Merge tag 'v3.5-rc7' into late/soc
[firefly-linux-kernel-4.4.55.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19
20
21 /**
22  * DOC: Wireless regulatory infrastructure
23  *
24  * The usual implementation is for a driver to read a device EEPROM to
25  * determine which regulatory domain it should be operating under, then
26  * looking up the allowable channels in a driver-local table and finally
27  * registering those channels in the wiphy structure.
28  *
29  * Another set of compliance enforcement is for drivers to use their
30  * own compliance limits which can be stored on the EEPROM. The host
31  * driver or firmware may ensure these are used.
32  *
33  * In addition to all this we provide an extra layer of regulatory
34  * conformance. For drivers which do not have any regulatory
35  * information CRDA provides the complete regulatory solution.
36  * For others it provides a community effort on further restrictions
37  * to enhance compliance.
38  *
39  * Note: When number of rules --> infinity we will not be able to
40  * index on alpha2 any more, instead we'll probably have to
41  * rely on some SHA1 checksum of the regdomain for example.
42  *
43  */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/random.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "regdb.h"
60 #include "nl80211.h"
61
62 #ifdef CONFIG_CFG80211_REG_DEBUG
63 #define REG_DBG_PRINT(format, args...)                  \
64         printk(KERN_DEBUG pr_fmt(format), ##args)
65 #else
66 #define REG_DBG_PRINT(args...)
67 #endif
68
69 static struct regulatory_request core_request_world = {
70         .initiator = NL80211_REGDOM_SET_BY_CORE,
71         .alpha2[0] = '0',
72         .alpha2[1] = '0',
73         .intersect = false,
74         .processed = true,
75         .country_ie_env = ENVIRON_ANY,
76 };
77
78 /* Receipt of information from last regulatory request */
79 static struct regulatory_request *last_request = &core_request_world;
80
81 /* To trigger userspace events */
82 static struct platform_device *reg_pdev;
83
84 static struct device_type reg_device_type = {
85         .uevent = reg_device_uevent,
86 };
87
88 /*
89  * Central wireless core regulatory domains, we only need two,
90  * the current one and a world regulatory domain in case we have no
91  * information to give us an alpha2
92  */
93 const struct ieee80211_regdomain *cfg80211_regdomain;
94
95 /*
96  * Protects static reg.c components:
97  *     - cfg80211_world_regdom
98  *     - cfg80211_regdom
99  *     - last_request
100  */
101 static DEFINE_MUTEX(reg_mutex);
102
103 static inline void assert_reg_lock(void)
104 {
105         lockdep_assert_held(&reg_mutex);
106 }
107
108 /* Used to queue up regulatory hints */
109 static LIST_HEAD(reg_requests_list);
110 static spinlock_t reg_requests_lock;
111
112 /* Used to queue up beacon hints for review */
113 static LIST_HEAD(reg_pending_beacons);
114 static spinlock_t reg_pending_beacons_lock;
115
116 /* Used to keep track of processed beacon hints */
117 static LIST_HEAD(reg_beacon_list);
118
119 struct reg_beacon {
120         struct list_head list;
121         struct ieee80211_channel chan;
122 };
123
124 static void reg_todo(struct work_struct *work);
125 static DECLARE_WORK(reg_work, reg_todo);
126
127 static void reg_timeout_work(struct work_struct *work);
128 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
129
130 /* We keep a static world regulatory domain in case of the absence of CRDA */
131 static const struct ieee80211_regdomain world_regdom = {
132         .n_reg_rules = 5,
133         .alpha2 =  "00",
134         .reg_rules = {
135                 /* IEEE 802.11b/g, channels 1..11 */
136                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
137                 /* IEEE 802.11b/g, channels 12..13. No HT40
138                  * channel fits here. */
139                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
140                         NL80211_RRF_PASSIVE_SCAN |
141                         NL80211_RRF_NO_IBSS),
142                 /* IEEE 802.11 channel 14 - Only JP enables
143                  * this and for 802.11b only */
144                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
145                         NL80211_RRF_PASSIVE_SCAN |
146                         NL80211_RRF_NO_IBSS |
147                         NL80211_RRF_NO_OFDM),
148                 /* IEEE 802.11a, channel 36..48 */
149                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
150                         NL80211_RRF_PASSIVE_SCAN |
151                         NL80211_RRF_NO_IBSS),
152
153                 /* NB: 5260 MHz - 5700 MHz requies DFS */
154
155                 /* IEEE 802.11a, channel 149..165 */
156                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
157                         NL80211_RRF_PASSIVE_SCAN |
158                         NL80211_RRF_NO_IBSS),
159         }
160 };
161
162 static const struct ieee80211_regdomain *cfg80211_world_regdom =
163         &world_regdom;
164
165 static char *ieee80211_regdom = "00";
166 static char user_alpha2[2];
167
168 module_param(ieee80211_regdom, charp, 0444);
169 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
170
171 static void reset_regdomains(bool full_reset)
172 {
173         /* avoid freeing static information or freeing something twice */
174         if (cfg80211_regdomain == cfg80211_world_regdom)
