cfg80211: regulatory introduce maximum bandwidth calculation
[firefly-linux-kernel-4.4.55.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19
20
21 /**
22  * DOC: Wireless regulatory infrastructure
23  *
24  * The usual implementation is for a driver to read a device EEPROM to
25  * determine which regulatory domain it should be operating under, then
26  * looking up the allowable channels in a driver-local table and finally
27  * registering those channels in the wiphy structure.
28  *
29  * Another set of compliance enforcement is for drivers to use their
30  * own compliance limits which can be stored on the EEPROM. The host
31  * driver or firmware may ensure these are used.
32  *
33  * In addition to all this we provide an extra layer of regulatory
34  * conformance. For drivers which do not have any regulatory
35  * information CRDA provides the complete regulatory solution.
36  * For others it provides a community effort on further restrictions
37  * to enhance compliance.
38  *
39  * Note: When number of rules --> infinity we will not be able to
40  * index on alpha2 any more, instead we'll probably have to
41  * rely on some SHA1 checksum of the regdomain for example.
42  *
43  */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
56 #include "core.h"
57 #include "reg.h"
58 #include "regdb.h"
59 #include "nl80211.h"
60
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...)                  \
63         printk(KERN_DEBUG pr_fmt(format), ##args)
64 #else
65 #define REG_DBG_PRINT(args...)
66 #endif
67
68 enum reg_request_treatment {
69         REG_REQ_OK,
70         REG_REQ_IGNORE,
71         REG_REQ_INTERSECT,
72         REG_REQ_ALREADY_SET,
73 };
74
75 static struct regulatory_request core_request_world = {
76         .initiator = NL80211_REGDOM_SET_BY_CORE,
77         .alpha2[0] = '0',
78         .alpha2[1] = '0',
79         .intersect = false,
80         .processed = true,
81         .country_ie_env = ENVIRON_ANY,
82 };
83
84 /*
85  * Receipt of information from last regulatory request,
86  * protected by RTNL (and can be accessed with RCU protection)
87  */
88 static struct regulatory_request __rcu *last_request =
89         (void __rcu *)&core_request_world;
90
91 /* To trigger userspace events */
92 static struct platform_device *reg_pdev;
93
94 static const struct device_type reg_device_type = {
95         .uevent = reg_device_uevent,
96 };
97
98 /*
99  * Central wireless core regulatory domains, we only need two,
100  * the current one and a world regulatory domain in case we have no
101  * information to give us an alpha2.
102  * (protected by RTNL, can be read under RCU)
103  */
104 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
105
106 /*
107  * Number of devices that registered to the core
108  * that support cellular base station regulatory hints
109  * (protected by RTNL)
110  */
111 static int reg_num_devs_support_basehint;
112
113 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
114 {
115         return rtnl_dereference(cfg80211_regdomain);
116 }
117
118 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
119 {
120         return rtnl_dereference(wiphy->regd);
121 }
122
123 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
124 {
125         switch (dfs_region) {
126         case NL80211_DFS_UNSET:
127                 return "unset";
128         case NL80211_DFS_FCC:
129                 return "FCC";
130         case NL80211_DFS_ETSI:
131                 return "ETSI";
132         case NL80211_DFS_JP:
133                 return "JP";
134         }
135         return "Unknown";
136 }
137
138 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
139 {
140         const struct ieee80211_regdomain *regd = NULL;
141         const struct ieee80211_regdomain *wiphy_regd = NULL;
142
143         regd = get_cfg80211_regdom();
144         if (!wiphy)
145                 goto out;
146
147         wiphy_regd = get_wiphy_regdom(wiphy);
148         if (!wiphy_regd)
149                 goto out;
150
151         if (wiphy_regd->dfs_region == regd->dfs_region)
152                 goto out;
153
154         REG_DBG_PRINT("%s: device specific dfs_region "
155                       "(%s) disagrees with cfg80211's "
156                       "central dfs_region (%s)\n",
157                       dev_name(&wiphy->dev),
158                       reg_dfs_region_str(wiphy_regd->dfs_region),
159                       reg_dfs_region_str(regd->dfs_region));
160
161 out:
162         return regd->dfs_region;
163 }
164
165 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
166 {
167         if (!r)
168                 return;
169         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
170 }
171
172 static struct regulatory_request *get_last_request(void)
173 {
174         return rcu_dereference_rtnl(last_request);
175 }
176
177 /* Used to queue up regulatory hints */
178 static LIST_HEAD(reg_requests_list);
179 static spinlock_t reg_requests_lock;
180
181 /* Used to queue up beacon hints for review */
182 static LIST_HEAD(reg_pending_beacons);
183 static spinlock_t reg_pending_beacons_lock;
184
185 /* Used to keep track of processed beacon hints */
186 static LIST_HEAD(reg_beacon_list);
187
188 struct reg_beacon {
189         struct list_head list;
190         struct ieee80211_channel chan;
191 };
192
193 static void reg_todo(struct work_struct *work);
194 static DECLARE_WORK(reg_work, reg_todo);
195
196 static void reg_timeout_work(struct work_struct *work);
197 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
198
199 /* We keep a static world regulatory domain in case of the absence of CRDA */
200 static const struct ieee80211_regdomain world_regdom = {
201         .n_reg_rules = 6,
202         .alpha2 =  "00",
203         .reg_rules = {
204                 /* IEEE 802.11b/g, channels 1..11 */
205                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
206                 /* IEEE 802.11b/g, channels 12..13. */
207                 REG_RULE(2467-10, 2472+10, 40, 6, 20,
208                         NL80211_RRF_NO_IR),
209                 /* IEEE 802.11 channel 14 - Only JP enables
210                  * this and for 802.11b only */
211                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
212                         NL80211_RRF_NO_IR |
213                         NL80211_RRF_NO_OFDM),
214                 /* IEEE 802.11a, channel 36..48 */
215                 REG_RULE(5180-10, 5240+10, 160, 6, 20,
216                         NL80211_RRF_NO_IR),
217
218                 /* IEEE 802.11a, channel 52..64 - DFS required */
219                 REG_RULE(5260-10, 5320+10, 160, 6, 20,
220                         NL80211_RRF_NO_IR |
221                         NL80211_RRF_DFS),
222
223                 /* IEEE 802.11a, channel 100..144 - DFS required */
224                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
225                         NL80211_RRF_NO_IR |
226                         NL80211_RRF_DFS),
227
228                 /* IEEE 802.11a, channel 149..165 */
229                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
230                         NL80211_RRF_NO_IR),
231
232                 /* IEEE 802.11ad (60gHz), channels 1..3 */
233                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
234         }
235 };
236
237 /* protected by RTNL */
238 static const struct ieee80211_regdomain *cfg80211_world_regdom =
239         &world_regdom;
240
241 static char *ieee80211_regdom = "00";
242 static char user_alpha2[2];
243
244 module_param(ieee80211_regdom, charp, 0444);
245 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
246
247 static void reg_kfree_last_request(void)
248 {
249         struct regulatory_request *lr;
250
251         lr = get_last_request();
252
253         if (lr != &core_request_world && lr)
254                 kfree_rcu(lr, rcu_head);
255 }
256
257 static void reg_update_last_request(struct regulatory_request *request)
258 {
259         reg_kfree_last_request();
260         rcu_assign_pointer(last_request, request);
261 }
262
263 static void reset_regdomains(bool full_reset,
264                              const struct ieee80211_regdomain *new_regdom)
265 {
266         const struct ieee80211_regdomain *r;
267
268         ASSERT_RTNL();
269
270         r = get_cfg80211_regdom();
271
272         /* avoid freeing static information or freeing something twice */
273         if (r == cfg80211_world_regdom)
274                 r = NULL;
275         if (cfg80211_world_regdom == &world_regdom)
276                 cfg80211_world_regdom = NULL;
277         if (r == &world_regdom)
278                 r = NULL;
279
280         rcu_free_regdom(r);
281         rcu_free_regdom(cfg80211_world_regdom);
282
283         cfg80211_world_regdom = &world_regdom;
284         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
285
286         if (!full_reset)
287                 return;
288
289         reg_update_last_request(&core_request_world);
290 }
291
292 /*
293  * Dynamic world regulatory domain requested by the wireless
294  * core upon initialization
295  */
296 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
297 {
298         struct regulatory_request *lr;
299
300         lr = get_last_request();
301
302         WARN_ON(!lr);
303
304         reset_regdomains(false, rd);
305
306         cfg80211_world_regdom = rd;
307 }
308
309 bool is_world_regdom(const char *alpha2)
310 {
311         if (!alpha2)
312                 return false;
313         return alpha2[0] == '0' && alpha2[1] == '0';
314 }
315
316 static bool is_alpha2_set(const char *alpha2)
317 {
318         if (!alpha2)
319                 return false;
320         return alpha2[0] && alpha2[1];
321 }
322
323 static bool is_unknown_alpha2(const char *alpha2)
324 {
325         if (!alpha2)
326                 return false;
327         /*
328          * Special case where regulatory domain was built by driver
329          * but a specific alpha2 cannot be determined
330          */
331         return alpha2[0] == '9' && alpha2[1] == '9';
332 }
333
334 static bool is_intersected_alpha2(const char *alpha2)
335 {
336         if (!alpha2)
337                 return false;
338         /*
339          * Special case where regulatory domain is the
340          * result of an intersection between two regulatory domain
341          * structures
342          */
343         return alpha2[0] == '9' && alpha2[1] == '8';
344 }
345
346 static bool is_an_alpha2(const char *alpha2)
347 {
348         if (!alpha2)
349                 return false;
350         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
351 }
352
353 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
354 {
355         if (!alpha2_x || !alpha2_y)
356                 return false;
357         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
358 }
359
360 static bool regdom_changes(const char *alpha2)
361 {
362         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
363
364         if (!r)
365                 return true;
366         return !alpha2_equal(r->alpha2, alpha2);
367 }
368
369 /*
370  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
371  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
372  * has ever been issued.
