67488023d5b0b4d73faa07b120aa2eeb2bd973db
[oota-llvm.git] / tools / yaml2obj / yaml2obj.cpp
1 //===- yaml2obj - Convert YAML to a binary object file --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This program takes a YAML description of an object file and outputs the
11 // binary equivalent.
12 //
13 // This is used for writing tests that require binary files.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/ADT/StringMap.h"
20 #include "llvm/ADT/StringSwitch.h"
21 #include "llvm/Support/COFF.h"
22 #include "llvm/Support/Casting.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Endian.h"
25 #include "llvm/Support/ManagedStatic.h"
26 #include "llvm/Support/MemoryBuffer.h"
27 #include "llvm/Support/PrettyStackTrace.h"
28 #include "llvm/Support/Signals.h"
29 #include "llvm/Support/SourceMgr.h"
30 #include "llvm/Support/YAMLTraits.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Support/system_error.h"
33 #include <vector>
34
35 using namespace llvm;
36
37 static cl::opt<std::string>
38   Input(cl::Positional, cl::desc("<input>"), cl::init("-"));
39
40 template<class T>
41 typename llvm::enable_if_c<std::numeric_limits<T>::is_integer, bool>::type
42 getAs(const llvm::yaml::ScalarNode *SN, T &Result) {
43   SmallString<4> Storage;
44   StringRef Value = SN->getValue(Storage);
45   if (Value.getAsInteger(0, Result))
46     return false;
47   return true;
48 }
49
50 // Given a container with begin and end with ::value_type of a character type.
51 // Iterate through pairs of characters in the the set of [a-fA-F0-9] ignoring
52 // all other characters.
53 struct hex_pair_iterator {
54   StringRef::const_iterator Current, End;
55   typedef SmallVector<char, 2> value_type;
56   value_type Pair;
57   bool IsDone;
58
59   hex_pair_iterator(StringRef C)
60     : Current(C.begin()), End(C.end()), IsDone(false) {
61     // Initalize Pair.
62     ++*this;
63   }
64
65   // End iterator.
66   hex_pair_iterator() : Current(), End(), IsDone(true) {}
67
68   value_type operator *() const {
69     return Pair;
70   }
71
72   hex_pair_iterator operator ++() {
73     // We're at the end of the input.
74     if (Current == End) {
75       IsDone = true;
76       return *this;
77     }
78     Pair = value_type();
79     for (; Current != End && Pair.size() != 2; ++Current) {
80       // Is a valid hex digit.
81       if ((*Current >= '0' && *Current <= '9') ||
82           (*Current >= 'a' && *Current <= 'f') ||
83           (*Current >= 'A' && *Current <= 'F'))
84         Pair.push_back(*Current);
85     }
86     // Hit the end without getting 2 hex digits. Pair is invalid.
87     if (Pair.size() != 2)
88       IsDone = true;
89     return *this;
90   }
91
92   bool operator ==(const hex_pair_iterator Other) {
93     return (IsDone == Other.IsDone) ||
94            (Current == Other.Current && End == Other.End);
95   }
96
97   bool operator !=(const hex_pair_iterator Other) {
98     return !(*this == Other);
99   }
100 };
101
102 template <class ContainerOut>
103 static bool hexStringToByteArray(StringRef Str, ContainerOut &Out) {
104   for (hex_pair_iterator I(Str), E; I != E; ++I) {
105     typename hex_pair_iterator::value_type Pair = *I;
106     typename ContainerOut::value_type Byte;
107     if (StringRef(Pair.data(), 2).getAsInteger(16, Byte))
108       return false;
109     Out.push_back(Byte);
110   }
111   return true;
112 }
113
114 // The structure of the yaml files is not an exact 1:1 match to COFF. In order
115 // to use yaml::IO, we use these structures which are closer to the source.
