32dee54dc55a5244771c94361be79aecaafe7400
[oota-llvm.git] / tools / yaml2obj / yaml2obj.cpp
1 //===- yaml2obj - Convert YAML to a binary object file --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This program takes a YAML description of an object file and outputs the
11 // binary equivalent.
12 //
13 // This is used for writing tests that require binary files.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/ADT/StringMap.h"
20 #include "llvm/ADT/StringSwitch.h"
21 #include "llvm/Support/COFF.h"
22 #include "llvm/Support/Casting.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Endian.h"
25 #include "llvm/Support/ManagedStatic.h"
26 #include "llvm/Support/MemoryBuffer.h"
27 #include "llvm/Support/PrettyStackTrace.h"
28 #include "llvm/Support/Signals.h"
29 #include "llvm/Support/SourceMgr.h"
30 #include "llvm/Support/YAMLTraits.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Support/system_error.h"
33 #include <vector>
34
35 using namespace llvm;
36
37 static cl::opt<std::string>
38   Input(cl::Positional, cl::desc("<input>"), cl::init("-"));
39
40 // The structure of the yaml files is not an exact 1:1 match to COFF. In order
41 // to use yaml::IO, we use these structures which are closer to the source.
42 namespace COFFYAML {
43   struct Section {
44     COFF::section Header;
45     StringRef SectionData;
46     std::vector<COFF::relocation> Relocations;
47     StringRef Name;
48     Section() {
49       memset(&Header, 0, sizeof(COFF::section));
50     }
51   };
52
53   struct Symbol {
54     COFF::symbol Header;
55     COFF::SymbolBaseType SimpleType;
56     COFF::SymbolComplexType ComplexType;
57     StringRef AuxiliaryData;
58     StringRef Name;
59     Symbol() {
60       memset(&Header, 0, sizeof(COFF::symbol));
61     }
62   };
63
64   struct Object {
65     COFF::header Header;
66     std::vector<Section> Sections;
67     std::vector<Symbol> Symbols;
68     Object() {
69       memset(&Header, 0, sizeof(COFF::header));
70     }
71   };
72 }
73
74 /// This parses a yaml stream that represents a COFF object file.
75 /// See docs/yaml2obj for the yaml scheema.
76 struct COFFParser {
77   COFFParser(COFFYAML::Object &Obj) : Obj(Obj) {
78     // A COFF string table always starts with a 4 byte size field. Offsets into
79     // it include this size, so allocate it now.
80     StringTable.append(4, 0);
81   }
82
83   bool parseSections() {
84     for (std::vector<COFFYAML::Section>::iterator i = Obj.Sections.begin(),
85            e = Obj.Sections.end(); i != e; ++i) {
86       COFFYAML::Section &Sec = *i;
87
88       // If the name is less than 8 bytes, store it in place, otherwise
89       // store it in the string table.
90       StringRef Name = Sec.Name;
91
92       if (Name.size() <= COFF::NameSize) {
93         std::copy(Name.begin(), Name.end(), Sec.Header.Name);
94       } else {
95         // Add string to the string table and format the index for output.
96         unsigned Index = getStringIndex(Name);
97         std::string str = utostr(Index);
98         if (str.size() > 7) {
99           errs() << "String table got too large";
100           return false;
101         }
102         Sec.Header.Name[0] = '/';
103         std::copy(str.begin(), str.end(), Sec.Header.Name + 1);
104       }
105     }
106     return true;
107   }
108
109   bool parseSymbols() {
110     for (std::vector<COFFYAML::Symbol>::iterator i = Obj.Symbols.begin(),
111            e = Obj.Symbols.end(); i != e; ++i) {
112       COFFYAML::Symbol &Sym = *i;
113
114       // If the name is less than 8 bytes, store it in place, otherwise
115       // store it in the string table.
