Merge remote-tracking branches 'asoc/topic/mxs-saif' and 'asoc/topic/nuc900' into...
[firefly-linux-kernel-4.4.55.git] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <linux/export.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <sound/tlv.h>
30 #include <sound/info.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/timer.h>
34
35 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
36 #define CREATE_TRACE_POINTS
37 #include "pcm_trace.h"
38 #else
39 #define trace_hwptr(substream, pos, in_interrupt)
40 #define trace_xrun(substream)
41 #define trace_hw_ptr_error(substream, reason)
42 #endif
43
44 /*
45  * fill ring buffer with silence
46  * runtime->silence_start: starting pointer to silence area
47  * runtime->silence_filled: size filled with silence
48  * runtime->silence_threshold: threshold from application
49  * runtime->silence_size: maximal size from application
50  *
51  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
52  */
53 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
54 {
55         struct snd_pcm_runtime *runtime = substream->runtime;
56         snd_pcm_uframes_t frames, ofs, transfer;
57
58         if (runtime->silence_size < runtime->boundary) {
59                 snd_pcm_sframes_t noise_dist, n;
60                 if (runtime->silence_start != runtime->control->appl_ptr) {
61                         n = runtime->control->appl_ptr - runtime->silence_start;
62                         if (n < 0)
63                                 n += runtime->boundary;
64                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
65                                 runtime->silence_filled -= n;
66                         else
67                                 runtime->silence_filled = 0;
68                         runtime->silence_start = runtime->control->appl_ptr;
69                 }
70                 if (runtime->silence_filled >= runtime->buffer_size)
71                         return;
72                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
73                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
74                         return;
75                 frames = runtime->silence_threshold - noise_dist;
76                 if (frames > runtime->silence_size)
77                         frames = runtime->silence_size;
78         } else {
79                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
80                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
81                         if (avail > runtime->buffer_size)
82                                 avail = runtime->buffer_size;
83                         runtime->silence_filled = avail > 0 ? avail : 0;
84                         runtime->silence_start = (runtime->status->hw_ptr +
85                                                   runtime->silence_filled) %
86                                                  runtime->boundary;
87                 } else {
88                         ofs = runtime->status->hw_ptr;
89                         frames = new_hw_ptr - ofs;
90                         if ((snd_pcm_sframes_t)frames < 0)
91                                 frames += runtime->boundary;
92                         runtime->silence_filled -= frames;
93                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
94                                 runtime->silence_filled = 0;
95                                 runtime->silence_start = new_hw_ptr;
96                         } else {
97                                 runtime->silence_start = ofs;
98                         }
99                 }
100                 frames = runtime->buffer_size - runtime->silence_filled;
101         }
102         if (snd_BUG_ON(frames > runtime->buffer_size))
103                 return;
104         if (frames == 0)
105                 return;
106         ofs = runtime->silence_start % runtime->buffer_size;
107         while (frames > 0) {
108                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
109                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
110                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
111                         if (substream->ops->silence) {
112                                 int err;
113                                 err = substream->ops->silence(substream, -1, ofs, transfer);
114                                 snd_BUG_ON(err < 0);
115                         } else {
116                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
117                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
118                         }
119                 } else {
120                         unsigned int c;
121                         unsigned int channels = runtime->channels;
122                         if (substream->ops->silence) {
123                                 for (c = 0; c < channels; ++c) {
124                                         int err;
125                                         err = substream->ops->silence(substream, c, ofs, transfer);
126                                         snd_BUG_ON(err < 0);
127                                 }
128                         } else {
129                                 size_t dma_csize = runtime->dma_bytes / channels;
130                                 for (c = 0; c < channels; ++c) {
131                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
132                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
133                                 }
134                         }
135                 }
136                 runtime->silence_filled += transfer;
137                 frames -= transfer;
138                 ofs = 0;
139         }
140 }
141
142 #ifdef CONFIG_SND_DEBUG
143 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
144                            char *name, size_t len)
145 {
146         snprintf(name, len, "pcmC%dD%d%c:%d",
147                  substream->pcm->card->number,
148                  substream->pcm->device,
149                  substream->stream ? 'c' : 'p',
150                  substream->number);
151 }
152 EXPORT_SYMBOL(snd_pcm_debug_name);
153 #endif
154
155 #define XRUN_DEBUG_BASIC        (1<<0)
156 #define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
157 #define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
158
159 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
160
161 #define xrun_debug(substream, mask) \
162                         ((substream)->pstr->xrun_debug & (mask))
163 #else
164 #define xrun_debug(substream, mask)     0
165 #endif
166
167 #define dump_stack_on_xrun(substream) do {                      \
168                 if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
169                         dump_stack();                           \
170         } while (0)
171
172 static void xrun(struct snd_pcm_substream *substream)
173 {
174         struct snd_pcm_runtime *runtime = substream->runtime;
175
176         trace_xrun(substream);
177         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
178                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
179         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
180         if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
181                 char name[16];
182                 snd_pcm_debug_name(substream, name, sizeof(name));
183                 pcm_warn(substream->pcm, "XRUN: %s\n", name);
184                 dump_stack_on_xrun(substream);
185         }
186 }
187
188 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
189 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)     \
190         do {                                                            \
191                 trace_hw_ptr_error(substream, reason);  \
192                 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
193                         pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
194                                            (in_interrupt) ? 'Q' : 'P', ##args); \
195                         dump_stack_on_xrun(substream);                  \
196                 }                                                       \
197         } while (0)
198
199 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
200
201 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
202
203 #endif
204
205 int snd_pcm_update_state(struct snd_pcm_substream *substream,
206                          struct snd_pcm_runtime *runtime)
207 {
208         snd_pcm_uframes_t avail;
209
210         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
211                 avail = snd_pcm_playback_avail(runtime);
212         else
213                 avail = snd_pcm_capture_avail(runtime);
214         if (avail > runtime->avail_max)
215                 runtime->avail_max = avail;
216         if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
217                 if (avail >= runtime->buffer_size) {
218                         snd_pcm_drain_done(substream);
219                         return -EPIPE;
220                 }
221         } else {
222                 if (avail >= runtime->stop_threshold) {
223                         xrun(substream);
224                         return -EPIPE;
225                 }
226         }
227         if (runtime->twake) {
228                 if (avail >= runtime->twake)
229                         wake_up(&runtime->tsleep);
230         } else if (avail >= runtime->control->avail_min)
231                 wake_up(&runtime->sleep);
232         return 0;
233 }
234
235 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
236                                   unsigned int in_interrupt)
237 {
238         struct snd_pcm_runtime *runtime = substream->runtime;
239         snd_pcm_uframes_t pos;
240         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
241         snd_pcm_sframes_t hdelta, delta;
242         unsigned long jdelta;
243         unsigned long curr_jiffies;
244         struct timespec curr_tstamp;
245         struct timespec audio_tstamp;
246         int crossed_boundary = 0;
247
248         old_hw_ptr = runtime->status->hw_ptr;
249
250         /*
251          * group pointer, time and jiffies reads to allow for more
252          * accurate correlations/corrections.
253          * The values are stored at the end of this routine after
254          * corrections for hw_ptr position
255          */
256         pos = substream->ops->pointer(substream);
257         curr_jiffies = jiffies;
258         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
259                 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
260
261                 if ((runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK) &&
262                         (substream->ops->wall_clock))
263                         substream->ops->wall_clock(substream, &audio_tstamp);
264         }
265
266         if (pos == SNDRV_PCM_POS_XRUN) {
267                 xrun(substream);
268                 return -EPIPE;
269         }
270         if (pos >= runtime->buffer_size) {
271                 if (printk_ratelimit()) {
272                         char name[16];
273                         snd_pcm_debug_name(substream, name, sizeof(name));
274                         pcm_err(substream->pcm,
275                                 "BUG: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
276                                 name, pos, runtime->buffer_size,
277                                 runtime->period_size);
278                 }
279                 pos = 0;
280         }
281         pos -= pos % runtime->min_align;
282         trace_hwptr(substream, pos, in_interrupt);
283         hw_base = runtime->hw_ptr_base;
284         new_hw_ptr = hw_base + pos;
285         if (in_interrupt) {
286                 /* we know that one period was processed */
287                 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
288                 delta = runtime->hw_ptr_interrupt + runtime->period_size;
289                 if (delta > new_hw_ptr) {
290                         /* check for double acknowledged interrupts */
291                         hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
292                         if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
293                                 hw_base += runtime->buffer_size;
294                                 if (hw_base >= runtime->boundary) {
295                                         hw_base = 0;
296                                         crossed_boundary++;
297                                 }
298                                 new_hw_ptr = hw_base + pos;
299                                 goto __delta;
300                         }
301                 }
302         }
303         /* new_hw_ptr might be lower than old_hw_ptr in case when */
304         /* pointer crosses the end of the ring buffer */
305         if (new_hw_ptr < old_hw_ptr) {
306                 hw_base += runtime->buffer_size;
307                 if (hw_base >= runtime->boundary) {
308                         hw_base = 0;
309                         crossed_boundary++;
310                 }
311                 new_hw_ptr = hw_base + pos;
312         }
313       __delta:
314         delta = new_hw_ptr - old_hw_ptr;
315         if (delta < 0)
316                 delta += runtime->boundary;
317
318         if (runtime->no_period_wakeup) {
319                 snd_pcm_sframes_t xrun_threshold;
320                 /*
321                  * Without regular period interrupts, we have to check
322                  * the elapsed time to detect xruns.