116 namespace COFFYAML {
117   struct Section {
118     COFF::SectionCharacteristics Characteristics;
119     StringRef SectionData;
120     std::vector<COFF::relocation> Relocations;
121     StringRef Name;
122   };
123
124   struct Header {
125     COFF::MachineTypes Machine;
126     COFF::Characteristics Characteristics;
127   };
128
129   struct Symbol {
130     COFF::SymbolBaseType SimpleType;
131     uint8_t NumberOfAuxSymbols;
132     StringRef Name;
133     COFF::SymbolStorageClass StorageClass;
134     StringRef AuxillaryData;
135     COFF::SymbolComplexType ComplexType;
136     uint32_t Value;
137     uint16_t SectionNumber;
138   };
139
140   struct Object {
141     Header HeaderData;
142     std::vector<Section> Sections;
143     std::vector<Symbol> Symbols;
144   };
145 }
146
147 /// This parses a yaml stream that represents a COFF object file.
148 /// See docs/yaml2obj for the yaml scheema.
149 struct COFFParser {
150   COFFParser(COFFYAML::Object &Obj) : Obj(Obj) {
151     std::memset(&Header, 0, sizeof(Header));
152     // A COFF string table always starts with a 4 byte size field. Offsets into
153     // it include this size, so allocate it now.
154     StringTable.append(4, 0);
155   }
156
157   void parseHeader() {
158     Header.Machine = Obj.HeaderData.Machine;
159     Header.Characteristics = Obj.HeaderData.Characteristics;
160   }
161
162   bool parseSections() {
163     for (std::vector<COFFYAML::Section>::iterator i = Obj.Sections.begin(),
164            e = Obj.Sections.end(); i != e; ++i) {
165       const COFFYAML::Section &YamlSection = *i;
166       Section Sec;
167       std::memset(&Sec.Header, 0, sizeof(Sec.Header));
168
169       // If the name is less than 8 bytes, store it in place, otherwise
170       // store it in the string table.
171       StringRef Name = YamlSection.Name;
172       std::fill_n(Sec.Header.Name, unsigned(COFF::NameSize), 0);
173       if (Name.size() <= COFF::NameSize) {
174         std::copy(Name.begin(), Name.end(), Sec.Header.Name);
175       } else {
176         // Add string to the string table and format the index for output.
177         unsigned Index = getStringIndex(Name);
178         std::string str = utostr(Index);
179         if (str.size() > 7) {
180           errs() << "String table got too large";
181           return false;
182         }
183         Sec.Header.Name[0] = '/';
184         std::copy(str.begin(), str.end(), Sec.Header.Name + 1);
185       }
186
187       Sec.Header.Characteristics = YamlSection.Characteristics;
188
189       StringRef Data = YamlSection.SectionData;
190       if (!hexStringToByteArray(Data, Sec.Data)) {
191         errs() << "SectionData must be a collection of pairs of hex bytes";
192         return false;
193       }
194       Sections.push_back(Sec);
195     }
196     return true;
197   }
198
199   bool parseSymbols() {
200     for (std::vector<COFFYAML::Symbol>::iterator i = Obj.Symbols.begin(),
201            e = Obj.Symbols.end(); i != e; ++i) {
202       COFFYAML::Symbol YamlSymbol = *i;
203       Symbol Sym;
204       std::memset(&Sym.Header, 0, sizeof(Sym.Header));
205
206       // If the name is less than 8 bytes, store it in place, otherwise
207       // store it in the string table.
208       StringRef Name = YamlSymbol.Name;
209       std::fill_n(Sym.Header.Name, unsigned(COFF::NameSize), 0);
210       if (Name.size() <= COFF::NameSize) {
211         std::copy(Name.begin(), Name.end(), Sym.Header.Name);
212       } else {
213         // Add string to the string table and format the index for output.