116       StringRef Name = Sym.Name;
117       if (Name.size() <= COFF::NameSize) {
118         std::copy(Name.begin(), Name.end(), Sym.Header.Name);
119       } else {
120         // Add string to the string table and format the index for output.
121         unsigned Index = getStringIndex(Name);
122         *reinterpret_cast<support::aligned_ulittle32_t*>(
123             Sym.Header.Name + 4) = Index;
124       }
125
126       Sym.Header.Type = Sym.SimpleType;
127       Sym.Header.Type |= Sym.ComplexType << COFF::SCT_COMPLEX_TYPE_SHIFT;
128     }
129     return true;
130   }
131
132   bool parse() {
133     if (!parseSections())
134       return false;
135     if (!parseSymbols())
136       return false;
137     return true;
138   }
139
140   unsigned getStringIndex(StringRef Str) {
141     StringMap<unsigned>::iterator i = StringTableMap.find(Str);
142     if (i == StringTableMap.end()) {
143       unsigned Index = StringTable.size();
144       StringTable.append(Str.begin(), Str.end());
145       StringTable.push_back(0);
146       StringTableMap[Str] = Index;
147       return Index;
148     }
149     return i->second;
150   }
151
152   COFFYAML::Object &Obj;
153
154   StringMap<unsigned> StringTableMap;
155   std::string StringTable;
156 };
157
158 // Take a CP and assign addresses and sizes to everything. Returns false if the
159 // layout is not valid to do.
160 static bool layoutCOFF(COFFParser &CP) {
161   uint32_t SectionTableStart = 0;
162   uint32_t SectionTableSize  = 0;
163
164   // The section table starts immediately after the header, including the
165   // optional header.
166   SectionTableStart = sizeof(COFF::header) + CP.Obj.Header.SizeOfOptionalHeader;
167   SectionTableSize = sizeof(COFF::section) * CP.Obj.Sections.size();
168
169   uint32_t CurrentSectionDataOffset = SectionTableStart + SectionTableSize;
170
171   // Assign each section data address consecutively.
172   for (std::vector<COFFYAML::Section>::iterator i = CP.Obj.Sections.begin(),
173                                                 e = CP.Obj.Sections.end();
174                                                 i != e; ++i) {
175     if (!i->SectionData.empty()) {
176       i->Header.SizeOfRawData = i->SectionData.size()/2;
177       i->Header.PointerToRawData = CurrentSectionDataOffset;
178       CurrentSectionDataOffset += i->Header.SizeOfRawData;
179       if (!i->Relocations.empty()) {
180         i->Header.PointerToRelocations = CurrentSectionDataOffset;
181         i->Header.NumberOfRelocations = i->Relocations.size();
182         CurrentSectionDataOffset += i->Header.NumberOfRelocations *
183           COFF::RelocationSize;
184       }
185       // TODO: Handle alignment.
186     } else {
187       i->Header.SizeOfRawData = 0;
188       i->Header.PointerToRawData = 0;
189     }
190   }
191
192   uint32_t SymbolTableStart = CurrentSectionDataOffset;
193
194   // Calculate number of symbols.
195   uint32_t NumberOfSymbols = 0;
196   for (std::vector<COFFYAML::Symbol>::iterator i = CP.Obj.Symbols.begin(),
197                                                e = CP.Obj.Symbols.end();
198                                                i != e; ++i) {
199     unsigned AuxBytes = i->AuxiliaryData.size() / 2;
200     if (AuxBytes % COFF::SymbolSize != 0) {
201       errs() << "AuxiliaryData size not a multiple of symbol size!\n";
202       return false;
203     }
204     i->Header.NumberOfAuxSymbols = AuxBytes / COFF::SymbolSize;
205     NumberOfSymbols += 1 + i->Header.NumberOfAuxSymbols;
206   }
207
208   // Store all the allocated start addresses in the header.
