Merge tag 'kvm-3.7-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[firefly-linux-kernel-4.4.55.git] / tools / perf / builtin-timechart.c
1 /*
2  * builtin-timechart.c - make an svg timechart of system activity
3  *
4  * (C) Copyright 2009 Intel Corporation
5  *
6  * Authors:
7  *     Arjan van de Ven <arjan@linux.intel.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; version 2
12  * of the License.
13  */
14
15 #include "builtin.h"
16
17 #include "util/util.h"
18
19 #include "util/color.h"
20 #include <linux/list.h>
21 #include "util/cache.h"
22 #include "util/evsel.h"
23 #include <linux/rbtree.h>
24 #include "util/symbol.h"
25 #include "util/callchain.h"
26 #include "util/strlist.h"
27
28 #include "perf.h"
29 #include "util/header.h"
30 #include "util/parse-options.h"
31 #include "util/parse-events.h"
32 #include "util/event.h"
33 #include "util/session.h"
34 #include "util/svghelper.h"
35 #include "util/tool.h"
36
37 #define SUPPORT_OLD_POWER_EVENTS 1
38 #define PWR_EVENT_EXIT -1
39
40
41 static const char       *input_name;
42 static const char       *output_name = "output.svg";
43
44 static unsigned int     numcpus;
45 static u64              min_freq;       /* Lowest CPU frequency seen */
46 static u64              max_freq;       /* Highest CPU frequency seen */
47 static u64              turbo_frequency;
48
49 static u64              first_time, last_time;
50
51 static bool             power_only;
52
53
54 struct per_pid;
55 struct per_pidcomm;
56
57 struct cpu_sample;
58 struct power_event;
59 struct wake_event;
60
61 struct sample_wrapper;
62
63 /*
64  * Datastructure layout:
65  * We keep an list of "pid"s, matching the kernels notion of a task struct.
66  * Each "pid" entry, has a list of "comm"s.
67  *      this is because we want to track different programs different, while
68  *      exec will reuse the original pid (by design).
69  * Each comm has a list of samples that will be used to draw
70  * final graph.
71  */
72
73 struct per_pid {
74         struct per_pid *next;
75
76         int             pid;
77         int             ppid;
78
79         u64             start_time;
80         u64             end_time;
81         u64             total_time;
82         int             display;
83
84         struct per_pidcomm *all;
85         struct per_pidcomm *current;
86 };
87
88
89 struct per_pidcomm {
90         struct per_pidcomm *next;
91
92         u64             start_time;
93         u64             end_time;
94         u64             total_time;
95
96         int             Y;
97         int             display;
98
99         long            state;
100         u64             state_since;
101
102         char            *comm;
103
104         struct cpu_sample *samples;
105 };
106
107 struct sample_wrapper {
108         struct sample_wrapper *next;
109
110         u64             timestamp;
111         unsigned char   data[0];
112 };
113
114 #define TYPE_NONE       0
115 #define TYPE_RUNNING    1
116 #define TYPE_WAITING    2
117 #define TYPE_BLOCKED    3
118
119 struct cpu_sample {
120         struct cpu_sample *next;
121
122         u64 start_time;
123         u64 end_time;
124         int type;
125         int cpu;
126 };
127
128 static struct per_pid *all_data;
129
130 #define CSTATE 1
131 #define PSTATE 2
132
133 struct power_event {
134         struct power_event *next;
135         int type;
136         int state;
137         u64 start_time;
138         u64 end_time;
139         int cpu;
140 };
141
142 struct wake_event {
143         struct wake_event *next;
144         int waker;
145         int wakee;
146         u64 time;
147 };
148
149 static struct power_event    *power_events;
150 static struct wake_event     *wake_events;
151
152 struct process_filter;
153 struct process_filter {
154         char                    *name;
155         int                     pid;
156         struct process_filter   *next;
157 };
158
159 static struct process_filter *process_filter;
160
161
162 static struct per_pid *find_create_pid(int pid)
163 {
164         struct per_pid *cursor = all_data;
165
166         while (cursor) {
167                 if (cursor->pid == pid)
168                         return cursor;
169                 cursor = cursor->next;
170         }
171         cursor = zalloc(sizeof(*cursor));
172         assert(cursor != NULL);
173         cursor->pid = pid;
174         cursor->next = all_data;
175         all_data = cursor;
176         return cursor;
177 }
178
179 static void pid_set_comm(int pid, char *comm)
180 {
