696  *
697  * Note that IRQs in the active state in the LRs get their pending state moved
698  * to the distributor but the active state stays in the LRs, because we don't
699  * track the active state on the distributor side.
700  */
701 static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
702 {
703         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
704         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
705         int vcpu_id = vcpu->vcpu_id;
706         int i;
707
708         for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
709                 struct vgic_lr lr = vgic_get_lr(vcpu, i);
710
711                 /*
712                  * There are three options for the state bits:
713                  *
714                  * 01: pending
715                  * 10: active
716                  * 11: pending and active
717                  *
718                  * If the LR holds only an active interrupt (not pending) then
719                  * just leave it alone.
720                  */
721                 if ((lr.state & LR_STATE_MASK) == LR_STATE_ACTIVE)
722                         continue;
723
724                 /*
725                  * Reestablish the pending state on the distributor and the
726                  * CPU interface.  It may have already been pending, but that
727                  * is fine, then we are only setting a few bits that were
728                  * already set.
729                  */
730                 vgic_dist_irq_set_pending(vcpu, lr.irq);
731                 if (lr.irq < VGIC_NR_SGIS)
732                         dist->irq_sgi_sources[vcpu_id][lr.irq] |= 1 << lr.source;
733                 lr.state &= ~LR_STATE_PENDING;
734                 vgic_set_lr(vcpu, i, lr);
735
736                 /*
737                  * If there's no state left on the LR (it could still be
738                  * active), then the LR does not hold any useful info and can
739                  * be marked as free for other use.
740                  */
741                 if (!(lr.state & LR_STATE_MASK)) {
742                         vgic_retire_lr(i, lr.irq, vcpu);
743                         vgic_irq_clear_queued(vcpu, lr.irq);
744                 }
745
746                 /* Finally update the VGIC state. */
747                 vgic_update_state(vcpu->kvm);
748         }
749 }
750
751 /* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */
752 static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
753                                         struct kvm_exit_mmio *mmio,
754                                         phys_addr_t offset)
755 {
756         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
757         int sgi;
758         int min_sgi = (offset & ~0x3) * 4;
759         int max_sgi = min_sgi + 3;
760         int vcpu_id = vcpu->vcpu_id;
761         u32 reg = 0;
762
763         /* Copy source SGIs from distributor side */
764         for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
765                 int shift = 8 * (sgi - min_sgi);
766                 reg |= (u32)dist->irq_sgi_sources[vcpu_id][sgi] << shift;
767         }
768
769         mmio_data_write(mmio, ~0, reg);
770         return false;
771 }
772
773 static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
774                                          struct kvm_exit_mmio *mmio,
775                                          phys_addr_t offset, bool set)
776 {
777         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
778         int sgi;
779         int min_sgi = (offset & ~0x3) * 4;
780         int max_sgi = min_sgi + 3;
781         int vcpu_id = vcpu->vcpu_id;
782         u32 reg;
783         bool updated = false;
784
785         reg = mmio_data_read(mmio, ~0);
786
787         /* Clear pending SGIs on the distributor */
788         for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
789                 u8 mask = reg >> (8 * (sgi - min_sgi));
790                 if (set) {
791                         if ((dist->irq_sgi_sources[vcpu_id][sgi] & mask) != mask)
792                                 updated = true;
793                         dist->irq_sgi_sources[vcpu_id][sgi] |= mask;
794                 } else {
795                         if (dist->irq_sgi_sources[vcpu_id][sgi] & mask)
796                                 updated = true;
797                         dist->irq_sgi_sources[vcpu_id][sgi] &= ~mask;
798                 }
799         }
800
801         if (updated)
802                 vgic_update_state(vcpu->kvm);
803
804         return updated;
805 }
806
807 static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu,
808                                 struct kvm_exit_mmio *mmio,
809                                 phys_addr_t offset)
810 {
811         if (!mmio->is_write)
812                 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
813         else
814                 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true);
815 }
816
817 static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu,
818                                   struct kvm_exit_mmio *mmio,
819                                   phys_addr_t offset)
820 {
821         if (!mmio->is_write)
822                 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
823         else
824                 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false);
825 }
826
827 /*
828  * I would have liked to use the kvm_bus_io_*() API instead, but it
829  * cannot cope with banked registers (only the VM pointer is passed
830  * around, and we need the vcpu). One of these days, someone please
831  * fix it!