323                  */
324                 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
325                 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
326                         goto no_delta_check;
327                 hdelta = jdelta - delta * HZ / runtime->rate;
328                 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
329                 while (hdelta > xrun_threshold) {
330                         delta += runtime->buffer_size;
331                         hw_base += runtime->buffer_size;
332                         if (hw_base >= runtime->boundary) {
333                                 hw_base = 0;
334                                 crossed_boundary++;
335                         }
336                         new_hw_ptr = hw_base + pos;
337                         hdelta -= runtime->hw_ptr_buffer_jiffies;
338                 }
339                 goto no_delta_check;
340         }
341
342         /* something must be really wrong */
343         if (delta >= runtime->buffer_size + runtime->period_size) {
344                 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
345                              "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
346                              substream->stream, (long)pos,
347                              (long)new_hw_ptr, (long)old_hw_ptr);
348                 return 0;
349         }
350
351         /* Do jiffies check only in xrun_debug mode */
352         if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
353                 goto no_jiffies_check;
354
355         /* Skip the jiffies check for hardwares with BATCH flag.
356          * Such hardware usually just increases the position at each IRQ,
357          * thus it can't give any strange position.
358          */
359         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
360                 goto no_jiffies_check;
361         hdelta = delta;
362         if (hdelta < runtime->delay)
363                 goto no_jiffies_check;
364         hdelta -= runtime->delay;
365         jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
366         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
367                 delta = jdelta /
368                         (((runtime->period_size * HZ) / runtime->rate)
369                                                                 + HZ/100);
370                 /* move new_hw_ptr according jiffies not pos variable */
371                 new_hw_ptr = old_hw_ptr;
372                 hw_base = delta;
373                 /* use loop to avoid checks for delta overflows */
374                 /* the delta value is small or zero in most cases */
375                 while (delta > 0) {
376                         new_hw_ptr += runtime->period_size;
377                         if (new_hw_ptr >= runtime->boundary) {
378                                 new_hw_ptr -= runtime->boundary;
379                                 crossed_boundary--;
380                         }
381                         delta--;
382                 }
383                 /* align hw_base to buffer_size */
384                 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
385                              "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
386                              (long)pos, (long)hdelta,
387                              (long)runtime->period_size, jdelta,
388                              ((hdelta * HZ) / runtime->rate), hw_base,
389                              (unsigned long)old_hw_ptr,
390                              (unsigned long)new_hw_ptr);
391                 /* reset values to proper state */
392                 delta = 0;
393                 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
394         }
395  no_jiffies_check:
396         if (delta > runtime->period_size + runtime->period_size / 2) {
397                 hw_ptr_error(substream, in_interrupt,
398                              "Lost interrupts?",
399                              "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
400                              substream->stream, (long)delta,
401                              (long)new_hw_ptr,
402                              (long)old_hw_ptr);
403         }
404
405  no_delta_check:
406         if (runtime->status->hw_ptr == new_hw_ptr)
407                 return 0;
408
409         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
410             runtime->silence_size > 0)
411                 snd_pcm_playback_silence(substream, new_hw_ptr);
412
413         if (in_interrupt) {
414                 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
415                 if (delta < 0)
416                         delta += runtime->boundary;
417                 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
418                 runtime->hw_ptr_interrupt += delta;
419                 if (runtime->hw_ptr_interrupt >= runtime->boundary)
420                         runtime->hw_ptr_interrupt -= runtime->boundary;
421         }
422         runtime->hw_ptr_base = hw_base;
423         runtime->status->hw_ptr = new_hw_ptr;
424         runtime->hw_ptr_jiffies = curr_jiffies;
425         if (crossed_boundary) {
426                 snd_BUG_ON(crossed_boundary != 1);
427                 runtime->hw_ptr_wrap += runtime->boundary;
428         }
429         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
430                 runtime->status->tstamp = curr_tstamp;
431
432                 if (!(runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK)) {
433                         /*
434                          * no wall clock available, provide audio timestamp
435                          * derived from pointer position+delay
436                          */
437                         u64 audio_frames, audio_nsecs;
438
439                         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
440                                 audio_frames = runtime->hw_ptr_wrap
441                                         + runtime->status->hw_ptr
442                                         - runtime->delay;
443                         else
444                                 audio_frames = runtime->hw_ptr_wrap
445                                         + runtime->status->hw_ptr
446                                         + runtime->delay;
447                         audio_nsecs = div_u64(audio_frames * 1000000000LL,
448                                         runtime->rate);
449                         audio_tstamp = ns_to_timespec(audio_nsecs);
450                 }
451                 runtime->status->audio_tstamp = audio_tstamp;
452         }
453
454         return snd_pcm_update_state(substream, runtime);
455 }
456
457 /* CAUTION: call it with irq disabled */
458 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
459 {
460         return snd_pcm_update_hw_ptr0(substream, 0);
461 }
462
463 /**
464  * snd_pcm_set_ops - set the PCM operators
465  * @pcm: the pcm instance
466  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
467  * @ops: the operator table
468  *
469  * Sets the given PCM operators to the pcm instance.
470  */
471 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
472                      const struct snd_pcm_ops *ops)
473 {
474         struct snd_pcm_str *stream = &pcm->streams[direction];
475         struct snd_pcm_substream *substream;
476         
477         for (substream = stream->substream; substream != NULL; substream = substream->next)
478                 substream->ops = ops;
479 }
480
481 EXPORT_SYMBOL(snd_pcm_set_ops);
482
483 /**
484  * snd_pcm_sync - set the PCM sync id
485  * @substream: the pcm substream
486  *
487  * Sets the PCM sync identifier for the card.
488  */
489 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
490 {
491         struct snd_pcm_runtime *runtime = substream->runtime;
492         
493         runtime->sync.id32[0] = substream->pcm->card->number;
494         runtime->sync.id32[1] = -1;
495         runtime->sync.id32[2] = -1;
496         runtime->sync.id32[3] = -1;
497 }
498
499 EXPORT_SYMBOL(snd_pcm_set_sync);
500
501 /*
502  *  Standard ioctl routine
503  */
504
505 static inline unsigned int div32(unsigned int a, unsigned int b, 
506                                  unsigned int *r)
507 {
508         if (b == 0) {
509                 *r = 0;
510                 return UINT_MAX;
511         }
512         *r = a % b;
513         return a / b;
514 }
515
516 static inline unsigned int div_down(unsigned int a, unsigned int b)
517 {
518         if (b == 0)
519                 return UINT_MAX;
520         return a / b;
521 }
522
523 static inline unsigned int div_up(unsigned int a, unsigned int b)
524 {
525         unsigned int r;
526         unsigned int q;
527         if (b == 0)
528                 return UINT_MAX;
529         q = div32(a, b, &r);
530         if (r)
531                 ++q;
532         return q;
533 }
534
535 static inline unsigned int mul(unsigned int a, unsigned int b)
536 {
537         if (a == 0)
538                 return 0;
539         if (div_down(UINT_MAX, a) < b)
540                 return UINT_MAX;
541         return a * b;
542 }
543
544 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
545                                     unsigned int c, unsigned int *r)
546 {
547         u_int64_t n = (u_int64_t) a * b;
548         if (c == 0) {
549                 snd_BUG_ON(!n);
550                 *r = 0;
551                 return UINT_MAX;
552         }
553         n = div_u64_rem(n, c, r);
554         if (n >= UINT_MAX) {
555                 *r = 0;
556                 return UINT_MAX;
557         }
558         return n;
559 }
560
561 /**
562  * snd_interval_refine - refine the interval value of configurator
563  * @i: the interval value to refine
564  * @v: the interval value to refer to
565  *
566  * Refines the interval value with the reference value.
567  * The interval is changed to the range satisfying both intervals.
568  * The interval status (min, max, integer, etc.) are evaluated.
569  *
570  * Return: Positive if the value is changed, zero if it's not changed, or a
571  * negative error code.
572  */
573 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
574 {
575         int changed = 0;
576         if (snd_BUG_ON(snd_interval_empty(i)))
577                 return -EINVAL;
578         if (i->min < v->min) {
579                 i->min = v->min;
580                 i->openmin = v->openmin;
581                 changed = 1;
582         } else if (i->min == v->min && !i->openmin && v->openmin) {
583                 i->openmin = 1;
584                 changed = 1;
585         }
586         if (i->max > v->max) {
587                 i->max = v->max;
588                 i->openmax = v->openmax;
589                 changed = 1;
590         } else if (i->max == v->max && !i->openmax && v->openmax) {
591                 i->openmax = 1;
592                 changed = 1;
593         }
594         if (!i->integer && v->integer) {
595                 i->integer = 1;
596                 changed = 1;
597         }
598         if (i->integer) {
599                 if (i->openmin) {
600                         i->min++;
601                         i->openmin = 0;
602                 }
603                 if (i->openmax) {
604                         i->max--;
605                         i->openmax = 0;
606                 }
607         } else if (!i->openmin && !i->openmax && i->min == i->max)
608                 i->integer = 1;
609         if (snd_interval_checkempty(i)) {
610                 snd_interval_none(i);
611                 return -EINVAL;
612         }
613         return changed;
614 }
615
616 EXPORT_SYMBOL(snd_interval_refine);
617
618 static int snd_interval_refine_first(struct snd_interval *i)
619 {
620         if (snd_BUG_ON(snd_interval_empty(i)))
621                 return -EINVAL;
622         if (snd_interval_single(i))
623                 return 0;
624         i->max = i->min;
625         i->openmax = i->openmin;
626         if (i->openmax)
627                 i->max++;
628         return 1;
629 }
630
631 static int snd_interval_refine_last(struct snd_interval *i)
632 {
633         if (snd_BUG_ON(snd_interval_empty(i)))
634                 return -EINVAL;
635         if (snd_interval_single(i))
636                 return 0;
637         i->min = i->max;
638         i->openmin = i->openmax;
639         if (i->openmin)
640                 i->min--;
641         return 1;
642 }
643
644 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
645 {
646         if (a->empty || b->empty) {
647                 snd_interval_none(c);
648                 return;
649         }
650         c->empty = 0;
651         c->min = mul(a->min, b->min);
652         c->openmin = (a->openmin || b->openmin);
653         c->max = mul(a->max,  b->max);
654         c->openmax = (a->openmax || b->openmax);
655         c->integer = (a->integer && b->integer);
656 }
657
658 /**
659  * snd_interval_div - refine the interval value with division
660  * @a: dividend
661  * @b: divisor
662  * @c: quotient
663  *
664  * c = a / b
665  *
666  * Returns non-zero if the value is changed, zero if not changed.
