cfg80211: pass DFS region to drivers through reg_notifier()
[firefly-linux-kernel-4.4.55.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37
38 #include <linux/kernel.h>
39 #include <linux/slab.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/ctype.h>
43 #include <linux/nl80211.h>
44 #include <linux/platform_device.h>
45 #include <net/cfg80211.h>
46 #include "core.h"
47 #include "reg.h"
48 #include "regdb.h"
49 #include "nl80211.h"
50
51 #ifdef CONFIG_CFG80211_REG_DEBUG
52 #define REG_DBG_PRINT(format, args...)                  \
53         printk(KERN_DEBUG pr_fmt(format), ##args)
54 #else
55 #define REG_DBG_PRINT(args...)
56 #endif
57
58 /* Receipt of information from last regulatory request */
59 static struct regulatory_request *last_request;
60
61 /* To trigger userspace events */
62 static struct platform_device *reg_pdev;
63
64 static struct device_type reg_device_type = {
65         .uevent = reg_device_uevent,
66 };
67
68 /*
69  * Central wireless core regulatory domains, we only need two,
70  * the current one and a world regulatory domain in case we have no
71  * information to give us an alpha2
72  */
73 const struct ieee80211_regdomain *cfg80211_regdomain;
74
75 /*
76  * Protects static reg.c components:
77  *     - cfg80211_world_regdom
78  *     - cfg80211_regdom
79  *     - last_request
80  */
81 static DEFINE_MUTEX(reg_mutex);
82
83 static inline void assert_reg_lock(void)
84 {
85         lockdep_assert_held(&reg_mutex);
86 }
87
88 /* Used to queue up regulatory hints */
89 static LIST_HEAD(reg_requests_list);
90 static spinlock_t reg_requests_lock;
91
92 /* Used to queue up beacon hints for review */
93 static LIST_HEAD(reg_pending_beacons);
94 static spinlock_t reg_pending_beacons_lock;
95
96 /* Used to keep track of processed beacon hints */
97 static LIST_HEAD(reg_beacon_list);
98
99 struct reg_beacon {
100         struct list_head list;
101         struct ieee80211_channel chan;
102 };
103
104 static void reg_todo(struct work_struct *work);
105 static DECLARE_WORK(reg_work, reg_todo);
106
107 static void reg_timeout_work(struct work_struct *work);
108 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
109
110 /* We keep a static world regulatory domain in case of the absence of CRDA */
111 static const struct ieee80211_regdomain world_regdom = {
112         .n_reg_rules = 5,
113         .alpha2 =  "00",
114         .reg_rules = {
115                 /* IEEE 802.11b/g, channels 1..11 */
116                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
117                 /* IEEE 802.11b/g, channels 12..13. No HT40
118                  * channel fits here. */
119                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
120                         NL80211_RRF_PASSIVE_SCAN |
121                         NL80211_RRF_NO_IBSS),
122                 /* IEEE 802.11 channel 14 - Only JP enables
123                  * this and for 802.11b only */
124                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
125                         NL80211_RRF_PASSIVE_SCAN |
126                         NL80211_RRF_NO_IBSS |
127                         NL80211_RRF_NO_OFDM),
128                 /* IEEE 802.11a, channel 36..48 */
129                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
130                         NL80211_RRF_PASSIVE_SCAN |
131                         NL80211_RRF_NO_IBSS),
132
133                 /* NB: 5260 MHz - 5700 MHz requies DFS */
134
135                 /* IEEE 802.11a, channel 149..165 */
136                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
137                         NL80211_RRF_PASSIVE_SCAN |
138                         NL80211_RRF_NO_IBSS),
139         }
140 };
141
142 static const struct ieee80211_regdomain *cfg80211_world_regdom =
143         &world_regdom;
144
145 static char *ieee80211_regdom = "00";
146 static char user_alpha2[2];
147
148 module_param(ieee80211_regdom, charp, 0444);
149 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
150
151 static void reset_regdomains(void)
152 {
153         /* avoid freeing static information or freeing something twice */
154         if (cfg80211_regdomain == cfg80211_world_regdom)
155                 cfg80211_regdomain = NULL;
156         if (cfg80211_world_regdom == &world_regdom)
157                 cfg80211_world_regdom = NULL;
158         if (cfg80211_regdomain == &world_regdom)
159                 cfg80211_regdomain = NULL;
160
161         kfree(cfg80211_regdomain);
162         kfree(cfg80211_world_regdom);
163
164         cfg80211_world_regdom = &world_regdom;
165         cfg80211_regdomain = NULL;
166 }
167
168 /*
169  * Dynamic world regulatory domain requested by the wireless
170  * core upon initialization
171  */
172 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
173 {
174         BUG_ON(!last_request);
175
176         reset_regdomains();
177
178         cfg80211_world_regdom = rd;
179         cfg80211_regdomain = rd;
180 }
181
182 bool is_world_regdom(const char *alpha2)
183 {
184         if (!alpha2)
185                 return false;
186         if (alpha2[0] == '0' && alpha2[1] == '0')
187                 return true;
188         return false;
189 }
190
191 static bool is_alpha2_set(const char *alpha2)
192 {
193         if (!alpha2)
194                 return false;
195         if (alpha2[0] != 0 && alpha2[1] != 0)
196                 return true;
197         return false;
198 }
199
200 static bool is_unknown_alpha2(const char *alpha2)
201 {
202         if (!alpha2)
203                 return false;
204         /*
205          * Special case where regulatory domain was built by driver
206          * but a specific alpha2 cannot be determined
207          */
208         if (alpha2[0] == '9' && alpha2[1] == '9')
209                 return true;
210         return false;
211 }
212
213 static bool is_intersected_alpha2(const char *alpha2)
214 {
215         if (!alpha2)
216                 return false;
217         /*
218          * Special case where regulatory domain is the
219          * result of an intersection between two regulatory domain
220          * structures
221          */
222         if (alpha2[0] == '9' && alpha2[1] == '8')
223                 return true;
224         return false;
225 }
226
227 static bool is_an_alpha2(const char *alpha2)
228 {
229         if (!alpha2)
230                 return false;
231         if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
232                 return true;
233         return false;
234 }
235
236 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
237 {
238         if (!alpha2_x || !alpha2_y)
239                 return false;
240         if (alpha2_x[0] == alpha2_y[0] &&
241                 alpha2_x[1] == alpha2_y[1])
242                 return true;
243         return false;
244 }
245
246 static bool regdom_changes(const char *alpha2)
247 {
248         assert_cfg80211_lock();
249
250         if (!cfg80211_regdomain)
251                 return true;
252         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
253                 return false;
254         return true;
255 }
256
257 /*
258  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
259  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
260  * has ever been issued.