214         unsigned Index = getStringIndex(Name);
215         *reinterpret_cast<support::aligned_ulittle32_t*>(
216             Sym.Header.Name + 4) = Index;
217       }
218
219       Sym.Header.Value = YamlSymbol.Value;
220       Sym.Header.Type |= YamlSymbol.SimpleType;
221       Sym.Header.Type |= YamlSymbol.ComplexType << COFF::SCT_COMPLEX_TYPE_SHIFT;
222       Sym.Header.StorageClass = YamlSymbol.StorageClass;
223       Sym.Header.SectionNumber = YamlSymbol.SectionNumber;
224
225       StringRef Data = YamlSymbol.AuxillaryData;
226       if (!hexStringToByteArray(Data, Sym.AuxSymbols)) {
227         errs() << "AuxillaryData must be a collection of pairs of hex bytes";
228         return false;
229       }
230       Symbols.push_back(Sym);
231     }
232     return true;
233   }
234
235   bool parse() {
236     parseHeader();
237     if (!parseSections())
238       return false;
239     if (!parseSymbols())
240       return false;
241     return true;
242   }
243
244   unsigned getStringIndex(StringRef Str) {
245     StringMap<unsigned>::iterator i = StringTableMap.find(Str);
246     if (i == StringTableMap.end()) {
247       unsigned Index = StringTable.size();
248       StringTable.append(Str.begin(), Str.end());
249       StringTable.push_back(0);
250       StringTableMap[Str] = Index;
251       return Index;
252     }
253     return i->second;
254   }
255
256   COFFYAML::Object &Obj;
257   COFF::header Header;
258
259   struct Section {
260     COFF::section Header;
261     std::vector<uint8_t> Data;
262     std::vector<COFF::relocation> Relocations;
263   };
264
265   struct Symbol {
266     COFF::symbol Header;
267     std::vector<uint8_t> AuxSymbols;
268   };
269
270   std::vector<Section> Sections;
271   std::vector<Symbol> Symbols;
272   StringMap<unsigned> StringTableMap;
273   std::string StringTable;
274 };
275
276 // Take a CP and assign addresses and sizes to everything. Returns false if the
277 // layout is not valid to do.
278 static bool layoutCOFF(COFFParser &CP) {
279   uint32_t SectionTableStart = 0;
280   uint32_t SectionTableSize  = 0;
281
282   // The section table starts immediately after the header, including the
283   // optional header.
284   SectionTableStart = sizeof(COFF::header) + CP.Header.SizeOfOptionalHeader;
285   SectionTableSize = sizeof(COFF::section) * CP.Sections.size();
286
287   uint32_t CurrentSectionDataOffset = SectionTableStart + SectionTableSize;
288
289   // Assign each section data address consecutively.
290   for (std::vector<COFFParser::Section>::iterator i = CP.Sections.begin(),
291                                                   e = CP.Sections.end();
292                                                   i != e; ++i) {
293     if (!i->Data.empty()) {
294       i->Header.SizeOfRawData = i->Data.size();
295       i->Header.PointerToRawData = CurrentSectionDataOffset;
296       CurrentSectionDataOffset += i->Header.SizeOfRawData;
297       // TODO: Handle alignment.
298     } else {
299       i->Header.SizeOfRawData = 0;
300       i->Header.PointerToRawData = 0;
301     }
302   }
303
304   uint32_t SymbolTableStart = CurrentSectionDataOffset;
305
306   // Calculate number of symbols.
307   uint32_t NumberOfSymbols = 0;
308   for (std::vector<COFFParser::Symbol>::iterator i = CP.Symbols.begin(),
309                                                  e = CP.Symbols.end();
310                                                  i != e; ++i) {
311     if (i->AuxSymbols.size() % COFF::SymbolSize != 0) {
312       errs() << "AuxillaryData size not a multiple of symbol size!\n";
313       return false;
314     }
315     i->Header.NumberOfAuxSymbols = i->AuxSymbols.size() / COFF::SymbolSize;
316     NumberOfSymbols += 1 + i->Header.NumberOfAuxSymbols;
317   }
318
319   // Store all the allocated start addresses in the header.