373  */
374 static bool is_user_regdom_saved(void)
375 {
376         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
377                 return false;
378
379         /* This would indicate a mistake on the design */
380         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
381                  "Unexpected user alpha2: %c%c\n",
382                  user_alpha2[0], user_alpha2[1]))
383                 return false;
384
385         return true;
386 }
387
388 static const struct ieee80211_regdomain *
389 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
390 {
391         struct ieee80211_regdomain *regd;
392         int size_of_regd;
393         unsigned int i;
394
395         size_of_regd =
396                 sizeof(struct ieee80211_regdomain) +
397                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
398
399         regd = kzalloc(size_of_regd, GFP_KERNEL);
400         if (!regd)
401                 return ERR_PTR(-ENOMEM);
402
403         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
404
405         for (i = 0; i < src_regd->n_reg_rules; i++)
406                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
407                        sizeof(struct ieee80211_reg_rule));
408
409         return regd;
410 }
411
412 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
413 struct reg_regdb_search_request {
414         char alpha2[2];
415         struct list_head list;
416 };
417
418 static LIST_HEAD(reg_regdb_search_list);
419 static DEFINE_MUTEX(reg_regdb_search_mutex);
420
421 static void reg_regdb_search(struct work_struct *work)
422 {
423         struct reg_regdb_search_request *request;
424         const struct ieee80211_regdomain *curdom, *regdom = NULL;
425         int i;
426
427         rtnl_lock();
428
429         mutex_lock(&reg_regdb_search_mutex);
430         while (!list_empty(&reg_regdb_search_list)) {
431                 request = list_first_entry(&reg_regdb_search_list,
432                                            struct reg_regdb_search_request,
433                                            list);
434                 list_del(&request->list);
435
436                 for (i = 0; i < reg_regdb_size; i++) {
437                         curdom = reg_regdb[i];
438
439                         if (alpha2_equal(request->alpha2, curdom->alpha2)) {
440                                 regdom = reg_copy_regd(curdom);
441                                 break;
442                         }
443                 }
444
445                 kfree(request);
446         }
447         mutex_unlock(&reg_regdb_search_mutex);
448
449         if (!IS_ERR_OR_NULL(regdom))
450                 set_regdom(regdom);
451
452         rtnl_unlock();
453 }
454
455 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
456
457 static void reg_regdb_query(const char *alpha2)
458 {
459         struct reg_regdb_search_request *request;
460
461         if (!alpha2)
462                 return;
463
464         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
465         if (!request)
466                 return;
467
468         memcpy(request->alpha2, alpha2, 2);
469
470         mutex_lock(&reg_regdb_search_mutex);
471         list_add_tail(&request->list, &reg_regdb_search_list);
472         mutex_unlock(&reg_regdb_search_mutex);
473
474         schedule_work(&reg_regdb_work);
475 }
476
477 /* Feel free to add any other sanity checks here */
478 static void reg_regdb_size_check(void)
479 {
480         /* We should ideally BUILD_BUG_ON() but then random builds would fail */
481         WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
482 }
483 #else
484 static inline void reg_regdb_size_check(void) {}
485 static inline void reg_regdb_query(const char *alpha2) {}
486 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
487
488 /*
489  * This lets us keep regulatory code which is updated on a regulatory
490  * basis in userspace. Country information is filled in by
491  * reg_device_uevent
492  */
493 static int call_crda(const char *alpha2)
494 {
495         if (!is_world_regdom((char *) alpha2))
496                 pr_info("Calling CRDA for country: %c%c\n",
497                         alpha2[0], alpha2[1]);
498         else
499                 pr_info("Calling CRDA to update world regulatory domain\n");
500
501         /* query internal regulatory database (if it exists) */
502         reg_regdb_query(alpha2);
503
504         return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
505 }
506
507 static enum reg_request_treatment
508 reg_call_crda(struct regulatory_request *request)
509 {
510         if (call_crda(request->alpha2))
511                 return REG_REQ_IGNORE;
512         return REG_REQ_OK;
513 }
514
515 bool reg_is_valid_request(const char *alpha2)
516 {
517         struct regulatory_request *lr = get_last_request();
518
519         if (!lr || lr->processed)
520                 return false;
521
522         return alpha2_equal(lr->alpha2, alpha2);
523 }
524
525 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
526 {
527         struct regulatory_request *lr = get_last_request();
528
529         /*
530          * Follow the driver's regulatory domain, if present, unless a country
531          * IE has been processed or a user wants to help complaince further
532          */
533         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
534             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
535             wiphy->regd)
536                 return get_wiphy_regdom(wiphy);
537
538         return get_cfg80211_regdom();
539 }
540
541 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
542                                    const struct ieee80211_reg_rule *rule)
543 {
544         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
545         const struct ieee80211_freq_range *freq_range_tmp;
546         const struct ieee80211_reg_rule *tmp;
547         u32 start_freq, end_freq, idx, no;
548
549         for (idx = 0; idx < rd->n_reg_rules; idx++)
550                 if (rule == &rd->reg_rules[idx])
551                         break;
552
553         if (idx == rd->n_reg_rules)
554                 return 0;
555
556         /* get start_freq */
557         no = idx;
558
559         while (no) {
560                 tmp = &rd->reg_rules[--no];
561                 freq_range_tmp = &tmp->freq_range;
562
563                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
564                         break;
565
566                 if (freq_range_tmp->max_bandwidth_khz)
567                         break;
568
569                 freq_range = freq_range_tmp;
570         }
571
572         start_freq = freq_range->start_freq_khz;
573
574         /* get end_freq */
575         freq_range = &rule->freq_range;
576         no = idx;
577
578         while (no < rd->n_reg_rules - 1) {
579                 tmp = &rd->reg_rules[++no];
580                 freq_range_tmp = &tmp->freq_range;
581
582                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
583                         break;
584
585                 if (freq_range_tmp->max_bandwidth_khz)
586                         break;
587
588                 freq_range = freq_range_tmp;
589         }
590
591         end_freq = freq_range->end_freq_khz;
592
593         return end_freq - start_freq;
594 }
595
596 /* Sanity check on a regulatory rule */
597 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
598 {
599         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
600         u32 freq_diff;
601
602         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
603                 return false;
604
605         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
606                 return false;
607
608         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
609
610         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
611             freq_range->max_bandwidth_khz > freq_diff)
612                 return false;
613
614         return true;
615 }
616
617 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
618 {
619         const struct ieee80211_reg_rule *reg_rule = NULL;
620         unsigned int i;
621
622         if (!rd->n_reg_rules)
623                 return false;
624
625         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
626                 return false;
627
628         for (i = 0; i < rd->n_reg_rules; i++) {
629                 reg_rule = &rd->reg_rules[i];
630                 if (!is_valid_reg_rule(reg_rule))
631                         return false;
632         }
633
634         return true;
635 }
636
637 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
638                             u32 center_freq_khz, u32 bw_khz)
639 {
640         u32 start_freq_khz, end_freq_khz;
641
642         start_freq_khz = center_freq_khz - (bw_khz/2);
643         end_freq_khz = center_freq_khz + (bw_khz/2);
644
645         if (start_freq_khz >= freq_range->start_freq_khz &&
646             end_freq_khz <= freq_range->end_freq_khz)
647                 return true;
648
649         return false;
650 }
651
652 /**
653  * freq_in_rule_band - tells us if a frequency is in a frequency band
654  * @freq_range: frequency rule we want to query
655  * @freq_khz: frequency we are inquiring about
656  *
657  * This lets us know if a specific frequency rule is or is not relevant to
658  * a specific frequency's band. Bands are device specific and artificial
659  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
660  * however it is safe for now to assume that a frequency rule should not be
661  * part of a frequency's band if the start freq or end freq are off by more
662  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
663  * 60 GHz band.
664  * This resolution can be lowered and should be considered as we add
665  * regulatory rule support for other "bands".
666  **/
667 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
668                               u32 freq_khz)
669 {
670 #define ONE_GHZ_IN_KHZ  1000000
671         /*
672          * From 802.11ad: directional multi-gigabit (DMG):
673          * Pertaining to operation in a frequency band containing a channel
674          * with the Channel starting frequency above 45 GHz.
675          */
676         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
677                         10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
678         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
679                 return true;
680         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
681                 return true;
682         return false;
683 #undef ONE_GHZ_IN_KHZ
684 }
685
686 /*
687  * Later on we can perhaps use the more restrictive DFS
688  * region but we don't have information for that yet so
689  * for now simply disallow conflicts.
690  */
691 static enum nl80211_dfs_regions
692 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
693                          const enum nl80211_dfs_regions dfs_region2)
694 {
695         if (dfs_region1 != dfs_region2)
696                 return NL80211_DFS_UNSET;
697         return dfs_region1;
698 }
699
700 /*
701  * Helper for regdom_intersect(), this does the real
702  * mathematical intersection fun
703  */
704 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
705                                const struct ieee80211_regdomain *rd2,
706                                const struct ieee80211_reg_rule *rule1,
707                                const struct ieee80211_reg_rule *rule2,
708                                struct ieee80211_reg_rule *intersected_rule)
709 {
710         const struct ieee80211_freq_range *freq_range1, *freq_range2;
711         struct ieee80211_freq_range *freq_range;
712         const struct ieee80211_power_rule *power_rule1, *power_rule2;
713         struct ieee80211_power_rule *power_rule;
714         u32 freq_diff, max_bandwidth1, max_bandwidth2;
715
716         freq_range1 = &rule1->freq_range;
717         freq_range2 = &rule2->freq_range;
718         freq_range = &intersected_rule->freq_range;
719
720         power_rule1 = &rule1->power_rule;
721         power_rule2 = &rule2->power_rule;
722         power_rule = &intersected_rule->power_rule;
723
724         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
725                                          freq_range2->start_freq_khz);
726         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
727                                        freq_range2->end_freq_khz);
728
729         max_bandwidth1 = freq_range1->max_bandwidth_khz;
730         max_bandwidth2 = freq_range2->max_bandwidth_khz;
731
732         /*
733          * In case max_bandwidth1 == 0 and max_bandwith2 == 0 set
734          * output bandwidth as 0 (auto calculation). Next we will
735          * calculate this correctly in handle_channel function.