181         struct per_pid *p;
182         struct per_pidcomm *c;
183         p = find_create_pid(pid);
184         c = p->all;
185         while (c) {
186                 if (c->comm && strcmp(c->comm, comm) == 0) {
187                         p->current = c;
188                         return;
189                 }
190                 if (!c->comm) {
191                         c->comm = strdup(comm);
192                         p->current = c;
193                         return;
194                 }
195                 c = c->next;
196         }
197         c = zalloc(sizeof(*c));
198         assert(c != NULL);
199         c->comm = strdup(comm);
200         p->current = c;
201         c->next = p->all;
202         p->all = c;
203 }
204
205 static void pid_fork(int pid, int ppid, u64 timestamp)
206 {
207         struct per_pid *p, *pp;
208         p = find_create_pid(pid);
209         pp = find_create_pid(ppid);
210         p->ppid = ppid;
211         if (pp->current && pp->current->comm && !p->current)
212                 pid_set_comm(pid, pp->current->comm);
213
214         p->start_time = timestamp;
215         if (p->current) {
216                 p->current->start_time = timestamp;
217                 p->current->state_since = timestamp;
218         }
219 }
220
221 static void pid_exit(int pid, u64 timestamp)
222 {
223         struct per_pid *p;
224         p = find_create_pid(pid);
225         p->end_time = timestamp;
226         if (p->current)
227                 p->current->end_time = timestamp;
228 }
229
230 static void
231 pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
232 {
233         struct per_pid *p;
234         struct per_pidcomm *c;
235         struct cpu_sample *sample;
236
237         p = find_create_pid(pid);
238         c = p->current;
239         if (!c) {
240                 c = zalloc(sizeof(*c));
241                 assert(c != NULL);
242                 p->current = c;
243                 c->next = p->all;
244                 p->all = c;
245         }
246
247         sample = zalloc(sizeof(*sample));
248         assert(sample != NULL);
249         sample->start_time = start;
250         sample->end_time = end;
251         sample->type = type;
252         sample->next = c->samples;
253         sample->cpu = cpu;
254         c->samples = sample;
255
256         if (sample->type == TYPE_RUNNING && end > start && start > 0) {
257                 c->total_time += (end-start);
258                 p->total_time += (end-start);
259         }
260
261         if (c->start_time == 0 || c->start_time > start)
262                 c->start_time = start;
263         if (p->start_time == 0 || p->start_time > start)
264                 p->start_time = start;
265 }
266
267 #define MAX_CPUS 4096
268
269 static u64 cpus_cstate_start_times[MAX_CPUS];
270 static int cpus_cstate_state[MAX_CPUS];
271 static u64 cpus_pstate_start_times[MAX_CPUS];
272 static u64 cpus_pstate_state[MAX_CPUS];
273
274 static int process_comm_event(struct perf_tool *tool __maybe_unused,
275                               union perf_event *event,
276                               struct perf_sample *sample __maybe_unused,
277                               struct machine *machine __maybe_unused)
278 {
279         pid_set_comm(event->comm.tid, event->comm.comm);
280         return 0;
281 }
282
283 static int process_fork_event(struct perf_tool *tool __maybe_unused,
284                               union perf_event *event,
285                               struct perf_sample *sample __maybe_unused,
286                               struct machine *machine __maybe_unused)
287 {
288         pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
289         return 0;
290 }
291
292 static int process_exit_event(struct perf_tool *tool __maybe_unused,
293                               union perf_event *event,
294                               struct perf_sample *sample __maybe_unused,
295                               struct machine *machine __maybe_unused)
296 {
297         pid_exit(event->fork.pid, event->fork.time);
298         return 0;
299 }
300
301 struct trace_entry {
302         unsigned short          type;
303         unsigned char           flags;
304         unsigned char           preempt_count;
305         int                     pid;
306         int                     lock_depth;
307 };
308
309 #ifdef SUPPORT_OLD_POWER_EVENTS
310 static int use_old_power_events;
311 struct power_entry_old {
312         struct trace_entry te;
313         u64     type;
314         u64     value;
315         u64     cpu_id;