832  */
833 struct mmio_range {
834         phys_addr_t base;
835         unsigned long len;
836         bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
837                             phys_addr_t offset);
838 };
839
840 static const struct mmio_range vgic_dist_ranges[] = {
841         {
842                 .base           = GIC_DIST_CTRL,
843                 .len            = 12,
844                 .handle_mmio    = handle_mmio_misc,
845         },
846         {
847                 .base           = GIC_DIST_IGROUP,
848                 .len            = VGIC_NR_IRQS / 8,
849                 .handle_mmio    = handle_mmio_raz_wi,
850         },
851         {
852                 .base           = GIC_DIST_ENABLE_SET,
853                 .len            = VGIC_NR_IRQS / 8,
854                 .handle_mmio    = handle_mmio_set_enable_reg,
855         },
856         {
857                 .base           = GIC_DIST_ENABLE_CLEAR,
858                 .len            = VGIC_NR_IRQS / 8,
859                 .handle_mmio    = handle_mmio_clear_enable_reg,
860         },
861         {
862                 .base           = GIC_DIST_PENDING_SET,
863                 .len            = VGIC_NR_IRQS / 8,
864                 .handle_mmio    = handle_mmio_set_pending_reg,
865         },
866         {
867                 .base           = GIC_DIST_PENDING_CLEAR,
868                 .len            = VGIC_NR_IRQS / 8,
869                 .handle_mmio    = handle_mmio_clear_pending_reg,
870         },
871         {
872                 .base           = GIC_DIST_ACTIVE_SET,
873                 .len            = VGIC_NR_IRQS / 8,
874                 .handle_mmio    = handle_mmio_raz_wi,
875         },
876         {
877                 .base           = GIC_DIST_ACTIVE_CLEAR,
878                 .len            = VGIC_NR_IRQS / 8,
879                 .handle_mmio    = handle_mmio_raz_wi,
880         },
881         {
882                 .base           = GIC_DIST_PRI,
883                 .len            = VGIC_NR_IRQS,
884                 .handle_mmio    = handle_mmio_priority_reg,
885         },
886         {
887                 .base           = GIC_DIST_TARGET,
888                 .len            = VGIC_NR_IRQS,
889                 .handle_mmio    = handle_mmio_target_reg,
890         },
891         {
892                 .base           = GIC_DIST_CONFIG,
893                 .len            = VGIC_NR_IRQS / 4,
894                 .handle_mmio    = handle_mmio_cfg_reg,
895         },
896         {
897                 .base           = GIC_DIST_SOFTINT,
898                 .len            = 4,
899                 .handle_mmio    = handle_mmio_sgi_reg,
900         },
901         {
902                 .base           = GIC_DIST_SGI_PENDING_CLEAR,
903                 .len            = VGIC_NR_SGIS,
904                 .handle_mmio    = handle_mmio_sgi_clear,
905         },
906         {
907                 .base           = GIC_DIST_SGI_PENDING_SET,
908                 .len            = VGIC_NR_SGIS,
909                 .handle_mmio    = handle_mmio_sgi_set,
910         },
911         {}
912 };
913
914 static const
915 struct mmio_range *find_matching_range(const struct mmio_range *ranges,
916                                        struct kvm_exit_mmio *mmio,
917                                        phys_addr_t offset)
918 {
919         const struct mmio_range *r = ranges;
920
921         while (r->len) {
922                 if (offset >= r->base &&
923                     (offset + mmio->len) <= (r->base + r->len))
924                         return r;
925                 r++;
926         }
927
928         return NULL;
929 }
930
931 /**
932  * vgic_handle_mmio - handle an in-kernel MMIO access
933  * @vcpu:       pointer to the vcpu performing the access
934  * @run:        pointer to the kvm_run structure
935  * @mmio:       pointer to the data describing the access
936  *
937  * returns true if the MMIO access has been performed in kernel space,
938  * and false if it needs to be emulated in user space.
939  */
940 bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
941                       struct kvm_exit_mmio *mmio)
942 {
943         const struct mmio_range *range;
944         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
945         unsigned long base = dist->vgic_dist_base;
946         bool updated_state;
947         unsigned long offset;
948
949         if (!irqchip_in_kernel(vcpu->kvm) ||
950             mmio->phys_addr < base ||
951             (mmio->phys_addr + mmio->len) > (base + KVM_VGIC_V2_DIST_SIZE))
952                 return false;
953
954         /* We don't support ldrd / strd or ldm / stm to the emulated vgic */
955         if (mmio->len > 4) {
956                 kvm_inject_dabt(vcpu, mmio->phys_addr);
957                 return true;
958         }
959
960         offset = mmio->phys_addr - base;
961         range = find_matching_range(vgic_dist_ranges, mmio, offset);
962         if (unlikely(!range || !range->handle_mmio)) {
963                 pr_warn("Unhandled access %d %08llx %d\n",
964                         mmio->is_write, mmio->phys_addr, mmio->len);
965                 return false;
966         }
967
968         spin_lock(&vcpu->kvm->arch.vgic.lock);
969         offset = mmio->phys_addr - range->base - base;
970         updated_state = range->handle_mmio(vcpu, mmio, offset);
971         spin_unlock(&vcpu->kvm->arch.vgic.lock);
972         kvm_prepare_mmio(run, mmio);
973         kvm_handle_mmio_return(vcpu, run);
974
975         if (updated_state)
976                 vgic_kick_vcpus(vcpu->kvm);
977
978         return true;
979 }
980
981 static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
982 {
983         struct kvm *kvm = vcpu->kvm;
984         struct vgic_dist *dist = &kvm->arch.vgic;
985         int nrcpus = atomic_read(&kvm->online_vcpus);
986         u8 target_cpus;
987         int sgi, mode, c, vcpu_id;
988
989         vcpu_id = vcpu->vcpu_id;
990
991         sgi = reg & 0xf;
992         target_cpus = (reg >> 16) & 0xff;
993         mode = (reg >> 24) & 3;
994
995         switch (mode) {
996         case 0:
997                 if (!target_cpus)
998                         return;
999                 break;
1000
1001         case 1:
1002                 target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
1003                 break;
1004
1005         case 2:
1006                 target_cpus = 1 << vcpu_id;
1007                 break;
1008         }
1009
1010         kvm_for_each_vcpu(c, vcpu, kvm) {
1011                 if (target_cpus & 1) {
1012                         /* Flag the SGI as pending */
1013                         vgic_dist_irq_set_pending(vcpu, sgi);
1014                         dist->irq_sgi_sources[c][sgi] |= 1 << vcpu_id;
1015                         kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
1016                 }
1017
1018                 target_cpus >>= 1;
1019         }
1020 }
1021
1022 static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
1023 {
1024         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1025         unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
1026         unsigned long pending_private, pending_shared;
1027         int vcpu_id;
1028
1029         vcpu_id = vcpu->vcpu_id;
1030         pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
1031         pend_shared = vcpu->arch.vgic_cpu.pending_shared;
1032
1033         pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
1034         enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
1035         bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
1036
1037         pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
1038         enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
1039         bitmap_and(pend_shared, pending, enabled, VGIC_NR_SHARED_IRQS);
1040         bitmap_and(pend_shared, pend_shared,
1041                    vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
1042                    VGIC_NR_SHARED_IRQS);
1043
1044         pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
1045         pending_shared = find_first_bit(pend_shared, VGIC_NR_SHARED_IRQS);
1046         return (pending_private < VGIC_NR_PRIVATE_IRQS ||
1047                 pending_shared < VGIC_NR_SHARED_IRQS);
1048 }
1049
1050 /*
1051  * Update the interrupt state and determine which CPUs have pending
1052  * interrupts. Must be called with distributor lock held.