667  */
668 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
669 {
670         unsigned int r;
671         if (a->empty || b->empty) {
672                 snd_interval_none(c);
673                 return;
674         }
675         c->empty = 0;
676         c->min = div32(a->min, b->max, &r);
677         c->openmin = (r || a->openmin || b->openmax);
678         if (b->min > 0) {
679                 c->max = div32(a->max, b->min, &r);
680                 if (r) {
681                         c->max++;
682                         c->openmax = 1;
683                 } else
684                         c->openmax = (a->openmax || b->openmin);
685         } else {
686                 c->max = UINT_MAX;
687                 c->openmax = 0;
688         }
689         c->integer = 0;
690 }
691
692 /**
693  * snd_interval_muldivk - refine the interval value
694  * @a: dividend 1
695  * @b: dividend 2
696  * @k: divisor (as integer)
697  * @c: result
698   *
699  * c = a * b / k
700  *
701  * Returns non-zero if the value is changed, zero if not changed.
702  */
703 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
704                       unsigned int k, struct snd_interval *c)
705 {
706         unsigned int r;
707         if (a->empty || b->empty) {
708                 snd_interval_none(c);
709                 return;
710         }
711         c->empty = 0;
712         c->min = muldiv32(a->min, b->min, k, &r);
713         c->openmin = (r || a->openmin || b->openmin);
714         c->max = muldiv32(a->max, b->max, k, &r);
715         if (r) {
716                 c->max++;
717                 c->openmax = 1;
718         } else
719                 c->openmax = (a->openmax || b->openmax);
720         c->integer = 0;
721 }
722
723 /**
724  * snd_interval_mulkdiv - refine the interval value
725  * @a: dividend 1
726  * @k: dividend 2 (as integer)
727  * @b: divisor
728  * @c: result
729  *
730  * c = a * k / b
731  *
732  * Returns non-zero if the value is changed, zero if not changed.
733  */
734 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
735                       const struct snd_interval *b, struct snd_interval *c)
736 {
737         unsigned int r;
738         if (a->empty || b->empty) {
739                 snd_interval_none(c);
740                 return;
741         }
742         c->empty = 0;
743         c->min = muldiv32(a->min, k, b->max, &r);
744         c->openmin = (r || a->openmin || b->openmax);
745         if (b->min > 0) {
746                 c->max = muldiv32(a->max, k, b->min, &r);
747                 if (r) {
748                         c->max++;
749                         c->openmax = 1;
750                 } else
751                         c->openmax = (a->openmax || b->openmin);
752         } else {
753                 c->max = UINT_MAX;
754                 c->openmax = 0;
755         }
756         c->integer = 0;
757 }
758
759 /* ---- */
760
761
762 /**
763  * snd_interval_ratnum - refine the interval value
764  * @i: interval to refine
765  * @rats_count: number of ratnum_t 
766  * @rats: ratnum_t array
767  * @nump: pointer to store the resultant numerator
768  * @denp: pointer to store the resultant denominator
769  *
770  * Return: Positive if the value is changed, zero if it's not changed, or a
771  * negative error code.
772  */
773 int snd_interval_ratnum(struct snd_interval *i,
774                         unsigned int rats_count, struct snd_ratnum *rats,
775                         unsigned int *nump, unsigned int *denp)
776 {
777         unsigned int best_num, best_den;
778         int best_diff;
779         unsigned int k;
780         struct snd_interval t;
781         int err;
782         unsigned int result_num, result_den;
783         int result_diff;
784
785         best_num = best_den = best_diff = 0;
786         for (k = 0; k < rats_count; ++k) {
787                 unsigned int num = rats[k].num;
788                 unsigned int den;
789                 unsigned int q = i->min;
790                 int diff;
791                 if (q == 0)
792                         q = 1;
793                 den = div_up(num, q);
794                 if (den < rats[k].den_min)
795                         continue;
796                 if (den > rats[k].den_max)
797                         den = rats[k].den_max;
798                 else {
799                         unsigned int r;
800                         r = (den - rats[k].den_min) % rats[k].den_step;
801                         if (r != 0)
802                                 den -= r;
803                 }
804                 diff = num - q * den;
805                 if (diff < 0)
806                         diff = -diff;
807                 if (best_num == 0 ||
808                     diff * best_den < best_diff * den) {
809                         best_diff = diff;
810                         best_den = den;
811                         best_num = num;
812                 }
813         }
814         if (best_den == 0) {
815                 i->empty = 1;
816                 return -EINVAL;
817         }
818         t.min = div_down(best_num, best_den);
819         t.openmin = !!(best_num % best_den);
820         
821         result_num = best_num;
822         result_diff = best_diff;
823         result_den = best_den;
824         best_num = best_den = best_diff = 0;
825         for (k = 0; k < rats_count; ++k) {
826                 unsigned int num = rats[k].num;
827                 unsigned int den;
828                 unsigned int q = i->max;
829                 int diff;
830                 if (q == 0) {
831                         i->empty = 1;
832                         return -EINVAL;
833                 }
834                 den = div_down(num, q);
835                 if (den > rats[k].den_max)
836                         continue;
837                 if (den < rats[k].den_min)
838                         den = rats[k].den_min;
839                 else {
840                         unsigned int r;
841                         r = (den - rats[k].den_min) % rats[k].den_step;
842                         if (r != 0)
843                                 den += rats[k].den_step - r;
844                 }
845                 diff = q * den - num;
846                 if (diff < 0)
847                         diff = -diff;
848                 if (best_num == 0 ||
849                     diff * best_den < best_diff * den) {
850                         best_diff = diff;
851                         best_den = den;
852                         best_num = num;
853                 }
854         }
855         if (best_den == 0) {
856                 i->empty = 1;
857                 return -EINVAL;
858         }
859         t.max = div_up(best_num, best_den);
860         t.openmax = !!(best_num % best_den);
861         t.integer = 0;
862         err = snd_interval_refine(i, &t);
863         if (err < 0)
864                 return err;
865
866         if (snd_interval_single(i)) {
867                 if (best_diff * result_den < result_diff * best_den) {
868                         result_num = best_num;
869                         result_den = best_den;
870                 }
871                 if (nump)
872                         *nump = result_num;
873                 if (denp)
874                         *denp = result_den;
875         }
876         return err;
877 }
878
879 EXPORT_SYMBOL(snd_interval_ratnum);
880
881 /**
882  * snd_interval_ratden - refine the interval value
883  * @i: interval to refine
884  * @rats_count: number of struct ratden
885  * @rats: struct ratden array
886  * @nump: pointer to store the resultant numerator
887  * @denp: pointer to store the resultant denominator
888  *
889  * Return: Positive if the value is changed, zero if it's not changed, or a
890  * negative error code.
891  */
892 static int snd_interval_ratden(struct snd_interval *i,
893                                unsigned int rats_count, struct snd_ratden *rats,
894                                unsigned int *nump, unsigned int *denp)
895 {
896         unsigned int best_num, best_diff, best_den;
897         unsigned int k;
898         struct snd_interval t;
899         int err;
900
901         best_num = best_den = best_diff = 0;
902         for (k = 0; k < rats_count; ++k) {
903                 unsigned int num;
904                 unsigned int den = rats[k].den;
905                 unsigned int q = i->min;
906                 int diff;
907                 num = mul(q, den);
908                 if (num > rats[k].num_max)
909                         continue;
910                 if (num < rats[k].num_min)
911                         num = rats[k].num_max;
912                 else {
913                         unsigned int r;
914                         r = (num - rats[k].num_min) % rats[k].num_step;
915                         if (r != 0)
916                                 num += rats[k].num_step - r;
917                 }
918                 diff = num - q * den;
919                 if (best_num == 0 ||
920                     diff * best_den < best_diff * den) {
921                         best_diff = diff;
922                         best_den = den;
923                         best_num = num;
924                 }
925         }
926         if (best_den == 0) {
927                 i->empty = 1;
928                 return -EINVAL;
929         }
930         t.min = div_down(best_num, best_den);
931         t.openmin = !!(best_num % best_den);
932         
933         best_num = best_den = best_diff = 0;
934         for (k = 0; k < rats_count; ++k) {
935                 unsigned int num;
936                 unsigned int den = rats[k].den;
937                 unsigned int q = i->max;
938                 int diff;
939                 num = mul(q, den);
940                 if (num < rats[k].num_min)
941                         continue;
942                 if (num > rats[k].num_max)
943                         num = rats[k].num_max;
944                 else {
945                         unsigned int r;
946                         r = (num - rats[k].num_min) % rats[k].num_step;
947                         if (r != 0)
948                                 num -= r;
949                 }
950                 diff = q * den - num;
951                 if (best_num == 0 ||
952                     diff * best_den < best_diff * den) {
953                         best_diff = diff;
954                         best_den = den;
955                         best_num = num;
956                 }
957         }
958         if (best_den == 0) {
959                 i->empty = 1;
960                 return -EINVAL;
961         }
962         t.max = div_up(best_num, best_den);
963         t.openmax = !!(best_num % best_den);
964         t.integer = 0;
965         err = snd_interval_refine(i, &t);
966         if (err < 0)
967                 return err;
968
969         if (snd_interval_single(i)) {
970                 if (nump)
971                         *nump = best_num;
972                 if (denp)
973                         *denp = best_den;
974         }
975         return err;
976 }
977
978 /**
979  * snd_interval_list - refine the interval value from the list
980  * @i: the interval value to refine
981  * @count: the number of elements in the list
982  * @list: the value list
983  * @mask: the bit-mask to evaluate
984  *
985  * Refines the interval value from the list.
986  * When mask is non-zero, only the elements corresponding to bit 1 are
987  * evaluated.