261  */
262 static bool is_user_regdom_saved(void)
263 {
264         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
265                 return false;
266
267         /* This would indicate a mistake on the design */
268         if (WARN((!is_world_regdom(user_alpha2) &&
269                   !is_an_alpha2(user_alpha2)),
270                  "Unexpected user alpha2: %c%c\n",
271                  user_alpha2[0],
272                  user_alpha2[1]))
273                 return false;
274
275         return true;
276 }
277
278 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
279                          const struct ieee80211_regdomain *src_regd)
280 {
281         struct ieee80211_regdomain *regd;
282         int size_of_regd = 0;
283         unsigned int i;
284
285         size_of_regd = sizeof(struct ieee80211_regdomain) +
286           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
287
288         regd = kzalloc(size_of_regd, GFP_KERNEL);
289         if (!regd)
290                 return -ENOMEM;
291
292         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
293
294         for (i = 0; i < src_regd->n_reg_rules; i++)
295                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
296                         sizeof(struct ieee80211_reg_rule));
297
298         *dst_regd = regd;
299         return 0;
300 }
301
302 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
303 struct reg_regdb_search_request {
304         char alpha2[2];
305         struct list_head list;
306 };
307
308 static LIST_HEAD(reg_regdb_search_list);
309 static DEFINE_MUTEX(reg_regdb_search_mutex);
310
311 static void reg_regdb_search(struct work_struct *work)
312 {
313         struct reg_regdb_search_request *request;
314         const struct ieee80211_regdomain *curdom, *regdom;
315         int i, r;
316
317         mutex_lock(&reg_regdb_search_mutex);
318         while (!list_empty(&reg_regdb_search_list)) {
319                 request = list_first_entry(&reg_regdb_search_list,
320                                            struct reg_regdb_search_request,
321                                            list);
322                 list_del(&request->list);
323
324                 for (i=0; i<reg_regdb_size; i++) {
325                         curdom = reg_regdb[i];
326
327                         if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
328                                 r = reg_copy_regd(&regdom, curdom);
329                                 if (r)
330                                         break;
331                                 mutex_lock(&cfg80211_mutex);
332                                 set_regdom(regdom);
333                                 mutex_unlock(&cfg80211_mutex);
334                                 break;
335                         }
336                 }
337
338                 kfree(request);
339         }
340         mutex_unlock(&reg_regdb_search_mutex);
341 }
342
343 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
344
345 static void reg_regdb_query(const char *alpha2)
346 {
347         struct reg_regdb_search_request *request;
348
349         if (!alpha2)
350                 return;
351
352         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
353         if (!request)
354                 return;
355
356         memcpy(request->alpha2, alpha2, 2);
357
358         mutex_lock(&reg_regdb_search_mutex);
359         list_add_tail(&request->list, &reg_regdb_search_list);
360         mutex_unlock(&reg_regdb_search_mutex);
361
362         schedule_work(&reg_regdb_work);
363 }
364 #else
365 static inline void reg_regdb_query(const char *alpha2) {}
366 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
367
368 /*
369  * This lets us keep regulatory code which is updated on a regulatory
370  * basis in userspace. Country information is filled in by
371  * reg_device_uevent
372  */
373 static int call_crda(const char *alpha2)
374 {
375         if (!is_world_regdom((char *) alpha2))
376                 pr_info("Calling CRDA for country: %c%c\n",
377                         alpha2[0], alpha2[1]);
378         else
379                 pr_info("Calling CRDA to update world regulatory domain\n");
380
381         /* query internal regulatory database (if it exists) */
382         reg_regdb_query(alpha2);
383
384         return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
385 }
386
387 /* Used by nl80211 before kmalloc'ing our regulatory domain */
388 bool reg_is_valid_request(const char *alpha2)
389 {
390         assert_cfg80211_lock();
391
392         if (!last_request)
393                 return false;
394
395         return alpha2_equal(last_request->alpha2, alpha2);
396 }
397
398 /* Sanity check on a regulatory rule */
399 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
400 {
401         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
402         u32 freq_diff;
403
404         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
405                 return false;
406
407         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
408                 return false;
409
410         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
411
412         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
413                         freq_range->max_bandwidth_khz > freq_diff)
414                 return false;
415
416         return true;
417 }
418
419 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
420 {
421         const struct ieee80211_reg_rule *reg_rule = NULL;
422         unsigned int i;
423
424         if (!rd->n_reg_rules)
425                 return false;
426
427         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
428                 return false;
429
430         for (i = 0; i < rd->n_reg_rules; i++) {
431                 reg_rule = &rd->reg_rules[i];
432                 if (!is_valid_reg_rule(reg_rule))
433                         return false;
434         }
435
436         return true;
437 }
438
439 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
440                             u32 center_freq_khz,
441                             u32 bw_khz)
442 {
443         u32 start_freq_khz, end_freq_khz;
444
445         start_freq_khz = center_freq_khz - (bw_khz/2);
446         end_freq_khz = center_freq_khz + (bw_khz/2);
447
448         if (start_freq_khz >= freq_range->start_freq_khz &&
449             end_freq_khz <= freq_range->end_freq_khz)
450                 return true;
451
452         return false;
453 }
454
455 /**
456  * freq_in_rule_band - tells us if a frequency is in a frequency band
457  * @freq_range: frequency rule we want to query
458  * @freq_khz: frequency we are inquiring about
459  *
460  * This lets us know if a specific frequency rule is or is not relevant to
461  * a specific frequency's band. Bands are device specific and artificial
462  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
463  * safe for now to assume that a frequency rule should not be part of a
464  * frequency's band if the start freq or end freq are off by more than 2 GHz.
465  * This resolution can be lowered and should be considered as we add
466  * regulatory rule support for other "bands".
467  **/
468 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
469         u32 freq_khz)
470 {
471 #define ONE_GHZ_IN_KHZ  1000000
472         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
473                 return true;
474         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
475                 return true;
476         return false;
477 #undef ONE_GHZ_IN_KHZ
478 }
479
480 /*
481  * Helper for regdom_intersect(), this does the real
482  * mathematical intersection fun
483  */
484 static int reg_rules_intersect(
485         const struct ieee80211_reg_rule *rule1,
486         const struct ieee80211_reg_rule *rule2,
487         struct ieee80211_reg_rule *intersected_rule)
488 {
489         const struct ieee80211_freq_range *freq_range1, *freq_range2;
490         struct ieee80211_freq_range *freq_range;
491         const struct ieee80211_power_rule *power_rule1, *power_rule2;
492         struct ieee80211_power_rule *power_rule;
493         u32 freq_diff;
494
495         freq_range1 = &rule1->freq_range;
496         freq_range2 = &rule2->freq_range;
497         freq_range = &intersected_rule->freq_range;
498
499         power_rule1 = &rule1->power_rule;
500         power_rule2 = &rule2->power_rule;
501         power_rule = &intersected_rule->power_rule;
502
503         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
504                 freq_range2->start_freq_khz);
505         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
506                 freq_range2->end_freq_khz);
507         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
508                 freq_range2->max_bandwidth_khz);
509
510         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
511         if (freq_range->max_bandwidth_khz > freq_diff)
512                 freq_range->max_bandwidth_khz = freq_diff;
513
514         power_rule->max_eirp = min(power_rule1->max_eirp,
515                 power_rule2->max_eirp);
516         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
517                 power_rule2->max_antenna_gain);
518
519         intersected_rule->flags = (rule1->flags | rule2->flags);
520
521         if (!is_valid_reg_rule(intersected_rule))
522                 return -EINVAL;
523
524         return 0;
525 }
526
527 /**
528  * regdom_intersect - do the intersection between two regulatory domains
529  * @rd1: first regulatory domain
530  * @rd2: second regulatory domain
531  *
532  * Use this function to get the intersection between two regulatory domains.
533  * Once completed we will mark the alpha2 for the rd as intersected, "98",
534  * as no one single alpha2 can represent this regulatory domain.
535  *
536  * Returns a pointer to the regulatory domain structure which will hold the
537  * resulting intersection of rules between rd1 and rd2. We will
538  * kzalloc() this structure for you.
539  */
540 static struct ieee80211_regdomain *regdom_intersect(
541         const struct ieee80211_regdomain *rd1,
542         const struct ieee80211_regdomain *rd2)
543 {
544         int r, size_of_regd;
545         unsigned int x, y;
546         unsigned int num_rules = 0, rule_idx = 0;
547         const struct ieee80211_reg_rule *rule1, *rule2;
548         struct ieee80211_reg_rule *intersected_rule;
549         struct ieee80211_regdomain *rd;
550         /* This is just a dummy holder to help us count */
551         struct ieee80211_reg_rule irule;
552
553         /* Uses the stack temporarily for counter arithmetic */
554         intersected_rule = &irule;
555
556         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
557
558         if (!rd1 || !rd2)
559                 return NULL;
560
561         /*
562          * First we get a count of the rules we'll need, then we actually
563          * build them. This is to so we can malloc() and free() a
564          * regdomain once. The reason we use reg_rules_intersect() here
565          * is it will return -EINVAL if the rule computed makes no sense.
566          * All rules that do check out OK are valid.