175                 cfg80211_regdomain = NULL;
176         if (cfg80211_world_regdom == &world_regdom)
177                 cfg80211_world_regdom = NULL;
178         if (cfg80211_regdomain == &world_regdom)
179                 cfg80211_regdomain = NULL;
180
181         kfree(cfg80211_regdomain);
182         kfree(cfg80211_world_regdom);
183
184         cfg80211_world_regdom = &world_regdom;
185         cfg80211_regdomain = NULL;
186
187         if (!full_reset)
188                 return;
189
190         if (last_request != &core_request_world)
191                 kfree(last_request);
192         last_request = &core_request_world;
193 }
194
195 /*
196  * Dynamic world regulatory domain requested by the wireless
197  * core upon initialization
198  */
199 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
200 {
201         BUG_ON(!last_request);
202
203         reset_regdomains(false);
204
205         cfg80211_world_regdom = rd;
206         cfg80211_regdomain = rd;
207 }
208
209 bool is_world_regdom(const char *alpha2)
210 {
211         if (!alpha2)
212                 return false;
213         if (alpha2[0] == '0' && alpha2[1] == '0')
214                 return true;
215         return false;
216 }
217
218 static bool is_alpha2_set(const char *alpha2)
219 {
220         if (!alpha2)
221                 return false;
222         if (alpha2[0] != 0 && alpha2[1] != 0)
223                 return true;
224         return false;
225 }
226
227 static bool is_unknown_alpha2(const char *alpha2)
228 {
229         if (!alpha2)
230                 return false;
231         /*
232          * Special case where regulatory domain was built by driver
233          * but a specific alpha2 cannot be determined
234          */
235         if (alpha2[0] == '9' && alpha2[1] == '9')
236                 return true;
237         return false;
238 }
239
240 static bool is_intersected_alpha2(const char *alpha2)
241 {
242         if (!alpha2)
243                 return false;
244         /*
245          * Special case where regulatory domain is the
246          * result of an intersection between two regulatory domain
247          * structures
248          */
249         if (alpha2[0] == '9' && alpha2[1] == '8')
250                 return true;
251         return false;
252 }
253
254 static bool is_an_alpha2(const char *alpha2)
255 {
256         if (!alpha2)
257                 return false;
258         if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
259                 return true;
260         return false;
261 }
262
263 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
264 {
265         if (!alpha2_x || !alpha2_y)
266                 return false;
267         if (alpha2_x[0] == alpha2_y[0] &&
268                 alpha2_x[1] == alpha2_y[1])
269                 return true;
270         return false;
271 }
272
273 static bool regdom_changes(const char *alpha2)
274 {
275         assert_cfg80211_lock();
276
277         if (!cfg80211_regdomain)
278                 return true;
279         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
280                 return false;
281         return true;
282 }
283
284 /*
285  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
286  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
287  * has ever been issued.
288  */
289 static bool is_user_regdom_saved(void)
290 {
291         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
292                 return false;
293
294         /* This would indicate a mistake on the design */
295         if (WARN((!is_world_regdom(user_alpha2) &&
296                   !is_an_alpha2(user_alpha2)),
297                  "Unexpected user alpha2: %c%c\n",
298                  user_alpha2[0],
299                  user_alpha2[1]))
300                 return false;
301
302         return true;
303 }
304
305 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
306                          const struct ieee80211_regdomain *src_regd)
307 {
308         struct ieee80211_regdomain *regd;
309         int size_of_regd = 0;
310         unsigned int i;
311
312         size_of_regd = sizeof(struct ieee80211_regdomain) +
313           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
314
315         regd = kzalloc(size_of_regd, GFP_KERNEL);
316         if (!regd)
317                 return -ENOMEM;
318
319         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
320
321         for (i = 0; i < src_regd->n_reg_rules; i++)
322                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
323                         sizeof(struct ieee80211_reg_rule));
324
325         *dst_regd = regd;
326         return 0;
327 }
328
329 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
330 struct reg_regdb_search_request {
331         char alpha2[2];
332         struct list_head list;
333 };
334
335 static LIST_HEAD(reg_regdb_search_list);
336 static DEFINE_MUTEX(reg_regdb_search_mutex);
337
338 static void reg_regdb_search(struct work_struct *work)
339 {
340         struct reg_regdb_search_request *request;
341         const struct ieee80211_regdomain *curdom, *regdom;
342         int i, r;
343
344         mutex_lock(&reg_regdb_search_mutex);
345         while (!list_empty(&reg_regdb_search_list)) {
346                 request = list_first_entry(&reg_regdb_search_list,
347                                            struct reg_regdb_search_request,
