perf sched: Handle PERF_RECORD_EXIT events
[firefly-linux-kernel-4.4.55.git] / tools / perf / builtin-sched.c
1 #include "builtin.h"
2 #include "perf.h"
3
4 #include "util/util.h"
5 #include "util/evlist.h"
6 #include "util/cache.h"
7 #include "util/evsel.h"
8 #include "util/symbol.h"
9 #include "util/thread.h"
10 #include "util/header.h"
11 #include "util/session.h"
12 #include "util/tool.h"
13
14 #include "util/parse-options.h"
15 #include "util/trace-event.h"
16
17 #include "util/debug.h"
18
19 #include <sys/prctl.h>
20 #include <sys/resource.h>
21
22 #include <semaphore.h>
23 #include <pthread.h>
24 #include <math.h>
25
26 #define PR_SET_NAME             15               /* Set process name */
27 #define MAX_CPUS                4096
28 #define COMM_LEN                20
29 #define SYM_LEN                 129
30 #define MAX_PID                 65536
31
32 struct sched_atom;
33
34 struct task_desc {
35         unsigned long           nr;
36         unsigned long           pid;
37         char                    comm[COMM_LEN];
38
39         unsigned long           nr_events;
40         unsigned long           curr_event;
41         struct sched_atom       **atoms;
42
43         pthread_t               thread;
44         sem_t                   sleep_sem;
45
46         sem_t                   ready_for_work;
47         sem_t                   work_done_sem;
48
49         u64                     cpu_usage;
50 };
51
52 enum sched_event_type {
53         SCHED_EVENT_RUN,
54         SCHED_EVENT_SLEEP,
55         SCHED_EVENT_WAKEUP,
56         SCHED_EVENT_MIGRATION,
57 };
58
59 struct sched_atom {
60         enum sched_event_type   type;
61         int                     specific_wait;
62         u64                     timestamp;
63         u64                     duration;
64         unsigned long           nr;
65         sem_t                   *wait_sem;
66         struct task_desc        *wakee;
67 };
68
69 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
70
71 enum thread_state {
72         THREAD_SLEEPING = 0,
73         THREAD_WAIT_CPU,
74         THREAD_SCHED_IN,
75         THREAD_IGNORE
76 };
77
78 struct work_atom {
79         struct list_head        list;
80         enum thread_state       state;
81         u64                     sched_out_time;
82         u64                     wake_up_time;
83         u64                     sched_in_time;
84         u64                     runtime;
85 };
86
87 struct work_atoms {
88         struct list_head        work_list;
89         struct thread           *thread;
90         struct rb_node          node;
91         u64                     max_lat;
92         u64                     max_lat_at;
93         u64                     total_lat;
94         u64                     nb_atoms;
95         u64                     total_runtime;
96 };
97
98 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
99
100 struct perf_sched;
101
102 struct trace_sched_handler {
103         int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
104                             struct perf_sample *sample, struct machine *machine);
105
106         int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
107                              struct perf_sample *sample, struct machine *machine);
108
109         int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
110                             struct perf_sample *sample, struct machine *machine);
111
112         int (*fork_event)(struct perf_sched *sched, struct perf_evsel *evsel,
113                           struct perf_sample *sample);
114
115         int (*migrate_task_event)(struct perf_sched *sched,
116                                   struct perf_evsel *evsel,
117                                   struct perf_sample *sample,
118                                   struct machine *machine);
119 };
120
121 struct perf_sched {
122         struct perf_tool tool;
123         const char       *input_name;
124         const char       *sort_order;
125         unsigned long    nr_tasks;
126         struct task_desc *pid_to_task[MAX_PID];
127         struct task_desc **tasks;
128         const struct trace_sched_handler *tp_handler;
129         pthread_mutex_t  start_work_mutex;
130         pthread_mutex_t  work_done_wait_mutex;
131         int              profile_cpu;
132 /*
133  * Track the current task - that way we can know whether there's any
134  * weird events, such as a task being switched away that is not current.
135  */
136         int              max_cpu;
137         u32              curr_pid[MAX_CPUS];
138         struct thread    *curr_thread[MAX_CPUS];
139         char             next_shortname1;
140         char             next_shortname2;
141         unsigned int     replay_repeat;
142         unsigned long    nr_run_events;
143         unsigned long    nr_sleep_events;
144         unsigned long    nr_wakeup_events;
145         unsigned long    nr_sleep_corrections;
146         unsigned long    nr_run_events_optimized;
147         unsigned long    targetless_wakeups;
148         unsigned long    multitarget_wakeups;
149         unsigned long    nr_runs;
150         unsigned long    nr_timestamps;
151         unsigned long    nr_unordered_timestamps;
152         unsigned long    nr_state_machine_bugs;
153         unsigned long    nr_context_switch_bugs;
154         unsigned long    nr_events;
155         unsigned long    nr_lost_chunks;
156         unsigned long    nr_lost_events;
157         u64              run_measurement_overhead;
158         u64              sleep_measurement_overhead;
159         u64              start_time;
160         u64              cpu_usage;
161         u64              runavg_cpu_usage;
162         u64              parent_cpu_usage;
163         u64              runavg_parent_cpu_usage;
164         u64              sum_runtime;
165         u64              sum_fluct;
166         u64              run_avg;
167         u64              all_runtime;
168         u64              all_count;
169         u64              cpu_last_switched[MAX_CPUS];
170         struct rb_root   atom_root, sorted_atom_root;
171         struct list_head sort_list, cmp_pid;
172 };
173
174 static u64 get_nsecs(void)
175 {
176         struct timespec ts;
177
178         clock_gettime(CLOCK_MONOTONIC, &ts);
179
180         return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
181 }
182
183 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
184 {
185         u64 T0 = get_nsecs(), T1;
186
187         do {
188                 T1 = get_nsecs();
189         } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
190 }
191
192 static void sleep_nsecs(u64 nsecs)
193 {
194         struct timespec ts;
195
196         ts.tv_nsec = nsecs % 999999999;
197         ts.tv_sec = nsecs / 999999999;
198
199         nanosleep(&ts, NULL);
200 }
201
202 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
203 {
204         u64 T0, T1, delta, min_delta = 1000000000ULL;
205         int i;
206
207         for (i = 0; i < 10; i++) {
208                 T0 = get_nsecs();
209                 burn_nsecs(sched, 0);
210                 T1 = get_nsecs();
211                 delta = T1-T0;
212                 min_delta = min(min_delta, delta);
213         }
214         sched->run_measurement_overhead = min_delta;
215
216         printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
217 }
218
219 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
220 {
221         u64 T0, T1, delta, min_delta = 1000000000ULL;
222         int i;
223
224         for (i = 0; i < 10; i++) {
225                 T0 = get_nsecs();
226                 sleep_nsecs(10000);
227                 T1 = get_nsecs();
228                 delta = T1-T0;
229                 min_delta = min(min_delta, delta);
230         }
231         min_delta -= 10000;
232         sched->sleep_measurement_overhead = min_delta;