316 };
317 #endif
318
319 struct power_processor_entry {
320         struct trace_entry te;
321         u32     state;
322         u32     cpu_id;
323 };
324
325 #define TASK_COMM_LEN 16
326 struct wakeup_entry {
327         struct trace_entry te;
328         char comm[TASK_COMM_LEN];
329         int   pid;
330         int   prio;
331         int   success;
332 };
333
334 /*
335  * trace_flag_type is an enumeration that holds different
336  * states when a trace occurs. These are:
337  *  IRQS_OFF            - interrupts were disabled
338  *  IRQS_NOSUPPORT      - arch does not support irqs_disabled_flags
339  *  NEED_RESCED         - reschedule is requested
340  *  HARDIRQ             - inside an interrupt handler
341  *  SOFTIRQ             - inside a softirq handler
342  */
343 enum trace_flag_type {
344         TRACE_FLAG_IRQS_OFF             = 0x01,
345         TRACE_FLAG_IRQS_NOSUPPORT       = 0x02,
346         TRACE_FLAG_NEED_RESCHED         = 0x04,
347         TRACE_FLAG_HARDIRQ              = 0x08,
348         TRACE_FLAG_SOFTIRQ              = 0x10,
349 };
350
351
352
353 struct sched_switch {
354         struct trace_entry te;
355         char prev_comm[TASK_COMM_LEN];
356         int  prev_pid;
357         int  prev_prio;
358         long prev_state; /* Arjan weeps. */
359         char next_comm[TASK_COMM_LEN];
360         int  next_pid;
361         int  next_prio;
362 };
363
364 static void c_state_start(int cpu, u64 timestamp, int state)
365 {
366         cpus_cstate_start_times[cpu] = timestamp;
367         cpus_cstate_state[cpu] = state;
368 }
369
370 static void c_state_end(int cpu, u64 timestamp)
371 {
372         struct power_event *pwr = zalloc(sizeof(*pwr));
373
374         if (!pwr)
375                 return;
376
377         pwr->state = cpus_cstate_state[cpu];
378         pwr->start_time = cpus_cstate_start_times[cpu];
379         pwr->end_time = timestamp;
380         pwr->cpu = cpu;
381         pwr->type = CSTATE;
382         pwr->next = power_events;
383
384         power_events = pwr;
385 }
386
387 static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
388 {
389         struct power_event *pwr;
390
391         if (new_freq > 8000000) /* detect invalid data */
392                 return;
393
394         pwr = zalloc(sizeof(*pwr));
395         if (!pwr)
396                 return;
397
398         pwr->state = cpus_pstate_state[cpu];
399         pwr->start_time = cpus_pstate_start_times[cpu];
400         pwr->end_time = timestamp;
401         pwr->cpu = cpu;
402         pwr->type = PSTATE;
403         pwr->next = power_events;
404
405         if (!pwr->start_time)
406                 pwr->start_time = first_time;
407
408         power_events = pwr;
409
410         cpus_pstate_state[cpu] = new_freq;
411         cpus_pstate_start_times[cpu] = timestamp;
412
413         if ((u64)new_freq > max_freq)
414                 max_freq = new_freq;
415
416         if (new_freq < min_freq || min_freq == 0)
417                 min_freq = new_freq;
418
419         if (new_freq == max_freq - 1000)
420                         turbo_frequency = max_freq;
421 }
422
423 static void
424 sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
425 {
426         struct per_pid *p;
427         struct wakeup_entry *wake = (void *)te;
428         struct wake_event *we = zalloc(sizeof(*we));
429
430         if (!we)
431                 return;
432
433         we->time = timestamp;
434         we->waker = pid;
435
436         if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
437                 we->waker = -1;
438
439         we->wakee = wake->pid;
440         we->next = wake_events;
441         wake_events = we;
442         p = find_create_pid(we->wakee);
443
444         if (p && p->current && p->current->state == TYPE_NONE) {
445                 p->current->state_since = timestamp;
446                 p->current->state = TYPE_WAITING;
447         }
448         if (p && p->current && p->current->state == TYPE_BLOCKED) {
449                 pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
450                 p->current->state_since = timestamp;
451                 p->current->state = TYPE_WAITING;
452         }
453 }
454
455 static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
456 {
457         struct per_pid *p = NULL, *prev_p;
458         struct sched_switch *sw = (void *)te;
459
460
461         prev_p = find_create_pid(sw->prev_pid);
462
463         p = find_create_pid(sw->next_pid);
464
465         if (prev_p->current && prev_p->current->state != TYPE_NONE)