348                                            list);
349                 list_del(&request->list);
350
351                 for (i=0; i<reg_regdb_size; i++) {
352                         curdom = reg_regdb[i];
353
354                         if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
355                                 r = reg_copy_regd(&regdom, curdom);
356                                 if (r)
357                                         break;
358                                 mutex_lock(&cfg80211_mutex);
359                                 set_regdom(regdom);
360                                 mutex_unlock(&cfg80211_mutex);
361                                 break;
362                         }
363                 }
364
365                 kfree(request);
366         }
367         mutex_unlock(&reg_regdb_search_mutex);
368 }
369
370 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
371
372 static void reg_regdb_query(const char *alpha2)
373 {
374         struct reg_regdb_search_request *request;
375
376         if (!alpha2)
377                 return;
378
379         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
380         if (!request)
381                 return;
382
383         memcpy(request->alpha2, alpha2, 2);
384
385         mutex_lock(&reg_regdb_search_mutex);
386         list_add_tail(&request->list, &reg_regdb_search_list);
387         mutex_unlock(&reg_regdb_search_mutex);
388
389         schedule_work(&reg_regdb_work);
390 }
391
392 /* Feel free to add any other sanity checks here */
393 static void reg_regdb_size_check(void)
394 {
395         /* We should ideally BUILD_BUG_ON() but then random builds would fail */
396         WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
397 }
398 #else
399 static inline void reg_regdb_size_check(void) {}
400 static inline void reg_regdb_query(const char *alpha2) {}
401 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
402
403 /*
404  * This lets us keep regulatory code which is updated on a regulatory
405  * basis in userspace. Country information is filled in by
406  * reg_device_uevent
407  */
408 static int call_crda(const char *alpha2)
409 {
410         if (!is_world_regdom((char *) alpha2))
411                 pr_info("Calling CRDA for country: %c%c\n",
412                         alpha2[0], alpha2[1]);
413         else
414                 pr_info("Calling CRDA to update world regulatory domain\n");
415
416         /* query internal regulatory database (if it exists) */
417         reg_regdb_query(alpha2);
418
419         return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
420 }
421
422 /* Used by nl80211 before kmalloc'ing our regulatory domain */
423 bool reg_is_valid_request(const char *alpha2)
424 {
425         assert_cfg80211_lock();
426
427         if (!last_request)
428                 return false;
429
430         return alpha2_equal(last_request->alpha2, alpha2);
431 }
432
433 /* Sanity check on a regulatory rule */
434 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
435 {
436         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
437         u32 freq_diff;
438
439         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
440                 return false;
441
442         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
443                 return false;
444
445         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
446
447         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
448                         freq_range->max_bandwidth_khz > freq_diff)
449                 return false;
450
451         return true;
452 }
453
454 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
455 {
456         const struct ieee80211_reg_rule *reg_rule = NULL;
457         unsigned int i;
458
459         if (!rd->n_reg_rules)
460                 return false;
461
462         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
463                 return false;
464
465         for (i = 0; i < rd->n_reg_rules; i++) {
466                 reg_rule = &rd->reg_rules[i];
467                 if (!is_valid_reg_rule(reg_rule))
468                         return false;
469         }
470
471         return true;
472 }
473
474 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
475                             u32 center_freq_khz,
476                             u32 bw_khz)
477 {
478         u32 start_freq_khz, end_freq_khz;
479
480         start_freq_khz = center_freq_khz - (bw_khz/2);
481         end_freq_khz = center_freq_khz + (bw_khz/2);
482
483         if (start_freq_khz >= freq_range->start_freq_khz &&
484             end_freq_khz <= freq_range->end_freq_khz)
485                 return true;
486
487         return false;
488 }
489
490 /**
491  * freq_in_rule_band - tells us if a frequency is in a frequency band
492  * @freq_range: frequency rule we want to query
493  * @freq_khz: frequency we are inquiring about
494  *
495  * This lets us know if a specific frequency rule is or is not relevant to
496  * a specific frequency's band. Bands are device specific and artificial
497  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
498  * safe for now to assume that a frequency rule should not be part of a
499  * frequency's band if the start freq or end freq are off by more than 2 GHz.
500  * This resolution can be lowered and should be considered as we add
501  * regulatory rule support for other "bands".