1053  */
1054 static void vgic_update_state(struct kvm *kvm)
1055 {
1056         struct vgic_dist *dist = &kvm->arch.vgic;
1057         struct kvm_vcpu *vcpu;
1058         int c;
1059
1060         if (!dist->enabled) {
1061                 set_bit(0, &dist->irq_pending_on_cpu);
1062                 return;
1063         }
1064
1065         kvm_for_each_vcpu(c, vcpu, kvm) {
1066                 if (compute_pending_for_cpu(vcpu)) {
1067                         pr_debug("CPU%d has pending interrupts\n", c);
1068                         set_bit(c, &dist->irq_pending_on_cpu);
1069                 }
1070         }
1071 }
1072
1073 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
1074 {
1075         return vgic_ops->get_lr(vcpu, lr);
1076 }
1077
1078 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
1079                                struct vgic_lr vlr)
1080 {
1081         vgic_ops->set_lr(vcpu, lr, vlr);
1082 }
1083
1084 static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
1085                                struct vgic_lr vlr)
1086 {
1087         vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
1088 }
1089
1090 static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
1091 {
1092         return vgic_ops->get_elrsr(vcpu);
1093 }
1094
1095 static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
1096 {
1097         return vgic_ops->get_eisr(vcpu);
1098 }
1099
1100 static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
1101 {
1102         return vgic_ops->get_interrupt_status(vcpu);
1103 }
1104
1105 static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
1106 {
1107         vgic_ops->enable_underflow(vcpu);
1108 }
1109
1110 static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
1111 {
1112         vgic_ops->disable_underflow(vcpu);
1113 }
1114
1115 static inline void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1116 {
1117         vgic_ops->get_vmcr(vcpu, vmcr);
1118 }
1119
1120 static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1121 {
1122         vgic_ops->set_vmcr(vcpu, vmcr);
1123 }
1124
1125 static inline void vgic_enable(struct kvm_vcpu *vcpu)
1126 {
1127         vgic_ops->enable(vcpu);
1128 }
1129
1130 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
1131 {
1132         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1133         struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
1134
1135         vlr.state = 0;
1136         vgic_set_lr(vcpu, lr_nr, vlr);
1137         clear_bit(lr_nr, vgic_cpu->lr_used);
1138         vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1139 }
1140
1141 /*
1142  * An interrupt may have been disabled after being made pending on the
1143  * CPU interface (the classic case is a timer running while we're
1144  * rebooting the guest - the interrupt would kick as soon as the CPU
1145  * interface gets enabled, with deadly consequences).
1146  *
1147  * The solution is to examine already active LRs, and check the
1148  * interrupt is still enabled. If not, just retire it.
1149  */
1150 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1151 {
1152         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1153         int lr;
1154
1155         for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
1156                 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1157
1158                 if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
1159                         vgic_retire_lr(lr, vlr.irq, vcpu);
1160                         if (vgic_irq_is_queued(vcpu, vlr.irq))
1161                                 vgic_irq_clear_queued(vcpu, vlr.irq);
1162                 }
1163         }
1164 }
1165
1166 /*
1167  * Queue an interrupt to a CPU virtual interface. Return true on success,
1168  * or false if it wasn't possible to queue it.
1169  */
1170 static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
1171 {
1172         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1173         struct vgic_lr vlr;
1174         int lr;
1175
1176         /* Sanitize the input... */
1177         BUG_ON(sgi_source_id & ~7);
1178         BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
1179         BUG_ON(irq >= VGIC_NR_IRQS);
1180
1181         kvm_debug("Queue IRQ%d\n", irq);
1182
1183         lr = vgic_cpu->vgic_irq_lr_map[irq];
1184
1185         /* Do we have an active interrupt for the same CPUID? */
1186         if (lr != LR_EMPTY) {
1187                 vlr = vgic_get_lr(vcpu, lr);
1188                 if (vlr.source == sgi_source_id) {
1189                         kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
1190                         BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
1191                         vlr.state |= LR_STATE_PENDING;
1192                         vgic_set_lr(vcpu, lr, vlr);
1193                         return true;
1194                 }
1195         }
1196
1197         /* Try to use another LR for this interrupt */
1198         lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
1199                                vgic->nr_lr);
1200         if (lr >= vgic->nr_lr)
1201                 return false;
1202
1203         kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
1204         vgic_cpu->vgic_irq_lr_map[irq] = lr;
1205         set_bit(lr, vgic_cpu->lr_used);
1206
1207         vlr.irq = irq;
1208         vlr.source = sgi_source_id;
1209         vlr.state = LR_STATE_PENDING;
1210         if (!vgic_irq_is_edge(vcpu, irq))
1211                 vlr.state |= LR_EOI_INT;
1212
1213         vgic_set_lr(vcpu, lr, vlr);
1214
1215         return true;
1216 }
1217
1218 static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq)
1219 {
1220         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1221         unsigned long sources;
1222         int vcpu_id = vcpu->vcpu_id;
1223         int c;
1224
1225         sources = dist->irq_sgi_sources[vcpu_id][irq];
1226
1227         for_each_set_bit(c, &sources, VGIC_MAX_CPUS) {
1228                 if (vgic_queue_irq(vcpu, c, irq))
1229                         clear_bit(c, &sources);
1230         }
1231
1232         dist->irq_sgi_sources[vcpu_id][irq] = sources;
1233
1234         /*
1235          * If the sources bitmap has been cleared it means that we
1236          * could queue all the SGIs onto link registers (see the
1237          * clear_bit above), and therefore we are done with them in
1238          * our emulated gic and can get rid of them.