233
234         printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
235 }
236
237 static struct sched_atom *
238 get_new_event(struct task_desc *task, u64 timestamp)
239 {
240         struct sched_atom *event = zalloc(sizeof(*event));
241         unsigned long idx = task->nr_events;
242         size_t size;
243
244         event->timestamp = timestamp;
245         event->nr = idx;
246
247         task->nr_events++;
248         size = sizeof(struct sched_atom *) * task->nr_events;
249         task->atoms = realloc(task->atoms, size);
250         BUG_ON(!task->atoms);
251
252         task->atoms[idx] = event;
253
254         return event;
255 }
256
257 static struct sched_atom *last_event(struct task_desc *task)
258 {
259         if (!task->nr_events)
260                 return NULL;
261
262         return task->atoms[task->nr_events - 1];
263 }
264
265 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
266                                 u64 timestamp, u64 duration)
267 {
268         struct sched_atom *event, *curr_event = last_event(task);
269
270         /*
271          * optimize an existing RUN event by merging this one
272          * to it:
273          */
274         if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
275                 sched->nr_run_events_optimized++;
276                 curr_event->duration += duration;
277                 return;
278         }
279
280         event = get_new_event(task, timestamp);
281
282         event->type = SCHED_EVENT_RUN;
283         event->duration = duration;
284
285         sched->nr_run_events++;
286 }
287
288 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
289                                    u64 timestamp, struct task_desc *wakee)
290 {
291         struct sched_atom *event, *wakee_event;
292
293         event = get_new_event(task, timestamp);
294         event->type = SCHED_EVENT_WAKEUP;
295         event->wakee = wakee;
296
297         wakee_event = last_event(wakee);
298         if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
299                 sched->targetless_wakeups++;
300                 return;
301         }
302         if (wakee_event->wait_sem) {
303                 sched->multitarget_wakeups++;
304                 return;
305         }
306
307         wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
308         sem_init(wakee_event->wait_sem, 0, 0);
309         wakee_event->specific_wait = 1;
310         event->wait_sem = wakee_event->wait_sem;
311
312         sched->nr_wakeup_events++;
313 }
314
315 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
316                                   u64 timestamp, u64 task_state __maybe_unused)
317 {
318         struct sched_atom *event = get_new_event(task, timestamp);
319
320         event->type = SCHED_EVENT_SLEEP;
321
322         sched->nr_sleep_events++;
323 }
324
325 static struct task_desc *register_pid(struct perf_sched *sched,
326                                       unsigned long pid, const char *comm)
327 {
328         struct task_desc *task;
329
330         BUG_ON(pid >= MAX_PID);
331
332         task = sched->pid_to_task[pid];
333
334         if (task)
335                 return task;
336
337         task = zalloc(sizeof(*task));
338         task->pid = pid;
339         task->nr = sched->nr_tasks;
340         strcpy(task->comm, comm);
341         /*
342          * every task starts in sleeping state - this gets ignored
343          * if there's no wakeup pointing to this sleep state:
344          */
345         add_sched_event_sleep(sched, task, 0, 0);
346
347         sched->pid_to_task[pid] = task;
348         sched->nr_tasks++;
349         sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_task *));
350         BUG_ON(!sched->tasks);
351         sched->tasks[task->nr] = task;
352
353         if (verbose)
354                 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
355
356         return task;
357 }
358
359
360 static void print_task_traces(struct perf_sched *sched)
361 {
362         struct task_desc *task;
363         unsigned long i;
364
365         for (i = 0; i < sched->nr_tasks; i++) {
366                 task = sched->tasks[i];
367                 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
368                         task->nr, task->comm, task->pid, task->nr_events);
369         }
370 }
371
372 static void add_cross_task_wakeups(struct perf_sched *sched)
373 {
374         struct task_desc *task1, *task2;
375         unsigned long i, j;
376
377         for (i = 0; i < sched->nr_tasks; i++) {
378                 task1 = sched->tasks[i];
379                 j = i + 1;
380                 if (j == sched->nr_tasks)
381                         j = 0;
382                 task2 = sched->tasks[j];
383                 add_sched_event_wakeup(sched, task1, 0, task2);
384         }
385 }
386
387 static void perf_sched__process_event(struct perf_sched *sched,
388                                       struct sched_atom *atom)
389 {
390         int ret = 0;
391
392         switch (atom->type) {
393                 case SCHED_EVENT_RUN:
394                         burn_nsecs(sched, atom->duration);
395                         break;
396                 case SCHED_EVENT_SLEEP:
397                         if (atom->wait_sem)
398                                 ret = sem_wait(atom->wait_sem);
399                         BUG_ON(ret);
400                         break;
401                 case SCHED_EVENT_WAKEUP:
402                         if (atom->wait_sem)
403                                 ret = sem_post(atom->wait_sem);
404                         BUG_ON(ret);
405                         break;
406                 case SCHED_EVENT_MIGRATION:
407                         break;
408                 default:
409                         BUG_ON(1);
410         }
411 }
412
413 static u64 get_cpu_usage_nsec_parent(void)
414 {
415         struct rusage ru;
416         u64 sum;
417         int err;
418
419         err = getrusage(RUSAGE_SELF, &ru);
420         BUG_ON(err);
421
422         sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
423         sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
424
425         return sum;
426 }
427
428 static int self_open_counters(void)
429 {
430         struct perf_event_attr attr;
431         int fd;
432
433         memset(&attr, 0, sizeof(attr));
434
435         attr.type = PERF_TYPE_SOFTWARE;
436         attr.config = PERF_COUNT_SW_TASK_CLOCK;
437
438         fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
439
440         if (fd < 0)
441                 pr_err("Error: sys_perf_event_open() syscall returned "
442                        "with %d (%s)\n", fd, strerror(errno));
443         return fd;
444 }
445
446 static u64 get_cpu_usage_nsec_self(int fd)
447 {
448         u64 runtime;
449         int ret;
450
451         ret = read(fd, &runtime, sizeof(runtime));
452         BUG_ON(ret != sizeof(runtime));
453
454         return runtime;
455 }
456
457 struct sched_thread_parms {
458         struct task_desc  *task;
459         struct perf_sched *sched;
460 };
461
462 static void *thread_func(void *ctx)
463 {
464         struct sched_thread_parms *parms = ctx;
465         struct task_desc *this_task = parms->task;
466         struct perf_sched *sched = parms->sched;
467         u64 cpu_usage_0, cpu_usage_1;
468         unsigned long i, ret;
469         char comm2[22];
470         int fd;
471
472         free(parms);
473
474         sprintf(comm2, ":%s", this_task->comm);
475         prctl(PR_SET_NAME, comm2);
476         fd = self_open_counters();
477         if (fd < 0)
478                 return NULL;
479 again:
480         ret = sem_post(&this_task->ready_for_work);
481         BUG_ON(ret);
482         ret = pthread_mutex_lock(&sched->start_work_mutex);
483         BUG_ON(ret);