988  *
989  * Return: Positive if the value is changed, zero if it's not changed, or a
990  * negative error code.
991  */
992 int snd_interval_list(struct snd_interval *i, unsigned int count,
993                       const unsigned int *list, unsigned int mask)
994 {
995         unsigned int k;
996         struct snd_interval list_range;
997
998         if (!count) {
999                 i->empty = 1;
1000                 return -EINVAL;
1001         }
1002         snd_interval_any(&list_range);
1003         list_range.min = UINT_MAX;
1004         list_range.max = 0;
1005         for (k = 0; k < count; k++) {
1006                 if (mask && !(mask & (1 << k)))
1007                         continue;
1008                 if (!snd_interval_test(i, list[k]))
1009                         continue;
1010                 list_range.min = min(list_range.min, list[k]);
1011                 list_range.max = max(list_range.max, list[k]);
1012         }
1013         return snd_interval_refine(i, &list_range);
1014 }
1015
1016 EXPORT_SYMBOL(snd_interval_list);
1017
1018 /**
1019  * snd_interval_ranges - refine the interval value from the list of ranges
1020  * @i: the interval value to refine
1021  * @count: the number of elements in the list of ranges
1022  * @ranges: the ranges list
1023  * @mask: the bit-mask to evaluate
1024  *
1025  * Refines the interval value from the list of ranges.
1026  * When mask is non-zero, only the elements corresponding to bit 1 are
1027  * evaluated.
1028  *
1029  * Return: Positive if the value is changed, zero if it's not changed, or a
1030  * negative error code.
1031  */
1032 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1033                         const struct snd_interval *ranges, unsigned int mask)
1034 {
1035         unsigned int k;
1036         struct snd_interval range_union;
1037         struct snd_interval range;
1038
1039         if (!count) {
1040                 snd_interval_none(i);
1041                 return -EINVAL;
1042         }
1043         snd_interval_any(&range_union);
1044         range_union.min = UINT_MAX;
1045         range_union.max = 0;
1046         for (k = 0; k < count; k++) {
1047                 if (mask && !(mask & (1 << k)))
1048                         continue;
1049                 snd_interval_copy(&range, &ranges[k]);
1050                 if (snd_interval_refine(&range, i) < 0)
1051                         continue;
1052                 if (snd_interval_empty(&range))
1053                         continue;
1054
1055                 if (range.min < range_union.min) {
1056                         range_union.min = range.min;
1057                         range_union.openmin = 1;
1058                 }
1059                 if (range.min == range_union.min && !range.openmin)
1060                         range_union.openmin = 0;
1061                 if (range.max > range_union.max) {
1062                         range_union.max = range.max;
1063                         range_union.openmax = 1;
1064                 }
1065                 if (range.max == range_union.max && !range.openmax)
1066                         range_union.openmax = 0;
1067         }
1068         return snd_interval_refine(i, &range_union);
1069 }
1070 EXPORT_SYMBOL(snd_interval_ranges);
1071
1072 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1073 {
1074         unsigned int n;
1075         int changed = 0;
1076         n = i->min % step;
1077         if (n != 0 || i->openmin) {
1078                 i->min += step - n;
1079                 i->openmin = 0;
1080                 changed = 1;
1081         }
1082         n = i->max % step;
1083         if (n != 0 || i->openmax) {
1084                 i->max -= n;
1085                 i->openmax = 0;
1086                 changed = 1;
1087         }
1088         if (snd_interval_checkempty(i)) {
1089                 i->empty = 1;
1090                 return -EINVAL;
1091         }
1092         return changed;
1093 }
1094
1095 /* Info constraints helpers */
1096
1097 /**
1098  * snd_pcm_hw_rule_add - add the hw-constraint rule
1099  * @runtime: the pcm runtime instance
1100  * @cond: condition bits
1101  * @var: the variable to evaluate
1102  * @func: the evaluation function
1103  * @private: the private data pointer passed to function
1104  * @dep: the dependent variables
1105  *
1106  * Return: Zero if successful, or a negative error code on failure.
1107  */
1108 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1109                         int var,
1110                         snd_pcm_hw_rule_func_t func, void *private,
1111                         int dep, ...)
1112 {
1113         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1114         struct snd_pcm_hw_rule *c;
1115         unsigned int k;
1116         va_list args;
1117         va_start(args, dep);
1118         if (constrs->rules_num >= constrs->rules_all) {
1119                 struct snd_pcm_hw_rule *new;
1120                 unsigned int new_rules = constrs->rules_all + 16;
1121                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1122                 if (!new) {
1123                         va_end(args);
1124                         return -ENOMEM;
1125                 }
1126                 if (constrs->rules) {
1127                         memcpy(new, constrs->rules,
1128                                constrs->rules_num * sizeof(*c));
1129                         kfree(constrs->rules);
1130                 }
1131                 constrs->rules = new;
1132                 constrs->rules_all = new_rules;
1133         }
1134         c = &constrs->rules[constrs->rules_num];
1135         c->cond = cond;
1136         c->func = func;
1137         c->var = var;
1138         c->private = private;
1139         k = 0;
1140         while (1) {
1141                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1142                         va_end(args);
1143                         return -EINVAL;
1144                 }
1145                 c->deps[k++] = dep;
1146                 if (dep < 0)
1147                         break;
1148                 dep = va_arg(args, int);
1149         }
1150         constrs->rules_num++;
1151         va_end(args);
1152         return 0;
1153 }
1154
1155 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1156
1157 /**
1158  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1159  * @runtime: PCM runtime instance
1160  * @var: hw_params variable to apply the mask
1161  * @mask: the bitmap mask
1162  *
1163  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1164  *
1165  * Return: Zero if successful, or a negative error code on failure.
1166  */
1167 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1168                                u_int32_t mask)
1169 {
1170         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1171         struct snd_mask *maskp = constrs_mask(constrs, var);
1172         *maskp->bits &= mask;
1173         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1174         if (*maskp->bits == 0)
1175                 return -EINVAL;
1176         return 0;
1177 }
1178
1179 /**
1180  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1181  * @runtime: PCM runtime instance
1182  * @var: hw_params variable to apply the mask
1183  * @mask: the 64bit bitmap mask
1184  *
1185  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1186  *
1187  * Return: Zero if successful, or a negative error code on failure.
1188  */
1189 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1190                                  u_int64_t mask)
1191 {
1192         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1193         struct snd_mask *maskp = constrs_mask(constrs, var);
1194         maskp->bits[0] &= (u_int32_t)mask;
1195         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1196         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1197         if (! maskp->bits[0] && ! maskp->bits[1])
1198                 return -EINVAL;
1199         return 0;
1200 }
1201 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1202
1203 /**
1204  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1205  * @runtime: PCM runtime instance
1206  * @var: hw_params variable to apply the integer constraint
1207  *
1208  * Apply the constraint of integer to an interval parameter.
1209  *
1210  * Return: Positive if the value is changed, zero if it's not changed, or a
1211  * negative error code.
1212  */
1213 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1214 {
1215         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1216         return snd_interval_setinteger(constrs_interval(constrs, var));
1217 }
1218
1219 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1220
1221 /**
1222  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1223  * @runtime: PCM runtime instance
1224  * @var: hw_params variable to apply the range
1225  * @min: the minimal value
1226  * @max: the maximal value
1227  * 
1228  * Apply the min/max range constraint to an interval parameter.
1229  *
1230  * Return: Positive if the value is changed, zero if it's not changed, or a
1231  * negative error code.
1232  */
1233 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1234                                  unsigned int min, unsigned int max)
1235 {
1236         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1237         struct snd_interval t;
1238         t.min = min;
1239         t.max = max;
1240         t.openmin = t.openmax = 0;
1241         t.integer = 0;
1242         return snd_interval_refine(constrs_interval(constrs, var), &t);
1243 }
1244
1245 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1246
1247 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1248                                 struct snd_pcm_hw_rule *rule)
1249 {
1250         struct snd_pcm_hw_constraint_list *list = rule->private;
1251         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1252 }               
1253
1254
1255 /**
1256  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1257  * @runtime: PCM runtime instance
1258  * @cond: condition bits
1259  * @var: hw_params variable to apply the list constraint
1260  * @l: list
1261  * 
1262  * Apply the list of constraints to an interval parameter.
1263  *
1264  * Return: Zero if successful, or a negative error code on failure.
1265  */
1266 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1267                                unsigned int cond,
1268                                snd_pcm_hw_param_t var,
1269                                const struct snd_pcm_hw_constraint_list *l)
1270 {
1271         return snd_pcm_hw_rule_add(runtime, cond, var,
1272                                    snd_pcm_hw_rule_list, (void *)l,
1273                                    var, -1);
1274 }
1275
1276 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1277
1278 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1279                                   struct snd_pcm_hw_rule *rule)
1280 {
1281         struct snd_pcm_hw_constraint_ranges *r = rule->private;
1282         return snd_interval_ranges(hw_param_interval(params, rule->var),
1283                                    r->count, r->ranges, r->mask);
1284 }
1285
1286
1287 /**
1288  * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1289  * @runtime: PCM runtime instance
1290  * @cond: condition bits
1291  * @var: hw_params variable to apply the list of range constraints
1292  * @r: ranges
1293  *
1294  * Apply the list of range constraints to an interval parameter.
1295  *
1296  * Return: Zero if successful, or a negative error code on failure.
1297  */
1298 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1299                                  unsigned int cond,
1300                                  snd_pcm_hw_param_t var,
1301                                  const struct snd_pcm_hw_constraint_ranges *r)
1302 {
1303         return snd_pcm_hw_rule_add(runtime, cond, var,
1304                                    snd_pcm_hw_rule_ranges, (void *)r,
1305                                    var, -1);
1306 }
1307 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1308
1309 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1310                                    struct snd_pcm_hw_rule *rule)
1311 {
1312         struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1313         unsigned int num = 0, den = 0;
1314         int err;
1315         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1316                                   r->nrats, r->rats, &num, &den);
1317         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1318                 params->rate_num = num;
1319                 params->rate_den = den;
1320         }
1321         return err;
1322 }
1323
1324 /**
1325  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1326  * @runtime: PCM runtime instance
1327  * @cond: condition bits
1328  * @var: hw_params variable to apply the ratnums constraint
1329  * @r: struct snd_ratnums constriants
1330  *
1331  * Return: Zero if successful, or a negative error code on failure.