736          * In other case calculate output bandwidth here.
737          */
738         if (max_bandwidth1 || max_bandwidth2) {
739                 if (!max_bandwidth1)
740                         max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
741                 if (!max_bandwidth2)
742                         max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
743         }
744
745         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
746
747         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
748         if (freq_range->max_bandwidth_khz > freq_diff)
749                 freq_range->max_bandwidth_khz = freq_diff;
750
751         power_rule->max_eirp = min(power_rule1->max_eirp,
752                 power_rule2->max_eirp);
753         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
754                 power_rule2->max_antenna_gain);
755
756         intersected_rule->flags = rule1->flags | rule2->flags;
757
758         if (!is_valid_reg_rule(intersected_rule))
759                 return -EINVAL;
760
761         return 0;
762 }
763
764 /**
765  * regdom_intersect - do the intersection between two regulatory domains
766  * @rd1: first regulatory domain
767  * @rd2: second regulatory domain
768  *
769  * Use this function to get the intersection between two regulatory domains.
770  * Once completed we will mark the alpha2 for the rd as intersected, "98",
771  * as no one single alpha2 can represent this regulatory domain.
772  *
773  * Returns a pointer to the regulatory domain structure which will hold the
774  * resulting intersection of rules between rd1 and rd2. We will
775  * kzalloc() this structure for you.
776  */
777 static struct ieee80211_regdomain *
778 regdom_intersect(const struct ieee80211_regdomain *rd1,
779                  const struct ieee80211_regdomain *rd2)
780 {
781         int r, size_of_regd;
782         unsigned int x, y;
783         unsigned int num_rules = 0, rule_idx = 0;
784         const struct ieee80211_reg_rule *rule1, *rule2;
785         struct ieee80211_reg_rule *intersected_rule;
786         struct ieee80211_regdomain *rd;
787         /* This is just a dummy holder to help us count */
788         struct ieee80211_reg_rule dummy_rule;
789
790         if (!rd1 || !rd2)
791                 return NULL;
792
793         /*
794          * First we get a count of the rules we'll need, then we actually
795          * build them. This is to so we can malloc() and free() a
796          * regdomain once. The reason we use reg_rules_intersect() here
797          * is it will return -EINVAL if the rule computed makes no sense.
798          * All rules that do check out OK are valid.
799          */
800
801         for (x = 0; x < rd1->n_reg_rules; x++) {
802                 rule1 = &rd1->reg_rules[x];
803                 for (y = 0; y < rd2->n_reg_rules; y++) {
804                         rule2 = &rd2->reg_rules[y];
805                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
806                                                  &dummy_rule))
807                                 num_rules++;
808                 }
809         }
810
811         if (!num_rules)
812                 return NULL;
813
814         size_of_regd = sizeof(struct ieee80211_regdomain) +
815                        num_rules * sizeof(struct ieee80211_reg_rule);
816
817         rd = kzalloc(size_of_regd, GFP_KERNEL);
818         if (!rd)
819                 return NULL;
820
821         for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
822                 rule1 = &rd1->reg_rules[x];
823                 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
824                         rule2 = &rd2->reg_rules[y];
825                         /*
826                          * This time around instead of using the stack lets
827                          * write to the target rule directly saving ourselves
828                          * a memcpy()
829                          */
830                         intersected_rule = &rd->reg_rules[rule_idx];
831                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
832                                                 intersected_rule);
833                         /*
834                          * No need to memset here the intersected rule here as
835                          * we're not using the stack anymore
836                          */
837                         if (r)
838                                 continue;
839                         rule_idx++;
840                 }
841         }
842
843         if (rule_idx != num_rules) {
844                 kfree(rd);
845                 return NULL;
846         }
847
848         rd->n_reg_rules = num_rules;
849         rd->alpha2[0] = '9';
850         rd->alpha2[1] = '8';
851         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
852                                                   rd2->dfs_region);
853
854         return rd;
855 }
856
857 /*
858  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
859  * want to just have the channel structure use these
860  */
861 static u32 map_regdom_flags(u32 rd_flags)
862 {
863         u32 channel_flags = 0;
864         if (rd_flags & NL80211_RRF_NO_IR_ALL)
865                 channel_flags |= IEEE80211_CHAN_NO_IR;
866         if (rd_flags & NL80211_RRF_DFS)
867                 channel_flags |= IEEE80211_CHAN_RADAR;
868         if (rd_flags & NL80211_RRF_NO_OFDM)
869                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
870         return channel_flags;
871 }
872
873 static const struct ieee80211_reg_rule *
874 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
875                    const struct ieee80211_regdomain *regd)
876 {
877         int i;
878         bool band_rule_found = false;
879         bool bw_fits = false;
880
881         if (!regd)
882                 return ERR_PTR(-EINVAL);
883
884         for (i = 0; i < regd->n_reg_rules; i++) {
885                 const struct ieee80211_reg_rule *rr;
886                 const struct ieee80211_freq_range *fr = NULL;
887
888                 rr = &regd->reg_rules[i];
889                 fr = &rr->freq_range;
890
891                 /*
892                  * We only need to know if one frequency rule was
893                  * was in center_freq's band, that's enough, so lets
894                  * not overwrite it once found
895                  */
896                 if (!band_rule_found)
897                         band_rule_found = freq_in_rule_band(fr, center_freq);
898
899                 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
900
901                 if (band_rule_found && bw_fits)
902                         return rr;
903         }
904
905         if (!band_rule_found)
906                 return ERR_PTR(-ERANGE);
907
908         return ERR_PTR(-EINVAL);
909 }
910
911 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
912                                                u32 center_freq)
913 {
914         const struct ieee80211_regdomain *regd;
915
916         regd = reg_get_regdomain(wiphy);
917
918         return freq_reg_info_regd(wiphy, center_freq, regd);
919 }
920 EXPORT_SYMBOL(freq_reg_info);
921
922 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
923 {
924         switch (initiator) {
925         case NL80211_REGDOM_SET_BY_CORE:
926                 return "core";
927         case NL80211_REGDOM_SET_BY_USER:
928                 return "user";
929         case NL80211_REGDOM_SET_BY_DRIVER:
930                 return "driver";
931         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
932                 return "country IE";
933         default:
934                 WARN_ON(1);
935                 return "bug";
936         }
937 }
938 EXPORT_SYMBOL(reg_initiator_name);
939
940 #ifdef CONFIG_CFG80211_REG_DEBUG
941 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
942                                     const struct ieee80211_reg_rule *reg_rule)
943 {
944         const struct ieee80211_power_rule *power_rule;
945         const struct ieee80211_freq_range *freq_range;
946         char max_antenna_gain[32];
947
948         power_rule = &reg_rule->power_rule;
949         freq_range = &reg_rule->freq_range;
950
951         if (!power_rule->max_antenna_gain)
952                 snprintf(max_antenna_gain, 32, "N/A");
953         else
954                 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
955
956         REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
957                       chan->center_freq);
958
959         REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
960                       freq_range->start_freq_khz, freq_range->end_freq_khz,
961                       freq_range->max_bandwidth_khz, max_antenna_gain,
962                       power_rule->max_eirp);
963 }
964 #else
965 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
966                                     const struct ieee80211_reg_rule *reg_rule)
967 {
968         return;
969 }
970 #endif
971
972 /*
973  * Note that right now we assume the desired channel bandwidth
974  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
975  * per channel, the primary and the extension channel).
976  */
977 static void handle_channel(struct wiphy *wiphy,
978                            enum nl80211_reg_initiator initiator,
979                            struct ieee80211_channel *chan)
980 {
981         u32 flags, bw_flags = 0;
982         const struct ieee80211_reg_rule *reg_rule = NULL;
983         const struct ieee80211_power_rule *power_rule = NULL;
984         const struct ieee80211_freq_range *freq_range = NULL;
985         struct wiphy *request_wiphy = NULL;
986         struct regulatory_request *lr = get_last_request();
987         const struct ieee80211_regdomain *regd;
988         u32 max_bandwidth_khz;
989
990         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
991
992         flags = chan->orig_flags;
993
994         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
995         if (IS_ERR(reg_rule)) {
996                 /*
997                  * We will disable all channels that do not match our
998                  * received regulatory rule unless the hint is coming
999                  * from a Country IE and the Country IE had no information
1000                  * about a band. The IEEE 802.11 spec allows for an AP
1001                  * to send only a subset of the regulatory rules allowed,
1002                  * so an AP in the US that only supports 2.4 GHz may only send
1003                  * a country IE with information for the 2.4 GHz band
1004                  * while 5 GHz is still supported.