484         ret = pthread_mutex_unlock(&sched->start_work_mutex);
485         BUG_ON(ret);
486
487         cpu_usage_0 = get_cpu_usage_nsec_self(fd);
488
489         for (i = 0; i < this_task->nr_events; i++) {
490                 this_task->curr_event = i;
491                 perf_sched__process_event(sched, this_task->atoms[i]);
492         }
493
494         cpu_usage_1 = get_cpu_usage_nsec_self(fd);
495         this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
496         ret = sem_post(&this_task->work_done_sem);
497         BUG_ON(ret);
498
499         ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
500         BUG_ON(ret);
501         ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
502         BUG_ON(ret);
503
504         goto again;
505 }
506
507 static void create_tasks(struct perf_sched *sched)
508 {
509         struct task_desc *task;
510         pthread_attr_t attr;
511         unsigned long i;
512         int err;
513
514         err = pthread_attr_init(&attr);
515         BUG_ON(err);
516         err = pthread_attr_setstacksize(&attr,
517                         (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
518         BUG_ON(err);
519         err = pthread_mutex_lock(&sched->start_work_mutex);
520         BUG_ON(err);
521         err = pthread_mutex_lock(&sched->work_done_wait_mutex);
522         BUG_ON(err);
523         for (i = 0; i < sched->nr_tasks; i++) {
524                 struct sched_thread_parms *parms = malloc(sizeof(*parms));
525                 BUG_ON(parms == NULL);
526                 parms->task = task = sched->tasks[i];
527                 parms->sched = sched;
528                 sem_init(&task->sleep_sem, 0, 0);
529                 sem_init(&task->ready_for_work, 0, 0);
530                 sem_init(&task->work_done_sem, 0, 0);
531                 task->curr_event = 0;
532                 err = pthread_create(&task->thread, &attr, thread_func, parms);
533                 BUG_ON(err);
534         }
535 }
536
537 static void wait_for_tasks(struct perf_sched *sched)
538 {
539         u64 cpu_usage_0, cpu_usage_1;
540         struct task_desc *task;
541         unsigned long i, ret;
542
543         sched->start_time = get_nsecs();
544         sched->cpu_usage = 0;
545         pthread_mutex_unlock(&sched->work_done_wait_mutex);
546
547         for (i = 0; i < sched->nr_tasks; i++) {
548                 task = sched->tasks[i];
549                 ret = sem_wait(&task->ready_for_work);
550                 BUG_ON(ret);
551                 sem_init(&task->ready_for_work, 0, 0);
552         }
553         ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
554         BUG_ON(ret);
555
556         cpu_usage_0 = get_cpu_usage_nsec_parent();
557
558         pthread_mutex_unlock(&sched->start_work_mutex);
559
560         for (i = 0; i < sched->nr_tasks; i++) {
561                 task = sched->tasks[i];
562                 ret = sem_wait(&task->work_done_sem);
563                 BUG_ON(ret);
564                 sem_init(&task->work_done_sem, 0, 0);
565                 sched->cpu_usage += task->cpu_usage;
566                 task->cpu_usage = 0;
567         }
568
569         cpu_usage_1 = get_cpu_usage_nsec_parent();
570         if (!sched->runavg_cpu_usage)
571                 sched->runavg_cpu_usage = sched->cpu_usage;
572         sched->runavg_cpu_usage = (sched->runavg_cpu_usage * 9 + sched->cpu_usage) / 10;
573
574         sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
575         if (!sched->runavg_parent_cpu_usage)
576                 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
577         sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * 9 +
578                                          sched->parent_cpu_usage)/10;
579
580         ret = pthread_mutex_lock(&sched->start_work_mutex);
581         BUG_ON(ret);
582
583         for (i = 0; i < sched->nr_tasks; i++) {
584                 task = sched->tasks[i];
585                 sem_init(&task->sleep_sem, 0, 0);
586                 task->curr_event = 0;
587         }
588 }
589
590 static void run_one_test(struct perf_sched *sched)
591 {
592         u64 T0, T1, delta, avg_delta, fluct;
593
594         T0 = get_nsecs();
595         wait_for_tasks(sched);
596         T1 = get_nsecs();
597
598         delta = T1 - T0;
599         sched->sum_runtime += delta;
600         sched->nr_runs++;
601
602         avg_delta = sched->sum_runtime / sched->nr_runs;
603         if (delta < avg_delta)
604                 fluct = avg_delta - delta;
605         else
606                 fluct = delta - avg_delta;
607         sched->sum_fluct += fluct;
608         if (!sched->run_avg)
609                 sched->run_avg = delta;
610         sched->run_avg = (sched->run_avg * 9 + delta) / 10;
611
612         printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0);
613
614         printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6);
615
616         printf("cpu: %0.2f / %0.2f",
617                 (double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6);
618
619 #if 0
620         /*
621          * rusage statistics done by the parent, these are less
622          * accurate than the sched->sum_exec_runtime based statistics:
623          */
624         printf(" [%0.2f / %0.2f]",
625                 (double)sched->parent_cpu_usage/1e6,
626                 (double)sched->runavg_parent_cpu_usage/1e6);
627 #endif
628
629         printf("\n");
630
631         if (sched->nr_sleep_corrections)
632                 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
633         sched->nr_sleep_corrections = 0;
634 }
635
636 static void test_calibrations(struct perf_sched *sched)
637 {
638         u64 T0, T1;
639
640         T0 = get_nsecs();
641         burn_nsecs(sched, 1e6);
642         T1 = get_nsecs();
643
644         printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
645
646         T0 = get_nsecs();
647         sleep_nsecs(1e6);
648         T1 = get_nsecs();
649
650         printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
651 }
652
653 static int
654 replay_wakeup_event(struct perf_sched *sched,
655                     struct perf_evsel *evsel, struct perf_sample *sample,
656                     struct machine *machine __maybe_unused)
657 {
658         const char *comm = perf_evsel__strval(evsel, sample, "comm");
659         const u32 pid    = perf_evsel__intval(evsel, sample, "pid");
660         struct task_desc *waker, *wakee;
661
662         if (verbose) {
663                 printf("sched_wakeup event %p\n", evsel);
664
665                 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
666         }
667
668         waker = register_pid(sched, sample->tid, "<unknown>");
669         wakee = register_pid(sched, pid, comm);
670
671         add_sched_event_wakeup(sched, waker, sample->time, wakee);
672         return 0;
673 }
674
675 static int replay_switch_event(struct perf_sched *sched,
676                                struct perf_evsel *evsel,
677                                struct perf_sample *sample,
678                                struct machine *machine __maybe_unused)
679 {
680         const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
681                    *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
682         const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
683                   next_pid = perf_evsel__intval(evsel, sample, "next_pid");
684         const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
685         struct task_desc *prev, __maybe_unused *next;
686         u64 timestamp0, timestamp = sample->time;
687         int cpu = sample->cpu;
688         s64 delta;
689
690         if (verbose)
691                 printf("sched_switch event %p\n", evsel);
692
693         if (cpu >= MAX_CPUS || cpu < 0)
694                 return 0;
695
696         timestamp0 = sched->cpu_last_switched[cpu];