1239          */
1240         if (!sources) {
1241                 vgic_dist_irq_clear_pending(vcpu, irq);
1242                 vgic_cpu_irq_clear(vcpu, irq);
1243                 return true;
1244         }
1245
1246         return false;
1247 }
1248
1249 static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1250 {
1251         if (!vgic_can_sample_irq(vcpu, irq))
1252                 return true; /* level interrupt, already queued */
1253
1254         if (vgic_queue_irq(vcpu, 0, irq)) {
1255                 if (vgic_irq_is_edge(vcpu, irq)) {
1256                         vgic_dist_irq_clear_pending(vcpu, irq);
1257                         vgic_cpu_irq_clear(vcpu, irq);
1258                 } else {
1259                         vgic_irq_set_queued(vcpu, irq);
1260                 }
1261
1262                 return true;
1263         }
1264
1265         return false;
1266 }
1267
1268 /*
1269  * Fill the list registers with pending interrupts before running the
1270  * guest.
1271  */
1272 static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1273 {
1274         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1275         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1276         int i, vcpu_id;
1277         int overflow = 0;
1278
1279         vcpu_id = vcpu->vcpu_id;
1280
1281         /*
1282          * We may not have any pending interrupt, or the interrupts
1283          * may have been serviced from another vcpu. In all cases,
1284          * move along.
1285          */
1286         if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
1287                 pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
1288                 goto epilog;
1289         }
1290
1291         /* SGIs */
1292         for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
1293                 if (!vgic_queue_sgi(vcpu, i))
1294                         overflow = 1;
1295         }
1296
1297         /* PPIs */
1298         for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
1299                 if (!vgic_queue_hwirq(vcpu, i))
1300                         overflow = 1;
1301         }
1302
1303         /* SPIs */
1304         for_each_set_bit(i, vgic_cpu->pending_shared, VGIC_NR_SHARED_IRQS) {
1305                 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1306                         overflow = 1;
1307         }
1308
1309 epilog:
1310         if (overflow) {
1311                 vgic_enable_underflow(vcpu);
1312         } else {
1313                 vgic_disable_underflow(vcpu);
1314                 /*
1315                  * We're about to run this VCPU, and we've consumed
1316                  * everything the distributor had in store for
1317                  * us. Claim we don't have anything pending. We'll
1318                  * adjust that if needed while exiting.
1319                  */
1320                 clear_bit(vcpu_id, &dist->irq_pending_on_cpu);
1321         }
1322 }
1323
1324 static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1325 {
1326         u32 status = vgic_get_interrupt_status(vcpu);
1327         bool level_pending = false;
1328
1329         kvm_debug("STATUS = %08x\n", status);
1330
1331         if (status & INT_STATUS_EOI) {
1332                 /*
1333                  * Some level interrupts have been EOIed. Clear their
1334                  * active bit.
1335                  */
1336                 u64 eisr = vgic_get_eisr(vcpu);
1337                 unsigned long *eisr_ptr = (unsigned long *)&eisr;
1338                 int lr;
1339
1340                 for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
1341                         struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1342                         WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
1343
1344                         vgic_irq_clear_queued(vcpu, vlr.irq);
1345                         WARN_ON(vlr.state & LR_STATE_MASK);
1346                         vlr.state = 0;
1347                         vgic_set_lr(vcpu, lr, vlr);
1348
1349                         /*
1350                          * If the IRQ was EOIed it was also ACKed and we we
1351                          * therefore assume we can clear the soft pending
1352                          * state (should it had been set) for this interrupt.
1353                          *
1354                          * Note: if the IRQ soft pending state was set after
1355                          * the IRQ was acked, it actually shouldn't be
1356                          * cleared, but we have no way of knowing that unless
1357                          * we start trapping ACKs when the soft-pending state
1358                          * is set.
1359                          */
1360                         vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
1361
1362                         /* Any additional pending interrupt? */
1363                         if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
1364                                 vgic_cpu_irq_set(vcpu, vlr.irq);
1365                                 level_pending = true;
1366                         } else {
1367                                 vgic_dist_irq_clear_pending(vcpu, vlr.irq);
1368                                 vgic_cpu_irq_clear(vcpu, vlr.irq);
1369                         }
1370
1371                         /*
1372                          * Despite being EOIed, the LR may not have
1373                          * been marked as empty.
1374                          */
1375                         vgic_sync_lr_elrsr(vcpu, lr, vlr);
1376                 }
1377         }
1378
1379         if (status & INT_STATUS_UNDERFLOW)
1380                 vgic_disable_underflow(vcpu);
1381
1382         return level_pending;
1383 }
1384
1385 /*
1386  * Sync back the VGIC state after a guest run. The distributor lock is
1387  * needed so we don't get preempted in the middle of the state processing.
1388  */
1389 static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1390 {
1391         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1392         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1393         u64 elrsr;
1394         unsigned long *elrsr_ptr;
1395         int lr, pending;
1396         bool level_pending;
1397
1398         level_pending = vgic_process_maintenance(vcpu);
1399         elrsr = vgic_get_elrsr(vcpu);
1400         elrsr_ptr = (unsigned long *)&elrsr;
1401
1402         /* Clear mappings for empty LRs */
1403         for_each_set_bit(lr, elrsr_ptr, vgic->nr_lr) {
1404                 struct vgic_lr vlr;
1405
1406                 if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1407                         continue;
1408
1409                 vlr = vgic_get_lr(vcpu, lr);
1410
1411                 BUG_ON(vlr.irq >= VGIC_NR_IRQS);
1412                 vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
1413         }
1414
1415         /* Check if we still have something up our sleeve... */
1416         pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1417         if (level_pending || pending < vgic->nr_lr)
1418                 set_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1419 }
1420
1421 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1422 {
1423         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1424
1425         if (!irqchip_in_kernel(vcpu->kvm))
1426                 return;
1427
1428         spin_lock(&dist->lock);
1429         __kvm_vgic_flush_hwstate(vcpu);
1430         spin_unlock(&dist->lock);
1431 }
1432
1433 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1434 {
1435         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1436
1437         if (!irqchip_in_kernel(vcpu->kvm))
1438                 return;
1439
1440         spin_lock(&dist->lock);
1441         __kvm_vgic_sync_hwstate(vcpu);
1442         spin_unlock(&dist->lock);
1443 }
1444
1445 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1446 {
1447         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1448
1449         if (!irqchip_in_kernel(vcpu->kvm))
1450                 return 0;
1451
1452         return test_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1453 }
1454
1455 static void vgic_kick_vcpus(struct kvm *kvm)
1456 {
1457         struct kvm_vcpu *vcpu;
1458         int c;
1459
1460         /*
1461          * We've injected an interrupt, time to find out who deserves
1462          * a good kick...