1332  */
1333 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1334                                   unsigned int cond,
1335                                   snd_pcm_hw_param_t var,
1336                                   struct snd_pcm_hw_constraint_ratnums *r)
1337 {
1338         return snd_pcm_hw_rule_add(runtime, cond, var,
1339                                    snd_pcm_hw_rule_ratnums, r,
1340                                    var, -1);
1341 }
1342
1343 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1344
1345 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1346                                    struct snd_pcm_hw_rule *rule)
1347 {
1348         struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1349         unsigned int num = 0, den = 0;
1350         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1351                                   r->nrats, r->rats, &num, &den);
1352         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1353                 params->rate_num = num;
1354                 params->rate_den = den;
1355         }
1356         return err;
1357 }
1358
1359 /**
1360  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1361  * @runtime: PCM runtime instance
1362  * @cond: condition bits
1363  * @var: hw_params variable to apply the ratdens constraint
1364  * @r: struct snd_ratdens constriants
1365  *
1366  * Return: Zero if successful, or a negative error code on failure.
1367  */
1368 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1369                                   unsigned int cond,
1370                                   snd_pcm_hw_param_t var,
1371                                   struct snd_pcm_hw_constraint_ratdens *r)
1372 {
1373         return snd_pcm_hw_rule_add(runtime, cond, var,
1374                                    snd_pcm_hw_rule_ratdens, r,
1375                                    var, -1);
1376 }
1377
1378 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1379
1380 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1381                                   struct snd_pcm_hw_rule *rule)
1382 {
1383         unsigned int l = (unsigned long) rule->private;
1384         int width = l & 0xffff;
1385         unsigned int msbits = l >> 16;
1386         struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1387         if (snd_interval_single(i) && snd_interval_value(i) == width)
1388                 params->msbits = msbits;
1389         return 0;
1390 }
1391
1392 /**
1393  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1394  * @runtime: PCM runtime instance
1395  * @cond: condition bits
1396  * @width: sample bits width
1397  * @msbits: msbits width
1398  *
1399  * Return: Zero if successful, or a negative error code on failure.
1400  */
1401 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1402                                  unsigned int cond,
1403                                  unsigned int width,
1404                                  unsigned int msbits)
1405 {
1406         unsigned long l = (msbits << 16) | width;
1407         return snd_pcm_hw_rule_add(runtime, cond, -1,
1408                                     snd_pcm_hw_rule_msbits,
1409                                     (void*) l,
1410                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1411 }
1412
1413 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1414
1415 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1416                                 struct snd_pcm_hw_rule *rule)
1417 {
1418         unsigned long step = (unsigned long) rule->private;
1419         return snd_interval_step(hw_param_interval(params, rule->var), step);
1420 }
1421
1422 /**
1423  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1424  * @runtime: PCM runtime instance
1425  * @cond: condition bits
1426  * @var: hw_params variable to apply the step constraint
1427  * @step: step size
1428  *
1429  * Return: Zero if successful, or a negative error code on failure.
1430  */
1431 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1432                                unsigned int cond,
1433                                snd_pcm_hw_param_t var,
1434                                unsigned long step)
1435 {
1436         return snd_pcm_hw_rule_add(runtime, cond, var, 
1437                                    snd_pcm_hw_rule_step, (void *) step,
1438                                    var, -1);
1439 }
1440
1441 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1442
1443 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1444 {
1445         static unsigned int pow2_sizes[] = {
1446                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1447                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1448                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1449                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1450         };
1451         return snd_interval_list(hw_param_interval(params, rule->var),
1452                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1453 }               
1454
1455 /**
1456  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1457  * @runtime: PCM runtime instance
1458  * @cond: condition bits
1459  * @var: hw_params variable to apply the power-of-2 constraint
1460  *
1461  * Return: Zero if successful, or a negative error code on failure.
1462  */
1463 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1464                                unsigned int cond,
1465                                snd_pcm_hw_param_t var)
1466 {
1467         return snd_pcm_hw_rule_add(runtime, cond, var, 
1468                                    snd_pcm_hw_rule_pow2, NULL,
1469                                    var, -1);
1470 }
1471
1472 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1473
1474 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1475                                            struct snd_pcm_hw_rule *rule)
1476 {
1477         unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1478         struct snd_interval *rate;
1479
1480         rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1481         return snd_interval_list(rate, 1, &base_rate, 0);
1482 }
1483
1484 /**
1485  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1486  * @runtime: PCM runtime instance
1487  * @base_rate: the rate at which the hardware does not resample
1488  *
1489  * Return: Zero if successful, or a negative error code on failure.
1490  */
1491 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1492                                unsigned int base_rate)
1493 {
1494         return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1495                                    SNDRV_PCM_HW_PARAM_RATE,
1496                                    snd_pcm_hw_rule_noresample_func,
1497                                    (void *)(uintptr_t)base_rate,
1498                                    SNDRV_PCM_HW_PARAM_RATE, -1);
1499 }
1500 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1501
1502 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1503                                   snd_pcm_hw_param_t var)
1504 {
1505         if (hw_is_mask(var)) {
1506                 snd_mask_any(hw_param_mask(params, var));
1507                 params->cmask |= 1 << var;
1508                 params->rmask |= 1 << var;
1509                 return;
1510         }
1511         if (hw_is_interval(var)) {
1512                 snd_interval_any(hw_param_interval(params, var));
1513                 params->cmask |= 1 << var;
1514                 params->rmask |= 1 << var;
1515                 return;
1516         }
1517         snd_BUG();
1518 }
1519
1520 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1521 {
1522         unsigned int k;
1523         memset(params, 0, sizeof(*params));
1524         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1525                 _snd_pcm_hw_param_any(params, k);
1526         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1527                 _snd_pcm_hw_param_any(params, k);
1528         params->info = ~0U;
1529 }
1530
1531 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1532
1533 /**
1534  * snd_pcm_hw_param_value - return @params field @var value
1535  * @params: the hw_params instance
1536  * @var: parameter to retrieve
1537  * @dir: pointer to the direction (-1,0,1) or %NULL
1538  *
1539  * Return: The value for field @var if it's fixed in configuration space
1540  * defined by @params. -%EINVAL otherwise.
1541  */
1542 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1543                            snd_pcm_hw_param_t var, int *dir)
1544 {
1545         if (hw_is_mask(var)) {
1546                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1547                 if (!snd_mask_single(mask))
1548                         return -EINVAL;
1549                 if (dir)
1550                         *dir = 0;
1551                 return snd_mask_value(mask);
1552         }
1553         if (hw_is_interval(var)) {
1554                 const struct snd_interval *i = hw_param_interval_c(params, var);
1555                 if (!snd_interval_single(i))
1556                         return -EINVAL;
1557                 if (dir)
1558                         *dir = i->openmin;
1559                 return snd_interval_value(i);
1560         }
1561         return -EINVAL;
1562 }
1563
1564 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1565
1566 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1567                                 snd_pcm_hw_param_t var)
1568 {
1569         if (hw_is_mask(var)) {
1570                 snd_mask_none(hw_param_mask(params, var));
1571                 params->cmask |= 1 << var;
1572                 params->rmask |= 1 << var;
1573         } else if (hw_is_interval(var)) {
1574                 snd_interval_none(hw_param_interval(params, var));
1575                 params->cmask |= 1 << var;
1576                 params->rmask |= 1 << var;
1577         } else {
1578                 snd_BUG();
1579         }
1580 }
1581
1582 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1583
1584 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1585                                    snd_pcm_hw_param_t var)
1586 {
1587         int changed;
1588         if (hw_is_mask(var))
1589                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1590         else if (hw_is_interval(var))
1591                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1592         else
1593                 return -EINVAL;
1594         if (changed) {
1595                 params->cmask |= 1 << var;
1596                 params->rmask |= 1 << var;
1597         }
1598         return changed;
1599 }
1600
1601
1602 /**
1603  * snd_pcm_hw_param_first - refine config space and return minimum value
1604  * @pcm: PCM instance
1605  * @params: the hw_params instance
1606  * @var: parameter to retrieve
1607  * @dir: pointer to the direction (-1,0,1) or %NULL
1608  *
1609  * Inside configuration space defined by @params remove from @var all
1610  * values > minimum. Reduce configuration space accordingly.
1611  *
1612  * Return: The minimum, or a negative error code on failure.
1613  */
1614 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1615                            struct snd_pcm_hw_params *params, 
1616                            snd_pcm_hw_param_t var, int *dir)
1617 {
1618         int changed = _snd_pcm_hw_param_first(params, var);
1619         if (changed < 0)
1620                 return changed;
1621         if (params->rmask) {
1622                 int err = snd_pcm_hw_refine(pcm, params);
1623                 if (snd_BUG_ON(err < 0))
1624                         return err;
1625         }
1626         return snd_pcm_hw_param_value(params, var, dir);
1627 }
1628
1629 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1630
1631 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1632                                   snd_pcm_hw_param_t var)
1633 {
1634         int changed;
1635         if (hw_is_mask(var))
1636                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1637         else if (hw_is_interval(var))
1638                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1639         else
1640                 return -EINVAL;
1641         if (changed) {
1642                 params->cmask |= 1 << var;
1643                 params->rmask |= 1 << var;
1644         }
1645         return changed;
1646 }
1647
1648
1649 /**
1650  * snd_pcm_hw_param_last - refine config space and return maximum value
1651  * @pcm: PCM instance
1652  * @params: the hw_params instance
1653  * @var: parameter to retrieve
1654  * @dir: pointer to the direction (-1,0,1) or %NULL
1655  *
1656  * Inside configuration space defined by @params remove from @var all
1657  * values < maximum. Reduce configuration space accordingly.