697         if (timestamp0)
698                 delta = timestamp - timestamp0;
699         else
700                 delta = 0;
701
702         if (delta < 0) {
703                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
704                 return -1;
705         }
706
707         pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
708                  prev_comm, prev_pid, next_comm, next_pid, delta);
709
710         prev = register_pid(sched, prev_pid, prev_comm);
711         next = register_pid(sched, next_pid, next_comm);
712
713         sched->cpu_last_switched[cpu] = timestamp;
714
715         add_sched_event_run(sched, prev, timestamp, delta);
716         add_sched_event_sleep(sched, prev, timestamp, prev_state);
717
718         return 0;
719 }
720
721 static int replay_fork_event(struct perf_sched *sched, struct perf_evsel *evsel,
722                              struct perf_sample *sample)
723 {
724         const char *parent_comm = perf_evsel__strval(evsel, sample, "parent_comm"),
725                    *child_comm  = perf_evsel__strval(evsel, sample, "child_comm");
726         const u32 parent_pid  = perf_evsel__intval(evsel, sample, "parent_pid"),
727                   child_pid  = perf_evsel__intval(evsel, sample, "child_pid");
728
729         if (verbose) {
730                 printf("sched_fork event %p\n", evsel);
731                 printf("... parent: %s/%d\n", parent_comm, parent_pid);
732                 printf("...  child: %s/%d\n", child_comm, child_pid);
733         }
734
735         register_pid(sched, parent_pid, parent_comm);
736         register_pid(sched, child_pid, child_comm);
737         return 0;
738 }
739
740 struct sort_dimension {
741         const char              *name;
742         sort_fn_t               cmp;
743         struct list_head        list;
744 };
745
746 static int
747 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
748 {
749         struct sort_dimension *sort;
750         int ret = 0;
751
752         BUG_ON(list_empty(list));
753
754         list_for_each_entry(sort, list, list) {
755                 ret = sort->cmp(l, r);
756                 if (ret)
757                         return ret;
758         }
759
760         return ret;
761 }
762
763 static struct work_atoms *
764 thread_atoms_search(struct rb_root *root, struct thread *thread,
765                          struct list_head *sort_list)
766 {
767         struct rb_node *node = root->rb_node;
768         struct work_atoms key = { .thread = thread };
769
770         while (node) {
771                 struct work_atoms *atoms;
772                 int cmp;
773
774                 atoms = container_of(node, struct work_atoms, node);
775
776                 cmp = thread_lat_cmp(sort_list, &key, atoms);
777                 if (cmp > 0)
778                         node = node->rb_left;
779                 else if (cmp < 0)
780                         node = node->rb_right;
781                 else {
782                         BUG_ON(thread != atoms->thread);
783                         return atoms;
784                 }
785         }
786         return NULL;
787 }
788
789 static void
790 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
791                          struct list_head *sort_list)
792 {
793         struct rb_node **new = &(root->rb_node), *parent = NULL;
794
795         while (*new) {
796                 struct work_atoms *this;
797                 int cmp;
798
799                 this = container_of(*new, struct work_atoms, node);
800                 parent = *new;
801
802                 cmp = thread_lat_cmp(sort_list, data, this);
803
804                 if (cmp > 0)
805                         new = &((*new)->rb_left);
806                 else
807                         new = &((*new)->rb_right);
808         }
809
810         rb_link_node(&data->node, parent, new);
811         rb_insert_color(&data->node, root);
812 }
813
814 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
815 {
816         struct work_atoms *atoms = zalloc(sizeof(*atoms));
817         if (!atoms) {
818                 pr_err("No memory at %s\n", __func__);
819                 return -1;
820         }
821
822         atoms->thread = thread;
823         INIT_LIST_HEAD(&atoms->work_list);
824         __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
825         return 0;
826 }
827
828 static int latency_fork_event(struct perf_sched *sched __maybe_unused,
829                               struct perf_evsel *evsel __maybe_unused,
830                               struct perf_sample *sample __maybe_unused)
831 {
832         /* should insert the newcomer */
833         return 0;
834 }
835
836 static char sched_out_state(u64 prev_state)
837 {
838         const char *str = TASK_STATE_TO_CHAR_STR;
839
840         return str[prev_state];
841 }
842
843 static int
844 add_sched_out_event(struct work_atoms *atoms,
845                     char run_state,
846                     u64 timestamp)
847 {
848         struct work_atom *atom = zalloc(sizeof(*atom));
849         if (!atom) {
850                 pr_err("Non memory at %s", __func__);
851                 return -1;
852         }
853
854         atom->sched_out_time = timestamp;
855
856         if (run_state == 'R') {
857                 atom->state = THREAD_WAIT_CPU;
858                 atom->wake_up_time = atom->sched_out_time;
859         }
860
861         list_add_tail(&atom->list, &atoms->work_list);
862         return 0;
863 }
864
865 static void
866 add_runtime_event(struct work_atoms *atoms, u64 delta,
867                   u64 timestamp __maybe_unused)
868 {
869         struct work_atom *atom;
870
871         BUG_ON(list_empty(&atoms->work_list));
872
873         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
874
875         atom->runtime += delta;
876         atoms->total_runtime += delta;
877 }
878
879 static void
880 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
881 {
882         struct work_atom *atom;
883         u64 delta;
884
885         if (list_empty(&atoms->work_list))
886                 return;
887
888         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
889
890         if (atom->state != THREAD_WAIT_CPU)
891                 return;
892
893         if (timestamp < atom->wake_up_time) {
894                 atom->state = THREAD_IGNORE;
895                 return;
896         }
897
898         atom->state = THREAD_SCHED_IN;
899         atom->sched_in_time = timestamp;
900
901         delta = atom->sched_in_time - atom->wake_up_time;
902         atoms->total_lat += delta;
903         if (delta > atoms->max_lat) {
904                 atoms->max_lat = delta;
905                 atoms->max_lat_at = timestamp;
906         }
907         atoms->nb_atoms++;
908 }
909
910 static int latency_switch_event(struct perf_sched *sched,
911                                 struct perf_evsel *evsel,
912                                 struct perf_sample *sample,
913                                 struct machine *machine)
914 {
915         const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
916                   next_pid = perf_evsel__intval(evsel, sample, "next_pid");
917         const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
918         struct work_atoms *out_events, *in_events;
919         struct thread *sched_out, *sched_in;
920         u64 timestamp0, timestamp = sample->time;
921         int cpu = sample->cpu;
922         s64 delta;
923
924         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
925
926         timestamp0 = sched->cpu_last_switched[cpu];
927         sched->cpu_last_switched[cpu] = timestamp;
928         if (timestamp0)
929                 delta = timestamp - timestamp0;
930         else
931                 delta = 0;
932
933         if (delta < 0) {
934                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