1005                  */
1006                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1007                     PTR_ERR(reg_rule) == -ERANGE)
1008                         return;
1009
1010                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1011                     request_wiphy && request_wiphy == wiphy &&
1012                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1013                         REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1014                                       chan->center_freq);
1015                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1016                         chan->flags = chan->orig_flags;
1017                 } else {
1018                         REG_DBG_PRINT("Disabling freq %d MHz\n",
1019                                       chan->center_freq);
1020                         chan->flags |= IEEE80211_CHAN_DISABLED;
1021                 }
1022                 return;
1023         }
1024
1025         chan_reg_rule_print_dbg(chan, reg_rule);
1026
1027         power_rule = &reg_rule->power_rule;
1028         freq_range = &reg_rule->freq_range;
1029
1030         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1031         /* Check if auto calculation requested */
1032         if (!max_bandwidth_khz) {
1033                 regd = reg_get_regdomain(wiphy);
1034                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1035         }
1036
1037         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1038                 bw_flags = IEEE80211_CHAN_NO_HT40;
1039         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1040                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1041         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1042                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1043
1044         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1045             request_wiphy && request_wiphy == wiphy &&
1046             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1047                 /*
1048                  * This guarantees the driver's requested regulatory domain
1049                  * will always be used as a base for further regulatory
1050                  * settings
1051                  */
1052                 chan->flags = chan->orig_flags =
1053                         map_regdom_flags(reg_rule->flags) | bw_flags;
1054                 chan->max_antenna_gain = chan->orig_mag =
1055                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1056                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1057                         (int) MBM_TO_DBM(power_rule->max_eirp);
1058                 return;
1059         }
1060
1061         chan->dfs_state = NL80211_DFS_USABLE;
1062         chan->dfs_state_entered = jiffies;
1063
1064         chan->beacon_found = false;
1065         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1066         chan->max_antenna_gain =
1067                 min_t(int, chan->orig_mag,
1068                       MBI_TO_DBI(power_rule->max_antenna_gain));
1069         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1070         if (chan->orig_mpwr) {
1071                 /*
1072                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1073                  * will always follow the passed country IE power settings.
1074                  */
1075                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1076                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1077                         chan->max_power = chan->max_reg_power;
1078                 else
1079                         chan->max_power = min(chan->orig_mpwr,
1080                                               chan->max_reg_power);
1081         } else
1082                 chan->max_power = chan->max_reg_power;
1083 }
1084
1085 static void handle_band(struct wiphy *wiphy,
1086                         enum nl80211_reg_initiator initiator,
1087                         struct ieee80211_supported_band *sband)
1088 {
1089         unsigned int i;
1090
1091         if (!sband)
1092                 return;
1093
1094         for (i = 0; i < sband->n_channels; i++)
1095                 handle_channel(wiphy, initiator, &sband->channels[i]);
1096 }
1097
1098 static bool reg_request_cell_base(struct regulatory_request *request)
1099 {
1100         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1101                 return false;
1102         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1103 }
1104
1105 bool reg_last_request_cell_base(void)
1106 {
1107         return reg_request_cell_base(get_last_request());
1108 }
1109
1110 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
1111 /* Core specific check */
1112 static enum reg_request_treatment
1113 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1114 {
1115         struct regulatory_request *lr = get_last_request();
1116
1117         if (!reg_num_devs_support_basehint)
1118                 return REG_REQ_IGNORE;
1119
1120         if (reg_request_cell_base(lr) &&
1121             !regdom_changes(pending_request->alpha2))
1122                 return REG_REQ_ALREADY_SET;
1123
1124         return REG_REQ_OK;
1125 }
1126
1127 /* Device specific check */
1128 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1129 {
1130         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1131 }
1132 #else
1133 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1134 {
1135         return REG_REQ_IGNORE;
1136 }
1137
1138 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1139 {
1140         return true;
1141 }
1142 #endif
1143
1144 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1145 {
1146         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1147             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1148                 return true;
1149         return false;
1150 }
1151
1152 static bool ignore_reg_update(struct wiphy *wiphy,
1153                               enum nl80211_reg_initiator initiator)
1154 {
1155         struct regulatory_request *lr = get_last_request();
1156
1157         if (!lr) {
1158                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1159                               "since last_request is not set\n",
1160                               reg_initiator_name(initiator));
1161                 return true;
1162         }
1163
1164         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1165             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1166                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1167                               "since the driver uses its own custom "
1168                               "regulatory domain\n",
1169                               reg_initiator_name(initiator));
1170                 return true;
1171         }
1172
1173         /*
1174          * wiphy->regd will be set once the device has its own
1175          * desired regulatory domain set
1176          */
1177         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1178             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1179             !is_world_regdom(lr->alpha2)) {
1180                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1181                               "since the driver requires its own regulatory "
1182                               "domain to be set first\n",
1183                               reg_initiator_name(initiator));
1184                 return true;
1185         }
1186
1187         if (reg_request_cell_base(lr))
1188                 return reg_dev_ignore_cell_hint(wiphy);
1189
1190         return false;
1191 }
1192
1193 static bool reg_is_world_roaming(struct wiphy *wiphy)
1194 {
1195         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1196         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1197         struct regulatory_request *lr = get_last_request();
1198
1199         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1200                 return true;
1201
1202         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1203             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1204                 return true;
1205
1206         return false;
1207 }
1208
1209 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1210                               struct reg_beacon *reg_beacon)
1211 {
1212         struct ieee80211_supported_band *sband;
1213         struct ieee80211_channel *chan;
1214         bool channel_changed = false;
1215         struct ieee80211_channel chan_before;
1216
1217         sband = wiphy->bands[reg_beacon->chan.band];
1218         chan = &sband->channels[chan_idx];
1219
1220         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1221                 return;
1222
1223         if (chan->beacon_found)
1224                 return;
1225
1226         chan->beacon_found = true;
1227
1228         if (!reg_is_world_roaming(wiphy))
1229                 return;
1230
1231         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1232                 return;
1233
1234         chan_before.center_freq = chan->center_freq;
1235         chan_before.flags = chan->flags;
1236
1237         if (chan->flags & IEEE80211_CHAN_NO_IR) {
1238                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1239                 channel_changed = true;
1240         }
1241
1242         if (channel_changed)
1243                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1244 }
1245
1246 /*
1247  * Called when a scan on a wiphy finds a beacon on
1248  * new channel
1249  */
1250 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1251                                     struct reg_beacon *reg_beacon)
1252 {
1253         unsigned int i;
1254         struct ieee80211_supported_band *sband;
1255
1256         if (!wiphy->bands[reg_beacon->chan.band])
1257                 return;
1258
1259         sband = wiphy->bands[reg_beacon->chan.band];
1260
1261         for (i = 0; i < sband->n_channels; i++)
1262                 handle_reg_beacon(wiphy, i, reg_beacon);
1263 }
1264
1265 /*
1266  * Called upon reg changes or a new wiphy is added
1267  */
1268 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1269 {
1270         unsigned int i;
1271         struct ieee80211_supported_band *sband;
1272         struct reg_beacon *reg_beacon;
1273
1274         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1275                 if (!wiphy->bands[reg_beacon->chan.band])
1276                         continue;
1277                 sband = wiphy->bands[reg_beacon->chan.band];
1278                 for (i = 0; i < sband->n_channels; i++)
1279                         handle_reg_beacon(wiphy, i, reg_beacon);
1280         }
1281 }
1282
1283 /* Reap the advantages of previously found beacons */
1284 static void reg_process_beacons(struct wiphy *wiphy)
1285 {
1286         /*
1287          * Means we are just firing up cfg80211, so no beacons would
1288          * have been processed yet.
1289          */
1290         if (!last_request)
1291                 return;
1292         wiphy_update_beacon_reg(wiphy);
1293 }
1294
1295 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1296 {
1297         if (!chan)
1298                 return false;
1299         if (chan->flags & IEEE80211_CHAN_DISABLED)
1300                 return false;
1301         /* This would happen when regulatory rules disallow HT40 completely */
1302         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1303                 return false;
1304         return true;
1305 }
1306
1307 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1308                                          struct ieee80211_channel *channel)
1309 {
1310         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1311         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1312         unsigned int i;
1313
1314         if (!is_ht40_allowed(channel)) {
1315                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1316                 return;
1317         }
1318
1319         /*
1320          * We need to ensure the extension channels exist to
1321          * be able to use HT40- or HT40+, this finds them (or not)
1322          */
1323         for (i = 0; i < sband->n_channels; i++) {
1324                 struct ieee80211_channel *c = &sband->channels[i];
1325
1326                 if (c->center_freq == (channel->center_freq - 20))
1327                         channel_before = c;
1328                 if (c->center_freq == (channel->center_freq + 20))
1329                         channel_after = c;
1330         }
1331
1332         /*
1333          * Please note that this assumes target bandwidth is 20 MHz,
1334          * if that ever changes we also need to change the below logic
1335          * to include that as well.
1336          */
1337         if (!is_ht40_allowed(channel_before))
1338                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1339         else
1340                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1341
1342         if (!is_ht40_allowed(channel_after))
1343                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1344         else
1345                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1346 }
1347
1348 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1349                                       struct ieee80211_supported_band *sband)
1350 {
1351         unsigned int i;
1352
1353         if (!sband)
1354                 return;
1355
1356         for (i = 0; i < sband->n_channels; i++)
1357                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1358 }
1359
1360 static void reg_process_ht_flags(struct wiphy *wiphy)
1361 {
1362         enum ieee80211_band band;
1363
1364         if (!wiphy)
1365                 return;
1366
1367         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1368                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1369 }
1370
1371 static void reg_call_notifier(struct wiphy *wiphy,
1372                               struct regulatory_request *request)
1373 {
1374         if (wiphy->reg_notifier)
1375                 wiphy->reg_notifier(wiphy, request);
1376 }
1377
1378 static void wiphy_update_regulatory(struct wiphy *wiphy,
1379                                     enum nl80211_reg_initiator initiator)
1380 {
1381         enum ieee80211_band band;
1382         struct regulatory_request *lr = get_last_request();
1383
1384         if (ignore_reg_update(wiphy, initiator)) {
1385                 /*
1386                  * Regulatory updates set by CORE are ignored for custom
1387                  * regulatory cards. Let us notify the changes to the driver,
1388                  * as some drivers used this to restore its orig_* reg domain.