466                 pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
467         if (p && p->current) {
468                 if (p->current->state != TYPE_NONE)
469                         pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
470
471                 p->current->state_since = timestamp;
472                 p->current->state = TYPE_RUNNING;
473         }
474
475         if (prev_p->current) {
476                 prev_p->current->state = TYPE_NONE;
477                 prev_p->current->state_since = timestamp;
478                 if (sw->prev_state & 2)
479                         prev_p->current->state = TYPE_BLOCKED;
480                 if (sw->prev_state == 0)
481                         prev_p->current->state = TYPE_WAITING;
482         }
483 }
484
485
486 static int process_sample_event(struct perf_tool *tool __maybe_unused,
487                                 union perf_event *event __maybe_unused,
488                                 struct perf_sample *sample,
489                                 struct perf_evsel *evsel,
490                                 struct machine *machine __maybe_unused)
491 {
492         struct trace_entry *te;
493
494         if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
495                 if (!first_time || first_time > sample->time)
496                         first_time = sample->time;
497                 if (last_time < sample->time)
498                         last_time = sample->time;
499         }
500
501         te = (void *)sample->raw_data;
502         if ((evsel->attr.sample_type & PERF_SAMPLE_RAW) && sample->raw_size > 0) {
503                 char *event_str;
504 #ifdef SUPPORT_OLD_POWER_EVENTS
505                 struct power_entry_old *peo;
506                 peo = (void *)te;
507 #endif
508                 /*
509                  * FIXME: use evsel, its already mapped from id to perf_evsel,
510                  * remove perf_header__find_event infrastructure bits.
511                  * Mapping all these "power:cpu_idle" strings to the tracepoint
512                  * ID and then just comparing against evsel->attr.config.
513                  *
514                  * e.g.:
515                  *
516                  * if (evsel->attr.config == power_cpu_idle_id)
517                  */
518                 event_str = perf_header__find_event(te->type);
519
520                 if (!event_str)
521                         return 0;
522
523                 if (sample->cpu > numcpus)
524                         numcpus = sample->cpu;
525
526                 if (strcmp(event_str, "power:cpu_idle") == 0) {
527                         struct power_processor_entry *ppe = (void *)te;
528                         if (ppe->state == (u32)PWR_EVENT_EXIT)
529                                 c_state_end(ppe->cpu_id, sample->time);
530                         else
531                                 c_state_start(ppe->cpu_id, sample->time,
532                                               ppe->state);
533                 }
534                 else if (strcmp(event_str, "power:cpu_frequency") == 0) {
535                         struct power_processor_entry *ppe = (void *)te;
536                         p_state_change(ppe->cpu_id, sample->time, ppe->state);
537                 }
538
539                 else if (strcmp(event_str, "sched:sched_wakeup") == 0)
540                         sched_wakeup(sample->cpu, sample->time, sample->pid, te);
541
542                 else if (strcmp(event_str, "sched:sched_switch") == 0)
543                         sched_switch(sample->cpu, sample->time, te);
544
545 #ifdef SUPPORT_OLD_POWER_EVENTS
546                 if (use_old_power_events) {
547                         if (strcmp(event_str, "power:power_start") == 0)
548                                 c_state_start(peo->cpu_id, sample->time,
549                                               peo->value);
550
551                         else if (strcmp(event_str, "power:power_end") == 0)
552                                 c_state_end(sample->cpu, sample->time);
553
554                         else if (strcmp(event_str,
555                                         "power:power_frequency") == 0)
556                                 p_state_change(peo->cpu_id, sample->time,
557                                                peo->value);
558                 }
559 #endif
560         }
561         return 0;
562 }
563
564 /*
565  * After the last sample we need to wrap up the current C/P state
566  * and close out each CPU for these.