209   CP.Obj.Header.NumberOfSections = CP.Obj.Sections.size();
210   CP.Obj.Header.NumberOfSymbols = NumberOfSymbols;
211   CP.Obj.Header.PointerToSymbolTable = SymbolTableStart;
212
213   *reinterpret_cast<support::ulittle32_t *>(&CP.StringTable[0])
214     = CP.StringTable.size();
215
216   return true;
217 }
218
219 template <typename value_type>
220 struct binary_le_impl {
221   value_type Value;
222   binary_le_impl(value_type V) : Value(V) {}
223 };
224
225 template <typename value_type>
226 raw_ostream &operator <<( raw_ostream &OS
227                         , const binary_le_impl<value_type> &BLE) {
228   char Buffer[sizeof(BLE.Value)];
229   support::endian::write<value_type, support::little, support::unaligned>(
230     Buffer, BLE.Value);
231   OS.write(Buffer, sizeof(BLE.Value));
232   return OS;
233 }
234
235 template <typename value_type>
236 binary_le_impl<value_type> binary_le(value_type V) {
237   return binary_le_impl<value_type>(V);
238 }
239
240 static bool writeHexData(StringRef Data, raw_ostream &OS) {
241   unsigned Size = Data.size();
242   if (Size % 2)
243     return false;
244
245   for (unsigned I = 0; I != Size; I += 2) {
246     uint8_t Byte;
247     if (Data.substr(I,  2).getAsInteger(16, Byte))
248       return false;
249     OS.write(Byte);
250   }
251
252   return true;
253 }
254
255 bool writeCOFF(COFFParser &CP, raw_ostream &OS) {
256   OS << binary_le(CP.Obj.Header.Machine)
257      << binary_le(CP.Obj.Header.NumberOfSections)
258      << binary_le(CP.Obj.Header.TimeDateStamp)
259      << binary_le(CP.Obj.Header.PointerToSymbolTable)
260      << binary_le(CP.Obj.Header.NumberOfSymbols)
261      << binary_le(CP.Obj.Header.SizeOfOptionalHeader)
262      << binary_le(CP.Obj.Header.Characteristics);
263
264   // Output section table.
265   for (std::vector<COFFYAML::Section>::iterator i = CP.Obj.Sections.begin(),
266                                                 e = CP.Obj.Sections.end();
267                                                 i != e; ++i) {
268     OS.write(i->Header.Name, COFF::NameSize);
269     OS << binary_le(i->Header.VirtualSize)
270        << binary_le(i->Header.VirtualAddress)
271        << binary_le(i->Header.SizeOfRawData)
272        << binary_le(i->Header.PointerToRawData)
273        << binary_le(i->Header.PointerToRelocations)
274        << binary_le(i->Header.PointerToLineNumbers)
275        << binary_le(i->Header.NumberOfRelocations)
276        << binary_le(i->Header.NumberOfLineNumbers)
277        << binary_le(i->Header.Characteristics);
278   }
279
280   // Output section data.
281   for (std::vector<COFFYAML::Section>::iterator i = CP.Obj.Sections.begin(),
282                                                 e = CP.Obj.Sections.end();
283                                                 i != e; ++i) {
284     if (!i->SectionData.empty()) {
285       if (!writeHexData(i->SectionData, OS)) {
286         errs() << "SectionData must be a collection of pairs of hex bytes";
287         return false;
288       }
289     }
290     for (unsigned I2 = 0, E2 = i->Relocations.size(); I2 != E2; ++I2) {
291       const COFF::relocation &R = i->Relocations[I2];
292       OS << binary_le(R.VirtualAddress)
293          << binary_le(R.SymbolTableIndex)
294          << binary_le(R.Type);
295     }
296   }
297
298   // Output symbol table.