1463          */
1464         kvm_for_each_vcpu(c, vcpu, kvm) {
1465                 if (kvm_vgic_vcpu_pending_irq(vcpu))
1466                         kvm_vcpu_kick(vcpu);
1467         }
1468 }
1469
1470 static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1471 {
1472         int edge_triggered = vgic_irq_is_edge(vcpu, irq);
1473
1474         /*
1475          * Only inject an interrupt if:
1476          * - edge triggered and we have a rising edge
1477          * - level triggered and we change level
1478          */
1479         if (edge_triggered) {
1480                 int state = vgic_dist_irq_is_pending(vcpu, irq);
1481                 return level > state;
1482         } else {
1483                 int state = vgic_dist_irq_get_level(vcpu, irq);
1484                 return level != state;
1485         }
1486 }
1487
1488 static bool vgic_update_irq_pending(struct kvm *kvm, int cpuid,
1489                                   unsigned int irq_num, bool level)
1490 {
1491         struct vgic_dist *dist = &kvm->arch.vgic;
1492         struct kvm_vcpu *vcpu;
1493         int edge_triggered, level_triggered;
1494         int enabled;
1495         bool ret = true;
1496
1497         spin_lock(&dist->lock);
1498
1499         vcpu = kvm_get_vcpu(kvm, cpuid);
1500         edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1501         level_triggered = !edge_triggered;
1502
1503         if (!vgic_validate_injection(vcpu, irq_num, level)) {
1504                 ret = false;
1505                 goto out;
1506         }
1507
1508         if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1509                 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1510                 vcpu = kvm_get_vcpu(kvm, cpuid);
1511         }
1512
1513         kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1514
1515         if (level) {
1516                 if (level_triggered)
1517                         vgic_dist_irq_set_level(vcpu, irq_num);
1518                 vgic_dist_irq_set_pending(vcpu, irq_num);
1519         } else {
1520                 if (level_triggered) {
1521                         vgic_dist_irq_clear_level(vcpu, irq_num);
1522                         if (!vgic_dist_irq_soft_pend(vcpu, irq_num))
1523                                 vgic_dist_irq_clear_pending(vcpu, irq_num);
1524                 } else {
1525                         vgic_dist_irq_clear_pending(vcpu, irq_num);
1526                 }
1527         }
1528
1529         enabled = vgic_irq_is_enabled(vcpu, irq_num);
1530
1531         if (!enabled) {
1532                 ret = false;
1533                 goto out;
1534         }
1535
1536         if (!vgic_can_sample_irq(vcpu, irq_num)) {
1537                 /*
1538                  * Level interrupt in progress, will be picked up
1539                  * when EOId.
1540                  */
1541                 ret = false;
1542                 goto out;
1543         }
1544
1545         if (level) {
1546                 vgic_cpu_irq_set(vcpu, irq_num);
1547                 set_bit(cpuid, &dist->irq_pending_on_cpu);
1548         }
1549
1550 out:
1551         spin_unlock(&dist->lock);
1552
1553         return ret;
1554 }
1555
1556 /**
1557  * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1558  * @kvm:     The VM structure pointer
1559  * @cpuid:   The CPU for PPIs
1560  * @irq_num: The IRQ number that is assigned to the device
1561  * @level:   Edge-triggered:  true:  to trigger the interrupt
1562  *                            false: to ignore the call
1563  *           Level-sensitive  true:  activates an interrupt
1564  *                            false: deactivates an interrupt
1565  *
1566  * The GIC is not concerned with devices being active-LOW or active-HIGH for
1567  * level-sensitive interrupts.  You can think of the level parameter as 1
1568  * being HIGH and 0 being LOW and all devices being active-HIGH.
1569  */
1570 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1571                         bool level)
1572 {
1573         if (vgic_update_irq_pending(kvm, cpuid, irq_num, level))
1574                 vgic_kick_vcpus(kvm);
1575
1576         return 0;
1577 }
1578
1579 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1580 {
1581         /*
1582          * We cannot rely on the vgic maintenance interrupt to be
1583          * delivered synchronously. This means we can only use it to
1584          * exit the VM, and we perform the handling of EOIed
1585          * interrupts on the exit path (see vgic_process_maintenance).
1586          */
1587         return IRQ_HANDLED;
1588 }
1589
1590 /**
1591  * kvm_vgic_vcpu_init - Initialize per-vcpu VGIC state
1592  * @vcpu: pointer to the vcpu struct
1593  *
1594  * Initialize the vgic_cpu struct and vgic_dist struct fields pertaining to
1595  * this vcpu and enable the VGIC for this VCPU
1596  */
1597 int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
1598 {
1599         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1600         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1601         int i;
1602
1603         if (vcpu->vcpu_id >= VGIC_MAX_CPUS)
1604                 return -EBUSY;
1605
1606         for (i = 0; i < VGIC_NR_IRQS; i++) {
1607                 if (i < VGIC_NR_PPIS)
1608                         vgic_bitmap_set_irq_val(&dist->irq_enabled,
1609                                                 vcpu->vcpu_id, i, 1);
1610                 if (i < VGIC_NR_PRIVATE_IRQS)
1611                         vgic_bitmap_set_irq_val(&dist->irq_cfg,
1612                                                 vcpu->vcpu_id, i, VGIC_CFG_EDGE);
1613
1614                 vgic_cpu->vgic_irq_lr_map[i] = LR_EMPTY;
1615         }
1616
1617         /*
1618          * Store the number of LRs per vcpu, so we don't have to go
1619          * all the way to the distributor structure to find out. Only
1620          * assembly code should use this one.