567  */
568 static void end_sample_processing(void)
569 {
570         u64 cpu;
571         struct power_event *pwr;
572
573         for (cpu = 0; cpu <= numcpus; cpu++) {
574                 /* C state */
575 #if 0
576                 pwr = zalloc(sizeof(*pwr));
577                 if (!pwr)
578                         return;
579
580                 pwr->state = cpus_cstate_state[cpu];
581                 pwr->start_time = cpus_cstate_start_times[cpu];
582                 pwr->end_time = last_time;
583                 pwr->cpu = cpu;
584                 pwr->type = CSTATE;
585                 pwr->next = power_events;
586
587                 power_events = pwr;
588 #endif
589                 /* P state */
590
591                 pwr = zalloc(sizeof(*pwr));
592                 if (!pwr)
593                         return;
594
595                 pwr->state = cpus_pstate_state[cpu];
596                 pwr->start_time = cpus_pstate_start_times[cpu];
597                 pwr->end_time = last_time;
598                 pwr->cpu = cpu;
599                 pwr->type = PSTATE;
600                 pwr->next = power_events;
601
602                 if (!pwr->start_time)
603                         pwr->start_time = first_time;
604                 if (!pwr->state)
605                         pwr->state = min_freq;
606                 power_events = pwr;
607         }
608 }
609
610 /*
611  * Sort the pid datastructure
612  */
613 static void sort_pids(void)
614 {
615         struct per_pid *new_list, *p, *cursor, *prev;
616         /* sort by ppid first, then by pid, lowest to highest */
617
618         new_list = NULL;
619
620         while (all_data) {
621                 p = all_data;
622                 all_data = p->next;
623                 p->next = NULL;
624
625                 if (new_list == NULL) {
626                         new_list = p;
627                         p->next = NULL;
628                         continue;
629                 }
630                 prev = NULL;
631                 cursor = new_list;
632                 while (cursor) {
633                         if (cursor->ppid > p->ppid ||
634                                 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
635                                 /* must insert before */
636                                 if (prev) {
637                                         p->next = prev->next;
638                                         prev->next = p;
639                                         cursor = NULL;
640                                         continue;
641                                 } else {
642                                         p->next = new_list;
643                                         new_list = p;
644                                         cursor = NULL;
645                                         continue;
646                                 }
647                         }
648
649                         prev = cursor;
650                         cursor = cursor->next;
651                         if (!cursor)
652                                 prev->next = p;
653                 }
654         }
655         all_data = new_list;
656 }
657
658
659 static void draw_c_p_states(void)
660 {
661         struct power_event *pwr;
662         pwr = power_events;
663
664         /*
665          * two pass drawing so that the P state bars are on top of the C state blocks
666          */
667         while (pwr) {
668                 if (pwr->type == CSTATE)
669                         svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
670                 pwr = pwr->next;
671         }
672
673         pwr = power_events;
674         while (pwr) {
675                 if (pwr->type == PSTATE) {
676                         if (!pwr->state)
677                                 pwr->state = min_freq;
678                         svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
679                 }
680                 pwr = pwr->next;
681         }
682 }
683
684 static void draw_wakeups(void)
685 {
686         struct wake_event *we;
687         struct per_pid *p;
688         struct per_pidcomm *c;
689
690         we = wake_events;
691         while (we) {
692                 int from = 0, to = 0;
693                 char *task_from = NULL, *task_to = NULL;
694
695                 /* locate the column of the waker and wakee */
696                 p = all_data;
697                 while (p) {
698                         if (p->pid == we->waker || p->pid == we->wakee) {
699                                 c = p->all;
700                                 while (c) {
701                                         if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
702                                                 if (p->pid == we->waker && !from) {