935                 return -1;
936         }
937
938         sched_out = machine__findnew_thread(machine, prev_pid);
939         sched_in = machine__findnew_thread(machine, next_pid);
940
941         out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
942         if (!out_events) {
943                 if (thread_atoms_insert(sched, sched_out))
944                         return -1;
945                 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
946                 if (!out_events) {
947                         pr_err("out-event: Internal tree error");
948                         return -1;
949                 }
950         }
951         if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
952                 return -1;
953
954         in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
955         if (!in_events) {
956                 if (thread_atoms_insert(sched, sched_in))
957                         return -1;
958                 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
959                 if (!in_events) {
960                         pr_err("in-event: Internal tree error");
961                         return -1;
962                 }
963                 /*
964                  * Take came in we have not heard about yet,
965                  * add in an initial atom in runnable state:
966                  */
967                 if (add_sched_out_event(in_events, 'R', timestamp))
968                         return -1;
969         }
970         add_sched_in_event(in_events, timestamp);
971
972         return 0;
973 }
974
975 static int latency_runtime_event(struct perf_sched *sched,
976                                  struct perf_evsel *evsel,
977                                  struct perf_sample *sample,
978                                  struct machine *machine)
979 {
980         const u32 pid      = perf_evsel__intval(evsel, sample, "pid");
981         const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
982         struct thread *thread = machine__findnew_thread(machine, pid);
983         struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
984         u64 timestamp = sample->time;
985         int cpu = sample->cpu;
986
987         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
988         if (!atoms) {
989                 if (thread_atoms_insert(sched, thread))
990                         return -1;
991                 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
992                 if (!atoms) {
993                         pr_err("in-event: Internal tree error");
994                         return -1;
995                 }
996                 if (add_sched_out_event(atoms, 'R', timestamp))
997                         return -1;
998         }
999
1000         add_runtime_event(atoms, runtime, timestamp);
1001         return 0;
1002 }
1003
1004 static int latency_wakeup_event(struct perf_sched *sched,
1005                                 struct perf_evsel *evsel,
1006                                 struct perf_sample *sample,
1007                                 struct machine *machine)
1008 {
1009         const u32 pid     = perf_evsel__intval(evsel, sample, "pid"),
1010                   success = perf_evsel__intval(evsel, sample, "success");
1011         struct work_atoms *atoms;
1012         struct work_atom *atom;
1013         struct thread *wakee;
1014         u64 timestamp = sample->time;
1015
1016         /* Note for later, it may be interesting to observe the failing cases */
1017         if (!success)
1018                 return 0;
1019
1020         wakee = machine__findnew_thread(machine, pid);
1021         atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1022         if (!atoms) {
1023                 if (thread_atoms_insert(sched, wakee))
1024                         return -1;
1025                 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1026                 if (!atoms) {
1027                         pr_err("wakeup-event: Internal tree error");
1028                         return -1;
1029                 }
1030                 if (add_sched_out_event(atoms, 'S', timestamp))
1031                         return -1;
1032         }
1033
1034         BUG_ON(list_empty(&atoms->work_list));
1035
1036         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1037
1038         /*
1039          * You WILL be missing events if you've recorded only
1040          * one CPU, or are only looking at only one, so don't
1041          * make useless noise.
1042          */
1043         if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1044                 sched->nr_state_machine_bugs++;
1045
1046         sched->nr_timestamps++;
1047         if (atom->sched_out_time > timestamp) {
1048                 sched->nr_unordered_timestamps++;
1049                 return 0;
1050         }
1051
1052         atom->state = THREAD_WAIT_CPU;
1053         atom->wake_up_time = timestamp;
1054         return 0;
1055 }
1056
1057 static int latency_migrate_task_event(struct perf_sched *sched,
1058                                       struct perf_evsel *evsel,
1059                                       struct perf_sample *sample,
1060                                       struct machine *machine)
1061 {
1062         const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1063         u64 timestamp = sample->time;
1064         struct work_atoms *atoms;
1065         struct work_atom *atom;
1066         struct thread *migrant;
1067
1068         /*
1069          * Only need to worry about migration when profiling one CPU.
1070          */
1071         if (sched->profile_cpu == -1)
1072                 return 0;
1073
1074         migrant = machine__findnew_thread(machine, pid);
1075         atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1076         if (!atoms) {
1077                 if (thread_atoms_insert(sched, migrant))
1078                         return -1;
1079                 register_pid(sched, migrant->pid, migrant->comm);
1080                 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1081                 if (!atoms) {
1082                         pr_err("migration-event: Internal tree error");
1083                         return -1;
1084                 }
1085                 if (add_sched_out_event(atoms, 'R', timestamp))
1086                         return -1;
1087         }
1088
1089         BUG_ON(list_empty(&atoms->work_list));
1090
1091         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1092         atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1093
1094         sched->nr_timestamps++;
1095
1096         if (atom->sched_out_time > timestamp)
1097                 sched->nr_unordered_timestamps++;
1098
1099         return 0;
1100 }
1101
1102 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1103 {
1104         int i;
1105         int ret;
1106         u64 avg;
1107
1108         if (!work_list->nb_atoms)
1109                 return;
1110         /*
1111          * Ignore idle threads:
1112          */
1113         if (!strcmp(work_list->thread->comm, "swapper"))
1114                 return;
1115
1116         sched->all_runtime += work_list->total_runtime;
1117         sched->all_count   += work_list->nb_atoms;
1118
1119         ret = printf("  %s:%d ", work_list->thread->comm, work_list->thread->pid);
1120
1121         for (i = 0; i < 24 - ret; i++)
1122                 printf(" ");
1123
1124         avg = work_list->total_lat / work_list->nb_atoms;
1125
1126         printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n",
1127               (double)work_list->total_runtime / 1e6,
1128                  work_list->nb_atoms, (double)avg / 1e6,
1129                  (double)work_list->max_lat / 1e6,
1130                  (double)work_list->max_lat_at / 1e9);
1131 }
1132