320   CP.Header.NumberOfSections = CP.Sections.size();
321   CP.Header.NumberOfSymbols = NumberOfSymbols;
322   CP.Header.PointerToSymbolTable = SymbolTableStart;
323
324   *reinterpret_cast<support::ulittle32_t *>(&CP.StringTable[0])
325     = CP.StringTable.size();
326
327   return true;
328 }
329
330 template <typename value_type>
331 struct binary_le_impl {
332   value_type Value;
333   binary_le_impl(value_type V) : Value(V) {}
334 };
335
336 template <typename value_type>
337 raw_ostream &operator <<( raw_ostream &OS
338                         , const binary_le_impl<value_type> &BLE) {
339   char Buffer[sizeof(BLE.Value)];
340   support::endian::write<value_type, support::little, support::unaligned>(
341     Buffer, BLE.Value);
342   OS.write(Buffer, sizeof(BLE.Value));
343   return OS;
344 }
345
346 template <typename value_type>
347 binary_le_impl<value_type> binary_le(value_type V) {
348   return binary_le_impl<value_type>(V);
349 }
350
351 void writeCOFF(COFFParser &CP, raw_ostream &OS) {
352   OS << binary_le(CP.Header.Machine)
353      << binary_le(CP.Header.NumberOfSections)
354      << binary_le(CP.Header.TimeDateStamp)
355      << binary_le(CP.Header.PointerToSymbolTable)
356      << binary_le(CP.Header.NumberOfSymbols)
357      << binary_le(CP.Header.SizeOfOptionalHeader)
358      << binary_le(CP.Header.Characteristics);
359
360   // Output section table.
361   for (std::vector<COFFParser::Section>::const_iterator i = CP.Sections.begin(),
362                                                         e = CP.Sections.end();
363                                                         i != e; ++i) {
364     OS.write(i->Header.Name, COFF::NameSize);
365     OS << binary_le(i->Header.VirtualSize)
366        << binary_le(i->Header.VirtualAddress)
367        << binary_le(i->Header.SizeOfRawData)
368        << binary_le(i->Header.PointerToRawData)
369        << binary_le(i->Header.PointerToRelocations)
370        << binary_le(i->Header.PointerToLineNumbers)
371        << binary_le(i->Header.NumberOfRelocations)
372        << binary_le(i->Header.NumberOfLineNumbers)
373        << binary_le(i->Header.Characteristics);
374   }
375
376   // Output section data.
377   for (std::vector<COFFParser::Section>::const_iterator i = CP.Sections.begin(),
378                                                         e = CP.Sections.end();
379                                                         i != e; ++i) {
380     if (!i->Data.empty())
381       OS.write(reinterpret_cast<const char*>(&i->Data[0]), i->Data.size());
382   }
383
384   // Output symbol table.
385
386   for (std::vector<COFFParser::Symbol>::const_iterator i = CP.Symbols.begin(),
387                                                        e = CP.Symbols.end();
388                                                        i != e; ++i) {
389     OS.write(i->Header.Name, COFF::NameSize);
390     OS << binary_le(i->Header.Value)
391        << binary_le(i->Header.SectionNumber)
392        << binary_le(i->Header.Type)
393        << binary_le(i->Header.StorageClass)
394        << binary_le(i->Header.NumberOfAuxSymbols);
395     if (!i->AuxSymbols.empty())
396       OS.write( reinterpret_cast<const char*>(&i->AuxSymbols[0])
397               , i->AuxSymbols.size());
398   }
399
400   // Output string table.