567          */
568
569         for (x = 0; x < rd1->n_reg_rules; x++) {
570                 rule1 = &rd1->reg_rules[x];
571                 for (y = 0; y < rd2->n_reg_rules; y++) {
572                         rule2 = &rd2->reg_rules[y];
573                         if (!reg_rules_intersect(rule1, rule2,
574                                         intersected_rule))
575                                 num_rules++;
576                         memset(intersected_rule, 0,
577                                         sizeof(struct ieee80211_reg_rule));
578                 }
579         }
580
581         if (!num_rules)
582                 return NULL;
583
584         size_of_regd = sizeof(struct ieee80211_regdomain) +
585                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
586
587         rd = kzalloc(size_of_regd, GFP_KERNEL);
588         if (!rd)
589                 return NULL;
590
591         for (x = 0; x < rd1->n_reg_rules; x++) {
592                 rule1 = &rd1->reg_rules[x];
593                 for (y = 0; y < rd2->n_reg_rules; y++) {
594                         rule2 = &rd2->reg_rules[y];
595                         /*
596                          * This time around instead of using the stack lets
597                          * write to the target rule directly saving ourselves
598                          * a memcpy()
599                          */
600                         intersected_rule = &rd->reg_rules[rule_idx];
601                         r = reg_rules_intersect(rule1, rule2,
602                                 intersected_rule);
603                         /*
604                          * No need to memset here the intersected rule here as
605                          * we're not using the stack anymore
606                          */
607                         if (r)
608                                 continue;
609                         rule_idx++;
610                 }
611         }
612
613         if (rule_idx != num_rules) {
614                 kfree(rd);
615                 return NULL;
616         }
617
618         rd->n_reg_rules = num_rules;
619         rd->alpha2[0] = '9';
620         rd->alpha2[1] = '8';
621
622         return rd;
623 }
624
625 /*
626  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
627  * want to just have the channel structure use these
628  */
629 static u32 map_regdom_flags(u32 rd_flags)
630 {
631         u32 channel_flags = 0;
632         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
633                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
634         if (rd_flags & NL80211_RRF_NO_IBSS)
635                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
636         if (rd_flags & NL80211_RRF_DFS)
637                 channel_flags |= IEEE80211_CHAN_RADAR;
638         return channel_flags;
639 }
640
641 static int freq_reg_info_regd(struct wiphy *wiphy,
642                               u32 center_freq,
643                               u32 desired_bw_khz,
644                               const struct ieee80211_reg_rule **reg_rule,
645                               const struct ieee80211_regdomain *custom_regd)
646 {
647         int i;
648         bool band_rule_found = false;
649         const struct ieee80211_regdomain *regd;
650         bool bw_fits = false;
651
652         if (!desired_bw_khz)
653                 desired_bw_khz = MHZ_TO_KHZ(20);
654
655         regd = custom_regd ? custom_regd : cfg80211_regdomain;
656
657         /*
658          * Follow the driver's regulatory domain, if present, unless a country
659          * IE has been processed or a user wants to help complaince further
660          */
661         if (!custom_regd &&
662             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
663             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
664             wiphy->regd)
665                 regd = wiphy->regd;
666
667         if (!regd)
668                 return -EINVAL;
669
670         for (i = 0; i < regd->n_reg_rules; i++) {
671                 const struct ieee80211_reg_rule *rr;
672                 const struct ieee80211_freq_range *fr = NULL;
673
674                 rr = &regd->reg_rules[i];
675                 fr = &rr->freq_range;
676
677                 /*
678                  * We only need to know if one frequency rule was
679                  * was in center_freq's band, that's enough, so lets
680                  * not overwrite it once found
681                  */
682                 if (!band_rule_found)
683                         band_rule_found = freq_in_rule_band(fr, center_freq);
684
685                 bw_fits = reg_does_bw_fit(fr,
686                                           center_freq,
687                                           desired_bw_khz);
688
689                 if (band_rule_found && bw_fits) {
690                         *reg_rule = rr;
691                         return 0;
692                 }
693         }
694
695         if (!band_rule_found)
696                 return -ERANGE;
697
698         return -EINVAL;
699 }
700
701 int freq_reg_info(struct wiphy *wiphy,
702                   u32 center_freq,
703                   u32 desired_bw_khz,
704                   const struct ieee80211_reg_rule **reg_rule)
705 {
706         assert_cfg80211_lock();
707         return freq_reg_info_regd(wiphy,
708                                   center_freq,
709                                   desired_bw_khz,
710                                   reg_rule,
711                                   NULL);
712 }
713 EXPORT_SYMBOL(freq_reg_info);
714
715 #ifdef CONFIG_CFG80211_REG_DEBUG
716 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
717 {
718         switch (initiator) {
719         case NL80211_REGDOM_SET_BY_CORE:
720                 return "Set by core";
721         case NL80211_REGDOM_SET_BY_USER:
722                 return "Set by user";
723         case NL80211_REGDOM_SET_BY_DRIVER:
724                 return "Set by driver";
725         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
726                 return "Set by country IE";
727         default:
728                 WARN_ON(1);
729                 return "Set by bug";
730         }
731 }
732
733 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
734                                     u32 desired_bw_khz,
735                                     const struct ieee80211_reg_rule *reg_rule)
736 {
737         const struct ieee80211_power_rule *power_rule;
738         const struct ieee80211_freq_range *freq_range;
739         char max_antenna_gain[32];
740
741         power_rule = &reg_rule->power_rule;
742         freq_range = &reg_rule->freq_range;
743
744         if (!power_rule->max_antenna_gain)
745                 snprintf(max_antenna_gain, 32, "N/A");
746         else
747                 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
748
749         REG_DBG_PRINT("Updating information on frequency %d MHz "
750                       "for a %d MHz width channel with regulatory rule:\n",
751                       chan->center_freq,
752                       KHZ_TO_MHZ(desired_bw_khz));
753
754         REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
755                       freq_range->start_freq_khz,
756                       freq_range->end_freq_khz,
757                       freq_range->max_bandwidth_khz,
758                       max_antenna_gain,
759                       power_rule->max_eirp);
760 }
761 #else
762 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
763                                     u32 desired_bw_khz,
764                                     const struct ieee80211_reg_rule *reg_rule)
765 {
766         return;
767 }
768 #endif
769
770 /*
771  * Note that right now we assume the desired channel bandwidth
772  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
773  * per channel, the primary and the extension channel). To support
774  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
775  * new ieee80211_channel.target_bw and re run the regulatory check
776  * on the wiphy with the target_bw specified. Then we can simply use
777  * that below for the desired_bw_khz below.
778  */
779 static void handle_channel(struct wiphy *wiphy,
780                            enum nl80211_reg_initiator initiator,
781                            enum ieee80211_band band,
782                            unsigned int chan_idx)
783 {
784         int r;
785         u32 flags, bw_flags = 0;
786         u32 desired_bw_khz = MHZ_TO_KHZ(20);
787         const struct ieee80211_reg_rule *reg_rule = NULL;
788         const struct ieee80211_power_rule *power_rule = NULL;
789         const struct ieee80211_freq_range *freq_range = NULL;
790         struct ieee80211_supported_band *sband;
791         struct ieee80211_channel *chan;
792         struct wiphy *request_wiphy = NULL;
793
794         assert_cfg80211_lock();
795
796         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
797
798         sband = wiphy->bands[band];
799         BUG_ON(chan_idx >= sband->n_channels);
800         chan = &sband->channels[chan_idx];
801
802         flags = chan->orig_flags;
803
804         r = freq_reg_info(wiphy,
805                           MHZ_TO_KHZ(chan->center_freq),
806                           desired_bw_khz,
807                           &reg_rule);
808
809         if (r) {
810                 /*
811                  * We will disable all channels that do not match our
812                  * received regulatory rule unless the hint is coming
813                  * from a Country IE and the Country IE had no information
814                  * about a band. The IEEE 802.11 spec allows for an AP
815                  * to send only a subset of the regulatory rules allowed,
816                  * so an AP in the US that only supports 2.4 GHz may only send
817                  * a country IE with information for the 2.4 GHz band
818                  * while 5 GHz is still supported.
819                  */
820                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
821                     r == -ERANGE)
822                         return;
823
824                 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
825                 chan->flags = IEEE80211_CHAN_DISABLED;
826                 return;
827         }
828
829         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
830
831         power_rule = &reg_rule->power_rule;
832         freq_range = &reg_rule->freq_range;
833
834         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
835                 bw_flags = IEEE80211_CHAN_NO_HT40;
836
837         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
838             request_wiphy && request_wiphy == wiphy &&
839             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
840                 /*
841                  * This guarantees the driver's requested regulatory domain
842                  * will always be used as a base for further regulatory
843                  * settings
844                  */
845                 chan->flags = chan->orig_flags =
846                         map_regdom_flags(reg_rule->flags) | bw_flags;
847                 chan->max_antenna_gain = chan->orig_mag =
848                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
849                 chan->max_power = chan->orig_mpwr =
850                         (int) MBM_TO_DBM(power_rule->max_eirp);
851                 return;
852         }
853
854         chan->beacon_found = false;
855         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
856         chan->max_antenna_gain = min(chan->orig_mag,
857                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
858         if (chan->orig_mpwr)
859                 chan->max_power = min(chan->orig_mpwr,
860                         (int) MBM_TO_DBM(power_rule->max_eirp));
861         else
862                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
863 }
864
865 static void handle_band(struct wiphy *wiphy,
866                         enum ieee80211_band band,
867                         enum nl80211_reg_initiator initiator)
868 {
869         unsigned int i;
870         struct ieee80211_supported_band *sband;
871
872         BUG_ON(!wiphy->bands[band]);
873         sband = wiphy->bands[band];
874
875         for (i = 0; i < sband->n_channels; i++)
876                 handle_channel(wiphy, initiator, band, i);
877 }
878
879 static bool ignore_reg_update(struct wiphy *wiphy,
880                               enum nl80211_reg_initiator initiator)
881 {
882         if (!last_request) {
883                 REG_DBG_PRINT("Ignoring regulatory request %s since "
884                               "last_request is not set\n",
885                               reg_initiator_name(initiator));