1658  *
1659  * Return: The maximum, or a negative error code on failure.
1660  */
1661 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1662                           struct snd_pcm_hw_params *params,
1663                           snd_pcm_hw_param_t var, int *dir)
1664 {
1665         int changed = _snd_pcm_hw_param_last(params, var);
1666         if (changed < 0)
1667                 return changed;
1668         if (params->rmask) {
1669                 int err = snd_pcm_hw_refine(pcm, params);
1670                 if (snd_BUG_ON(err < 0))
1671                         return err;
1672         }
1673         return snd_pcm_hw_param_value(params, var, dir);
1674 }
1675
1676 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1677
1678 /**
1679  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1680  * @pcm: PCM instance
1681  * @params: the hw_params instance
1682  *
1683  * Choose one configuration from configuration space defined by @params.
1684  * The configuration chosen is that obtained fixing in this order:
1685  * first access, first format, first subformat, min channels,
1686  * min rate, min period time, max buffer size, min tick time
1687  *
1688  * Return: Zero if successful, or a negative error code on failure.
1689  */
1690 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1691                              struct snd_pcm_hw_params *params)
1692 {
1693         static int vars[] = {
1694                 SNDRV_PCM_HW_PARAM_ACCESS,
1695                 SNDRV_PCM_HW_PARAM_FORMAT,
1696                 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1697                 SNDRV_PCM_HW_PARAM_CHANNELS,
1698                 SNDRV_PCM_HW_PARAM_RATE,
1699                 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1700                 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1701                 SNDRV_PCM_HW_PARAM_TICK_TIME,
1702                 -1
1703         };
1704         int err, *v;
1705
1706         for (v = vars; *v != -1; v++) {
1707                 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1708                         err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1709                 else
1710                         err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1711                 if (snd_BUG_ON(err < 0))
1712                         return err;
1713         }
1714         return 0;
1715 }
1716
1717 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1718                                    void *arg)
1719 {
1720         struct snd_pcm_runtime *runtime = substream->runtime;
1721         unsigned long flags;
1722         snd_pcm_stream_lock_irqsave(substream, flags);
1723         if (snd_pcm_running(substream) &&
1724             snd_pcm_update_hw_ptr(substream) >= 0)
1725                 runtime->status->hw_ptr %= runtime->buffer_size;
1726         else {
1727                 runtime->status->hw_ptr = 0;
1728                 runtime->hw_ptr_wrap = 0;
1729         }
1730         snd_pcm_stream_unlock_irqrestore(substream, flags);
1731         return 0;
1732 }
1733
1734 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1735                                           void *arg)
1736 {
1737         struct snd_pcm_channel_info *info = arg;
1738         struct snd_pcm_runtime *runtime = substream->runtime;
1739         int width;
1740         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1741                 info->offset = -1;
1742                 return 0;
1743         }
1744         width = snd_pcm_format_physical_width(runtime->format);
1745         if (width < 0)
1746                 return width;
1747         info->offset = 0;
1748         switch (runtime->access) {
1749         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1750         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1751                 info->first = info->channel * width;
1752                 info->step = runtime->channels * width;
1753                 break;
1754         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1755         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1756         {
1757                 size_t size = runtime->dma_bytes / runtime->channels;
1758                 info->first = info->channel * size * 8;
1759                 info->step = width;
1760                 break;
1761         }
1762         default:
1763                 snd_BUG();
1764                 break;
1765         }
1766         return 0;
1767 }
1768
1769 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1770                                        void *arg)
1771 {
1772         struct snd_pcm_hw_params *params = arg;
1773         snd_pcm_format_t format;
1774         int channels;
1775         ssize_t frame_size;
1776
1777         params->fifo_size = substream->runtime->hw.fifo_size;
1778         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1779                 format = params_format(params);
1780                 channels = params_channels(params);
1781                 frame_size = snd_pcm_format_size(format, channels);
1782                 if (frame_size > 0)
1783                         params->fifo_size /= (unsigned)frame_size;
1784         }
1785         return 0;
1786 }
1787
1788 /**
1789  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1790  * @substream: the pcm substream instance
1791  * @cmd: ioctl command
1792  * @arg: ioctl argument
1793  *
1794  * Processes the generic ioctl commands for PCM.
1795  * Can be passed as the ioctl callback for PCM ops.
1796  *
1797  * Return: Zero if successful, or a negative error code on failure.
1798  */
1799 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1800                       unsigned int cmd, void *arg)
1801 {
1802         switch (cmd) {
1803         case SNDRV_PCM_IOCTL1_INFO:
1804                 return 0;
1805         case SNDRV_PCM_IOCTL1_RESET:
1806                 return snd_pcm_lib_ioctl_reset(substream, arg);
1807         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1808                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1809         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1810                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1811         }
1812         return -ENXIO;
1813 }
1814
1815 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1816
1817 /**
1818  * snd_pcm_period_elapsed - update the pcm status for the next period
1819  * @substream: the pcm substream instance
1820  *
1821  * This function is called from the interrupt handler when the
1822  * PCM has processed the period size.  It will update the current
1823  * pointer, wake up sleepers, etc.
1824  *
1825  * Even if more than one periods have elapsed since the last call, you
1826  * have to call this only once.
1827  */
1828 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1829 {
1830         struct snd_pcm_runtime *runtime;
1831         unsigned long flags;
1832
1833         if (PCM_RUNTIME_CHECK(substream))
1834                 return;
1835         runtime = substream->runtime;
1836
1837         if (runtime->transfer_ack_begin)
1838                 runtime->transfer_ack_begin(substream);
1839
1840         snd_pcm_stream_lock_irqsave(substream, flags);
1841         if (!snd_pcm_running(substream) ||
1842             snd_pcm_update_hw_ptr0(substream, 1) < 0)
1843                 goto _end;
1844
1845         if (substream->timer_running)
1846                 snd_timer_interrupt(substream->timer, 1);
1847  _end:
1848         snd_pcm_stream_unlock_irqrestore(substream, flags);
1849         if (runtime->transfer_ack_end)
1850                 runtime->transfer_ack_end(substream);
1851         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1852 }
1853
1854 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1855
1856 /*
1857  * Wait until avail_min data becomes available
1858  * Returns a negative error code if any error occurs during operation.
1859  * The available space is stored on availp.  When err = 0 and avail = 0
1860  * on the capture stream, it indicates the stream is in DRAINING state.
1861  */
1862 static int wait_for_avail(struct snd_pcm_substream *substream,
1863                               snd_pcm_uframes_t *availp)
1864 {
1865         struct snd_pcm_runtime *runtime = substream->runtime;
1866         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1867         wait_queue_t wait;
1868         int err = 0;
1869         snd_pcm_uframes_t avail = 0;
1870         long wait_time, tout;
1871
1872         init_waitqueue_entry(&wait, current);
1873         set_current_state(TASK_INTERRUPTIBLE);
1874         add_wait_queue(&runtime->tsleep, &wait);
1875
1876         if (runtime->no_period_wakeup)
1877                 wait_time = MAX_SCHEDULE_TIMEOUT;
1878         else {
1879                 wait_time = 10;
1880                 if (runtime->rate) {
1881                         long t = runtime->period_size * 2 / runtime->rate;
1882                         wait_time = max(t, wait_time);
1883                 }
1884                 wait_time = msecs_to_jiffies(wait_time * 1000);
1885         }
1886
1887         for (;;) {
1888                 if (signal_pending(current)) {
1889                         err = -ERESTARTSYS;
1890                         break;
1891                 }
1892
1893                 /*
1894                  * We need to check if space became available already
1895                  * (and thus the wakeup happened already) first to close
1896                  * the race of space already having become available.
1897                  * This check must happen after been added to the waitqueue
1898                  * and having current state be INTERRUPTIBLE.