703                                                         from = c->Y;
704                                                         task_from = strdup(c->comm);
705                                                 }
706                                                 if (p->pid == we->wakee && !to) {
707                                                         to = c->Y;
708                                                         task_to = strdup(c->comm);
709                                                 }
710                                         }
711                                         c = c->next;
712                                 }
713                                 c = p->all;
714                                 while (c) {
715                                         if (p->pid == we->waker && !from) {
716                                                 from = c->Y;
717                                                 task_from = strdup(c->comm);
718                                         }
719                                         if (p->pid == we->wakee && !to) {
720                                                 to = c->Y;
721                                                 task_to = strdup(c->comm);
722                                         }
723                                         c = c->next;
724                                 }
725                         }
726                         p = p->next;
727                 }
728
729                 if (!task_from) {
730                         task_from = malloc(40);
731                         sprintf(task_from, "[%i]", we->waker);
732                 }
733                 if (!task_to) {
734                         task_to = malloc(40);
735                         sprintf(task_to, "[%i]", we->wakee);
736                 }
737
738                 if (we->waker == -1)
739                         svg_interrupt(we->time, to);
740                 else if (from && to && abs(from - to) == 1)
741                         svg_wakeline(we->time, from, to);
742                 else
743                         svg_partial_wakeline(we->time, from, task_from, to, task_to);
744                 we = we->next;
745
746                 free(task_from);
747                 free(task_to);
748         }
749 }
750
751 static void draw_cpu_usage(void)
752 {
753         struct per_pid *p;
754         struct per_pidcomm *c;
755         struct cpu_sample *sample;
756         p = all_data;
757         while (p) {
758                 c = p->all;
759                 while (c) {
760                         sample = c->samples;
761                         while (sample) {
762                                 if (sample->type == TYPE_RUNNING)
763                                         svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
764
765                                 sample = sample->next;
766                         }
767                         c = c->next;
768                 }
769                 p = p->next;
770         }
771 }
772
773 static void draw_process_bars(void)
774 {
775         struct per_pid *p;
776         struct per_pidcomm *c;
777         struct cpu_sample *sample;
778         int Y = 0;
779
780         Y = 2 * numcpus + 2;
781
782         p = all_data;
783         while (p) {
784                 c = p->all;
785                 while (c) {
786                         if (!c->display) {
787                                 c->Y = 0;
788                                 c = c->next;
789                                 continue;
790                         }
791
792                         svg_box(Y, c->start_time, c->end_time, "process");
793                         sample = c->samples;
794                         while (sample) {
795                                 if (sample->type == TYPE_RUNNING)
796                                         svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
797                                 if (sample->type == TYPE_BLOCKED)
798                                         svg_box(Y, sample->start_time, sample->end_time, "blocked");
799                                 if (sample->type == TYPE_WAITING)
800                                         svg_waiting(Y, sample->start_time, sample->end_time);
801                                 sample = sample->next;
802                         }
803
804                         if (c->comm) {
805                                 char comm[256];
806                                 if (c->total_time > 5000000000) /* 5 seconds */
807                                         sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
808                                 else
809                                         sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
810