886                 return true;
887         }
888
889         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
890             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
891                 REG_DBG_PRINT("Ignoring regulatory request %s "
892                               "since the driver uses its own custom "
893                               "regulatory domain\n",
894                               reg_initiator_name(initiator));
895                 return true;
896         }
897
898         /*
899          * wiphy->regd will be set once the device has its own
900          * desired regulatory domain set
901          */
902         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
903             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
904             !is_world_regdom(last_request->alpha2)) {
905                 REG_DBG_PRINT("Ignoring regulatory request %s "
906                               "since the driver requires its own regulatory "
907                               "domain to be set first\n",
908                               reg_initiator_name(initiator));
909                 return true;
910         }
911
912         return false;
913 }
914
915 static void handle_reg_beacon(struct wiphy *wiphy,
916                               unsigned int chan_idx,
917                               struct reg_beacon *reg_beacon)
918 {
919         struct ieee80211_supported_band *sband;
920         struct ieee80211_channel *chan;
921         bool channel_changed = false;
922         struct ieee80211_channel chan_before;
923
924         assert_cfg80211_lock();
925
926         sband = wiphy->bands[reg_beacon->chan.band];
927         chan = &sband->channels[chan_idx];
928
929         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
930                 return;
931
932         if (chan->beacon_found)
933                 return;
934
935         chan->beacon_found = true;
936
937         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
938                 return;
939
940         chan_before.center_freq = chan->center_freq;
941         chan_before.flags = chan->flags;
942
943         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
944                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
945                 channel_changed = true;
946         }
947
948         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
949                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
950                 channel_changed = true;
951         }
952
953         if (channel_changed)
954                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
955 }
956
957 /*
958  * Called when a scan on a wiphy finds a beacon on
959  * new channel
960  */
961 static void wiphy_update_new_beacon(struct wiphy *wiphy,
962                                     struct reg_beacon *reg_beacon)
963 {
964         unsigned int i;
965         struct ieee80211_supported_band *sband;
966
967         assert_cfg80211_lock();
968
969         if (!wiphy->bands[reg_beacon->chan.band])
970                 return;
971
972         sband = wiphy->bands[reg_beacon->chan.band];
973
974         for (i = 0; i < sband->n_channels; i++)
975                 handle_reg_beacon(wiphy, i, reg_beacon);
976 }
977
978 /*
979  * Called upon reg changes or a new wiphy is added
980  */
981 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
982 {
983         unsigned int i;
984         struct ieee80211_supported_band *sband;
985         struct reg_beacon *reg_beacon;
986
987         assert_cfg80211_lock();
988
989         if (list_empty(&reg_beacon_list))
990                 return;
991
992         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
993                 if (!wiphy->bands[reg_beacon->chan.band])
994                         continue;
995                 sband = wiphy->bands[reg_beacon->chan.band];
996                 for (i = 0; i < sband->n_channels; i++)
997                         handle_reg_beacon(wiphy, i, reg_beacon);
998         }
999 }
1000
1001 static bool reg_is_world_roaming(struct wiphy *wiphy)
1002 {
1003         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1004             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1005                 return true;
1006         if (last_request &&
1007             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1008             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1009                 return true;
1010         return false;
1011 }
1012
1013 /* Reap the advantages of previously found beacons */
1014 static void reg_process_beacons(struct wiphy *wiphy)
1015 {
1016         /*
1017          * Means we are just firing up cfg80211, so no beacons would
1018          * have been processed yet.
1019          */
1020         if (!last_request)
1021                 return;
1022         if (!reg_is_world_roaming(wiphy))
1023                 return;
1024         wiphy_update_beacon_reg(wiphy);
1025 }
1026
1027 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1028 {
1029         if (!chan)
1030                 return true;
1031         if (chan->flags & IEEE80211_CHAN_DISABLED)
1032                 return true;
1033         /* This would happen when regulatory rules disallow HT40 completely */
1034         if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1035                 return true;
1036         return false;
1037 }
1038
1039 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1040                                          enum ieee80211_band band,
1041                                          unsigned int chan_idx)
1042 {
1043         struct ieee80211_supported_band *sband;
1044         struct ieee80211_channel *channel;
1045         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1046         unsigned int i;
1047
1048         assert_cfg80211_lock();
1049
1050         sband = wiphy->bands[band];
1051         BUG_ON(chan_idx >= sband->n_channels);
1052         channel = &sband->channels[chan_idx];
1053
1054         if (is_ht40_not_allowed(channel)) {
1055                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1056                 return;
1057         }
1058
1059         /*
1060          * We need to ensure the extension channels exist to
1061          * be able to use HT40- or HT40+, this finds them (or not)
1062          */
1063         for (i = 0; i < sband->n_channels; i++) {
1064                 struct ieee80211_channel *c = &sband->channels[i];
1065                 if (c->center_freq == (channel->center_freq - 20))
1066                         channel_before = c;
1067                 if (c->center_freq == (channel->center_freq + 20))
1068                         channel_after = c;
1069         }
1070
1071         /*
1072          * Please note that this assumes target bandwidth is 20 MHz,
1073          * if that ever changes we also need to change the below logic
1074          * to include that as well.
1075          */
1076         if (is_ht40_not_allowed(channel_before))
1077                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1078         else
1079                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1080
1081         if (is_ht40_not_allowed(channel_after))
1082                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1083         else
1084                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1085 }
1086
1087 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1088                                       enum ieee80211_band band)
1089 {
1090         unsigned int i;
1091         struct ieee80211_supported_band *sband;
1092
1093         BUG_ON(!wiphy->bands[band]);
1094         sband = wiphy->bands[band];
1095
1096         for (i = 0; i < sband->n_channels; i++)
1097                 reg_process_ht_flags_channel(wiphy, band, i);
1098 }
1099
1100 static void reg_process_ht_flags(struct wiphy *wiphy)
1101 {
1102         enum ieee80211_band band;
1103
1104         if (!wiphy)
1105                 return;
1106
1107         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1108                 if (wiphy->bands[band])
1109                         reg_process_ht_flags_band(wiphy, band);
1110         }
1111
1112 }
1113
1114 static void wiphy_update_regulatory(struct wiphy *wiphy,
1115                                     enum nl80211_reg_initiator initiator)
1116 {
1117         enum ieee80211_band band;
1118
1119         assert_reg_lock();
1120
1121         if (ignore_reg_update(wiphy, initiator))
1122                 return;
1123
1124         last_request->dfs_region = cfg80211_regdomain->dfs_region;
1125
1126         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1127                 if (wiphy->bands[band])
1128                         handle_band(wiphy, band, initiator);
1129         }
1130
1131         reg_process_beacons(wiphy);
1132         reg_process_ht_flags(wiphy);
1133         if (wiphy->reg_notifier)
1134                 wiphy->reg_notifier(wiphy, last_request);
1135 }
1136
1137 void regulatory_update(struct wiphy *wiphy,
1138                        enum nl80211_reg_initiator setby)
1139 {
1140         mutex_lock(&reg_mutex);
1141         wiphy_update_regulatory(wiphy, setby);
1142         mutex_unlock(&reg_mutex);
1143 }
1144
1145 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1146 {
1147         struct cfg80211_registered_device *rdev;
1148
1149         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1150                 wiphy_update_regulatory(&rdev->wiphy, initiator);
1151 }
1152
1153 static void handle_channel_custom(struct wiphy *wiphy,
1154                                   enum ieee80211_band band,
1155                                   unsigned int chan_idx,
1156                                   const struct ieee80211_regdomain *regd)
1157 {
1158         int r;
1159         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1160         u32 bw_flags = 0;
1161         const struct ieee80211_reg_rule *reg_rule = NULL;
1162         const struct ieee80211_power_rule *power_rule = NULL;
1163         const struct ieee80211_freq_range *freq_range = NULL;
1164         struct ieee80211_supported_band *sband;
1165         struct ieee80211_channel *chan;
1166
1167         assert_reg_lock();
1168
1169         sband = wiphy->bands[band];
1170         BUG_ON(chan_idx >= sband->n_channels);
1171         chan = &sband->channels[chan_idx];
1172
1173         r = freq_reg_info_regd(wiphy,
1174                                MHZ_TO_KHZ(chan->center_freq),
1175                                desired_bw_khz,
1176                                &reg_rule,
1177                                regd);
1178
1179         if (r) {
1180                 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1181                               "regd has no rule that fits a %d MHz "
1182                               "wide channel\n",
1183                               chan->center_freq,
1184                               KHZ_TO_MHZ(desired_bw_khz));
1185                 chan->flags = IEEE80211_CHAN_DISABLED;
1186                 return;
1187         }
1188
1189         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1190
1191         power_rule = &reg_rule->power_rule;
1192         freq_range = &reg_rule->freq_range;
1193
1194         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1195                 bw_flags = IEEE80211_CHAN_NO_HT40;
1196
1197         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1198         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1199         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1200 }
1201
1202 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1203                                const struct ieee80211_regdomain *regd)
1204 {
1205         unsigned int i;
1206         struct ieee80211_supported_band *sband;
1207
1208         BUG_ON(!wiphy->bands[band]);
1209         sband = wiphy->bands[band];
1210
1211         for (i = 0; i < sband->n_channels; i++)
1212                 handle_channel_custom(wiphy, band, i, regd);
1213 }
1214
1215 /* Used by drivers prior to wiphy registration */
1216 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1217                                    const struct ieee80211_regdomain *regd)
1218 {
1219         enum ieee80211_band band;
1220         unsigned int bands_set = 0;
1221
1222         mutex_lock(&reg_mutex);
1223         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1224                 if (!wiphy->bands[band])
1225                         continue;
1226                 handle_band_custom(wiphy, band, regd);
1227                 bands_set++;
1228         }
1229         mutex_unlock(&reg_mutex);
1230
1231         /*
1232          * no point in calling this if it won't have any effect
1233          * on your device's supportd bands.