401   OS.write(&CP.StringTable[0], CP.StringTable.size());
402 }
403
404 LLVM_YAML_IS_SEQUENCE_VECTOR(COFF::relocation)
405 LLVM_YAML_IS_SEQUENCE_VECTOR(COFFYAML::Section)
406 LLVM_YAML_IS_SEQUENCE_VECTOR(COFFYAML::Symbol)
407
408 namespace llvm {
409
410 namespace COFF {
411   Characteristics operator|(Characteristics a, Characteristics b) {
412     uint32_t Ret = static_cast<uint32_t>(a) | static_cast<uint32_t>(b);
413     return static_cast<Characteristics>(Ret);
414   }
415
416   SectionCharacteristics
417   operator|(SectionCharacteristics a, SectionCharacteristics b) {
418     uint32_t Ret = static_cast<uint32_t>(a) | static_cast<uint32_t>(b);
419     return static_cast<SectionCharacteristics>(Ret);
420   }
421 }
422
423 namespace yaml {
424
425 #define BCase(X) IO.bitSetCase(Value, #X, COFF::X);
426
427 template <>
428 struct ScalarBitSetTraits<COFF::SectionCharacteristics> {
429   static void bitset(IO &IO, COFF::SectionCharacteristics &Value) {
430     BCase(IMAGE_SCN_TYPE_NO_PAD);
431     BCase(IMAGE_SCN_CNT_CODE);
432     BCase(IMAGE_SCN_CNT_INITIALIZED_DATA);
433     BCase(IMAGE_SCN_CNT_UNINITIALIZED_DATA);
434     BCase(IMAGE_SCN_LNK_OTHER);
435     BCase(IMAGE_SCN_LNK_INFO);
436     BCase(IMAGE_SCN_LNK_REMOVE);
437     BCase(IMAGE_SCN_LNK_COMDAT);
438     BCase(IMAGE_SCN_GPREL);
439     BCase(IMAGE_SCN_MEM_PURGEABLE);
440     BCase(IMAGE_SCN_MEM_16BIT);
441     BCase(IMAGE_SCN_MEM_LOCKED);
442     BCase(IMAGE_SCN_MEM_PRELOAD);
443     BCase(IMAGE_SCN_ALIGN_1BYTES);
444     BCase(IMAGE_SCN_ALIGN_2BYTES);
445     BCase(IMAGE_SCN_ALIGN_4BYTES);
446     BCase(IMAGE_SCN_ALIGN_8BYTES);
447     BCase(IMAGE_SCN_ALIGN_16BYTES);
448     BCase(IMAGE_SCN_ALIGN_32BYTES);
449     BCase(IMAGE_SCN_ALIGN_64BYTES);
450     BCase(IMAGE_SCN_ALIGN_128BYTES);
451     BCase(IMAGE_SCN_ALIGN_256BYTES);
452     BCase(IMAGE_SCN_ALIGN_512BYTES);
453     BCase(IMAGE_SCN_ALIGN_1024BYTES);
454     BCase(IMAGE_SCN_ALIGN_2048BYTES);
455     BCase(IMAGE_SCN_ALIGN_4096BYTES);
456     BCase(IMAGE_SCN_ALIGN_8192BYTES);
457     BCase(IMAGE_SCN_LNK_NRELOC_OVFL);
458     BCase(IMAGE_SCN_MEM_DISCARDABLE);
459     BCase(IMAGE_SCN_MEM_NOT_CACHED);
460     BCase(IMAGE_SCN_MEM_NOT_PAGED);
461     BCase(IMAGE_SCN_MEM_SHARED);
462     BCase(IMAGE_SCN_MEM_EXECUTE);
463     BCase(IMAGE_SCN_MEM_READ);
464     BCase(IMAGE_SCN_MEM_WRITE);
465   }
466 };
467
468 template <>
469 struct ScalarBitSetTraits<COFF::Characteristics> {
470   static void bitset(IO &IO, COFF::Characteristics &Value) {
471     BCase(IMAGE_FILE_RELOCS_STRIPPED);
472     BCase(IMAGE_FILE_EXECUTABLE_IMAGE);
473     BCase(IMAGE_FILE_LINE_NUMS_STRIPPED);
474     BCase(IMAGE_FILE_LOCAL_SYMS_STRIPPED);
475     BCase(IMAGE_FILE_AGGRESSIVE_WS_TRIM);
476     BCase(IMAGE_FILE_LARGE_ADDRESS_AWARE);