299
300   for (std::vector<COFFYAML::Symbol>::const_iterator i = CP.Obj.Symbols.begin(),
301                                                      e = CP.Obj.Symbols.end();
302                                                      i != e; ++i) {
303     OS.write(i->Header.Name, COFF::NameSize);
304     OS << binary_le(i->Header.Value)
305        << binary_le(i->Header.SectionNumber)
306        << binary_le(i->Header.Type)
307        << binary_le(i->Header.StorageClass)
308        << binary_le(i->Header.NumberOfAuxSymbols);
309     if (!i->AuxiliaryData.empty()) {
310       if (!writeHexData(i->AuxiliaryData, OS)) {
311         errs() << "AuxiliaryData must be a collection of pairs of hex bytes";
312         return false;
313       }
314     }
315   }
316
317   // Output string table.
318   OS.write(&CP.StringTable[0], CP.StringTable.size());
319   return true;
320 }
321
322 LLVM_YAML_IS_SEQUENCE_VECTOR(COFF::relocation)
323 LLVM_YAML_IS_SEQUENCE_VECTOR(COFFYAML::Section)
324 LLVM_YAML_IS_SEQUENCE_VECTOR(COFFYAML::Symbol)
325
326 namespace llvm {
327
328 namespace COFF {
329   Characteristics operator|(Characteristics a, Characteristics b) {
330     uint32_t Ret = static_cast<uint32_t>(a) | static_cast<uint32_t>(b);
331     return static_cast<Characteristics>(Ret);
332   }
333
334   SectionCharacteristics
335   operator|(SectionCharacteristics a, SectionCharacteristics b) {
336     uint32_t Ret = static_cast<uint32_t>(a) | static_cast<uint32_t>(b);
337     return static_cast<SectionCharacteristics>(Ret);
338   }
339 }
340
341 namespace yaml {
342
343 #define BCase(X) IO.bitSetCase(Value, #X, COFF::X);
344
345 template <>
346 struct ScalarBitSetTraits<COFF::SectionCharacteristics> {
347   static void bitset(IO &IO, COFF::SectionCharacteristics &Value) {
348     BCase(IMAGE_SCN_TYPE_NO_PAD);
349     BCase(IMAGE_SCN_CNT_CODE);
350     BCase(IMAGE_SCN_CNT_INITIALIZED_DATA);
351     BCase(IMAGE_SCN_CNT_UNINITIALIZED_DATA);
352     BCase(IMAGE_SCN_LNK_OTHER);
353     BCase(IMAGE_SCN_LNK_INFO);
354     BCase(IMAGE_SCN_LNK_REMOVE);
355     BCase(IMAGE_SCN_LNK_COMDAT);
356     BCase(IMAGE_SCN_GPREL);
357     BCase(IMAGE_SCN_MEM_PURGEABLE);
358     BCase(IMAGE_SCN_MEM_16BIT);
359     BCase(IMAGE_SCN_MEM_LOCKED);
360     BCase(IMAGE_SCN_MEM_PRELOAD);
361     BCase(IMAGE_SCN_ALIGN_1BYTES);
362     BCase(IMAGE_SCN_ALIGN_2BYTES);
363     BCase(IMAGE_SCN_ALIGN_4BYTES);
364     BCase(IMAGE_SCN_ALIGN_8BYTES);
365     BCase(IMAGE_SCN_ALIGN_16BYTES);
366     BCase(IMAGE_SCN_ALIGN_32BYTES);
367     BCase(IMAGE_SCN_ALIGN_64BYTES);
368     BCase(IMAGE_SCN_ALIGN_128BYTES);
369     BCase(IMAGE_SCN_ALIGN_256BYTES);
370     BCase(IMAGE_SCN_ALIGN_512BYTES);
371     BCase(IMAGE_SCN_ALIGN_1024BYTES);
372     BCase(IMAGE_SCN_ALIGN_2048BYTES);