1234          */
1235         WARN_ON(!bands_set);
1236 }
1237 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1238
1239 /*
1240  * Return value which can be used by ignore_request() to indicate
1241  * it has been determined we should intersect two regulatory domains
1242  */
1243 #define REG_INTERSECT   1
1244
1245 /* This has the logic which determines when a new request
1246  * should be ignored. */
1247 static int ignore_request(struct wiphy *wiphy,
1248                           struct regulatory_request *pending_request)
1249 {
1250         struct wiphy *last_wiphy = NULL;
1251
1252         assert_cfg80211_lock();
1253
1254         /* All initial requests are respected */
1255         if (!last_request)
1256                 return 0;
1257
1258         switch (pending_request->initiator) {
1259         case NL80211_REGDOM_SET_BY_CORE:
1260                 return 0;
1261         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1262
1263                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1264
1265                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1266                         return -EINVAL;
1267                 if (last_request->initiator ==
1268                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1269                         if (last_wiphy != wiphy) {
1270                                 /*
1271                                  * Two cards with two APs claiming different
1272                                  * Country IE alpha2s. We could
1273                                  * intersect them, but that seems unlikely
1274                                  * to be correct. Reject second one for now.
1275                                  */
1276                                 if (regdom_changes(pending_request->alpha2))
1277                                         return -EOPNOTSUPP;
1278                                 return -EALREADY;
1279                         }
1280                         /*
1281                          * Two consecutive Country IE hints on the same wiphy.
1282                          * This should be picked up early by the driver/stack
1283                          */
1284                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1285                                 return 0;
1286                         return -EALREADY;
1287                 }
1288                 return 0;
1289         case NL80211_REGDOM_SET_BY_DRIVER:
1290                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1291                         if (regdom_changes(pending_request->alpha2))
1292                                 return 0;
1293                         return -EALREADY;
1294                 }
1295
1296                 /*
1297                  * This would happen if you unplug and plug your card
1298                  * back in or if you add a new device for which the previously
1299                  * loaded card also agrees on the regulatory domain.
1300                  */
1301                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1302                     !regdom_changes(pending_request->alpha2))
1303                         return -EALREADY;
1304
1305                 return REG_INTERSECT;
1306         case NL80211_REGDOM_SET_BY_USER:
1307                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1308                         return REG_INTERSECT;
1309                 /*
1310                  * If the user knows better the user should set the regdom
1311                  * to their country before the IE is picked up
1312                  */
1313                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1314                           last_request->intersect)
1315                         return -EOPNOTSUPP;
1316                 /*
1317                  * Process user requests only after previous user/driver/core
1318                  * requests have been processed
1319                  */
1320                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1321                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1322                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1323                         if (regdom_changes(last_request->alpha2))
1324                                 return -EAGAIN;
1325                 }
1326
1327                 if (!regdom_changes(pending_request->alpha2))
1328                         return -EALREADY;
1329
1330                 return 0;
1331         }
1332
1333         return -EINVAL;
1334 }
1335
1336 static void reg_set_request_processed(void)
1337 {
1338         bool need_more_processing = false;
1339
1340         last_request->processed = true;
1341
1342         spin_lock(&reg_requests_lock);
1343         if (!list_empty(&reg_requests_list))
1344                 need_more_processing = true;
1345         spin_unlock(&reg_requests_lock);
1346
1347         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1348                 cancel_delayed_work_sync(&reg_timeout);
1349
1350         if (need_more_processing)
1351                 schedule_work(&reg_work);
1352 }
1353
1354 /**
1355  * __regulatory_hint - hint to the wireless core a regulatory domain
1356  * @wiphy: if the hint comes from country information from an AP, this
1357  *      is required to be set to the wiphy that received the information
1358  * @pending_request: the regulatory request currently being processed
1359  *
1360  * The Wireless subsystem can use this function to hint to the wireless core
1361  * what it believes should be the current regulatory domain.
1362  *
1363  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1364  * already been set or other standard error codes.
1365  *
1366  * Caller must hold &cfg80211_mutex and &reg_mutex
1367  */
1368 static int __regulatory_hint(struct wiphy *wiphy,
1369                              struct regulatory_request *pending_request)
1370 {
1371         bool intersect = false;
1372         int r = 0;
1373
1374         assert_cfg80211_lock();
1375
1376         r = ignore_request(wiphy, pending_request);
1377
1378         if (r == REG_INTERSECT) {
1379                 if (pending_request->initiator ==
1380                     NL80211_REGDOM_SET_BY_DRIVER) {
1381                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1382                         if (r) {
1383                                 kfree(pending_request);
1384                                 return r;
1385                         }
1386                 }
1387                 intersect = true;
1388         } else if (r) {
1389                 /*
1390                  * If the regulatory domain being requested by the
1391                  * driver has already been set just copy it to the
1392                  * wiphy
1393                  */
1394                 if (r == -EALREADY &&
1395                     pending_request->initiator ==
1396                     NL80211_REGDOM_SET_BY_DRIVER) {
1397                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1398                         if (r) {
1399                                 kfree(pending_request);
1400                                 return r;
1401                         }
1402                         r = -EALREADY;
1403                         goto new_request;
1404                 }
1405                 kfree(pending_request);
1406                 return r;
1407         }
1408
1409 new_request:
1410         kfree(last_request);
1411
1412         last_request = pending_request;
1413         last_request->intersect = intersect;
1414
1415         pending_request = NULL;
1416
1417         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1418                 user_alpha2[0] = last_request->alpha2[0];
1419                 user_alpha2[1] = last_request->alpha2[1];
1420         }
1421
1422         /* When r == REG_INTERSECT we do need to call CRDA */
1423         if (r < 0) {
1424                 /*
1425                  * Since CRDA will not be called in this case as we already
1426                  * have applied the requested regulatory domain before we just
1427                  * inform userspace we have processed the request
1428                  */
1429                 if (r == -EALREADY) {
1430                         nl80211_send_reg_change_event(last_request);
1431                         reg_set_request_processed();
1432                 }
1433                 return r;
1434         }
1435
1436         return call_crda(last_request->alpha2);
1437 }
1438
1439 /* This processes *all* regulatory hints */
1440 static void reg_process_hint(struct regulatory_request *reg_request)
1441 {
1442         int r = 0;
1443         struct wiphy *wiphy = NULL;
1444         enum nl80211_reg_initiator initiator = reg_request->initiator;
1445
1446         BUG_ON(!reg_request->alpha2);
1447
1448         if (wiphy_idx_valid(reg_request->wiphy_idx))
1449                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1450
1451         if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1452             !wiphy) {
1453                 kfree(reg_request);
1454                 return;
1455         }
1456
1457         r = __regulatory_hint(wiphy, reg_request);
1458         /* This is required so that the orig_* parameters are saved */
1459         if (r == -EALREADY && wiphy &&
1460             wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1461                 wiphy_update_regulatory(wiphy, initiator);
1462                 return;
1463         }
1464
1465         /*
1466          * We only time out user hints, given that they should be the only
1467          * source of bogus requests.
1468          */
1469         if (r != -EALREADY &&
1470             reg_request->initiator == NL80211_REGDOM_SET_BY_USER)
1471                 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1472 }
1473
1474 /*
1475  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1476  * Regulatory hints come on a first come first serve basis and we
1477  * must process each one atomically.
1478  */
1479 static void reg_process_pending_hints(void)
1480 {
1481         struct regulatory_request *reg_request;
1482
1483         mutex_lock(&cfg80211_mutex);
1484         mutex_lock(&reg_mutex);
1485
1486         /* When last_request->processed becomes true this will be rescheduled */
1487         if (last_request && !last_request->processed) {
1488                 REG_DBG_PRINT("Pending regulatory request, waiting "
1489                               "for it to be processed...\n");
1490                 goto out;
1491         }
1492
1493         spin_lock(&reg_requests_lock);
1494
1495         if (list_empty(&reg_requests_list)) {
1496                 spin_unlock(&reg_requests_lock);
1497                 goto out;
1498         }
1499
1500         reg_request = list_first_entry(&reg_requests_list,
1501                                        struct regulatory_request,
1502                                        list);
1503         list_del_init(&reg_request->list);
1504
1505         spin_unlock(&reg_requests_lock);
1506
1507         reg_process_hint(reg_request);
1508
1509 out:
1510         mutex_unlock(&reg_mutex);
1511         mutex_unlock(&cfg80211_mutex);
1512 }
1513
1514 /* Processes beacon hints -- this has nothing to do with country IEs */
1515 static void reg_process_pending_beacon_hints(void)
1516 {
1517         struct cfg80211_registered_device *rdev;
1518         struct reg_beacon *pending_beacon, *tmp;
1519
1520         /*
1521          * No need to hold the reg_mutex here as we just touch wiphys
1522          * and do not read or access regulatory variables.