811                                 svg_text(Y, c->start_time, comm);
812                         }
813                         c->Y = Y;
814                         Y++;
815                         c = c->next;
816                 }
817                 p = p->next;
818         }
819 }
820
821 static void add_process_filter(const char *string)
822 {
823         int pid = strtoull(string, NULL, 10);
824         struct process_filter *filt = malloc(sizeof(*filt));
825
826         if (!filt)
827                 return;
828
829         filt->name = strdup(string);
830         filt->pid  = pid;
831         filt->next = process_filter;
832
833         process_filter = filt;
834 }
835
836 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
837 {
838         struct process_filter *filt;
839         if (!process_filter)
840                 return 1;
841
842         filt = process_filter;
843         while (filt) {
844                 if (filt->pid && p->pid == filt->pid)
845                         return 1;
846                 if (strcmp(filt->name, c->comm) == 0)
847                         return 1;
848                 filt = filt->next;
849         }
850         return 0;
851 }
852
853 static int determine_display_tasks_filtered(void)
854 {
855         struct per_pid *p;
856         struct per_pidcomm *c;
857         int count = 0;
858
859         p = all_data;
860         while (p) {
861                 p->display = 0;
862                 if (p->start_time == 1)
863                         p->start_time = first_time;
864
865                 /* no exit marker, task kept running to the end */
866                 if (p->end_time == 0)
867                         p->end_time = last_time;
868
869                 c = p->all;
870
871                 while (c) {
872                         c->display = 0;
873
874                         if (c->start_time == 1)
875                                 c->start_time = first_time;
876
877                         if (passes_filter(p, c)) {
878                                 c->display = 1;
879                                 p->display = 1;
880                                 count++;
881                         }
882
883                         if (c->end_time == 0)
884                                 c->end_time = last_time;
885
886                         c = c->next;
887                 }
888                 p = p->next;
889         }
890         return count;
891 }
892
893 static int determine_display_tasks(u64 threshold)
894 {
895         struct per_pid *p;
896         struct per_pidcomm *c;
897         int count = 0;
898
899         if (process_filter)
900                 return determine_display_tasks_filtered();
901
902         p = all_data;
903         while (p) {
904                 p->display = 0;
905                 if (p->start_time == 1)
906                         p->start_time = first_time;
907
908                 /* no exit marker, task kept running to the end */
909                 if (p->end_time == 0)
910                         p->end_time = last_time;
911                 if (p->total_time >= threshold && !power_only)
912                         p->display = 1;
913
914                 c = p->all;
915
916                 while (c) {
917                         c->display = 0;
918
919                         if (c->start_time == 1)
920                                 c->start_time = first_time;
921
922                         if (c->total_time >= threshold && !power_only) {
923                                 c->display = 1;
924                                 count++;
925                         }
926
927                         if (c->end_time == 0)
928                                 c->end_time = last_time;
929
930                         c = c->next;
931                 }
932                 p = p->next;
933         }
934         return count;
935 }
936
937
938
939 #define TIME_THRESH 10000000
940
941 static void write_svg_file(const char *filename)
942 {
943         u64 i;
944         int count;
945
946         numcpus++;
947
948
949         count = determine_display_tasks(TIME_THRESH);
950
951         /* We'd like to show at least 15 tasks; be less picky if we have fewer */
952         if (count < 15)
953                 count = determine_display_tasks(TIME_THRESH / 10);
954
955         open_svg(filename, numcpus, count, first_time, last_time);
956
957         svg_time_grid();
958         svg_legenda();
959
960         for (i = 0; i < numcpus; i++)
961                 svg_cpu_box(i, max_freq, turbo_frequency);
962
963         draw_cpu_usage();
964         draw_process_bars();
965         draw_c_p_states();
966         draw_wakeups();
967
968         svg_close();
969 }
970
971 static struct perf_tool perf_timechart = {
972         .comm                   = process_comm_event,