373     BCase(IMAGE_SCN_ALIGN_4096BYTES);
374     BCase(IMAGE_SCN_ALIGN_8192BYTES);
375     BCase(IMAGE_SCN_LNK_NRELOC_OVFL);
376     BCase(IMAGE_SCN_MEM_DISCARDABLE);
377     BCase(IMAGE_SCN_MEM_NOT_CACHED);
378     BCase(IMAGE_SCN_MEM_NOT_PAGED);
379     BCase(IMAGE_SCN_MEM_SHARED);
380     BCase(IMAGE_SCN_MEM_EXECUTE);
381     BCase(IMAGE_SCN_MEM_READ);
382     BCase(IMAGE_SCN_MEM_WRITE);
383   }
384 };
385
386 template <>
387 struct ScalarBitSetTraits<COFF::Characteristics> {
388   static void bitset(IO &IO, COFF::Characteristics &Value) {
389     BCase(IMAGE_FILE_RELOCS_STRIPPED);
390     BCase(IMAGE_FILE_EXECUTABLE_IMAGE);
391     BCase(IMAGE_FILE_LINE_NUMS_STRIPPED);
392     BCase(IMAGE_FILE_LOCAL_SYMS_STRIPPED);
393     BCase(IMAGE_FILE_AGGRESSIVE_WS_TRIM);
394     BCase(IMAGE_FILE_LARGE_ADDRESS_AWARE);
395     BCase(IMAGE_FILE_BYTES_REVERSED_LO);
396     BCase(IMAGE_FILE_32BIT_MACHINE);
397     BCase(IMAGE_FILE_DEBUG_STRIPPED);
398     BCase(IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP);
399     BCase(IMAGE_FILE_NET_RUN_FROM_SWAP);
400     BCase(IMAGE_FILE_SYSTEM);
401     BCase(IMAGE_FILE_DLL);
402     BCase(IMAGE_FILE_UP_SYSTEM_ONLY);
403     BCase(IMAGE_FILE_BYTES_REVERSED_HI);
404   }
405 };
406 #undef BCase
407
408 #define ECase(X) IO.enumCase(Value, #X, COFF::X);
409
410 template <>
411 struct ScalarEnumerationTraits<COFF::SymbolComplexType> {
412   static void enumeration(IO &IO, COFF::SymbolComplexType &Value) {
413     ECase(IMAGE_SYM_DTYPE_NULL);
414     ECase(IMAGE_SYM_DTYPE_POINTER);
415     ECase(IMAGE_SYM_DTYPE_FUNCTION);
416     ECase(IMAGE_SYM_DTYPE_ARRAY);
417   }
418 };
419
420 template <>
421 struct ScalarEnumerationTraits<COFF::SymbolStorageClass> {
422   static void enumeration(IO &IO, COFF::SymbolStorageClass &Value) {
423     ECase(IMAGE_SYM_CLASS_END_OF_FUNCTION);
424     ECase(IMAGE_SYM_CLASS_NULL);
425     ECase(IMAGE_SYM_CLASS_AUTOMATIC);
426     ECase(IMAGE_SYM_CLASS_EXTERNAL);
427     ECase(IMAGE_SYM_CLASS_STATIC);
428     ECase(IMAGE_SYM_CLASS_REGISTER);
429     ECase(IMAGE_SYM_CLASS_EXTERNAL_DEF);
430     ECase(IMAGE_SYM_CLASS_LABEL);
431     ECase(IMAGE_SYM_CLASS_UNDEFINED_LABEL);
432     ECase(IMAGE_SYM_CLASS_MEMBER_OF_STRUCT);
433     ECase(IMAGE_SYM_CLASS_ARGUMENT);
434     ECase(IMAGE_SYM_CLASS_STRUCT_TAG);
435     ECase(IMAGE_SYM_CLASS_MEMBER_OF_UNION);
436     ECase(IMAGE_SYM_CLASS_UNION_TAG);
437     ECase(IMAGE_SYM_CLASS_TYPE_DEFINITION);
438     ECase(IMAGE_SYM_CLASS_UNDEFINED_STATIC);
439     ECase(IMAGE_SYM_CLASS_ENUM_TAG);
440     ECase(IMAGE_SYM_CLASS_MEMBER_OF_ENUM);
441     ECase(IMAGE_SYM_CLASS_REGISTER_PARAM);
442     ECase(IMAGE_SYM_CLASS_BIT_FIELD);
443     ECase(IMAGE_SYM_CLASS_BLOCK);