477     BCase(IMAGE_FILE_BYTES_REVERSED_LO);
478     BCase(IMAGE_FILE_32BIT_MACHINE);
479     BCase(IMAGE_FILE_DEBUG_STRIPPED);
480     BCase(IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP);
481     BCase(IMAGE_FILE_NET_RUN_FROM_SWAP);
482     BCase(IMAGE_FILE_SYSTEM);
483     BCase(IMAGE_FILE_DLL);
484     BCase(IMAGE_FILE_UP_SYSTEM_ONLY);
485     BCase(IMAGE_FILE_BYTES_REVERSED_HI);
486   }
487 };
488 #undef BCase
489
490 #define ECase(X) IO.enumCase(Value, #X, COFF::X);
491
492 template <>
493 struct ScalarEnumerationTraits<COFF::SymbolComplexType> {
494   static void enumeration(IO &IO, COFF::SymbolComplexType &Value) {
495     ECase(IMAGE_SYM_DTYPE_NULL);
496     ECase(IMAGE_SYM_DTYPE_POINTER);
497     ECase(IMAGE_SYM_DTYPE_FUNCTION);
498     ECase(IMAGE_SYM_DTYPE_ARRAY);
499   }
500 };
501
502 template <>
503 struct ScalarEnumerationTraits<COFF::SymbolStorageClass> {
504   static void enumeration(IO &IO, COFF::SymbolStorageClass &Value) {
505     ECase(IMAGE_SYM_CLASS_END_OF_FUNCTION);
506     ECase(IMAGE_SYM_CLASS_NULL);
507     ECase(IMAGE_SYM_CLASS_AUTOMATIC);
508     ECase(IMAGE_SYM_CLASS_EXTERNAL);
509     ECase(IMAGE_SYM_CLASS_STATIC);
510     ECase(IMAGE_SYM_CLASS_REGISTER);
511     ECase(IMAGE_SYM_CLASS_EXTERNAL_DEF);
512     ECase(IMAGE_SYM_CLASS_LABEL);
513     ECase(IMAGE_SYM_CLASS_UNDEFINED_LABEL);
514     ECase(IMAGE_SYM_CLASS_MEMBER_OF_STRUCT);
515     ECase(IMAGE_SYM_CLASS_ARGUMENT);
516     ECase(IMAGE_SYM_CLASS_STRUCT_TAG);
517     ECase(IMAGE_SYM_CLASS_MEMBER_OF_UNION);
518     ECase(IMAGE_SYM_CLASS_UNION_TAG);
519     ECase(IMAGE_SYM_CLASS_TYPE_DEFINITION);
520     ECase(IMAGE_SYM_CLASS_UNDEFINED_STATIC);
521     ECase(IMAGE_SYM_CLASS_ENUM_TAG);
522     ECase(IMAGE_SYM_CLASS_MEMBER_OF_ENUM);
523     ECase(IMAGE_SYM_CLASS_REGISTER_PARAM);
524     ECase(IMAGE_SYM_CLASS_BIT_FIELD);
525     ECase(IMAGE_SYM_CLASS_BLOCK);
526     ECase(IMAGE_SYM_CLASS_FUNCTION);
527     ECase(IMAGE_SYM_CLASS_END_OF_STRUCT);
528     ECase(IMAGE_SYM_CLASS_FILE);
529     ECase(IMAGE_SYM_CLASS_SECTION);
530     ECase(IMAGE_SYM_CLASS_WEAK_EXTERNAL);
531     ECase(IMAGE_SYM_CLASS_CLR_TOKEN);
532   }
533 };
534
535 template <>
536 struct ScalarEnumerationTraits<COFF::SymbolBaseType> {
537   static void enumeration(IO &IO, COFF::SymbolBaseType &Value) {
538     ECase(IMAGE_SYM_TYPE_NULL);
539     ECase(IMAGE_SYM_TYPE_VOID);
540     ECase(IMAGE_SYM_TYPE_CHAR);
541     ECase(IMAGE_SYM_TYPE_SHORT);
542     ECase(IMAGE_SYM_TYPE_INT);
543     ECase(IMAGE_SYM_TYPE_LONG);
544     ECase(IMAGE_SYM_TYPE_FLOAT);
545     ECase(IMAGE_SYM_TYPE_DOUBLE);
546     ECase(IMAGE_SYM_TYPE_STRUCT);
547     ECase(IMAGE_SYM_TYPE_UNION);
548     ECase(IMAGE_SYM_TYPE_ENUM);
549     ECase(IMAGE_SYM_TYPE_MOE);
550     ECase(IMAGE_SYM_TYPE_BYTE);