1621          */
1622         vgic_cpu->nr_lr = vgic->nr_lr;
1623
1624         vgic_enable(vcpu);
1625
1626         return 0;
1627 }
1628
1629 /**
1630  * kvm_vgic_init - Initialize global VGIC state before running any VCPUs
1631  * @kvm: pointer to the kvm struct
1632  *
1633  * Map the virtual CPU interface into the VM before running any VCPUs.  We
1634  * can't do this at creation time, because user space must first set the
1635  * virtual CPU interface address in the guest physical address space.  Also
1636  * initialize the ITARGETSRn regs to 0 on the emulated distributor.
1637  */
1638 int kvm_vgic_init(struct kvm *kvm)
1639 {
1640         int ret = 0, i;
1641
1642         if (!irqchip_in_kernel(kvm))
1643                 return 0;
1644
1645         mutex_lock(&kvm->lock);
1646
1647         if (vgic_initialized(kvm))
1648                 goto out;
1649
1650         if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
1651             IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
1652                 kvm_err("Need to set vgic cpu and dist addresses first\n");
1653                 ret = -ENXIO;
1654                 goto out;
1655         }
1656
1657         ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
1658                                     vgic->vcpu_base, KVM_VGIC_V2_CPU_SIZE);
1659         if (ret) {
1660                 kvm_err("Unable to remap VGIC CPU to VCPU\n");
1661                 goto out;
1662         }
1663
1664         for (i = VGIC_NR_PRIVATE_IRQS; i < VGIC_NR_IRQS; i += 4)
1665                 vgic_set_target_reg(kvm, 0, i);
1666
1667         kvm->arch.vgic.ready = true;
1668 out:
1669         mutex_unlock(&kvm->lock);
1670         return ret;
1671 }
1672
1673 int kvm_vgic_create(struct kvm *kvm)
1674 {
1675         int i, vcpu_lock_idx = -1, ret = 0;
1676         struct kvm_vcpu *vcpu;
1677
1678         mutex_lock(&kvm->lock);
1679
1680         if (kvm->arch.vgic.vctrl_base) {
1681                 ret = -EEXIST;
1682                 goto out;
1683         }
1684
1685         /*
1686          * Any time a vcpu is run, vcpu_load is called which tries to grab the
1687          * vcpu->mutex.  By grabbing the vcpu->mutex of all VCPUs we ensure
1688          * that no other VCPUs are run while we create the vgic.
1689          */
1690         kvm_for_each_vcpu(i, vcpu, kvm) {
1691                 if (!mutex_trylock(&vcpu->mutex))
1692                         goto out_unlock;
1693                 vcpu_lock_idx = i;
1694         }
1695
1696         kvm_for_each_vcpu(i, vcpu, kvm) {
1697                 if (vcpu->arch.has_run_once) {
1698                         ret = -EBUSY;
1699                         goto out_unlock;
1700                 }
1701         }
1702
1703         spin_lock_init(&kvm->arch.vgic.lock);
1704         kvm->arch.vgic.in_kernel = true;
1705         kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
1706         kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
1707         kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
1708
1709 out_unlock:
1710         for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1711                 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1712                 mutex_unlock(&vcpu->mutex);
1713         }
1714
1715 out:
1716         mutex_unlock(&kvm->lock);
1717         return ret;
1718 }
1719
1720 static int vgic_ioaddr_overlap(struct kvm *kvm)
1721 {
1722         phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
1723         phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
1724
1725         if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
1726                 return 0;
1727         if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
1728             (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
1729                 return -EBUSY;
1730         return 0;
1731 }
1732
1733 static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
1734                               phys_addr_t addr, phys_addr_t size)
1735 {
1736         int ret;
1737
1738         if (addr & ~KVM_PHYS_MASK)
1739                 return -E2BIG;
1740
1741         if (addr & (SZ_4K - 1))
1742                 return -EINVAL;
1743
1744         if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
1745                 return -EEXIST;
1746         if (addr + size < addr)
1747                 return -EINVAL;
1748
1749         *ioaddr = addr;
1750         ret = vgic_ioaddr_overlap(kvm);
1751         if (ret)
1752                 *ioaddr = VGIC_ADDR_UNDEF;
1753
1754         return ret;
1755 }
1756
1757 /**
1758  * kvm_vgic_addr - set or get vgic VM base addresses
1759  * @kvm:   pointer to the vm struct
1760  * @type:  the VGIC addr type, one of KVM_VGIC_V2_ADDR_TYPE_XXX
1761  * @addr:  pointer to address value
1762  * @write: if true set the address in the VM address space, if false read the
1763  *          address
1764  *
1765  * Set or get the vgic base addresses for the distributor and the virtual CPU
1766  * interface in the VM physical address space.  These addresses are properties
1767  * of the emulated core/SoC and therefore user space initially knows this
1768  * information.