444     ECase(IMAGE_SYM_CLASS_FUNCTION);
445     ECase(IMAGE_SYM_CLASS_END_OF_STRUCT);
446     ECase(IMAGE_SYM_CLASS_FILE);
447     ECase(IMAGE_SYM_CLASS_SECTION);
448     ECase(IMAGE_SYM_CLASS_WEAK_EXTERNAL);
449     ECase(IMAGE_SYM_CLASS_CLR_TOKEN);
450   }
451 };
452
453 template <>
454 struct ScalarEnumerationTraits<COFF::SymbolBaseType> {
455   static void enumeration(IO &IO, COFF::SymbolBaseType &Value) {
456     ECase(IMAGE_SYM_TYPE_NULL);
457     ECase(IMAGE_SYM_TYPE_VOID);
458     ECase(IMAGE_SYM_TYPE_CHAR);
459     ECase(IMAGE_SYM_TYPE_SHORT);
460     ECase(IMAGE_SYM_TYPE_INT);
461     ECase(IMAGE_SYM_TYPE_LONG);
462     ECase(IMAGE_SYM_TYPE_FLOAT);
463     ECase(IMAGE_SYM_TYPE_DOUBLE);
464     ECase(IMAGE_SYM_TYPE_STRUCT);
465     ECase(IMAGE_SYM_TYPE_UNION);
466     ECase(IMAGE_SYM_TYPE_ENUM);
467     ECase(IMAGE_SYM_TYPE_MOE);
468     ECase(IMAGE_SYM_TYPE_BYTE);
469     ECase(IMAGE_SYM_TYPE_WORD);
470     ECase(IMAGE_SYM_TYPE_UINT);
471     ECase(IMAGE_SYM_TYPE_DWORD);
472   }
473 };
474
475 template <>
476 struct ScalarEnumerationTraits<COFF::MachineTypes> {
477   static void enumeration(IO &IO, COFF::MachineTypes &Value) {
478     ECase(IMAGE_FILE_MACHINE_UNKNOWN);
479     ECase(IMAGE_FILE_MACHINE_AM33);
480     ECase(IMAGE_FILE_MACHINE_AMD64);
481     ECase(IMAGE_FILE_MACHINE_ARM);
482     ECase(IMAGE_FILE_MACHINE_ARMV7);
483     ECase(IMAGE_FILE_MACHINE_EBC);
484     ECase(IMAGE_FILE_MACHINE_I386);
485     ECase(IMAGE_FILE_MACHINE_IA64);
486     ECase(IMAGE_FILE_MACHINE_M32R);
487     ECase(IMAGE_FILE_MACHINE_MIPS16);
488     ECase(IMAGE_FILE_MACHINE_MIPSFPU);
489     ECase(IMAGE_FILE_MACHINE_MIPSFPU16);
490     ECase(IMAGE_FILE_MACHINE_POWERPC);
491     ECase(IMAGE_FILE_MACHINE_POWERPCFP);
492     ECase(IMAGE_FILE_MACHINE_R4000);
493     ECase(IMAGE_FILE_MACHINE_SH3);
494     ECase(IMAGE_FILE_MACHINE_SH3DSP);
495     ECase(IMAGE_FILE_MACHINE_SH4);
496     ECase(IMAGE_FILE_MACHINE_SH5);
497     ECase(IMAGE_FILE_MACHINE_THUMB);
498     ECase(IMAGE_FILE_MACHINE_WCEMIPSV2);
499   }
500 };
501
502 template <>
503 struct ScalarEnumerationTraits<COFF::RelocationTypeX86> {
504   static void enumeration(IO &IO, COFF::RelocationTypeX86 &Value) {
505     ECase(IMAGE_REL_I386_ABSOLUTE);
506     ECase(IMAGE_REL_I386_DIR16);
507     ECase(IMAGE_REL_I386_REL16);
508     ECase(IMAGE_REL_I386_DIR32);
509     ECase(IMAGE_REL_I386_DIR32NB);
510     ECase(IMAGE_REL_I386_SEG12);
511     ECase(IMAGE_REL_I386_SECTION);
512     ECase(IMAGE_REL_I386_SECREL);
513     ECase(IMAGE_REL_I386_TOKEN);
514     ECase(IMAGE_REL_I386_SECREL7);
515     ECase(IMAGE_REL_I386_REL32);
516     ECase(IMAGE_REL_AMD64_ABSOLUTE);
517     ECase(IMAGE_REL_AMD64_ADDR64);
518     ECase(IMAGE_REL_AMD64_ADDR32);
519     ECase(IMAGE_REL_AMD64_ADDR32NB);