1899                  */
1900                 if (is_playback)
1901                         avail = snd_pcm_playback_avail(runtime);
1902                 else
1903                         avail = snd_pcm_capture_avail(runtime);
1904                 if (avail >= runtime->twake)
1905                         break;
1906                 snd_pcm_stream_unlock_irq(substream);
1907
1908                 tout = schedule_timeout(wait_time);
1909
1910                 snd_pcm_stream_lock_irq(substream);
1911                 set_current_state(TASK_INTERRUPTIBLE);
1912                 switch (runtime->status->state) {
1913                 case SNDRV_PCM_STATE_SUSPENDED:
1914                         err = -ESTRPIPE;
1915                         goto _endloop;
1916                 case SNDRV_PCM_STATE_XRUN:
1917                         err = -EPIPE;
1918                         goto _endloop;
1919                 case SNDRV_PCM_STATE_DRAINING:
1920                         if (is_playback)
1921                                 err = -EPIPE;
1922                         else 
1923                                 avail = 0; /* indicate draining */
1924                         goto _endloop;
1925                 case SNDRV_PCM_STATE_OPEN:
1926                 case SNDRV_PCM_STATE_SETUP:
1927                 case SNDRV_PCM_STATE_DISCONNECTED:
1928                         err = -EBADFD;
1929                         goto _endloop;
1930                 case SNDRV_PCM_STATE_PAUSED:
1931                         continue;
1932                 }
1933                 if (!tout) {
1934                         pcm_dbg(substream->pcm,
1935                                 "%s write error (DMA or IRQ trouble?)\n",
1936                                 is_playback ? "playback" : "capture");
1937                         err = -EIO;
1938                         break;
1939                 }
1940         }
1941  _endloop:
1942         set_current_state(TASK_RUNNING);
1943         remove_wait_queue(&runtime->tsleep, &wait);
1944         *availp = avail;
1945         return err;
1946 }
1947         
1948 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1949                                       unsigned int hwoff,
1950                                       unsigned long data, unsigned int off,
1951                                       snd_pcm_uframes_t frames)
1952 {
1953         struct snd_pcm_runtime *runtime = substream->runtime;
1954         int err;
1955         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1956         if (substream->ops->copy) {
1957                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1958                         return err;
1959         } else {
1960                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1961                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1962                         return -EFAULT;
1963         }
1964         return 0;
1965 }
1966  
1967 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1968                           unsigned long data, unsigned int off,
1969                           snd_pcm_uframes_t size);
1970
1971 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1972                                             unsigned long data,
1973                                             snd_pcm_uframes_t size,
1974                                             int nonblock,
1975                                             transfer_f transfer)
1976 {
1977         struct snd_pcm_runtime *runtime = substream->runtime;
1978         snd_pcm_uframes_t xfer = 0;
1979         snd_pcm_uframes_t offset = 0;
1980         snd_pcm_uframes_t avail;
1981         int err = 0;
1982
1983         if (size == 0)
1984                 return 0;
1985
1986         snd_pcm_stream_lock_irq(substream);
1987         switch (runtime->status->state) {
1988         case SNDRV_PCM_STATE_PREPARED:
1989         case SNDRV_PCM_STATE_RUNNING:
1990         case SNDRV_PCM_STATE_PAUSED:
1991                 break;
1992         case SNDRV_PCM_STATE_XRUN:
1993                 err = -EPIPE;
1994                 goto _end_unlock;
1995         case SNDRV_PCM_STATE_SUSPENDED:
1996                 err = -ESTRPIPE;
1997                 goto _end_unlock;
1998         default:
1999                 err = -EBADFD;
2000                 goto _end_unlock;
2001         }
2002
2003         runtime->twake = runtime->control->avail_min ? : 1;
2004         if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2005                 snd_pcm_update_hw_ptr(substream);
2006         avail = snd_pcm_playback_avail(runtime);
2007         while (size > 0) {
2008                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2009                 snd_pcm_uframes_t cont;
2010                 if (!avail) {
2011                         if (nonblock) {
2012                                 err = -EAGAIN;
2013                                 goto _end_unlock;
2014                         }
2015                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2016                                         runtime->control->avail_min ? : 1);
2017                         err = wait_for_avail(substream, &avail);
2018                         if (err < 0)
2019                                 goto _end_unlock;
2020                 }
2021                 frames = size > avail ? avail : size;
2022                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2023                 if (frames > cont)
2024                         frames = cont;
2025                 if (snd_BUG_ON(!frames)) {
2026                         runtime->twake = 0;
2027                         snd_pcm_stream_unlock_irq(substream);
2028                         return -EINVAL;
2029                 }
2030                 appl_ptr = runtime->control->appl_ptr;
2031                 appl_ofs = appl_ptr % runtime->buffer_size;
2032                 snd_pcm_stream_unlock_irq(substream);
2033                 err = transfer(substream, appl_ofs, data, offset, frames);
2034                 snd_pcm_stream_lock_irq(substream);
2035                 if (err < 0)
2036                         goto _end_unlock;
2037                 switch (runtime->status->state) {
2038                 case SNDRV_PCM_STATE_XRUN:
2039                         err = -EPIPE;
2040                         goto _end_unlock;
2041                 case SNDRV_PCM_STATE_SUSPENDED:
2042                         err = -ESTRPIPE;
2043                         goto _end_unlock;
2044                 default:
2045                         break;
2046                 }
2047                 appl_ptr += frames;
2048                 if (appl_ptr >= runtime->boundary)
2049                         appl_ptr -= runtime->boundary;
2050                 runtime->control->appl_ptr = appl_ptr;
2051                 if (substream->ops->ack)
2052                         substream->ops->ack(substream);
2053
2054                 offset += frames;
2055                 size -= frames;
2056                 xfer += frames;
2057                 avail -= frames;
2058                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2059                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2060                         err = snd_pcm_start(substream);
2061                         if (err < 0)
2062                                 goto _end_unlock;
2063                 }
2064         }
2065  _end_unlock:
2066         runtime->twake = 0;
2067         if (xfer > 0 && err >= 0)
2068                 snd_pcm_update_state(substream, runtime);
2069         snd_pcm_stream_unlock_irq(substream);
2070         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2071 }
2072
2073 /* sanity-check for read/write methods */
2074 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2075 {
2076         struct snd_pcm_runtime *runtime;
2077         if (PCM_RUNTIME_CHECK(substream))
2078                 return -ENXIO;
2079         runtime = substream->runtime;
2080         if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2081                 return -EINVAL;
2082         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2083                 return -EBADFD;
2084         return 0;
2085 }
2086
2087 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2088 {
2089         struct snd_pcm_runtime *runtime;
2090         int nonblock;
2091         int err;
2092
2093         err = pcm_sanity_check(substream);
2094         if (err < 0)
2095                 return err;
2096         runtime = substream->runtime;
2097         nonblock = !!(substream->f_flags & O_NONBLOCK);
2098
2099         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2100             runtime->channels > 1)
2101                 return -EINVAL;
2102         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2103                                   snd_pcm_lib_write_transfer);
2104 }
2105
2106 EXPORT_SYMBOL(snd_pcm_lib_write);
2107
2108 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2109                                        unsigned int hwoff,
2110                                        unsigned long data, unsigned int off,
2111                                        snd_pcm_uframes_t frames)
2112 {
2113         struct snd_pcm_runtime *runtime = substream->runtime;
2114         int err;
2115         void __user **bufs = (void __user **)data;
2116         int channels = runtime->channels;
2117         int c;
2118         if (substream->ops->copy) {
2119                 if (snd_BUG_ON(!substream->ops->silence))
2120                         return -EINVAL;
2121                 for (c = 0; c < channels; ++c, ++bufs) {
2122                         if (*bufs == NULL) {
2123                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2124                                         return err;
2125                         } else {
2126                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2127                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2128                                         return err;
2129                         }
2130                 }
2131         } else {
2132                 /* default transfer behaviour */
2133                 size_t dma_csize = runtime->dma_bytes / channels;
2134                 for (c = 0; c < channels; ++c, ++bufs) {
2135                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2136                         if (*bufs == NULL) {
2137                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2138                         } else {
2139                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2140                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2141                                         return -EFAULT;
2142                         }
2143                 }
2144         }
2145         return 0;
2146 }
2147  
2148 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2149                                      void __user **bufs,
2150                                      snd_pcm_uframes_t frames)
2151 {
2152         struct snd_pcm_runtime *runtime;
2153         int nonblock;
2154         int err;
2155
2156         err = pcm_sanity_check(substream);
2157         if (err < 0)
2158                 return err;
2159         runtime = substream->runtime;
2160         nonblock = !!(substream->f_flags & O_NONBLOCK);
2161
2162         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2163                 return -EINVAL;
2164         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2165                                   nonblock, snd_pcm_lib_writev_transfer);
2166 }
2167
2168 EXPORT_SYMBOL(snd_pcm_lib_writev);
2169
2170 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
2171                                      unsigned int hwoff,
2172                                      unsigned long data, unsigned int off,
2173                                      snd_pcm_uframes_t frames)
2174 {
2175         struct snd_pcm_runtime *runtime = substream->runtime;
2176         int err;
2177         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2178         if (substream->ops->copy) {
2179                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2180                         return err;
2181         } else {
2182                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2183                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2184                         return -EFAULT;
2185         }
2186         return 0;
2187 }
2188
2189 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2190                                            unsigned long data,
2191                                            snd_pcm_uframes_t size,
2192                                            int nonblock,
2193                                            transfer_f transfer)
2194 {
2195         struct snd_pcm_runtime *runtime = substream->runtime;
2196         snd_pcm_uframes_t xfer = 0;
2197         snd_pcm_uframes_t offset = 0;
2198         snd_pcm_uframes_t avail;
2199         int err = 0;
2200
2201         if (size == 0)
2202                 return 0;
2203
2204         snd_pcm_stream_lock_irq(substream);
2205         switch (runtime->status->state) {
2206         case SNDRV_PCM_STATE_PREPARED:
2207                 if (size >= runtime->start_threshold) {
2208                         err = snd_pcm_start(substream);
2209                         if (err < 0)
2210                                 goto _end_unlock;
2211                 }
2212                 break;
2213         case SNDRV_PCM_STATE_DRAINING:
2214         case SNDRV_PCM_STATE_RUNNING:
2215         case SNDRV_PCM_STATE_PAUSED:
2216                 break;
2217         case SNDRV_PCM_STATE_XRUN:
2218                 err = -EPIPE;
2219                 goto _end_unlock;
2220         case SNDRV_PCM_STATE_SUSPENDED:
2221                 err = -ESTRPIPE;
2222                 goto _end_unlock;
2223         default:
2224                 err = -EBADFD;
2225                 goto _end_unlock;
2226         }
2227
2228         runtime->twake = runtime->control->avail_min ? : 1;
2229         if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2230                 snd_pcm_update_hw_ptr(substream);
2231         avail = snd_pcm_capture_avail(runtime);
2232         while (size > 0) {
2233                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2234                 snd_pcm_uframes_t cont;
2235                 if (!avail) {
2236                         if (runtime->status->state ==
2237                             SNDRV_PCM_STATE_DRAINING) {
2238                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2239                                 goto _end_unlock;
2240                         }
2241                         if (nonblock) {
2242                                 err = -EAGAIN;