1389                  */
1390                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1391                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1392                         reg_call_notifier(wiphy, lr);
1393                 return;
1394         }
1395
1396         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1397
1398         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1399                 handle_band(wiphy, initiator, wiphy->bands[band]);
1400
1401         reg_process_beacons(wiphy);
1402         reg_process_ht_flags(wiphy);
1403         reg_call_notifier(wiphy, lr);
1404 }
1405
1406 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1407 {
1408         struct cfg80211_registered_device *rdev;
1409         struct wiphy *wiphy;
1410
1411         ASSERT_RTNL();
1412
1413         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1414                 wiphy = &rdev->wiphy;
1415                 wiphy_update_regulatory(wiphy, initiator);
1416         }
1417 }
1418
1419 static void handle_channel_custom(struct wiphy *wiphy,
1420                                   struct ieee80211_channel *chan,
1421                                   const struct ieee80211_regdomain *regd)
1422 {
1423         u32 bw_flags = 0;
1424         const struct ieee80211_reg_rule *reg_rule = NULL;
1425         const struct ieee80211_power_rule *power_rule = NULL;
1426         const struct ieee80211_freq_range *freq_range = NULL;
1427         u32 max_bandwidth_khz;
1428
1429         reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1430                                       regd);
1431
1432         if (IS_ERR(reg_rule)) {
1433                 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1434                               chan->center_freq);
1435                 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1436                 chan->flags = chan->orig_flags;
1437                 return;
1438         }
1439
1440         chan_reg_rule_print_dbg(chan, reg_rule);
1441
1442         power_rule = &reg_rule->power_rule;
1443         freq_range = &reg_rule->freq_range;
1444
1445         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1446         /* Check if auto calculation requested */
1447         if (!max_bandwidth_khz)
1448                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1449
1450         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1451                 bw_flags = IEEE80211_CHAN_NO_HT40;
1452         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1453                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1454         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1455                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1456
1457         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1458         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1459         chan->max_reg_power = chan->max_power =
1460                 (int) MBM_TO_DBM(power_rule->max_eirp);
1461 }
1462
1463 static void handle_band_custom(struct wiphy *wiphy,
1464                                struct ieee80211_supported_band *sband,
1465                                const struct ieee80211_regdomain *regd)
1466 {
1467         unsigned int i;
1468
1469         if (!sband)
1470                 return;
1471
1472         for (i = 0; i < sband->n_channels; i++)
1473                 handle_channel_custom(wiphy, &sband->channels[i], regd);
1474 }
1475
1476 /* Used by drivers prior to wiphy registration */
1477 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1478                                    const struct ieee80211_regdomain *regd)
1479 {
1480         enum ieee80211_band band;
1481         unsigned int bands_set = 0;
1482
1483         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1484              "wiphy should have REGULATORY_CUSTOM_REG\n");
1485         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1486
1487         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1488                 if (!wiphy->bands[band])
1489                         continue;
1490                 handle_band_custom(wiphy, wiphy->bands[band], regd);
1491                 bands_set++;
1492         }
1493
1494         /*
1495          * no point in calling this if it won't have any effect
1496          * on your device's supported bands.
1497          */
1498         WARN_ON(!bands_set);
1499 }
1500 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1501
1502 static void reg_set_request_processed(void)
1503 {
1504         bool need_more_processing = false;
1505         struct regulatory_request *lr = get_last_request();
1506
1507         lr->processed = true;
1508
1509         spin_lock(&reg_requests_lock);
1510         if (!list_empty(&reg_requests_list))
1511                 need_more_processing = true;
1512         spin_unlock(&reg_requests_lock);
1513
1514         if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1515                 cancel_delayed_work(&reg_timeout);
1516
1517         if (need_more_processing)
1518                 schedule_work(&reg_work);
1519 }
1520
1521 /**
1522  * reg_process_hint_core - process core regulatory requests
1523  * @pending_request: a pending core regulatory request
1524  *
1525  * The wireless subsystem can use this function to process
1526  * a regulatory request issued by the regulatory core.
1527  *
1528  * Returns one of the different reg request treatment values.
1529  */
1530 static enum reg_request_treatment
1531 reg_process_hint_core(struct regulatory_request *core_request)
1532 {
1533
1534         core_request->intersect = false;
1535         core_request->processed = false;
1536
1537         reg_update_last_request(core_request);
1538
1539         return reg_call_crda(core_request);
1540 }
1541
1542 static enum reg_request_treatment
1543 __reg_process_hint_user(struct regulatory_request *user_request)
1544 {
1545         struct regulatory_request *lr = get_last_request();
1546
1547         if (reg_request_cell_base(user_request))
1548                 return reg_ignore_cell_hint(user_request);
1549
1550         if (reg_request_cell_base(lr))
1551                 return REG_REQ_IGNORE;
1552
1553         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1554                 return REG_REQ_INTERSECT;
1555         /*
1556          * If the user knows better the user should set the regdom
1557          * to their country before the IE is picked up
1558          */
1559         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1560             lr->intersect)
1561                 return REG_REQ_IGNORE;
1562         /*
1563          * Process user requests only after previous user/driver/core
1564          * requests have been processed
1565          */
1566         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1567              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1568              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1569             regdom_changes(lr->alpha2))
1570                 return REG_REQ_IGNORE;
1571
1572         if (!regdom_changes(user_request->alpha2))
1573                 return REG_REQ_ALREADY_SET;
1574
1575         return REG_REQ_OK;
1576 }
1577
1578 /**
1579  * reg_process_hint_user - process user regulatory requests
1580  * @user_request: a pending user regulatory request
1581  *
1582  * The wireless subsystem can use this function to process
1583  * a regulatory request initiated by userspace.
1584  *
1585  * Returns one of the different reg request treatment values.
1586  */
1587 static enum reg_request_treatment
1588 reg_process_hint_user(struct regulatory_request *user_request)
1589 {
1590         enum reg_request_treatment treatment;
1591
1592         treatment = __reg_process_hint_user(user_request);
1593         if (treatment == REG_REQ_IGNORE ||
1594             treatment == REG_REQ_ALREADY_SET) {
1595                 kfree(user_request);
1596                 return treatment;
1597         }
1598
1599         user_request->intersect = treatment == REG_REQ_INTERSECT;
1600         user_request->processed = false;
1601
1602         reg_update_last_request(user_request);
1603
1604         user_alpha2[0] = user_request->alpha2[0];
1605         user_alpha2[1] = user_request->alpha2[1];
1606
1607         return reg_call_crda(user_request);
1608 }
1609
1610 static enum reg_request_treatment
1611 __reg_process_hint_driver(struct regulatory_request *driver_request)
1612 {
1613         struct regulatory_request *lr = get_last_request();
1614
1615         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1616                 if (regdom_changes(driver_request->alpha2))
1617                         return REG_REQ_OK;
1618                 return REG_REQ_ALREADY_SET;
1619         }
1620
1621         /*
1622          * This would happen if you unplug and plug your card
1623          * back in or if you add a new device for which the previously
1624          * loaded card also agrees on the regulatory domain.
1625          */
1626         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1627             !regdom_changes(driver_request->alpha2))
1628                 return REG_REQ_ALREADY_SET;
1629
1630         return REG_REQ_INTERSECT;
1631 }
1632
1633 /**
1634  * reg_process_hint_driver - process driver regulatory requests
1635  * @driver_request: a pending driver regulatory request
1636  *
1637  * The wireless subsystem can use this function to process
1638  * a regulatory request issued by an 802.11 driver.
1639  *
1640  * Returns one of the different reg request treatment values.
1641  */
1642 static enum reg_request_treatment
1643 reg_process_hint_driver(struct wiphy *wiphy,
1644                         struct regulatory_request *driver_request)
1645 {
1646         const struct ieee80211_regdomain *regd;
1647         enum reg_request_treatment treatment;
1648
1649         treatment = __reg_process_hint_driver(driver_request);
1650
1651         switch (treatment) {
1652         case REG_REQ_OK:
1653                 break;
1654         case REG_REQ_IGNORE:
1655                 kfree(driver_request);
1656                 return treatment;
1657         case REG_REQ_INTERSECT:
1658                 /* fall through */
1659         case REG_REQ_ALREADY_SET:
1660                 regd = reg_copy_regd(get_cfg80211_regdom());
1661                 if (IS_ERR(regd)) {
1662                         kfree(driver_request);
1663                         return REG_REQ_IGNORE;
1664                 }
1665                 rcu_assign_pointer(wiphy->regd, regd);
1666         }
1667
1668
1669         driver_request->intersect = treatment == REG_REQ_INTERSECT;
1670         driver_request->processed = false;
1671
1672         reg_update_last_request(driver_request);
1673
1674         /*
1675          * Since CRDA will not be called in this case as we already
1676          * have applied the requested regulatory domain before we just
1677          * inform userspace we have processed the request
1678          */
1679         if (treatment == REG_REQ_ALREADY_SET) {
1680                 nl80211_send_reg_change_event(driver_request);
1681                 reg_set_request_processed();
1682                 return treatment;
1683         }
1684
1685         return reg_call_crda(driver_request);
1686 }
1687
1688 static enum reg_request_treatment
1689 __reg_process_hint_country_ie(struct wiphy *wiphy,
1690                               struct regulatory_request *country_ie_request)
1691 {
1692         struct wiphy *last_wiphy = NULL;
1693         struct regulatory_request *lr = get_last_request();
1694
1695         if (reg_request_cell_base(lr)) {
1696                 /* Trust a Cell base station over the AP's country IE */
1697                 if (regdom_changes(country_ie_request->alpha2))
1698                         return REG_REQ_IGNORE;
1699                 return REG_REQ_ALREADY_SET;
1700         } else {
1701                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1702                         return REG_REQ_IGNORE;
1703         }
1704
1705         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1706                 return -EINVAL;
1707
1708         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1709                 return REG_REQ_OK;
1710
1711         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1712
1713         if (last_wiphy != wiphy) {
1714                 /*
1715                  * Two cards with two APs claiming different
1716                  * Country IE alpha2s. We could
1717                  * intersect them, but that seems unlikely
1718                  * to be correct. Reject second one for now.