1133 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1134 {
1135         if (l->thread->pid < r->thread->pid)
1136                 return -1;
1137         if (l->thread->pid > r->thread->pid)
1138                 return 1;
1139
1140         return 0;
1141 }
1142
1143 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1144 {
1145         u64 avgl, avgr;
1146
1147         if (!l->nb_atoms)
1148                 return -1;
1149
1150         if (!r->nb_atoms)
1151                 return 1;
1152
1153         avgl = l->total_lat / l->nb_atoms;
1154         avgr = r->total_lat / r->nb_atoms;
1155
1156         if (avgl < avgr)
1157                 return -1;
1158         if (avgl > avgr)
1159                 return 1;
1160
1161         return 0;
1162 }
1163
1164 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1165 {
1166         if (l->max_lat < r->max_lat)
1167                 return -1;
1168         if (l->max_lat > r->max_lat)
1169                 return 1;
1170
1171         return 0;
1172 }
1173
1174 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1175 {
1176         if (l->nb_atoms < r->nb_atoms)
1177                 return -1;
1178         if (l->nb_atoms > r->nb_atoms)
1179                 return 1;
1180
1181         return 0;
1182 }
1183
1184 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1185 {
1186         if (l->total_runtime < r->total_runtime)
1187                 return -1;
1188         if (l->total_runtime > r->total_runtime)
1189                 return 1;
1190
1191         return 0;
1192 }
1193
1194 static int sort_dimension__add(const char *tok, struct list_head *list)
1195 {
1196         size_t i;
1197         static struct sort_dimension avg_sort_dimension = {
1198                 .name = "avg",
1199                 .cmp  = avg_cmp,
1200         };
1201         static struct sort_dimension max_sort_dimension = {
1202                 .name = "max",
1203                 .cmp  = max_cmp,
1204         };
1205         static struct sort_dimension pid_sort_dimension = {
1206                 .name = "pid",
1207                 .cmp  = pid_cmp,
1208         };
1209         static struct sort_dimension runtime_sort_dimension = {
1210                 .name = "runtime",
1211                 .cmp  = runtime_cmp,
1212         };
1213         static struct sort_dimension switch_sort_dimension = {
1214                 .name = "switch",
1215                 .cmp  = switch_cmp,
1216         };
1217         struct sort_dimension *available_sorts[] = {
1218                 &pid_sort_dimension,
1219                 &avg_sort_dimension,
1220                 &max_sort_dimension,
1221                 &switch_sort_dimension,
1222                 &runtime_sort_dimension,
1223         };
1224
1225         for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1226                 if (!strcmp(available_sorts[i]->name, tok)) {
1227                         list_add_tail(&available_sorts[i]->list, list);
1228
1229                         return 0;
1230                 }
1231         }
1232
1233         return -1;
1234 }
1235
1236 static void perf_sched__sort_lat(struct perf_sched *sched)
1237 {
1238         struct rb_node *node;
1239
1240         for (;;) {
1241                 struct work_atoms *data;
1242                 node = rb_first(&sched->atom_root);
1243                 if (!node)
1244                         break;
1245
1246                 rb_erase(node, &sched->atom_root);
1247                 data = rb_entry(node, struct work_atoms, node);
1248                 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1249         }
1250 }
1251
1252 static int process_sched_wakeup_event(struct perf_tool *tool,
1253                                       struct perf_evsel *evsel,
1254                                       struct perf_sample *sample,
1255                                       struct machine *machine)
1256 {
1257         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1258
1259         if (sched->tp_handler->wakeup_event)
1260                 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1261
1262         return 0;
1263 }
1264
1265 static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1266                             struct perf_sample *sample, struct machine *machine)
1267 {
1268         const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1269                   next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1270         struct thread *sched_out __maybe_unused, *sched_in;
1271         int new_shortname;
1272         u64 timestamp0, timestamp = sample->time;
1273         s64 delta;
1274         int cpu, this_cpu = sample->cpu;
1275
1276         BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1277
1278         if (this_cpu > sched->max_cpu)
1279                 sched->max_cpu = this_cpu;
1280
1281         timestamp0 = sched->cpu_last_switched[this_cpu];
1282         sched->cpu_last_switched[this_cpu] = timestamp;
1283         if (timestamp0)
1284                 delta = timestamp - timestamp0;
1285         else
1286                 delta = 0;
1287
1288         if (delta < 0) {
1289                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1290                 return -1;
1291         }
1292
1293         sched_out = machine__findnew_thread(machine, prev_pid);
1294         sched_in = machine__findnew_thread(machine, next_pid);
1295
1296         sched->curr_thread[this_cpu] = sched_in;
1297
1298         printf("  ");
1299
1300         new_shortname = 0;
1301         if (!sched_in->shortname[0]) {
1302                 sched_in->shortname[0] = sched->next_shortname1;
1303                 sched_in->shortname[1] = sched->next_shortname2;
1304
1305                 if (sched->next_shortname1 < 'Z') {
1306                         sched->next_shortname1++;
1307                 } else {
1308                         sched->next_shortname1='A';
1309                         if (sched->next_shortname2 < '9') {
1310                                 sched->next_shortname2++;
1311                         } else {
1312                                 sched->next_shortname2='0';
1313                         }
1314                 }
1315                 new_shortname = 1;
1316         }
1317
1318         for (cpu = 0; cpu <= sched->max_cpu; cpu++) {
1319                 if (cpu != this_cpu)
1320                         printf(" ");
1321                 else
1322                         printf("*");
1323
1324                 if (sched->curr_thread[cpu]) {
1325                         if (sched->curr_thread[cpu]->pid)
1326                                 printf("%2s ", sched->curr_thread[cpu]->shortname);
1327                         else
1328                                 printf(".  ");
1329                 } else
1330                         printf("   ");
1331         }
1332
1333         printf("  %12.6f secs ", (double)timestamp/1e9);
1334         if (new_shortname) {
1335                 printf("%s => %s:%d\n",
1336                         sched_in->shortname, sched_in->comm, sched_in->pid);
1337         } else {
1338                 printf("\n");
1339         }
1340
1341         return 0;
1342 }
1343
1344 static int process_sched_switch_event(struct perf_tool *tool,
1345                                       struct perf_evsel *evsel,
1346                                       struct perf_sample *sample,
1347                                       struct machine *machine)
1348 {
1349         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1350         int this_cpu = sample->cpu, err = 0;
1351         u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1352             next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1353
1354         if (sched->curr_pid[this_cpu] != (u32)-1) {
1355                 /*
1356                  * Are we trying to switch away a PID that is
1357                  * not current?