1523          */
1524         mutex_lock(&cfg80211_mutex);
1525
1526         /* This goes through the _pending_ beacon list */
1527         spin_lock_bh(&reg_pending_beacons_lock);
1528
1529         if (list_empty(&reg_pending_beacons)) {
1530                 spin_unlock_bh(&reg_pending_beacons_lock);
1531                 goto out;
1532         }
1533
1534         list_for_each_entry_safe(pending_beacon, tmp,
1535                                  &reg_pending_beacons, list) {
1536
1537                 list_del_init(&pending_beacon->list);
1538
1539                 /* Applies the beacon hint to current wiphys */
1540                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1541                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1542
1543                 /* Remembers the beacon hint for new wiphys or reg changes */
1544                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1545         }
1546
1547         spin_unlock_bh(&reg_pending_beacons_lock);
1548 out:
1549         mutex_unlock(&cfg80211_mutex);
1550 }
1551
1552 static void reg_todo(struct work_struct *work)
1553 {
1554         reg_process_pending_hints();
1555         reg_process_pending_beacon_hints();
1556 }
1557
1558 static void queue_regulatory_request(struct regulatory_request *request)
1559 {
1560         if (isalpha(request->alpha2[0]))
1561                 request->alpha2[0] = toupper(request->alpha2[0]);
1562         if (isalpha(request->alpha2[1]))
1563                 request->alpha2[1] = toupper(request->alpha2[1]);
1564
1565         spin_lock(&reg_requests_lock);
1566         list_add_tail(&request->list, &reg_requests_list);
1567         spin_unlock(&reg_requests_lock);
1568
1569         schedule_work(&reg_work);
1570 }
1571
1572 /*
1573  * Core regulatory hint -- happens during cfg80211_init()
1574  * and when we restore regulatory settings.
1575  */
1576 static int regulatory_hint_core(const char *alpha2)
1577 {
1578         struct regulatory_request *request;
1579
1580         kfree(last_request);
1581         last_request = NULL;
1582
1583         request = kzalloc(sizeof(struct regulatory_request),
1584                           GFP_KERNEL);
1585         if (!request)
1586                 return -ENOMEM;
1587
1588         request->alpha2[0] = alpha2[0];
1589         request->alpha2[1] = alpha2[1];
1590         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1591
1592         queue_regulatory_request(request);
1593
1594         return 0;
1595 }
1596
1597 /* User hints */
1598 int regulatory_hint_user(const char *alpha2)
1599 {
1600         struct regulatory_request *request;
1601
1602         BUG_ON(!alpha2);
1603
1604         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1605         if (!request)
1606                 return -ENOMEM;
1607
1608         request->wiphy_idx = WIPHY_IDX_STALE;
1609         request->alpha2[0] = alpha2[0];
1610         request->alpha2[1] = alpha2[1];
1611         request->initiator = NL80211_REGDOM_SET_BY_USER;
1612
1613         queue_regulatory_request(request);
1614
1615         return 0;
1616 }
1617
1618 /* Driver hints */
1619 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1620 {
1621         struct regulatory_request *request;
1622
1623         BUG_ON(!alpha2);
1624         BUG_ON(!wiphy);
1625
1626         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1627         if (!request)
1628                 return -ENOMEM;
1629
1630         request->wiphy_idx = get_wiphy_idx(wiphy);
1631
1632         /* Must have registered wiphy first */
1633         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1634
1635         request->alpha2[0] = alpha2[0];
1636         request->alpha2[1] = alpha2[1];
1637         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1638
1639         queue_regulatory_request(request);
1640
1641         return 0;
1642 }
1643 EXPORT_SYMBOL(regulatory_hint);
1644
1645 /*
1646  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1647  * therefore cannot iterate over the rdev list here.
1648  */
1649 void regulatory_hint_11d(struct wiphy *wiphy,
1650                          enum ieee80211_band band,
1651                          u8 *country_ie,
1652                          u8 country_ie_len)
1653 {
1654         char alpha2[2];
1655         enum environment_cap env = ENVIRON_ANY;
1656         struct regulatory_request *request;
1657
1658         mutex_lock(&reg_mutex);
1659
1660         if (unlikely(!last_request))
1661                 goto out;
1662
1663         /* IE len must be evenly divisible by 2 */
1664         if (country_ie_len & 0x01)
1665                 goto out;
1666
1667         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1668                 goto out;
1669
1670         alpha2[0] = country_ie[0];
1671         alpha2[1] = country_ie[1];
1672
1673         if (country_ie[2] == 'I')
1674                 env = ENVIRON_INDOOR;
1675         else if (country_ie[2] == 'O')
1676                 env = ENVIRON_OUTDOOR;
1677
1678         /*
1679          * We will run this only upon a successful connection on cfg80211.
1680          * We leave conflict resolution to the workqueue, where can hold
1681          * cfg80211_mutex.
1682          */
1683         if (likely(last_request->initiator ==
1684             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1685             wiphy_idx_valid(last_request->wiphy_idx)))
1686                 goto out;
1687
1688         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1689         if (!request)
1690                 goto out;
1691
1692         request->wiphy_idx = get_wiphy_idx(wiphy);
1693         request->alpha2[0] = alpha2[0];
1694         request->alpha2[1] = alpha2[1];
1695         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1696         request->country_ie_env = env;
1697
1698         mutex_unlock(&reg_mutex);
1699
1700         queue_regulatory_request(request);
1701
1702         return;
1703
1704 out:
1705         mutex_unlock(&reg_mutex);
1706 }
1707
1708 static void restore_alpha2(char *alpha2, bool reset_user)
1709 {
1710         /* indicates there is no alpha2 to consider for restoration */
1711         alpha2[0] = '9';
1712         alpha2[1] = '7';
1713
1714         /* The user setting has precedence over the module parameter */
1715         if (is_user_regdom_saved()) {
1716                 /* Unless we're asked to ignore it and reset it */
1717                 if (reset_user) {
1718                         REG_DBG_PRINT("Restoring regulatory settings "
1719                                "including user preference\n");
1720                         user_alpha2[0] = '9';
1721                         user_alpha2[1] = '7';
1722
1723                         /*
1724                          * If we're ignoring user settings, we still need to
1725                          * check the module parameter to ensure we put things
1726                          * back as they were for a full restore.
1727                          */
1728                         if (!is_world_regdom(ieee80211_regdom)) {
1729                                 REG_DBG_PRINT("Keeping preference on "
1730                                        "module parameter ieee80211_regdom: %c%c\n",
1731                                        ieee80211_regdom[0],
1732                                        ieee80211_regdom[1]);
1733                                 alpha2[0] = ieee80211_regdom[0];
1734                                 alpha2[1] = ieee80211_regdom[1];
1735                         }
1736                 } else {
1737                         REG_DBG_PRINT("Restoring regulatory settings "
1738                                "while preserving user preference for: %c%c\n",
1739                                user_alpha2[0],
1740                                user_alpha2[1]);
1741                         alpha2[0] = user_alpha2[0];
1742                         alpha2[1] = user_alpha2[1];
1743                 }
1744         } else if (!is_world_regdom(ieee80211_regdom)) {
1745                 REG_DBG_PRINT("Keeping preference on "
1746                        "module parameter ieee80211_regdom: %c%c\n",
1747                        ieee80211_regdom[0],
1748                        ieee80211_regdom[1]);
1749                 alpha2[0] = ieee80211_regdom[0];
1750                 alpha2[1] = ieee80211_regdom[1];
1751         } else
1752                 REG_DBG_PRINT("Restoring regulatory settings\n");
1753 }
1754
1755 /*
1756  * Restoring regulatory settings involves ingoring any
1757  * possibly stale country IE information and user regulatory
1758  * settings if so desired, this includes any beacon hints
1759  * learned as we could have traveled outside to another country
1760  * after disconnection. To restore regulatory settings we do
1761  * exactly what we did at bootup:
1762  *
1763  *   - send a core regulatory hint
1764  *   - send a user regulatory hint if applicable
1765  *
1766  * Device drivers that send a regulatory hint for a specific country
1767  * keep their own regulatory domain on wiphy->regd so that does does
1768  * not need to be remembered.
1769  */
1770 static void restore_regulatory_settings(bool reset_user)
1771 {
1772         char alpha2[2];
1773         struct reg_beacon *reg_beacon, *btmp;
1774         struct regulatory_request *reg_request, *tmp;
1775         LIST_HEAD(tmp_reg_req_list);
1776
1777         mutex_lock(&cfg80211_mutex);
1778         mutex_lock(&reg_mutex);
1779
1780         reset_regdomains();
1781         restore_alpha2(alpha2, reset_user);
1782
1783         /*
1784          * If there's any pending requests we simply
1785          * stash them to a temporary pending queue and
1786          * add then after we've restored regulatory
1787          * settings.