1719                  */
1720                 if (regdom_changes(country_ie_request->alpha2))
1721                         return REG_REQ_IGNORE;
1722                 return REG_REQ_ALREADY_SET;
1723         }
1724         /*
1725          * Two consecutive Country IE hints on the same wiphy.
1726          * This should be picked up early by the driver/stack
1727          */
1728         if (WARN_ON(regdom_changes(country_ie_request->alpha2)))
1729                 return REG_REQ_OK;
1730         return REG_REQ_ALREADY_SET;
1731 }
1732
1733 /**
1734  * reg_process_hint_country_ie - process regulatory requests from country IEs
1735  * @country_ie_request: a regulatory request from a country IE
1736  *
1737  * The wireless subsystem can use this function to process
1738  * a regulatory request issued by a country Information Element.
1739  *
1740  * Returns one of the different reg request treatment values.
1741  */
1742 static enum reg_request_treatment
1743 reg_process_hint_country_ie(struct wiphy *wiphy,
1744                             struct regulatory_request *country_ie_request)
1745 {
1746         enum reg_request_treatment treatment;
1747
1748         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
1749
1750         switch (treatment) {
1751         case REG_REQ_OK:
1752                 break;
1753         case REG_REQ_IGNORE:
1754                 /* fall through */
1755         case REG_REQ_ALREADY_SET:
1756                 kfree(country_ie_request);
1757                 return treatment;
1758         case REG_REQ_INTERSECT:
1759                 kfree(country_ie_request);
1760                 /*
1761                  * This doesn't happen yet, not sure we
1762                  * ever want to support it for this case.
1763                  */
1764                 WARN_ONCE(1, "Unexpected intersection for country IEs");
1765                 return REG_REQ_IGNORE;
1766         }
1767
1768         country_ie_request->intersect = false;
1769         country_ie_request->processed = false;
1770
1771         reg_update_last_request(country_ie_request);
1772
1773         return reg_call_crda(country_ie_request);
1774 }
1775
1776 /* This processes *all* regulatory hints */
1777 static void reg_process_hint(struct regulatory_request *reg_request)
1778 {
1779         struct wiphy *wiphy = NULL;
1780         enum reg_request_treatment treatment;
1781
1782         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1783                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1784
1785         switch (reg_request->initiator) {
1786         case NL80211_REGDOM_SET_BY_CORE:
1787                 reg_process_hint_core(reg_request);
1788                 return;
1789         case NL80211_REGDOM_SET_BY_USER:
1790                 treatment = reg_process_hint_user(reg_request);
1791                 if (treatment == REG_REQ_OK ||
1792                     treatment == REG_REQ_ALREADY_SET)
1793                         return;
1794                 queue_delayed_work(system_power_efficient_wq,
1795                                    &reg_timeout, msecs_to_jiffies(3142));
1796                 return;
1797         case NL80211_REGDOM_SET_BY_DRIVER:
1798                 if (!wiphy)
1799                         goto out_free;
1800                 treatment = reg_process_hint_driver(wiphy, reg_request);
1801                 break;
1802         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1803                 if (!wiphy)
1804                         goto out_free;
1805                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
1806                 break;
1807         default:
1808                 WARN(1, "invalid initiator %d\n", reg_request->initiator);
1809                 goto out_free;
1810         }
1811
1812         /* This is required so that the orig_* parameters are saved */
1813         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
1814             wiphy->regulatory_flags & REGULATORY_STRICT_REG)
1815                 wiphy_update_regulatory(wiphy, reg_request->initiator);
1816
1817         return;
1818
1819 out_free:
1820         kfree(reg_request);
1821 }
1822
1823 /*
1824  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1825  * Regulatory hints come on a first come first serve basis and we
1826  * must process each one atomically.
1827  */
1828 static void reg_process_pending_hints(void)
1829 {
1830         struct regulatory_request *reg_request, *lr;
1831
1832         lr = get_last_request();
1833
1834         /* When last_request->processed becomes true this will be rescheduled */
1835         if (lr && !lr->processed) {
1836                 REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n");
1837                 return;
1838         }
1839
1840         spin_lock(&reg_requests_lock);
1841
1842         if (list_empty(&reg_requests_list)) {
1843                 spin_unlock(&reg_requests_lock);
1844                 return;
1845         }
1846
1847         reg_request = list_first_entry(&reg_requests_list,
1848                                        struct regulatory_request,
1849                                        list);
1850         list_del_init(&reg_request->list);
1851
1852         spin_unlock(&reg_requests_lock);
1853
1854         reg_process_hint(reg_request);
1855 }
1856
1857 /* Processes beacon hints -- this has nothing to do with country IEs */
1858 static void reg_process_pending_beacon_hints(void)
1859 {
1860         struct cfg80211_registered_device *rdev;
1861         struct reg_beacon *pending_beacon, *tmp;
1862
1863         /* This goes through the _pending_ beacon list */
1864         spin_lock_bh(&reg_pending_beacons_lock);
1865
1866         list_for_each_entry_safe(pending_beacon, tmp,
1867                                  &reg_pending_beacons, list) {
1868                 list_del_init(&pending_beacon->list);
1869
1870                 /* Applies the beacon hint to current wiphys */
1871                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1872                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1873
1874                 /* Remembers the beacon hint for new wiphys or reg changes */
1875                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1876         }
1877
1878         spin_unlock_bh(&reg_pending_beacons_lock);
1879 }
1880
1881 static void reg_todo(struct work_struct *work)
1882 {
1883         rtnl_lock();
1884         reg_process_pending_hints();
1885         reg_process_pending_beacon_hints();
1886         rtnl_unlock();
1887 }
1888
1889 static void queue_regulatory_request(struct regulatory_request *request)
1890 {
1891         request->alpha2[0] = toupper(request->alpha2[0]);
1892         request->alpha2[1] = toupper(request->alpha2[1]);
1893
1894         spin_lock(&reg_requests_lock);
1895         list_add_tail(&request->list, &reg_requests_list);
1896         spin_unlock(&reg_requests_lock);
1897
1898         schedule_work(&reg_work);
1899 }
1900
1901 /*
1902  * Core regulatory hint -- happens during cfg80211_init()
1903  * and when we restore regulatory settings.
1904  */
1905 static int regulatory_hint_core(const char *alpha2)
1906 {
1907         struct regulatory_request *request;
1908
1909         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1910         if (!request)
1911                 return -ENOMEM;
1912
1913         request->alpha2[0] = alpha2[0];
1914         request->alpha2[1] = alpha2[1];
1915         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1916
1917         queue_regulatory_request(request);
1918
1919         return 0;
1920 }
1921
1922 /* User hints */
1923 int regulatory_hint_user(const char *alpha2,
1924                          enum nl80211_user_reg_hint_type user_reg_hint_type)
1925 {
1926         struct regulatory_request *request;
1927
1928         if (WARN_ON(!alpha2))
1929                 return -EINVAL;
1930
1931         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1932         if (!request)
1933                 return -ENOMEM;
1934
1935         request->wiphy_idx = WIPHY_IDX_INVALID;
1936         request->alpha2[0] = alpha2[0];
1937         request->alpha2[1] = alpha2[1];
1938         request->initiator = NL80211_REGDOM_SET_BY_USER;
1939         request->user_reg_hint_type = user_reg_hint_type;
1940
1941         queue_regulatory_request(request);
1942
1943         return 0;
1944 }
1945
1946 /* Driver hints */
1947 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1948 {
1949         struct regulatory_request *request;
1950
1951         if (WARN_ON(!alpha2 || !wiphy))
1952                 return -EINVAL;
1953
1954         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
1955
1956         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1957         if (!request)
1958                 return -ENOMEM;
1959
1960         request->wiphy_idx = get_wiphy_idx(wiphy);
1961
1962         request->alpha2[0] = alpha2[0];
1963         request->alpha2[1] = alpha2[1];
1964         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1965
1966         queue_regulatory_request(request);
1967
1968         return 0;
1969 }
1970 EXPORT_SYMBOL(regulatory_hint);
1971
1972 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
1973                                 const u8 *country_ie, u8 country_ie_len)
1974 {
1975         char alpha2[2];
1976         enum environment_cap env = ENVIRON_ANY;
1977         struct regulatory_request *request = NULL, *lr;
1978
1979         /* IE len must be evenly divisible by 2 */
1980         if (country_ie_len & 0x01)
1981                 return;
1982
1983         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1984                 return;
1985
1986         request = kzalloc(sizeof(*request), GFP_KERNEL);
1987         if (!request)
1988                 return;
1989
1990         alpha2[0] = country_ie[0];
1991         alpha2[1] = country_ie[1];
1992
1993         if (country_ie[2] == 'I')
1994                 env = ENVIRON_INDOOR;
1995         else if (country_ie[2] == 'O')
1996                 env = ENVIRON_OUTDOOR;
1997
1998         rcu_read_lock();
1999         lr = get_last_request();
2000
2001         if (unlikely(!lr))
2002                 goto out;
2003
2004         /*
2005          * We will run this only upon a successful connection on cfg80211.
2006          * We leave conflict resolution to the workqueue, where can hold
2007          * the RTNL.
2008          */
2009         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2010             lr->wiphy_idx != WIPHY_IDX_INVALID)
2011                 goto out;
2012
2013         request->wiphy_idx = get_wiphy_idx(wiphy);
2014         request->alpha2[0] = alpha2[0];
2015         request->alpha2[1] = alpha2[1];
2016         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2017         request->country_ie_env = env;
2018
2019         queue_regulatory_request(request);
2020         request = NULL;
2021 out:
2022         kfree(request);
2023         rcu_read_unlock();
2024 }
2025
2026 static void restore_alpha2(char *alpha2, bool reset_user)
2027 {
2028         /* indicates there is no alpha2 to consider for restoration */
2029         alpha2[0] = '9';
2030         alpha2[1] = '7';
2031
2032         /* The user setting has precedence over the module parameter */
2033         if (is_user_regdom_saved()) {
2034                 /* Unless we're asked to ignore it and reset it */
2035                 if (reset_user) {
2036                         REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2037                         user_alpha2[0] = '9';
2038                         user_alpha2[1] = '7';
2039
2040                         /*
2041                          * If we're ignoring user settings, we still need to
2042                          * check the module parameter to ensure we put things
2043                          * back as they were for a full restore.