1769  */
1770 int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
1771 {
1772         int r = 0;
1773         struct vgic_dist *vgic = &kvm->arch.vgic;
1774
1775         mutex_lock(&kvm->lock);
1776         switch (type) {
1777         case KVM_VGIC_V2_ADDR_TYPE_DIST:
1778                 if (write) {
1779                         r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
1780                                                *addr, KVM_VGIC_V2_DIST_SIZE);
1781                 } else {
1782                         *addr = vgic->vgic_dist_base;
1783                 }
1784                 break;
1785         case KVM_VGIC_V2_ADDR_TYPE_CPU:
1786                 if (write) {
1787                         r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
1788                                                *addr, KVM_VGIC_V2_CPU_SIZE);
1789                 } else {
1790                         *addr = vgic->vgic_cpu_base;
1791                 }
1792                 break;
1793         default:
1794                 r = -ENODEV;
1795         }
1796
1797         mutex_unlock(&kvm->lock);
1798         return r;
1799 }
1800
1801 static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu,
1802                                  struct kvm_exit_mmio *mmio, phys_addr_t offset)
1803 {
1804         bool updated = false;
1805         struct vgic_vmcr vmcr;
1806         u32 *vmcr_field;
1807         u32 reg;
1808
1809         vgic_get_vmcr(vcpu, &vmcr);
1810
1811         switch (offset & ~0x3) {
1812         case GIC_CPU_CTRL:
1813                 vmcr_field = &vmcr.ctlr;
1814                 break;
1815         case GIC_CPU_PRIMASK:
1816                 vmcr_field = &vmcr.pmr;
1817                 break;
1818         case GIC_CPU_BINPOINT:
1819                 vmcr_field = &vmcr.bpr;
1820                 break;
1821         case GIC_CPU_ALIAS_BINPOINT:
1822                 vmcr_field = &vmcr.abpr;
1823                 break;
1824         default:
1825                 BUG();
1826         }
1827
1828         if (!mmio->is_write) {
1829                 reg = *vmcr_field;
1830                 mmio_data_write(mmio, ~0, reg);
1831         } else {
1832                 reg = mmio_data_read(mmio, ~0);
1833                 if (reg != *vmcr_field) {
1834                         *vmcr_field = reg;
1835                         vgic_set_vmcr(vcpu, &vmcr);
1836                         updated = true;
1837                 }
1838         }
1839         return updated;
1840 }
1841
1842 static bool handle_mmio_abpr(struct kvm_vcpu *vcpu,
1843                              struct kvm_exit_mmio *mmio, phys_addr_t offset)
1844 {
1845         return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT);
1846 }
1847
1848 static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu,
1849                                   struct kvm_exit_mmio *mmio,
1850                                   phys_addr_t offset)
1851 {
1852         u32 reg;
1853
1854         if (mmio->is_write)
1855                 return false;
1856
1857         /* GICC_IIDR */
1858         reg = (PRODUCT_ID_KVM << 20) |
1859               (GICC_ARCH_VERSION_V2 << 16) |
1860               (IMPLEMENTER_ARM << 0);
1861         mmio_data_write(mmio, ~0, reg);
1862         return false;
1863 }
1864
1865 /*
1866  * CPU Interface Register accesses - these are not accessed by the VM, but by
1867  * user space for saving and restoring VGIC state.
1868  */
1869 static const struct mmio_range vgic_cpu_ranges[] = {
1870         {
1871                 .base           = GIC_CPU_CTRL,
1872                 .len            = 12,
1873                 .handle_mmio    = handle_cpu_mmio_misc,
1874         },
1875         {
1876                 .base           = GIC_CPU_ALIAS_BINPOINT,
1877                 .len            = 4,
1878                 .handle_mmio    = handle_mmio_abpr,
1879         },
1880         {
1881                 .base           = GIC_CPU_ACTIVEPRIO,
1882                 .len            = 16,
1883                 .handle_mmio    = handle_mmio_raz_wi,
1884         },
1885         {
1886                 .base           = GIC_CPU_IDENT,
1887                 .len            = 4,
1888                 .handle_mmio    = handle_cpu_mmio_ident,
1889         },
1890 };
1891
1892 static int vgic_attr_regs_access(struct kvm_device *dev,
1893                                  struct kvm_device_attr *attr,
1894                                  u32 *reg, bool is_write)
1895 {
1896         const struct mmio_range *r = NULL, *ranges;
1897         phys_addr_t offset;
1898         int ret, cpuid, c;
1899         struct kvm_vcpu *vcpu, *tmp_vcpu;
1900         struct vgic_dist *vgic;
1901         struct kvm_exit_mmio mmio;
1902
1903         offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
1904         cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
1905                 KVM_DEV_ARM_VGIC_CPUID_SHIFT;
1906
1907         mutex_lock(&dev->kvm->lock);
1908
1909         if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) {
1910                 ret = -EINVAL;
1911                 goto out;
1912         }
1913
1914         vcpu = kvm_get_vcpu(dev->kvm, cpuid);
1915         vgic = &dev->kvm->arch.vgic;
1916
1917         mmio.len = 4;
1918         mmio.is_write = is_write;
1919         if (is_write)
1920                 mmio_data_write(&mmio, ~0, *reg);
1921         switch (attr->group) {
1922         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1923                 mmio.phys_addr = vgic->vgic_dist_base + offset;
1924                 ranges = vgic_dist_ranges;
1925                 break;
1926         case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
1927                 mmio.phys_addr = vgic->vgic_cpu_base + offset;
1928                 ranges = vgic_cpu_ranges;
1929                 break;
1930         default:
1931                 BUG();
1932         }
1933         r = find_matching_range(ranges, &mmio, offset);
1934
1935         if (unlikely(!r || !r->handle_mmio)) {
1936                 ret = -ENXIO;
1937                 goto out;
1938         }
1939
1940
1941         spin_lock(&vgic->lock);
1942
1943         /*
1944          * Ensure that no other VCPU is running by checking the vcpu->cpu
1945          * field.  If no other VPCUs are running we can safely access the VGIC
1946          * state, because even if another VPU is run after this point, that
1947          * VCPU will not touch the vgic state, because it will block on
1948          * getting the vgic->lock in kvm_vgic_sync_hwstate().
1949          */
1950         kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) {
1951                 if (unlikely(tmp_vcpu->cpu != -1)) {
1952                         ret = -EBUSY;
1953                         goto out_vgic_unlock;
1954                 }
1955         }
1956
1957         /*
1958          * Move all pending IRQs from the LRs on all VCPUs so the pending
1959          * state can be properly represented in the register state accessible
1960          * through this API.