1788          */
1789         spin_lock(&reg_requests_lock);
1790         if (!list_empty(&reg_requests_list)) {
1791                 list_for_each_entry_safe(reg_request, tmp,
1792                                          &reg_requests_list, list) {
1793                         if (reg_request->initiator !=
1794                             NL80211_REGDOM_SET_BY_USER)
1795                                 continue;
1796                         list_del(&reg_request->list);
1797                         list_add_tail(&reg_request->list, &tmp_reg_req_list);
1798                 }
1799         }
1800         spin_unlock(&reg_requests_lock);
1801
1802         /* Clear beacon hints */
1803         spin_lock_bh(&reg_pending_beacons_lock);
1804         if (!list_empty(&reg_pending_beacons)) {
1805                 list_for_each_entry_safe(reg_beacon, btmp,
1806                                          &reg_pending_beacons, list) {
1807                         list_del(&reg_beacon->list);
1808                         kfree(reg_beacon);
1809                 }
1810         }
1811         spin_unlock_bh(&reg_pending_beacons_lock);
1812
1813         if (!list_empty(&reg_beacon_list)) {
1814                 list_for_each_entry_safe(reg_beacon, btmp,
1815                                          &reg_beacon_list, list) {
1816                         list_del(&reg_beacon->list);
1817                         kfree(reg_beacon);
1818                 }
1819         }
1820
1821         /* First restore to the basic regulatory settings */
1822         cfg80211_regdomain = cfg80211_world_regdom;
1823
1824         mutex_unlock(&reg_mutex);
1825         mutex_unlock(&cfg80211_mutex);
1826
1827         regulatory_hint_core(cfg80211_regdomain->alpha2);
1828
1829         /*
1830          * This restores the ieee80211_regdom module parameter
1831          * preference or the last user requested regulatory
1832          * settings, user regulatory settings takes precedence.
1833          */
1834         if (is_an_alpha2(alpha2))
1835                 regulatory_hint_user(user_alpha2);
1836
1837         if (list_empty(&tmp_reg_req_list))
1838                 return;
1839
1840         mutex_lock(&cfg80211_mutex);
1841         mutex_lock(&reg_mutex);
1842
1843         spin_lock(&reg_requests_lock);
1844         list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1845                 REG_DBG_PRINT("Adding request for country %c%c back "
1846                               "into the queue\n",
1847                               reg_request->alpha2[0],
1848                               reg_request->alpha2[1]);
1849                 list_del(&reg_request->list);
1850                 list_add_tail(&reg_request->list, &reg_requests_list);
1851         }
1852         spin_unlock(&reg_requests_lock);
1853
1854         mutex_unlock(&reg_mutex);
1855         mutex_unlock(&cfg80211_mutex);
1856
1857         REG_DBG_PRINT("Kicking the queue\n");
1858
1859         schedule_work(&reg_work);
1860 }
1861
1862 void regulatory_hint_disconnect(void)
1863 {
1864         REG_DBG_PRINT("All devices are disconnected, going to "
1865                       "restore regulatory settings\n");
1866         restore_regulatory_settings(false);
1867 }
1868
1869 static bool freq_is_chan_12_13_14(u16 freq)
1870 {
1871         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1872             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1873             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1874                 return true;
1875         return false;
1876 }
1877
1878 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1879                                  struct ieee80211_channel *beacon_chan,
1880                                  gfp_t gfp)
1881 {
1882         struct reg_beacon *reg_beacon;
1883
1884         if (likely((beacon_chan->beacon_found ||
1885             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1886             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1887              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1888                 return 0;
1889
1890         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1891         if (!reg_beacon)
1892                 return -ENOMEM;
1893
1894         REG_DBG_PRINT("Found new beacon on "
1895                       "frequency: %d MHz (Ch %d) on %s\n",
1896                       beacon_chan->center_freq,
1897                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
1898                       wiphy_name(wiphy));
1899
1900         memcpy(&reg_beacon->chan, beacon_chan,
1901                 sizeof(struct ieee80211_channel));
1902
1903
1904         /*
1905          * Since we can be called from BH or and non-BH context
1906          * we must use spin_lock_bh()
1907          */
1908         spin_lock_bh(&reg_pending_beacons_lock);
1909         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1910         spin_unlock_bh(&reg_pending_beacons_lock);
1911
1912         schedule_work(&reg_work);
1913
1914         return 0;
1915 }
1916
1917 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1918 {
1919         unsigned int i;
1920         const struct ieee80211_reg_rule *reg_rule = NULL;
1921         const struct ieee80211_freq_range *freq_range = NULL;
1922         const struct ieee80211_power_rule *power_rule = NULL;
1923
1924         pr_info("    (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1925
1926         for (i = 0; i < rd->n_reg_rules; i++) {
1927                 reg_rule = &rd->reg_rules[i];
1928                 freq_range = &reg_rule->freq_range;
1929                 power_rule = &reg_rule->power_rule;
1930
1931                 /*
1932                  * There may not be documentation for max antenna gain
1933                  * in certain regions
1934                  */
1935                 if (power_rule->max_antenna_gain)
1936                         pr_info("    (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1937                                 freq_range->start_freq_khz,
1938                                 freq_range->end_freq_khz,
1939                                 freq_range->max_bandwidth_khz,
1940                                 power_rule->max_antenna_gain,
1941                                 power_rule->max_eirp);
1942                 else
1943                         pr_info("    (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1944                                 freq_range->start_freq_khz,
1945                                 freq_range->end_freq_khz,
1946                                 freq_range->max_bandwidth_khz,
1947                                 power_rule->max_eirp);
1948         }
1949 }
1950
1951 bool reg_supported_dfs_region(u8 dfs_region)
1952 {
1953         switch (dfs_region) {
1954         case NL80211_DFS_UNSET:
1955         case NL80211_DFS_FCC:
1956         case NL80211_DFS_ETSI:
1957         case NL80211_DFS_JP:
1958                 return true;
1959         default:
1960                 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
1961                               dfs_region);
1962                 return false;
1963         }
1964 }
1965
1966 static void print_dfs_region(u8 dfs_region)
1967 {
1968         if (!dfs_region)
1969                 return;
1970
1971         switch (dfs_region) {
1972         case NL80211_DFS_FCC:
1973                 pr_info(" DFS Master region FCC");
1974                 break;
1975         case NL80211_DFS_ETSI:
1976                 pr_info(" DFS Master region ETSI");
1977                 break;
1978         case NL80211_DFS_JP:
1979                 pr_info(" DFS Master region JP");
1980                 break;
1981         default:
1982                 pr_info(" DFS Master region Uknown");
1983                 break;
1984         }
1985 }
1986
1987 static void print_regdomain(const struct ieee80211_regdomain *rd)
1988 {
1989
1990         if (is_intersected_alpha2(rd->alpha2)) {
1991
1992                 if (last_request->initiator ==
1993                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1994                         struct cfg80211_registered_device *rdev;
1995                         rdev = cfg80211_rdev_by_wiphy_idx(
1996                                 last_request->wiphy_idx);
1997                         if (rdev) {
1998                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
1999                                         rdev->country_ie_alpha2[0],
2000                                         rdev->country_ie_alpha2[1]);
2001                         } else
2002                                 pr_info("Current regulatory domain intersected:\n");
2003                 } else
2004                         pr_info("Current regulatory domain intersected:\n");
2005         } else if (is_world_regdom(rd->alpha2))
2006                 pr_info("World regulatory domain updated:\n");
2007         else {
2008                 if (is_unknown_alpha2(rd->alpha2))
2009                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2010                 else
2011                         pr_info("Regulatory domain changed to country: %c%c\n",
2012                                 rd->alpha2[0], rd->alpha2[1]);
2013         }
2014         print_dfs_region(rd->dfs_region);
2015         print_rd_rules(rd);
2016 }
2017
2018 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2019 {
2020         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2021         print_rd_rules(rd);
2022 }
2023
2024 /* Takes ownership of rd only if it doesn't fail */
2025 static int __set_regdom(const struct ieee80211_regdomain *rd)
2026 {
2027         const struct ieee80211_regdomain *intersected_rd = NULL;
2028         struct cfg80211_registered_device *rdev = NULL;
2029         struct wiphy *request_wiphy;
2030         /* Some basic sanity checks first */
2031
2032         if (is_world_regdom(rd->alpha2)) {
2033                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2034                         return -EINVAL;
2035                 update_world_regdomain(rd);
2036                 return 0;
2037         }
2038
2039         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2040                         !is_unknown_alpha2(rd->alpha2))
2041                 return -EINVAL;
2042
2043         if (!last_request)
2044                 return -EINVAL;
2045
2046         /*
2047          * Lets only bother proceeding on the same alpha2 if the current
2048          * rd is non static (it means CRDA was present and was used last)
2049          * and the pending request came in from a country IE
2050          */
2051         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2052                 /*
2053                  * If someone else asked us to change the rd lets only bother
2054                  * checking if the alpha2 changes if CRDA was already called
2055                  */
2056                 if (!regdom_changes(rd->alpha2))
2057                         return -EINVAL;
2058         }
2059
2060         /*
2061          * Now lets set the regulatory domain, update all driver channels
2062          * and finally inform them of what we have done, in case they want
2063          * to review or adjust their own settings based on their own
2064          * internal EEPROM data
2065          */
2066
2067         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2068                 return -EINVAL;
2069
2070         if (!is_valid_rd(rd)) {
2071                 pr_err("Invalid regulatory domain detected:\n");
2072                 print_regdomain_info(rd);
2073                 return -EINVAL;
2074         }
2075
2076         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2077
2078         if (!last_request->intersect) {
2079                 int r;
2080
2081                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2082                         reset_regdomains();
2083                         cfg80211_regdomain = rd;
2084                         return 0;
2085                 }
2086
2087                 /*
2088                  * For a driver hint, lets copy the regulatory domain the
2089                  * driver wanted to the wiphy to deal with conflicts
2090                  */
2091
2092                 /*
2093                  * Userspace could have sent two replies with only
2094                  * one kernel request.