2044                          */
2045                         if (!is_world_regdom(ieee80211_regdom)) {
2046                                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2047                                               ieee80211_regdom[0], ieee80211_regdom[1]);
2048                                 alpha2[0] = ieee80211_regdom[0];
2049                                 alpha2[1] = ieee80211_regdom[1];
2050                         }
2051                 } else {
2052                         REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2053                                       user_alpha2[0], user_alpha2[1]);
2054                         alpha2[0] = user_alpha2[0];
2055                         alpha2[1] = user_alpha2[1];
2056                 }
2057         } else if (!is_world_regdom(ieee80211_regdom)) {
2058                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2059                               ieee80211_regdom[0], ieee80211_regdom[1]);
2060                 alpha2[0] = ieee80211_regdom[0];
2061                 alpha2[1] = ieee80211_regdom[1];
2062         } else
2063                 REG_DBG_PRINT("Restoring regulatory settings\n");
2064 }
2065
2066 static void restore_custom_reg_settings(struct wiphy *wiphy)
2067 {
2068         struct ieee80211_supported_band *sband;
2069         enum ieee80211_band band;
2070         struct ieee80211_channel *chan;
2071         int i;
2072
2073         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2074                 sband = wiphy->bands[band];
2075                 if (!sband)
2076                         continue;
2077                 for (i = 0; i < sband->n_channels; i++) {
2078                         chan = &sband->channels[i];
2079                         chan->flags = chan->orig_flags;
2080                         chan->max_antenna_gain = chan->orig_mag;
2081                         chan->max_power = chan->orig_mpwr;
2082                         chan->beacon_found = false;
2083                 }
2084         }
2085 }
2086
2087 /*
2088  * Restoring regulatory settings involves ingoring any
2089  * possibly stale country IE information and user regulatory
2090  * settings if so desired, this includes any beacon hints
2091  * learned as we could have traveled outside to another country
2092  * after disconnection. To restore regulatory settings we do
2093  * exactly what we did at bootup:
2094  *
2095  *   - send a core regulatory hint
2096  *   - send a user regulatory hint if applicable
2097  *
2098  * Device drivers that send a regulatory hint for a specific country
2099  * keep their own regulatory domain on wiphy->regd so that does does
2100  * not need to be remembered.
2101  */
2102 static void restore_regulatory_settings(bool reset_user)
2103 {
2104         char alpha2[2];
2105         char world_alpha2[2];
2106         struct reg_beacon *reg_beacon, *btmp;
2107         struct regulatory_request *reg_request, *tmp;
2108         LIST_HEAD(tmp_reg_req_list);
2109         struct cfg80211_registered_device *rdev;
2110
2111         ASSERT_RTNL();
2112
2113         reset_regdomains(true, &world_regdom);
2114         restore_alpha2(alpha2, reset_user);
2115
2116         /*
2117          * If there's any pending requests we simply
2118          * stash them to a temporary pending queue and
2119          * add then after we've restored regulatory
2120          * settings.
2121          */
2122         spin_lock(&reg_requests_lock);
2123         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2124                 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
2125                         continue;
2126                 list_move_tail(&reg_request->list, &tmp_reg_req_list);
2127         }
2128         spin_unlock(&reg_requests_lock);
2129
2130         /* Clear beacon hints */
2131         spin_lock_bh(&reg_pending_beacons_lock);
2132         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2133                 list_del(&reg_beacon->list);
2134                 kfree(reg_beacon);
2135         }
2136         spin_unlock_bh(&reg_pending_beacons_lock);
2137
2138         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2139                 list_del(&reg_beacon->list);
2140                 kfree(reg_beacon);
2141         }
2142
2143         /* First restore to the basic regulatory settings */
2144         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2145         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2146
2147         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2148                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2149                         restore_custom_reg_settings(&rdev->wiphy);
2150         }
2151
2152         regulatory_hint_core(world_alpha2);
2153
2154         /*
2155          * This restores the ieee80211_regdom module parameter
2156          * preference or the last user requested regulatory
2157          * settings, user regulatory settings takes precedence.
2158          */
2159         if (is_an_alpha2(alpha2))
2160                 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2161
2162         spin_lock(&reg_requests_lock);
2163         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2164         spin_unlock(&reg_requests_lock);
2165
2166         REG_DBG_PRINT("Kicking the queue\n");
2167
2168         schedule_work(&reg_work);
2169 }
2170
2171 void regulatory_hint_disconnect(void)
2172 {
2173         REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2174         restore_regulatory_settings(false);
2175 }
2176
2177 static bool freq_is_chan_12_13_14(u16 freq)
2178 {
2179         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2180             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2181             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2182                 return true;
2183         return false;
2184 }
2185
2186 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2187 {
2188         struct reg_beacon *pending_beacon;
2189
2190         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2191                 if (beacon_chan->center_freq ==
2192                     pending_beacon->chan.center_freq)
2193                         return true;
2194         return false;
2195 }
2196
2197 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2198                                  struct ieee80211_channel *beacon_chan,
2199                                  gfp_t gfp)
2200 {
2201         struct reg_beacon *reg_beacon;
2202         bool processing;
2203
2204         if (beacon_chan->beacon_found ||
2205             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2206             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2207              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2208                 return 0;
2209
2210         spin_lock_bh(&reg_pending_beacons_lock);
2211         processing = pending_reg_beacon(beacon_chan);
2212         spin_unlock_bh(&reg_pending_beacons_lock);
2213
2214         if (processing)
2215                 return 0;
2216
2217         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2218         if (!reg_beacon)
2219                 return -ENOMEM;
2220
2221         REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2222                       beacon_chan->center_freq,
2223                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
2224                       wiphy_name(wiphy));
2225
2226         memcpy(&reg_beacon->chan, beacon_chan,
2227                sizeof(struct ieee80211_channel));
2228
2229         /*
2230          * Since we can be called from BH or and non-BH context
2231          * we must use spin_lock_bh()
2232          */
2233         spin_lock_bh(&reg_pending_beacons_lock);
2234         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2235         spin_unlock_bh(&reg_pending_beacons_lock);
2236
2237         schedule_work(&reg_work);
2238
2239         return 0;
2240 }
2241
2242 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2243 {
2244         unsigned int i;
2245         const struct ieee80211_reg_rule *reg_rule = NULL;
2246         const struct ieee80211_freq_range *freq_range = NULL;
2247         const struct ieee80211_power_rule *power_rule = NULL;
2248         char bw[32];
2249
2250         pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2251
2252         for (i = 0; i < rd->n_reg_rules; i++) {
2253                 reg_rule = &rd->reg_rules[i];
2254                 freq_range = &reg_rule->freq_range;
2255                 power_rule = &reg_rule->power_rule;
2256
2257                 if (!freq_range->max_bandwidth_khz)
2258                         snprintf(bw, 32, "%d KHz, AUTO",
2259                                  reg_get_max_bandwidth(rd, reg_rule));
2260                 else
2261                         snprintf(bw, 32, "%d KHz",
2262                                  freq_range->max_bandwidth_khz);
2263
2264                 /*
2265                  * There may not be documentation for max antenna gain
2266                  * in certain regions
2267                  */
2268                 if (power_rule->max_antenna_gain)
2269                         pr_info("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm)\n",
2270                                 freq_range->start_freq_khz,
2271                                 freq_range->end_freq_khz,
2272                                 bw,
2273                                 power_rule->max_antenna_gain,
2274                                 power_rule->max_eirp);
2275                 else
2276                         pr_info("  (%d KHz - %d KHz @ %s), (N/A, %d mBm)\n",
2277                                 freq_range->start_freq_khz,
2278                                 freq_range->end_freq_khz,
2279                                 bw,
2280                                 power_rule->max_eirp);
2281         }
2282 }
2283
2284 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2285 {
2286         switch (dfs_region) {
2287         case NL80211_DFS_UNSET:
2288         case NL80211_DFS_FCC:
2289         case NL80211_DFS_ETSI:
2290         case NL80211_DFS_JP:
2291                 return true;
2292         default:
2293                 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2294                               dfs_region);
2295                 return false;
2296         }
2297 }
2298
2299 static void print_regdomain(const struct ieee80211_regdomain *rd)
2300 {
2301         struct regulatory_request *lr = get_last_request();
2302
2303         if (is_intersected_alpha2(rd->alpha2)) {
2304                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2305                         struct cfg80211_registered_device *rdev;
2306                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2307                         if (rdev) {
2308                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2309                                         rdev->country_ie_alpha2[0],
2310                                         rdev->country_ie_alpha2[1]);
2311                         } else
2312                                 pr_info("Current regulatory domain intersected:\n");
2313                 } else
2314                         pr_info("Current regulatory domain intersected:\n");
2315         } else if (is_world_regdom(rd->alpha2)) {
2316                 pr_info("World regulatory domain updated:\n");
2317         } else {
2318                 if (is_unknown_alpha2(rd->alpha2))
2319                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2320                 else {
2321                         if (reg_request_cell_base(lr))
2322                                 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2323                                         rd->alpha2[0], rd->alpha2[1]);
2324                         else
2325                                 pr_info("Regulatory domain changed to country: %c%c\n",
2326                                         rd->alpha2[0], rd->alpha2[1]);
2327                 }
2328         }
2329
2330         pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2331         print_rd_rules(rd);
2332 }
2333
2334 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2335 {
2336         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2337         print_rd_rules(rd);
2338 }
2339
2340 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2341 {
2342         if (!is_world_regdom(rd->alpha2))
2343                 return -EINVAL;
2344         update_world_regdomain(rd);
2345         return 0;
2346 }
2347
2348 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2349                            struct regulatory_request *user_request)
2350 {
2351         const struct ieee80211_regdomain *intersected_rd = NULL;
2352
2353         if (is_world_regdom(rd->alpha2))
2354                 return -EINVAL;
2355
2356         if (!regdom_changes(rd->alpha2))
2357                 return -EALREADY;
2358
2359         if (!is_valid_rd(rd)) {
2360                 pr_err("Invalid regulatory domain detected:\n");
2361                 print_regdomain_info(rd);
2362                 return -EINVAL;
2363         }
2364
2365         if (!user_request->intersect) {
2366                 reset_regdomains(false, rd);
2367                 return 0;
2368         }
2369
2370         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2371         if (!intersected_rd)
2372                 return -EINVAL;
2373
2374         kfree(rd);
2375         rd = NULL;
2376         reset_regdomains(false, intersected_rd);
2377
2378         return 0;
2379 }
2380
2381 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2382                              struct regulatory_request *driver_request)
2383 {
2384         const struct ieee80211_regdomain *regd;
2385         const struct ieee80211_regdomain *intersected_rd = NULL;
2386         const struct ieee80211_regdomain *tmp;
2387         struct wiphy *request_wiphy;
2388
2389         if (is_world_regdom(rd->alpha2))
2390                 return -EINVAL;
2391
2392         if (!regdom_changes(rd->alpha2))
2393                 return -EALREADY;
2394
2395         if (!is_valid_rd(rd)) {
2396                 pr_err("Invalid regulatory domain detected:\n");
2397                 print_regdomain_info(rd);
2398                 return -EINVAL;
2399         }
2400
2401         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2402         if (!request_wiphy) {
2403                 queue_delayed_work(system_power_efficient_wq,
2404                                    &reg_timeout, 0);
2405                 return -ENODEV;
2406         }
2407
2408         if (!driver_request->intersect) {
2409                 if (request_wiphy->regd)
2410                         return -EALREADY;
2411
2412                 regd = reg_copy_regd(rd);
2413                 if (IS_ERR(regd))
2414                         return PTR_ERR(regd);
2415
2416                 rcu_assign_pointer(request_wiphy->regd, regd);
2417                 reset_regdomains(false, rd);
2418                 return 0;
2419         }
2420
2421         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2422         if (!intersected_rd)
2423                 return -EINVAL;
2424
2425         /*
2426          * We can trash what CRDA provided now.