2243                                 goto _end_unlock;
2244                         }
2245                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2246                                         runtime->control->avail_min ? : 1);
2247                         err = wait_for_avail(substream, &avail);
2248                         if (err < 0)
2249                                 goto _end_unlock;
2250                         if (!avail)
2251                                 continue; /* draining */
2252                 }
2253                 frames = size > avail ? avail : size;
2254                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2255                 if (frames > cont)
2256                         frames = cont;
2257                 if (snd_BUG_ON(!frames)) {
2258                         runtime->twake = 0;
2259                         snd_pcm_stream_unlock_irq(substream);
2260                         return -EINVAL;
2261                 }
2262                 appl_ptr = runtime->control->appl_ptr;
2263                 appl_ofs = appl_ptr % runtime->buffer_size;
2264                 snd_pcm_stream_unlock_irq(substream);
2265                 err = transfer(substream, appl_ofs, data, offset, frames);
2266                 snd_pcm_stream_lock_irq(substream);
2267                 if (err < 0)
2268                         goto _end_unlock;
2269                 switch (runtime->status->state) {
2270                 case SNDRV_PCM_STATE_XRUN:
2271                         err = -EPIPE;
2272                         goto _end_unlock;
2273                 case SNDRV_PCM_STATE_SUSPENDED:
2274                         err = -ESTRPIPE;
2275                         goto _end_unlock;
2276                 default:
2277                         break;
2278                 }
2279                 appl_ptr += frames;
2280                 if (appl_ptr >= runtime->boundary)
2281                         appl_ptr -= runtime->boundary;
2282                 runtime->control->appl_ptr = appl_ptr;
2283                 if (substream->ops->ack)
2284                         substream->ops->ack(substream);
2285
2286                 offset += frames;
2287                 size -= frames;
2288                 xfer += frames;
2289                 avail -= frames;
2290         }
2291  _end_unlock:
2292         runtime->twake = 0;
2293         if (xfer > 0 && err >= 0)
2294                 snd_pcm_update_state(substream, runtime);
2295         snd_pcm_stream_unlock_irq(substream);
2296         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2297 }
2298
2299 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2300 {
2301         struct snd_pcm_runtime *runtime;
2302         int nonblock;
2303         int err;
2304         
2305         err = pcm_sanity_check(substream);
2306         if (err < 0)
2307                 return err;
2308         runtime = substream->runtime;
2309         nonblock = !!(substream->f_flags & O_NONBLOCK);
2310         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2311                 return -EINVAL;
2312         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2313 }
2314
2315 EXPORT_SYMBOL(snd_pcm_lib_read);
2316
2317 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2318                                       unsigned int hwoff,
2319                                       unsigned long data, unsigned int off,
2320                                       snd_pcm_uframes_t frames)
2321 {
2322         struct snd_pcm_runtime *runtime = substream->runtime;
2323         int err;
2324         void __user **bufs = (void __user **)data;
2325         int channels = runtime->channels;
2326         int c;
2327         if (substream->ops->copy) {
2328                 for (c = 0; c < channels; ++c, ++bufs) {
2329                         char __user *buf;
2330                         if (*bufs == NULL)
2331                                 continue;
2332                         buf = *bufs + samples_to_bytes(runtime, off);
2333                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2334                                 return err;
2335                 }
2336         } else {
2337                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2338                 for (c = 0; c < channels; ++c, ++bufs) {
2339                         char *hwbuf;
2340                         char __user *buf;
2341                         if (*bufs == NULL)
2342                                 continue;
2343
2344                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2345                         buf = *bufs + samples_to_bytes(runtime, off);
2346                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2347                                 return -EFAULT;
2348                 }
2349         }
2350         return 0;
2351 }
2352  
2353 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2354                                     void __user **bufs,
2355                                     snd_pcm_uframes_t frames)
2356 {
2357         struct snd_pcm_runtime *runtime;
2358         int nonblock;
2359         int err;
2360
2361         err = pcm_sanity_check(substream);
2362         if (err < 0)
2363                 return err;
2364         runtime = substream->runtime;
2365         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2366                 return -EBADFD;
2367
2368         nonblock = !!(substream->f_flags & O_NONBLOCK);
2369         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2370                 return -EINVAL;
2371         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2372 }
2373
2374 EXPORT_SYMBOL(snd_pcm_lib_readv);
2375
2376 /*
2377  * standard channel mapping helpers
2378  */
2379
2380 /* default channel maps for multi-channel playbacks, up to 8 channels */
2381 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2382         { .channels = 1,
2383           .map = { SNDRV_CHMAP_MONO } },
2384         { .channels = 2,
2385           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2386         { .channels = 4,
2387           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2388                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2389         { .channels = 6,
2390           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2391                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2392                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2393         { .channels = 8,
2394           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2395                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2396                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2397                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2398         { }
2399 };
2400 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2401
2402 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2403 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2404         { .channels = 1,
2405           .map = { SNDRV_CHMAP_MONO } },
2406         { .channels = 2,
2407           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2408         { .channels = 4,
2409           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2410                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2411         { .channels = 6,
2412           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2413                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2414                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2415         { .channels = 8,
2416           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2417                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2418                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2419                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2420         { }
2421 };
2422 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2423
2424 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2425 {
2426         if (ch > info->max_channels)
2427                 return false;
2428         return !info->channel_mask || (info->channel_mask & (1U << ch));
2429 }
2430
2431 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2432                               struct snd_ctl_elem_info *uinfo)
2433 {
2434         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2435
2436         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2437         uinfo->count = 0;
2438         uinfo->count = info->max_channels;
2439         uinfo->value.integer.min = 0;
2440         uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2441         return 0;
2442 }
2443
2444 /* get callback for channel map ctl element
2445  * stores the channel position firstly matching with the current channels
2446  */
2447 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2448                              struct snd_ctl_elem_value *ucontrol)
2449 {
2450         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2451         unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2452         struct snd_pcm_substream *substream;
2453         const struct snd_pcm_chmap_elem *map;
2454
2455         if (snd_BUG_ON(!info->chmap))
2456                 return -EINVAL;
2457         substream = snd_pcm_chmap_substream(info, idx);
2458         if (!substream)
2459                 return -ENODEV;
2460         memset(ucontrol->value.integer.value, 0,
2461                sizeof(ucontrol->value.integer.value));
2462         if (!substream->runtime)
2463                 return 0; /* no channels set */
2464         for (map = info->chmap; map->channels; map++) {
2465                 int i;
2466                 if (map->channels == substream->runtime->channels &&
2467                     valid_chmap_channels(info, map->channels)) {
2468                         for (i = 0; i < map->channels; i++)
2469                                 ucontrol->value.integer.value[i] = map->map[i];
2470                         return 0;
2471                 }
2472         }
2473         return -EINVAL;
2474 }
2475
2476 /* tlv callback for channel map ctl element
2477  * expands the pre-defined channel maps in a form of TLV
2478  */
2479 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2480                              unsigned int size, unsigned int __user *tlv)
2481 {
2482         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2483         const struct snd_pcm_chmap_elem *map;
2484         unsigned int __user *dst;
2485         int c, count = 0;
2486
2487         if (snd_BUG_ON(!info->chmap))
2488                 return -EINVAL;
2489         if (size < 8)
2490                 return -ENOMEM;
2491         if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2492                 return -EFAULT;
2493         size -= 8;
2494         dst = tlv + 2;
2495         for (map = info->chmap; map->channels; map++) {
2496                 int chs_bytes = map->channels * 4;
2497                 if (!valid_chmap_channels(info, map->channels))
2498                         continue;
2499                 if (size < 8)
2500                         return -ENOMEM;
2501                 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2502                     put_user(chs_bytes, dst + 1))
2503                         return -EFAULT;
2504                 dst += 2;
2505                 size -= 8;
2506                 count += 8;
2507                 if (size < chs_bytes)
2508                         return -ENOMEM;
2509                 size -= chs_bytes;
2510                 count += chs_bytes;
2511                 for (c = 0; c < map->channels; c++) {
2512                         if (put_user(map->map[c], dst))
2513                                 return -EFAULT;
2514                         dst++;
2515                 }
2516         }
2517         if (put_user(count, tlv + 1))
2518                 return -EFAULT;
2519         return 0;
2520 }
2521
2522 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2523 {
2524         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2525         info->pcm->streams[info->stream].chmap_kctl = NULL;
2526         kfree(info);
2527 }
2528
2529 /**
2530  * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2531  * @pcm: the assigned PCM instance
2532  * @stream: stream direction
2533  * @chmap: channel map elements (for query)
2534  * @max_channels: the max number of channels for the stream
2535  * @private_value: the value passed to each kcontrol's private_value field
2536  * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2537  *
2538  * Create channel-mapping control elements assigned to the given PCM stream(s).
2539  * Return: Zero if successful, or a negative error value.
2540  */
2541 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2542                            const struct snd_pcm_chmap_elem *chmap,
2543                            int max_channels,
2544                            unsigned long private_value,
2545                            struct snd_pcm_chmap **info_ret)
2546 {
2547         struct snd_pcm_chmap *info;
2548         struct snd_kcontrol_new knew = {
2549                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2550                 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2551                         SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2552                         SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2553                 .info = pcm_chmap_ctl_info,
2554                 .get = pcm_chmap_ctl_get,
2555                 .tlv.c = pcm_chmap_ctl_tlv,
2556         };
2557         int err;
2558
2559         info = kzalloc(sizeof(*info), GFP_KERNEL);
2560         if (!info)
2561                 return -ENOMEM;
2562         info->pcm = pcm;
2563         info->stream = stream;
2564         info->chmap = chmap;
2565         info->max_channels = max_channels;
2566         if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2567                 knew.name = "Playback Channel Map";
2568         else
2569                 knew.name = "Capture Channel Map";
2570         knew.device = pcm->device;
2571         knew.count = pcm->streams[stream].substream_count;
2572         knew.private_value = private_value;
2573         info->kctl = snd_ctl_new1(&knew, info);
2574         if (!info->kctl) {
2575                 kfree(info);
2576                 return -ENOMEM;
2577         }
2578         info->kctl->private_free = pcm_chmap_ctl_private_free;
2579         err = snd_ctl_add(pcm->card, info->kctl);
2580         if (err < 0)
2581                 return err;
2582         pcm->streams[stream].chmap_kctl = info->kctl;
2583         if (info_ret)
2584                 *info_ret = info;
2585         return 0;
2586 }
2587 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);