973         .fork                   = process_fork_event,
974         .exit                   = process_exit_event,
975         .sample                 = process_sample_event,
976         .ordered_samples        = true,
977 };
978
979 static int __cmd_timechart(void)
980 {
981         struct perf_session *session = perf_session__new(input_name, O_RDONLY,
982                                                          0, false, &perf_timechart);
983         int ret = -EINVAL;
984
985         if (session == NULL)
986                 return -ENOMEM;
987
988         if (!perf_session__has_traces(session, "timechart record"))
989                 goto out_delete;
990
991         ret = perf_session__process_events(session, &perf_timechart);
992         if (ret)
993                 goto out_delete;
994
995         end_sample_processing();
996
997         sort_pids();
998
999         write_svg_file(output_name);
1000
1001         pr_info("Written %2.1f seconds of trace to %s.\n",
1002                 (last_time - first_time) / 1000000000.0, output_name);
1003 out_delete:
1004         perf_session__delete(session);
1005         return ret;
1006 }
1007
1008 static const char * const timechart_usage[] = {
1009         "perf timechart [<options>] {record}",
1010         NULL
1011 };
1012
1013 #ifdef SUPPORT_OLD_POWER_EVENTS
1014 static const char * const record_old_args[] = {
1015         "record",
1016         "-a",
1017         "-R",
1018         "-f",
1019         "-c", "1",
1020         "-e", "power:power_start",
1021         "-e", "power:power_end",
1022         "-e", "power:power_frequency",
1023         "-e", "sched:sched_wakeup",
1024         "-e", "sched:sched_switch",
1025 };
1026 #endif
1027
1028 static const char * const record_new_args[] = {
1029         "record",
1030         "-a",
1031         "-R",
1032         "-f",
1033         "-c", "1",
1034         "-e", "power:cpu_frequency",
1035         "-e", "power:cpu_idle",
1036         "-e", "sched:sched_wakeup",
1037         "-e", "sched:sched_switch",
1038 };
1039
1040 static int __cmd_record(int argc, const char **argv)
1041 {
1042         unsigned int rec_argc, i, j;
1043         const char **rec_argv;
1044         const char * const *record_args = record_new_args;
1045         unsigned int record_elems = ARRAY_SIZE(record_new_args);
1046
1047 #ifdef SUPPORT_OLD_POWER_EVENTS
1048         if (!is_valid_tracepoint("power:cpu_idle") &&
1049             is_valid_tracepoint("power:power_start")) {
1050                 use_old_power_events = 1;
1051                 record_args = record_old_args;
1052                 record_elems = ARRAY_SIZE(record_old_args);
1053         }
1054 #endif
1055
1056         rec_argc = record_elems + argc - 1;
1057         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1058
1059         if (rec_argv == NULL)
1060                 return -ENOMEM;
1061
1062         for (i = 0; i < record_elems; i++)
1063                 rec_argv[i] = strdup(record_args[i]);
1064
1065         for (j = 1; j < (unsigned int)argc; j++, i++)
1066                 rec_argv[i] = argv[j];
1067
1068         return cmd_record(i, rec_argv, NULL);
1069 }
1070
1071 static int
1072 parse_process(const struct option *opt __maybe_unused, const char *arg,
1073               int __maybe_unused unset)
1074 {
1075         if (arg)
1076                 add_process_filter(arg);
1077         return 0;
1078 }
1079
1080 static const struct option options[] = {
1081         OPT_STRING('i', "input", &input_name, "file",
1082                     "input file name"),
1083         OPT_STRING('o', "output", &output_name, "file",
1084                     "output file name"),
1085         OPT_INTEGER('w', "width", &svg_page_width,
1086                     "page width"),
1087         OPT_BOOLEAN('P', "power-only", &power_only,
1088                     "output power data only"),
1089         OPT_CALLBACK('p', "process", NULL, "process",
1090                       "process selector. Pass a pid or process name.",
1091                        parse_process),
1092         OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1093                     "Look for files with symbols relative to this directory"),
1094         OPT_END()
1095 };
1096
1097
1098 int cmd_timechart(int argc, const char **argv,
1099                   const char *prefix __maybe_unused)
1100 {
1101         argc = parse_options(argc, argv, options, timechart_usage,
1102                         PARSE_OPT_STOP_AT_NON_OPTION);
1103
1104         symbol__init();
1105
1106         if (argc && !strncmp(argv[0], "rec", 3))
1107                 return __cmd_record(argc, argv);
1108         else if (argc)
1109                 usage_with_options(timechart_usage, options);
1110
1111         setup_pager();
1112
1113         return __cmd_timechart();
1114 }