520     ECase(IMAGE_REL_AMD64_REL32);
521     ECase(IMAGE_REL_AMD64_REL32_1);
522     ECase(IMAGE_REL_AMD64_REL32_2);
523     ECase(IMAGE_REL_AMD64_REL32_3);
524     ECase(IMAGE_REL_AMD64_REL32_4);
525     ECase(IMAGE_REL_AMD64_REL32_5);
526     ECase(IMAGE_REL_AMD64_SECTION);
527     ECase(IMAGE_REL_AMD64_SECREL);
528     ECase(IMAGE_REL_AMD64_SECREL7);
529     ECase(IMAGE_REL_AMD64_TOKEN);
530     ECase(IMAGE_REL_AMD64_SREL32);
531     ECase(IMAGE_REL_AMD64_PAIR);
532     ECase(IMAGE_REL_AMD64_SSPAN32);
533   }
534 };
535
536 #undef ECase
537
538 template <>
539 struct MappingTraits<COFFYAML::Symbol> {
540   struct NStorageClass {
541     NStorageClass(IO&) : StorageClass(COFF::SymbolStorageClass(0)) {
542     }
543     NStorageClass(IO&, uint8_t S) : StorageClass(COFF::SymbolStorageClass(S)) {
544     }
545     uint8_t denormalize(IO &) {
546       return StorageClass;
547     }
548
549     COFF::SymbolStorageClass StorageClass;
550   };
551
552   static void mapping(IO &IO, COFFYAML::Symbol &S) {
553     MappingNormalization<NStorageClass, uint8_t> NS(IO, S.Header.StorageClass);
554
555     IO.mapRequired("SimpleType", S.SimpleType);
556     IO.mapOptional("NumberOfAuxSymbols", S.Header.NumberOfAuxSymbols);
557     IO.mapRequired("Name", S.Name);
558     IO.mapRequired("StorageClass", NS->StorageClass);
559     IO.mapOptional("AuxiliaryData", S.AuxiliaryData);
560     IO.mapRequired("ComplexType", S.ComplexType);
561     IO.mapRequired("Value", S.Header.Value);
562     IO.mapRequired("SectionNumber", S.Header.SectionNumber);
563   }
564 };
565
566 template <>
567 struct MappingTraits<COFF::header> {
568   struct NMachine {
569     NMachine(IO&) : Machine(COFF::MachineTypes(0)) {
570     }
571     NMachine(IO&, uint16_t M) : Machine(COFF::MachineTypes(M)) {
572     }
573     uint16_t denormalize(IO &) {
574       return Machine;
575     }
576     COFF::MachineTypes Machine;
577   };
578
579   struct NCharacteristics {
580     NCharacteristics(IO&) : Characteristics(COFF::Characteristics(0)) {
581     }
582     NCharacteristics(IO&, uint16_t C) :
583       Characteristics(COFF::Characteristics(C)) {
584     }
585     uint16_t denormalize(IO &) {
586       return Characteristics;
587     }
588
589     COFF::Characteristics Characteristics;
590   };
591
592   static void mapping(IO &IO, COFF::header &H) {
593     MappingNormalization<NMachine, uint16_t> NM(IO, H.Machine);
594     MappingNormalization<NCharacteristics, uint16_t> NC(IO, H.Characteristics);
595
596     IO.mapRequired("Machine", NM->Machine);
597     IO.mapOptional("Characteristics", NC->Characteristics);
598   }
599 };
600
601 template <>
602 struct MappingTraits<COFF::relocation> {
603   struct NType {