2427          * However if a driver requested this specific regulatory
2428          * domain we keep it for its private use
2429          */
2430         tmp = get_wiphy_regdom(request_wiphy);
2431         rcu_assign_pointer(request_wiphy->regd, rd);
2432         rcu_free_regdom(tmp);
2433
2434         rd = NULL;
2435
2436         reset_regdomains(false, intersected_rd);
2437
2438         return 0;
2439 }
2440
2441 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2442                                  struct regulatory_request *country_ie_request)
2443 {
2444         struct wiphy *request_wiphy;
2445
2446         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2447             !is_unknown_alpha2(rd->alpha2))
2448                 return -EINVAL;
2449
2450         /*
2451          * Lets only bother proceeding on the same alpha2 if the current
2452          * rd is non static (it means CRDA was present and was used last)
2453          * and the pending request came in from a country IE
2454          */
2455
2456         if (!is_valid_rd(rd)) {
2457                 pr_err("Invalid regulatory domain detected:\n");
2458                 print_regdomain_info(rd);
2459                 return -EINVAL;
2460         }
2461
2462         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2463         if (!request_wiphy) {
2464                 queue_delayed_work(system_power_efficient_wq,
2465                                    &reg_timeout, 0);
2466                 return -ENODEV;
2467         }
2468
2469         if (country_ie_request->intersect)
2470                 return -EINVAL;
2471
2472         reset_regdomains(false, rd);
2473         return 0;
2474 }
2475
2476 /*
2477  * Use this call to set the current regulatory domain. Conflicts with
2478  * multiple drivers can be ironed out later. Caller must've already
2479  * kmalloc'd the rd structure.
2480  */
2481 int set_regdom(const struct ieee80211_regdomain *rd)
2482 {
2483         struct regulatory_request *lr;
2484         int r;
2485
2486         if (!reg_is_valid_request(rd->alpha2)) {
2487                 kfree(rd);
2488                 return -EINVAL;
2489         }
2490
2491         lr = get_last_request();
2492
2493         /* Note that this doesn't update the wiphys, this is done below */
2494         switch (lr->initiator) {
2495         case NL80211_REGDOM_SET_BY_CORE:
2496                 r = reg_set_rd_core(rd);
2497                 break;
2498         case NL80211_REGDOM_SET_BY_USER:
2499                 r = reg_set_rd_user(rd, lr);
2500                 break;
2501         case NL80211_REGDOM_SET_BY_DRIVER:
2502                 r = reg_set_rd_driver(rd, lr);
2503                 break;
2504         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2505                 r = reg_set_rd_country_ie(rd, lr);
2506                 break;
2507         default:
2508                 WARN(1, "invalid initiator %d\n", lr->initiator);
2509                 return -EINVAL;
2510         }
2511
2512         if (r) {
2513                 if (r == -EALREADY)
2514                         reg_set_request_processed();
2515
2516                 kfree(rd);
2517                 return r;
2518         }
2519
2520         /* This would make this whole thing pointless */
2521         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2522                 return -EINVAL;
2523
2524         /* update all wiphys now with the new established regulatory domain */
2525         update_all_wiphy_regulatory(lr->initiator);
2526
2527         print_regdomain(get_cfg80211_regdom());
2528
2529         nl80211_send_reg_change_event(lr);
2530
2531         reg_set_request_processed();
2532
2533         return 0;
2534 }
2535
2536 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2537 {
2538         struct regulatory_request *lr;
2539         u8 alpha2[2];
2540         bool add = false;
2541
2542         rcu_read_lock();
2543         lr = get_last_request();
2544         if (lr && !lr->processed) {
2545                 memcpy(alpha2, lr->alpha2, 2);
2546                 add = true;
2547         }
2548         rcu_read_unlock();
2549
2550         if (add)
2551                 return add_uevent_var(env, "COUNTRY=%c%c",
2552                                       alpha2[0], alpha2[1]);
2553         return 0;
2554 }
2555
2556 void wiphy_regulatory_register(struct wiphy *wiphy)
2557 {
2558         struct regulatory_request *lr;
2559
2560         if (!reg_dev_ignore_cell_hint(wiphy))
2561                 reg_num_devs_support_basehint++;
2562
2563         lr = get_last_request();
2564         wiphy_update_regulatory(wiphy, lr->initiator);
2565 }
2566
2567 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2568 {
2569         struct wiphy *request_wiphy = NULL;
2570         struct regulatory_request *lr;
2571
2572         lr = get_last_request();
2573
2574         if (!reg_dev_ignore_cell_hint(wiphy))
2575                 reg_num_devs_support_basehint--;
2576
2577         rcu_free_regdom(get_wiphy_regdom(wiphy));
2578         rcu_assign_pointer(wiphy->regd, NULL);
2579
2580         if (lr)
2581                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2582
2583         if (!request_wiphy || request_wiphy != wiphy)
2584                 return;
2585
2586         lr->wiphy_idx = WIPHY_IDX_INVALID;
2587         lr->country_ie_env = ENVIRON_ANY;
2588 }
2589
2590 static void reg_timeout_work(struct work_struct *work)
2591 {
2592         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2593         rtnl_lock();
2594         restore_regulatory_settings(true);
2595         rtnl_unlock();
2596 }
2597
2598 int __init regulatory_init(void)
2599 {
2600         int err = 0;
2601
2602         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2603         if (IS_ERR(reg_pdev))
2604                 return PTR_ERR(reg_pdev);
2605
2606         reg_pdev->dev.type = &reg_device_type;
2607
2608         spin_lock_init(&reg_requests_lock);
2609         spin_lock_init(&reg_pending_beacons_lock);
2610
2611         reg_regdb_size_check();
2612
2613         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2614
2615         user_alpha2[0] = '9';
2616         user_alpha2[1] = '7';
2617
2618         /* We always try to get an update for the static regdomain */
2619         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2620         if (err) {
2621                 if (err == -ENOMEM)
2622                         return err;
2623                 /*
2624                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2625                  * memory which is handled and propagated appropriately above
2626                  * but it can also fail during a netlink_broadcast() or during
2627                  * early boot for call_usermodehelper(). For now treat these
2628                  * errors as non-fatal.
2629                  */
2630                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2631         }
2632
2633         /*
2634          * Finally, if the user set the module parameter treat it
2635          * as a user hint.
2636          */
2637         if (!is_world_regdom(ieee80211_regdom))
2638                 regulatory_hint_user(ieee80211_regdom,
2639                                      NL80211_USER_REG_HINT_USER);
2640
2641         return 0;
2642 }
2643
2644 void regulatory_exit(void)
2645 {
2646         struct regulatory_request *reg_request, *tmp;
2647         struct reg_beacon *reg_beacon, *btmp;
2648
2649         cancel_work_sync(&reg_work);
2650         cancel_delayed_work_sync(&reg_timeout);
2651
2652         /* Lock to suppress warnings */
2653         rtnl_lock();
2654         reset_regdomains(true, NULL);
2655         rtnl_unlock();
2656
2657         dev_set_uevent_suppress(&reg_pdev->dev, true);
2658
2659         platform_device_unregister(reg_pdev);
2660
2661         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2662                 list_del(&reg_beacon->list);
2663                 kfree(reg_beacon);
2664         }
2665
2666         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2667                 list_del(&reg_beacon->list);
2668                 kfree(reg_beacon);
2669         }
2670
2671         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2672                 list_del(&reg_request->list);
2673                 kfree(reg_request);
2674         }
2675 }