551     ECase(IMAGE_SYM_TYPE_WORD);
552     ECase(IMAGE_SYM_TYPE_UINT);
553     ECase(IMAGE_SYM_TYPE_DWORD);
554   }
555 };
556
557 template <>
558 struct ScalarEnumerationTraits<COFF::MachineTypes> {
559   static void enumeration(IO &IO, COFF::MachineTypes &Value) {
560     ECase(IMAGE_FILE_MACHINE_UNKNOWN);
561     ECase(IMAGE_FILE_MACHINE_AM33);
562     ECase(IMAGE_FILE_MACHINE_AMD64);
563     ECase(IMAGE_FILE_MACHINE_ARM);
564     ECase(IMAGE_FILE_MACHINE_ARMV7);
565     ECase(IMAGE_FILE_MACHINE_EBC);
566     ECase(IMAGE_FILE_MACHINE_I386);
567     ECase(IMAGE_FILE_MACHINE_IA64);
568     ECase(IMAGE_FILE_MACHINE_M32R);
569     ECase(IMAGE_FILE_MACHINE_MIPS16);
570     ECase(IMAGE_FILE_MACHINE_MIPSFPU);
571     ECase(IMAGE_FILE_MACHINE_MIPSFPU16);
572     ECase(IMAGE_FILE_MACHINE_POWERPC);
573     ECase(IMAGE_FILE_MACHINE_POWERPCFP);
574     ECase(IMAGE_FILE_MACHINE_R4000);
575     ECase(IMAGE_FILE_MACHINE_SH3);
576     ECase(IMAGE_FILE_MACHINE_SH3DSP);
577     ECase(IMAGE_FILE_MACHINE_SH4);
578     ECase(IMAGE_FILE_MACHINE_SH5);
579     ECase(IMAGE_FILE_MACHINE_THUMB);
580     ECase(IMAGE_FILE_MACHINE_WCEMIPSV2);
581   }
582 };
583
584 template <>
585 struct ScalarEnumerationTraits<COFF::RelocationTypeX86> {
586   static void enumeration(IO &IO, COFF::RelocationTypeX86 &Value) {
587     ECase(IMAGE_REL_I386_ABSOLUTE);
588     ECase(IMAGE_REL_I386_DIR16);
589     ECase(IMAGE_REL_I386_REL16);
590     ECase(IMAGE_REL_I386_DIR32);
591     ECase(IMAGE_REL_I386_DIR32NB);
592     ECase(IMAGE_REL_I386_SEG12);
593     ECase(IMAGE_REL_I386_SECTION);
594     ECase(IMAGE_REL_I386_SECREL);
595     ECase(IMAGE_REL_I386_TOKEN);
596     ECase(IMAGE_REL_I386_SECREL7);
597     ECase(IMAGE_REL_I386_REL32);
598     ECase(IMAGE_REL_AMD64_ABSOLUTE);
599     ECase(IMAGE_REL_AMD64_ADDR64);
600     ECase(IMAGE_REL_AMD64_ADDR32);
601     ECase(IMAGE_REL_AMD64_ADDR32NB);
602     ECase(IMAGE_REL_AMD64_REL32);
603     ECase(IMAGE_REL_AMD64_REL32_1);
604     ECase(IMAGE_REL_AMD64_REL32_2);
605     ECase(IMAGE_REL_AMD64_REL32_3);
606     ECase(IMAGE_REL_AMD64_REL32_4);
607     ECase(IMAGE_REL_AMD64_REL32_5);
608     ECase(IMAGE_REL_AMD64_SECTION);
609     ECase(IMAGE_REL_AMD64_SECREL);
610     ECase(IMAGE_REL_AMD64_SECREL7);
611     ECase(IMAGE_REL_AMD64_TOKEN);
612     ECase(IMAGE_REL_AMD64_SREL32);
613     ECase(IMAGE_REL_AMD64_PAIR);
614     ECase(IMAGE_REL_AMD64_SSPAN32);
615   }
616 };
617
618 #undef ECase
619
620 template <>
621 struct MappingTraits<COFFYAML::Symbol> {
622   static void mapping(IO &IO, COFFYAML::Symbol &S) {
623     IO.mapRequired("SimpleType", S.SimpleType);
624     IO.mapOptional("NumberOfAuxSymbols", S.NumberOfAuxSymbols);
625     IO.mapRequired("Name", S.Name);
626     IO.mapRequired("StorageClass", S.StorageClass);