1961          */
1962         kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm)
1963                 vgic_unqueue_irqs(tmp_vcpu);
1964
1965         offset -= r->base;
1966         r->handle_mmio(vcpu, &mmio, offset);
1967
1968         if (!is_write)
1969                 *reg = mmio_data_read(&mmio, ~0);
1970
1971         ret = 0;
1972 out_vgic_unlock:
1973         spin_unlock(&vgic->lock);
1974 out:
1975         mutex_unlock(&dev->kvm->lock);
1976         return ret;
1977 }
1978
1979 static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1980 {
1981         int r;
1982
1983         switch (attr->group) {
1984         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1985                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1986                 u64 addr;
1987                 unsigned long type = (unsigned long)attr->attr;
1988
1989                 if (copy_from_user(&addr, uaddr, sizeof(addr)))
1990                         return -EFAULT;
1991
1992                 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
1993                 return (r == -ENODEV) ? -ENXIO : r;
1994         }
1995
1996         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1997         case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
1998                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
1999                 u32 reg;
2000
2001                 if (get_user(reg, uaddr))
2002                         return -EFAULT;
2003
2004                 return vgic_attr_regs_access(dev, attr, &reg, true);
2005         }
2006
2007         }
2008
2009         return -ENXIO;
2010 }
2011
2012 static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2013 {
2014         int r = -ENXIO;
2015
2016         switch (attr->group) {
2017         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2018                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2019                 u64 addr;
2020                 unsigned long type = (unsigned long)attr->attr;
2021
2022                 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
2023                 if (r)
2024                         return (r == -ENODEV) ? -ENXIO : r;
2025
2026                 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2027                         return -EFAULT;
2028                 break;
2029         }
2030
2031         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2032         case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
2033                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2034                 u32 reg = 0;
2035
2036                 r = vgic_attr_regs_access(dev, attr, &reg, false);
2037                 if (r)
2038                         return r;
2039                 r = put_user(reg, uaddr);
2040                 break;
2041         }
2042
2043         }
2044
2045         return r;
2046 }
2047
2048 static int vgic_has_attr_regs(const struct mmio_range *ranges,
2049                               phys_addr_t offset)
2050 {
2051         struct kvm_exit_mmio dev_attr_mmio;
2052
2053         dev_attr_mmio.len = 4;
2054         if (find_matching_range(ranges, &dev_attr_mmio, offset))
2055                 return 0;
2056         else
2057                 return -ENXIO;
2058 }
2059
2060 static int vgic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2061 {
2062         phys_addr_t offset;
2063
2064         switch (attr->group) {
2065         case KVM_DEV_ARM_VGIC_GRP_ADDR:
2066                 switch (attr->attr) {
2067                 case KVM_VGIC_V2_ADDR_TYPE_DIST:
2068                 case KVM_VGIC_V2_ADDR_TYPE_CPU:
2069                         return 0;
2070                 }
2071                 break;
2072         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2073                 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
2074                 return vgic_has_attr_regs(vgic_dist_ranges, offset);
2075         case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
2076                 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
2077                 return vgic_has_attr_regs(vgic_cpu_ranges, offset);
2078         }
2079         return -ENXIO;
2080 }
2081
2082 static void vgic_destroy(struct kvm_device *dev)
2083 {
2084         kfree(dev);
2085 }
2086
2087 static int vgic_create(struct kvm_device *dev, u32 type)
2088 {
2089         return kvm_vgic_create(dev->kvm);
2090 }
2091
2092 static struct kvm_device_ops kvm_arm_vgic_v2_ops = {
2093         .name = "kvm-arm-vgic",
2094         .create = vgic_create,
2095         .destroy = vgic_destroy,
2096         .set_attr = vgic_set_attr,
2097         .get_attr = vgic_get_attr,
2098         .has_attr = vgic_has_attr,
2099 };
2100
2101 static void vgic_init_maintenance_interrupt(void *info)
2102 {
2103         enable_percpu_irq(vgic->maint_irq, 0);
2104 }
2105
2106 static int vgic_cpu_notify(struct notifier_block *self,
2107                            unsigned long action, void *cpu)
2108 {
2109         switch (action) {
2110         case CPU_STARTING:
2111         case CPU_STARTING_FROZEN:
2112                 vgic_init_maintenance_interrupt(NULL);
2113                 break;
2114         case CPU_DYING:
2115         case CPU_DYING_FROZEN:
2116                 disable_percpu_irq(vgic->maint_irq);
2117                 break;
2118         }
2119
2120         return NOTIFY_OK;
2121 }
2122
2123 static struct notifier_block vgic_cpu_nb = {
2124         .notifier_call = vgic_cpu_notify,
2125 };
2126
2127 static const struct of_device_id vgic_ids[] = {
2128         { .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, },
2129         { .compatible = "arm,gic-v3", .data = vgic_v3_probe, },
2130         {},
2131 };
2132
2133 int kvm_vgic_hyp_init(void)
2134 {
2135         const struct of_device_id *matched_id;
2136         int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
2137                           const struct vgic_params **);
2138         struct device_node *vgic_node;
2139         int ret;
2140
2141         vgic_node = of_find_matching_node_and_match(NULL,
2142                                                     vgic_ids, &matched_id);
2143         if (!vgic_node) {
2144                 kvm_err("error: no compatible GIC node found\n");
2145                 return -ENODEV;
2146         }
2147
2148         vgic_probe = matched_id->data;
2149         ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
2150         if (ret)
2151                 return ret;
2152
2153         ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
2154                                  "vgic", kvm_get_running_vcpus());
2155         if (ret) {
2156                 kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
2157                 return ret;
2158         }
2159
2160         ret = __register_cpu_notifier(&vgic_cpu_nb);
2161         if (ret) {
2162                 kvm_err("Cannot register vgic CPU notifier\n");
2163                 goto out_free_irq;
2164         }
2165
2166         /* Callback into for arch code for setup */
2167         vgic_arch_setup(vgic);
2168
2169         on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
2170
2171         return kvm_register_device_ops(&kvm_arm_vgic_v2_ops,
2172                                        KVM_DEV_TYPE_ARM_VGIC_V2);
2173
2174 out_free_irq:
2175         free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
2176         return ret;
2177 }