604     NType(IO &) : Type(COFF::RelocationTypeX86(0)) {
605     }
606     NType(IO &, uint16_t T) : Type(COFF::RelocationTypeX86(T)) {
607     }
608     uint16_t denormalize(IO &) {
609       return Type;
610     }
611     COFF::RelocationTypeX86 Type;
612   };
613
614   static void mapping(IO &IO, COFF::relocation &Rel) {
615     MappingNormalization<NType, uint16_t> NT(IO, Rel.Type);
616
617     IO.mapRequired("Type", NT->Type);
618     IO.mapRequired("VirtualAddress", Rel.VirtualAddress);
619     IO.mapRequired("SymbolTableIndex", Rel.SymbolTableIndex);
620   }
621 };
622
623 template <>
624 struct MappingTraits<COFFYAML::Section> {
625   struct NCharacteristics {
626     NCharacteristics(IO &) : Characteristics(COFF::SectionCharacteristics(0)) {
627     }
628     NCharacteristics(IO &, uint32_t C) :
629       Characteristics(COFF::SectionCharacteristics(C)) {
630     }
631     uint32_t denormalize(IO &) {
632       return Characteristics;
633     }
634     COFF::SectionCharacteristics Characteristics;
635   };
636
637   static void mapping(IO &IO, COFFYAML::Section &Sec) {
638     MappingNormalization<NCharacteristics, uint32_t> NC(IO,
639                                                     Sec.Header.Characteristics);
640     IO.mapOptional("Relocations", Sec.Relocations);
641     IO.mapRequired("SectionData", Sec.SectionData);
642     IO.mapRequired("Characteristics", NC->Characteristics);
643     IO.mapRequired("Name", Sec.Name);
644   }
645 };
646
647 template <>
648 struct MappingTraits<COFFYAML::Object> {
649   static void mapping(IO &IO, COFFYAML::Object &Obj) {
650     IO.mapRequired("sections", Obj.Sections);
651     IO.mapRequired("header", Obj.Header);
652     IO.mapRequired("symbols", Obj.Symbols);
653   }
654 };
655 } // end namespace yaml
656 } // end namespace llvm
657
658 int main(int argc, char **argv) {
659   cl::ParseCommandLineOptions(argc, argv);
660   sys::PrintStackTraceOnErrorSignal();
661   PrettyStackTraceProgram X(argc, argv);
662   llvm_shutdown_obj Y;  // Call llvm_shutdown() on exit.
663
664   OwningPtr<MemoryBuffer> Buf;
665   if (MemoryBuffer::getFileOrSTDIN(Input, Buf))
666     return 1;
667
668   yaml::Input YIn(Buf->getBuffer());
669   COFFYAML::Object Doc;
670   YIn >> Doc;
671   if (YIn.error()) {
672     errs() << "yaml2obj: Failed to parse YAML file!\n";
673     return 1;
674   }
675
676   COFFParser CP(Doc);
677   if (!CP.parse()) {
678     errs() << "yaml2obj: Failed to parse YAML file!\n";
679     return 1;
680   }
681
682   if (!layoutCOFF(CP)) {
683     errs() << "yaml2obj: Failed to layout COFF file!\n";
684     return 1;
685   }
686   if (!writeCOFF(CP, outs())) {
687     errs() << "yaml2obj: Failed to write COFF file!\n";
688     return 1;
689   }
690 }