627     IO.mapOptional("AuxillaryData", S.AuxillaryData); // FIXME: typo
628     IO.mapRequired("ComplexType", S.ComplexType);
629     IO.mapRequired("Value", S.Value);
630     IO.mapRequired("SectionNumber", S.SectionNumber);
631   }
632 };
633
634 template <>
635 struct MappingTraits<COFFYAML::Header> {
636   static void mapping(IO &IO, COFFYAML::Header &H) {
637     IO.mapRequired("Machine", H.Machine);
638     IO.mapOptional("Characteristics", H.Characteristics);
639   }
640 };
641
642 template <>
643 struct MappingTraits<COFF::relocation> {
644   struct NormalizedType {
645   public:
646     NormalizedType(IO &) : Type(COFF::RelocationTypeX86(0)) {
647     }
648     NormalizedType(IO &, uint16_t T) : Type(COFF::RelocationTypeX86(T)) {
649     }
650     uint16_t denormalize(IO &) {
651       return Type;
652     }
653
654     COFF::RelocationTypeX86 Type;
655   };
656   static void mapping(IO &IO, COFF::relocation &Rel) {
657     MappingNormalization<NormalizedType, uint16_t> foo(IO, Rel.Type);
658
659     IO.mapRequired("Type", foo->Type);
660     IO.mapRequired("VirtualAddress", Rel.VirtualAddress);
661     IO.mapRequired("SymbolTableIndex", Rel.SymbolTableIndex);
662   }
663 };
664
665 template <>
666 struct MappingTraits<COFFYAML::Section> {
667   static void mapping(IO &IO, COFFYAML::Section &Sec) {
668     IO.mapOptional("Relocations", Sec.Relocations);
669     IO.mapRequired("SectionData", Sec.SectionData);
670     IO.mapRequired("Characteristics", Sec.Characteristics);
671     IO.mapRequired("Name", Sec.Name);
672   }
673 };
674
675 template <>
676 struct MappingTraits<COFFYAML::Object> {
677   static void mapping(IO &IO, COFFYAML::Object &Obj) {
678     IO.mapRequired("sections", Obj.Sections);
679     IO.mapRequired("header", Obj.HeaderData);
680     IO.mapRequired("symbols", Obj.Symbols);
681   }
682 };
683 } // end namespace yaml
684 } // end namespace llvm
685
686 int main(int argc, char **argv) {
687   cl::ParseCommandLineOptions(argc, argv);
688   sys::PrintStackTraceOnErrorSignal();
689   PrettyStackTraceProgram X(argc, argv);
690   llvm_shutdown_obj Y;  // Call llvm_shutdown() on exit.
691
692   OwningPtr<MemoryBuffer> Buf;
693   if (MemoryBuffer::getFileOrSTDIN(Input, Buf))
694     return 1;
695
696   yaml::Input YIn(Buf->getBuffer());
697   COFFYAML::Object Doc;
698   YIn >> Doc;
699   if (YIn.error()) {
700     errs() << "yaml2obj: Failed to parse YAML file!\n";
701     return 1;
702   }
703
704   COFFParser CP(Doc);
705   if (!CP.parse()) {
706     errs() << "yaml2obj: Failed to parse YAML file!\n";
707     return 1;
708   }
709
710   if (!layoutCOFF(CP)) {
711     errs() << "yaml2obj: Failed to layout COFF file!\n";
712     return 1;
713   }
714   writeCOFF(CP, outs());
715 }