1358                  */
1359                 if (sched->curr_pid[this_cpu] != prev_pid)
1360                         sched->nr_context_switch_bugs++;
1361         }
1362
1363         if (sched->tp_handler->switch_event)
1364                 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1365
1366         sched->curr_pid[this_cpu] = next_pid;
1367         return err;
1368 }
1369
1370 static int process_sched_runtime_event(struct perf_tool *tool,
1371                                        struct perf_evsel *evsel,
1372                                        struct perf_sample *sample,
1373                                        struct machine *machine)
1374 {
1375         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1376
1377         if (sched->tp_handler->runtime_event)
1378                 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1379
1380         return 0;
1381 }
1382
1383 static int process_sched_fork_event(struct perf_tool *tool,
1384                                     struct perf_evsel *evsel,
1385                                     struct perf_sample *sample,
1386                                     struct machine *machine __maybe_unused)
1387 {
1388         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1389
1390         if (sched->tp_handler->fork_event)
1391                 return sched->tp_handler->fork_event(sched, evsel, sample);
1392
1393         return 0;
1394 }
1395
1396 static int process_sched_exit_event(struct perf_tool *tool __maybe_unused,
1397                                     struct perf_evsel *evsel,
1398                                     struct perf_sample *sample __maybe_unused,
1399                                     struct machine *machine __maybe_unused)
1400 {
1401         pr_debug("sched_exit event %p\n", evsel);
1402         return 0;
1403 }
1404
1405 static int process_sched_migrate_task_event(struct perf_tool *tool,
1406                                             struct perf_evsel *evsel,
1407                                             struct perf_sample *sample,
1408                                             struct machine *machine)
1409 {
1410         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1411
1412         if (sched->tp_handler->migrate_task_event)
1413                 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1414
1415         return 0;
1416 }
1417
1418 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1419                                   struct perf_evsel *evsel,
1420                                   struct perf_sample *sample,
1421                                   struct machine *machine);
1422
1423 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1424                                                  union perf_event *event __maybe_unused,
1425                                                  struct perf_sample *sample,
1426                                                  struct perf_evsel *evsel,
1427                                                  struct machine *machine)
1428 {
1429         struct thread *thread = machine__findnew_thread(machine, sample->tid);
1430         int err = 0;
1431
1432         if (thread == NULL) {
1433                 pr_debug("problem processing %s event, skipping it.\n",
1434                          perf_evsel__name(evsel));
1435                 return -1;
1436         }
1437
1438         evsel->hists.stats.total_period += sample->period;
1439         hists__inc_nr_events(&evsel->hists, PERF_RECORD_SAMPLE);
1440
1441         if (evsel->handler.func != NULL) {
1442                 tracepoint_handler f = evsel->handler.func;
1443                 err = f(tool, evsel, sample, machine);
1444         }
1445
1446         return err;
1447 }
1448
1449 static int perf_sched__read_events(struct perf_sched *sched, bool destroy,
1450                                    struct perf_session **psession)
1451 {
1452         const struct perf_evsel_str_handler handlers[] = {
1453                 { "sched:sched_switch",       process_sched_switch_event, },
1454                 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1455                 { "sched:sched_wakeup",       process_sched_wakeup_event, },
1456                 { "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1457                 { "sched:sched_process_fork", process_sched_fork_event, },
1458                 { "sched:sched_process_exit", process_sched_exit_event, },
1459                 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1460         };
1461         struct perf_session *session;
1462
1463         session = perf_session__new(sched->input_name, O_RDONLY, 0, false, &sched->tool);
1464         if (session == NULL) {
1465                 pr_debug("No Memory for session\n");
1466                 return -1;
1467         }
1468
1469         if (perf_session__set_tracepoints_handlers(session, handlers))
1470                 goto out_delete;
1471
1472         if (perf_session__has_traces(session, "record -R")) {
1473                 int err = perf_session__process_events(session, &sched->tool);
1474                 if (err) {
1475                         pr_err("Failed to process events, error %d", err);
1476                         goto out_delete;
1477                 }
1478
1479                 sched->nr_events      = session->hists.stats.nr_events[0];
1480                 sched->nr_lost_events = session->hists.stats.total_lost;
1481                 sched->nr_lost_chunks = session->hists.stats.nr_events[PERF_RECORD_LOST];
1482         }
1483
1484         if (destroy)
1485                 perf_session__delete(session);
1486
1487         if (psession)
1488                 *psession = session;
1489
1490         return 0;
1491
1492 out_delete:
1493         perf_session__delete(session);
1494         return -1;
1495 }
1496
1497 static void print_bad_events(struct perf_sched *sched)
1498 {
1499         if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
1500                 printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1501                         (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
1502                         sched->nr_unordered_timestamps, sched->nr_timestamps);
1503         }
1504         if (sched->nr_lost_events && sched->nr_events) {
1505                 printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1506                         (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
1507                         sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
1508         }
1509         if (sched->nr_state_machine_bugs && sched->nr_timestamps) {
1510                 printf("  INFO: %.3f%% state machine bugs (%ld out of %ld)",
1511                         (double)sched->nr_state_machine_bugs/(double)sched->nr_timestamps*100.0,
1512                         sched->nr_state_machine_bugs, sched->nr_timestamps);
1513                 if (sched->nr_lost_events)
1514                         printf(" (due to lost events?)");
1515                 printf("\n");
1516         }
1517         if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
1518                 printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
1519                         (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
1520                         sched->nr_context_switch_bugs, sched->nr_timestamps);
1521                 if (sched->nr_lost_events)
1522                         printf(" (due to lost events?)");
1523                 printf("\n");
1524         }
1525 }
1526
1527 static int perf_sched__lat(struct perf_sched *sched)
1528 {
1529         struct rb_node *next;
1530         struct perf_session *session;
1531
1532         setup_pager();
1533         if (perf_sched__read_events(sched, false, &session))
1534                 return -1;
1535         perf_sched__sort_lat(sched);
1536
1537         printf("\n ---------------------------------------------------------------------------------------------------------------\n");
1538         printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at     |\n");
1539         printf(" ---------------------------------------------------------------------------------------------------------------\n");
1540
1541         next = rb_first(&sched->sorted_atom_root);
1542
1543         while (next) {
1544                 struct work_atoms *work_list;
1545
1546                 work_list = rb_entry(next, struct work_atoms, node);
1547                 output_lat_thread(sched, work_list);
1548                 next = rb_next(next);
1549         }
1550
1551         printf(" -----------------------------------------------------------------------------------------\n");
1552         printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
1553                 (double)sched->all_runtime / 1e6, sched->all_count);
1554
1555         printf(" ---------------------------------------------------\n");
1556
1557         print_bad_events(sched);
1558         printf("\n");
1559
1560         perf_session__delete(session);
1561         return 0;
1562 }
1563
1564 static int perf_sched__map(struct perf_sched *sched)
1565 {
1566         sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1567
1568         setup_pager();
1569         if (perf_sched__read_events(sched, true, NULL))
1570                 return -1;
1571         print_bad_events(sched);
1572         return 0;
1573 }
1574