2095                  */
2096                 if (request_wiphy->regd)
2097                         return -EALREADY;
2098
2099                 r = reg_copy_regd(&request_wiphy->regd, rd);
2100                 if (r)
2101                         return r;
2102
2103                 reset_regdomains();
2104                 cfg80211_regdomain = rd;
2105                 return 0;
2106         }
2107
2108         /* Intersection requires a bit more work */
2109
2110         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2111
2112                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2113                 if (!intersected_rd)
2114                         return -EINVAL;
2115
2116                 /*
2117                  * We can trash what CRDA provided now.
2118                  * However if a driver requested this specific regulatory
2119                  * domain we keep it for its private use
2120                  */
2121                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2122                         request_wiphy->regd = rd;
2123                 else
2124                         kfree(rd);
2125
2126                 rd = NULL;
2127
2128                 reset_regdomains();
2129                 cfg80211_regdomain = intersected_rd;
2130
2131                 return 0;
2132         }
2133
2134         if (!intersected_rd)
2135                 return -EINVAL;
2136
2137         rdev = wiphy_to_dev(request_wiphy);
2138
2139         rdev->country_ie_alpha2[0] = rd->alpha2[0];
2140         rdev->country_ie_alpha2[1] = rd->alpha2[1];
2141         rdev->env = last_request->country_ie_env;
2142
2143         BUG_ON(intersected_rd == rd);
2144
2145         kfree(rd);
2146         rd = NULL;
2147
2148         reset_regdomains();
2149         cfg80211_regdomain = intersected_rd;
2150
2151         return 0;
2152 }
2153
2154
2155 /*
2156  * Use this call to set the current regulatory domain. Conflicts with
2157  * multiple drivers can be ironed out later. Caller must've already
2158  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2159  */
2160 int set_regdom(const struct ieee80211_regdomain *rd)
2161 {
2162         int r;
2163
2164         assert_cfg80211_lock();
2165
2166         mutex_lock(&reg_mutex);
2167
2168         /* Note that this doesn't update the wiphys, this is done below */
2169         r = __set_regdom(rd);
2170         if (r) {
2171                 kfree(rd);
2172                 mutex_unlock(&reg_mutex);
2173                 return r;
2174         }
2175
2176         /* This would make this whole thing pointless */
2177         if (!last_request->intersect)
2178                 BUG_ON(rd != cfg80211_regdomain);
2179
2180         /* update all wiphys now with the new established regulatory domain */
2181         update_all_wiphy_regulatory(last_request->initiator);
2182
2183         print_regdomain(cfg80211_regdomain);
2184
2185         nl80211_send_reg_change_event(last_request);
2186
2187         reg_set_request_processed();
2188
2189         mutex_unlock(&reg_mutex);
2190
2191         return r;
2192 }
2193
2194 #ifdef CONFIG_HOTPLUG
2195 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2196 {
2197         if (last_request && !last_request->processed) {
2198                 if (add_uevent_var(env, "COUNTRY=%c%c",
2199                                    last_request->alpha2[0],
2200                                    last_request->alpha2[1]))
2201                         return -ENOMEM;
2202         }
2203
2204         return 0;
2205 }
2206 #else
2207 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2208 {
2209         return -ENODEV;
2210 }
2211 #endif /* CONFIG_HOTPLUG */
2212
2213 /* Caller must hold cfg80211_mutex */
2214 void reg_device_remove(struct wiphy *wiphy)
2215 {
2216         struct wiphy *request_wiphy = NULL;
2217
2218         assert_cfg80211_lock();
2219
2220         mutex_lock(&reg_mutex);
2221
2222         kfree(wiphy->regd);
2223
2224         if (last_request)
2225                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2226
2227         if (!request_wiphy || request_wiphy != wiphy)
2228                 goto out;
2229
2230         last_request->wiphy_idx = WIPHY_IDX_STALE;
2231         last_request->country_ie_env = ENVIRON_ANY;
2232 out:
2233         mutex_unlock(&reg_mutex);
2234 }
2235
2236 static void reg_timeout_work(struct work_struct *work)
2237 {
2238         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2239                       "restoring regulatory settings\n");
2240         restore_regulatory_settings(true);
2241 }
2242
2243 int __init regulatory_init(void)
2244 {
2245         int err = 0;
2246
2247         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2248         if (IS_ERR(reg_pdev))
2249                 return PTR_ERR(reg_pdev);
2250
2251         reg_pdev->dev.type = &reg_device_type;
2252
2253         spin_lock_init(&reg_requests_lock);
2254         spin_lock_init(&reg_pending_beacons_lock);
2255
2256         cfg80211_regdomain = cfg80211_world_regdom;
2257
2258         user_alpha2[0] = '9';
2259         user_alpha2[1] = '7';
2260
2261         /* We always try to get an update for the static regdomain */
2262         err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2263         if (err) {
2264                 if (err == -ENOMEM)
2265                         return err;
2266                 /*
2267                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2268                  * memory which is handled and propagated appropriately above
2269                  * but it can also fail during a netlink_broadcast() or during
2270                  * early boot for call_usermodehelper(). For now treat these
2271                  * errors as non-fatal.
2272                  */
2273                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2274 #ifdef CONFIG_CFG80211_REG_DEBUG
2275                 /* We want to find out exactly why when debugging */
2276                 WARN_ON(err);
2277 #endif
2278         }
2279
2280         /*
2281          * Finally, if the user set the module parameter treat it
2282          * as a user hint.
2283          */
2284         if (!is_world_regdom(ieee80211_regdom))
2285                 regulatory_hint_user(ieee80211_regdom);
2286
2287         return 0;
2288 }
2289
2290 void /* __init_or_exit */ regulatory_exit(void)
2291 {
2292         struct regulatory_request *reg_request, *tmp;
2293         struct reg_beacon *reg_beacon, *btmp;
2294
2295         cancel_work_sync(&reg_work);
2296         cancel_delayed_work_sync(&reg_timeout);
2297
2298         mutex_lock(&cfg80211_mutex);
2299         mutex_lock(&reg_mutex);
2300
2301         reset_regdomains();
2302
2303         kfree(last_request);
2304
2305         platform_device_unregister(reg_pdev);
2306
2307         spin_lock_bh(&reg_pending_beacons_lock);
2308         if (!list_empty(&reg_pending_beacons)) {
2309                 list_for_each_entry_safe(reg_beacon, btmp,
2310                                          &reg_pending_beacons, list) {
2311                         list_del(&reg_beacon->list);
2312                         kfree(reg_beacon);
2313                 }
2314         }
2315         spin_unlock_bh(&reg_pending_beacons_lock);
2316
2317         if (!list_empty(&reg_beacon_list)) {
2318                 list_for_each_entry_safe(reg_beacon, btmp,
2319                                          &reg_beacon_list, list) {
2320                         list_del(&reg_beacon->list);
2321                         kfree(reg_beacon);
2322                 }
2323         }
2324
2325         spin_lock(&reg_requests_lock);
2326         if (!list_empty(&reg_requests_list)) {
2327                 list_for_each_entry_safe(reg_request, tmp,
2328                                          &reg_requests_list, list) {
2329                         list_del(&reg_request->list);
2330                         kfree(reg_request);
2331                 }
2332         }
2333         spin_unlock(&reg_requests_lock);
2334
2335         mutex_unlock(&reg_mutex);
2336         mutex_unlock(&cfg80211_mutex);
2337 }