1575 static int perf_sched__replay(struct perf_sched *sched)
1576 {
1577         unsigned long i;
1578
1579         calibrate_run_measurement_overhead(sched);
1580         calibrate_sleep_measurement_overhead(sched);
1581
1582         test_calibrations(sched);
1583
1584         if (perf_sched__read_events(sched, true, NULL))
1585                 return -1;
1586
1587         printf("nr_run_events:        %ld\n", sched->nr_run_events);
1588         printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
1589         printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
1590
1591         if (sched->targetless_wakeups)
1592                 printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
1593         if (sched->multitarget_wakeups)
1594                 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
1595         if (sched->nr_run_events_optimized)
1596                 printf("run atoms optimized: %ld\n",
1597                         sched->nr_run_events_optimized);
1598
1599         print_task_traces(sched);
1600         add_cross_task_wakeups(sched);
1601
1602         create_tasks(sched);
1603         printf("------------------------------------------------------------\n");
1604         for (i = 0; i < sched->replay_repeat; i++)
1605                 run_one_test(sched);
1606
1607         return 0;
1608 }
1609
1610 static void setup_sorting(struct perf_sched *sched, const struct option *options,
1611                           const char * const usage_msg[])
1612 {
1613         char *tmp, *tok, *str = strdup(sched->sort_order);
1614
1615         for (tok = strtok_r(str, ", ", &tmp);
1616                         tok; tok = strtok_r(NULL, ", ", &tmp)) {
1617                 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
1618                         error("Unknown --sort key: `%s'", tok);
1619                         usage_with_options(usage_msg, options);
1620                 }
1621         }
1622
1623         free(str);
1624
1625         sort_dimension__add("pid", &sched->cmp_pid);
1626 }
1627
1628 static int __cmd_record(int argc, const char **argv)
1629 {
1630         unsigned int rec_argc, i, j;
1631         const char **rec_argv;
1632         const char * const record_args[] = {
1633                 "record",
1634                 "-a",
1635                 "-R",
1636                 "-f",
1637                 "-m", "1024",
1638                 "-c", "1",
1639                 "-e", "sched:sched_switch",
1640                 "-e", "sched:sched_stat_wait",
1641                 "-e", "sched:sched_stat_sleep",
1642                 "-e", "sched:sched_stat_iowait",
1643                 "-e", "sched:sched_stat_runtime",
1644                 "-e", "sched:sched_process_exit",
1645                 "-e", "sched:sched_process_fork",
1646                 "-e", "sched:sched_wakeup",
1647                 "-e", "sched:sched_migrate_task",
1648         };
1649
1650         rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1651         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1652
1653         if (rec_argv == NULL)
1654                 return -ENOMEM;
1655
1656         for (i = 0; i < ARRAY_SIZE(record_args); i++)
1657                 rec_argv[i] = strdup(record_args[i]);
1658
1659         for (j = 1; j < (unsigned int)argc; j++, i++)
1660                 rec_argv[i] = argv[j];
1661
1662         BUG_ON(i != rec_argc);
1663
1664         return cmd_record(i, rec_argv, NULL);
1665 }
1666
1667 int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
1668 {
1669         const char default_sort_order[] = "avg, max, switch, runtime";
1670         struct perf_sched sched = {
1671                 .tool = {
1672                         .sample          = perf_sched__process_tracepoint_sample,
1673                         .comm            = perf_event__process_comm,
1674                         .lost            = perf_event__process_lost,
1675                         .exit            = perf_event__process_exit,
1676                         .fork            = perf_event__process_fork,
1677                         .ordered_samples = true,
1678                 },
1679                 .cmp_pid              = LIST_HEAD_INIT(sched.cmp_pid),
1680                 .sort_list            = LIST_HEAD_INIT(sched.sort_list),
1681                 .start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
1682                 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
1683                 .curr_pid             = { [0 ... MAX_CPUS - 1] = -1 },
1684                 .sort_order           = default_sort_order,
1685                 .replay_repeat        = 10,
1686                 .profile_cpu          = -1,
1687                 .next_shortname1      = 'A',
1688                 .next_shortname2      = '0',
1689         };
1690         const struct option latency_options[] = {
1691         OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
1692                    "sort by key(s): runtime, switch, avg, max"),
1693         OPT_INCR('v', "verbose", &verbose,
1694                     "be more verbose (show symbol address, etc)"),
1695         OPT_INTEGER('C', "CPU", &sched.profile_cpu,
1696                     "CPU to profile on"),
1697         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1698                     "dump raw trace in ASCII"),
1699         OPT_END()
1700         };
1701         const struct option replay_options[] = {
1702         OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
1703                      "repeat the workload replay N times (-1: infinite)"),
1704         OPT_INCR('v', "verbose", &verbose,
1705                     "be more verbose (show symbol address, etc)"),
1706         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1707                     "dump raw trace in ASCII"),
1708         OPT_END()
1709         };
1710         const struct option sched_options[] = {
1711         OPT_STRING('i', "input", &sched.input_name, "file",
1712                     "input file name"),
1713         OPT_INCR('v', "verbose", &verbose,
1714                     "be more verbose (show symbol address, etc)"),
1715         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1716                     "dump raw trace in ASCII"),
1717         OPT_END()
1718         };
1719         const char * const latency_usage[] = {
1720                 "perf sched latency [<options>]",
1721                 NULL
1722         };
1723         const char * const replay_usage[] = {
1724                 "perf sched replay [<options>]",
1725                 NULL
1726         };
1727         const char * const sched_usage[] = {
1728                 "perf sched [<options>] {record|latency|map|replay|script}",
1729                 NULL
1730         };
1731         struct trace_sched_handler lat_ops  = {
1732                 .wakeup_event       = latency_wakeup_event,
1733                 .switch_event       = latency_switch_event,
1734                 .runtime_event      = latency_runtime_event,
1735                 .fork_event         = latency_fork_event,
1736                 .migrate_task_event = latency_migrate_task_event,
1737         };
1738         struct trace_sched_handler map_ops  = {
1739                 .switch_event       = map_switch_event,
1740         };
1741         struct trace_sched_handler replay_ops  = {
1742                 .wakeup_event       = replay_wakeup_event,
1743                 .switch_event       = replay_switch_event,
1744                 .fork_event         = replay_fork_event,
1745         };
1746
1747         argc = parse_options(argc, argv, sched_options, sched_usage,
1748                              PARSE_OPT_STOP_AT_NON_OPTION);
1749         if (!argc)
1750                 usage_with_options(sched_usage, sched_options);
1751
1752         /*
1753          * Aliased to 'perf script' for now:
1754          */
1755         if (!strcmp(argv[0], "script"))
1756                 return cmd_script(argc, argv, prefix);
1757
1758         symbol__init();
1759         if (!strncmp(argv[0], "rec", 3)) {
1760                 return __cmd_record(argc, argv);
1761         } else if (!strncmp(argv[0], "lat", 3)) {
1762                 sched.tp_handler = &lat_ops;
1763                 if (argc > 1) {
1764                         argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1765                         if (argc)
1766                                 usage_with_options(latency_usage, latency_options);
1767                 }
1768                 setup_sorting(&sched, latency_options, latency_usage);
1769                 return perf_sched__lat(&sched);
1770         } else if (!strcmp(argv[0], "map")) {
1771                 sched.tp_handler = &map_ops;
1772                 setup_sorting(&sched, latency_options, latency_usage);
1773                 return perf_sched__map(&sched);
1774         } else if (!strncmp(argv[0], "rep", 3)) {
1775                 sched.tp_handler = &replay_ops;
1776                 if (argc) {
1777                         argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1778                         if (argc)
1779                                 usage_with_options(replay_usage, replay_options);
1780                 }
1781                 return perf_sched__replay(&sched);
1782         } else {
1783                 usage_with_options(sched_usage, sched_options);
1784         }
1785
1786         return 0;
1787 }