502  **/
503 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
504         u32 freq_khz)
505 {
506 #define ONE_GHZ_IN_KHZ  1000000
507         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
508                 return true;
509         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
510                 return true;
511         return false;
512 #undef ONE_GHZ_IN_KHZ
513 }
514
515 /*
516  * Helper for regdom_intersect(), this does the real
517  * mathematical intersection fun
518  */
519 static int reg_rules_intersect(
520         const struct ieee80211_reg_rule *rule1,
521         const struct ieee80211_reg_rule *rule2,
522         struct ieee80211_reg_rule *intersected_rule)
523 {
524         const struct ieee80211_freq_range *freq_range1, *freq_range2;
525         struct ieee80211_freq_range *freq_range;
526         const struct ieee80211_power_rule *power_rule1, *power_rule2;
527         struct ieee80211_power_rule *power_rule;
528         u32 freq_diff;
529
530         freq_range1 = &rule1->freq_range;
531         freq_range2 = &rule2->freq_range;
532         freq_range = &intersected_rule->freq_range;
533
534         power_rule1 = &rule1->power_rule;
535         power_rule2 = &rule2->power_rule;
536         power_rule = &intersected_rule->power_rule;
537
538         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
539                 freq_range2->start_freq_khz);
540         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
541                 freq_range2->end_freq_khz);
542         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
543                 freq_range2->max_bandwidth_khz);
544
545         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
546         if (freq_range->max_bandwidth_khz > freq_diff)
547                 freq_range->max_bandwidth_khz = freq_diff;
548
549         power_rule->max_eirp = min(power_rule1->max_eirp,
550                 power_rule2->max_eirp);
551         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
552                 power_rule2->max_antenna_gain);
553
554         intersected_rule->flags = (rule1->flags | rule2->flags);
555
556         if (!is_valid_reg_rule(intersected_rule))
557                 return -EINVAL;
558
559         return 0;
560 }
561
562 /**
563  * regdom_intersect - do the intersection between two regulatory domains
564  * @rd1: first regulatory domain
565  * @rd2: second regulatory domain
566  *
567  * Use this function to get the intersection between two regulatory domains.
568  * Once completed we will mark the alpha2 for the rd as intersected, "98",
569  * as no one single alpha2 can represent this regulatory domain.
570  *
571  * Returns a pointer to the regulatory domain structure which will hold the
572  * resulting intersection of rules between rd1 and rd2. We will
573  * kzalloc() this structure for you.
574  */
575 static struct ieee80211_regdomain *regdom_intersect(
576         const struct ieee80211_regdomain *rd1,
577         const struct ieee80211_regdomain *rd2)
578 {
579         int r, size_of_regd;
580         unsigned int x, y;
581         unsigned int num_rules = 0, rule_idx = 0;
582         const struct ieee80211_reg_rule *rule1, *rule2;
583         struct ieee80211_reg_rule *intersected_rule;
584         struct ieee80211_regdomain *rd;
585         /* This is just a dummy holder to help us count */
586         struct ieee80211_reg_rule irule;
587
588         /* Uses the stack temporarily for counter arithmetic */
589         intersected_rule = &irule;
590
591         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
592
593         if (!rd1 || !rd2)
594                 return NULL;
595
596         /*
597          * First we get a count of the rules we'll need, then we actually
598          * build them. This is to so we can malloc() and free() a
599          * regdomain once. The reason we use reg_rules_intersect() here
600          * is it will return -EINVAL if the rule computed makes no sense.
601          * All rules that do check out OK are valid.
602          */
603
604         for (x = 0; x < rd1->n_reg_rules; x++) {
605                 rule1 = &rd1->reg_rules[x];
606                 for (y = 0; y < rd2->n_reg_rules; y++) {
607                         rule2 = &rd2->reg_rules[y];
608                         if (!reg_rules_intersect(rule1, rule2,
609                                         intersected_rule))
610                                 num_rules++;
611                         memset(intersected_rule, 0,
612                                         sizeof(struct ieee80211_reg_rule));
613                 }
614         }
615
616         if (!num_rules)
617                 return NULL;
618
619         size_of_regd = sizeof(struct ieee80211_regdomain) +
620                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
621
622         rd = kzalloc(size_of_regd, GFP_KERNEL);
623         if (!rd)
624                 return NULL;
625
626         for (x = 0; x < rd1->n_reg_rules; x++) {
627                 rule1 = &rd1->reg_rules[x];
628                 for (y = 0; y < rd2->n_reg_rules; y++) {
629                         rule2 = &rd2->reg_rules[y];
630                         /*
631                          * This time around instead of using the stack lets
632                          * write to the target rule directly saving ourselves
633                          * a memcpy()
634                          */
635                         intersected_rule = &rd->reg_rules[rule_idx];
636                         r = reg_rules_intersect(rule1, rule2,
637                                 intersected_rule);
638                         /*
639                          * No need to memset here the intersected rule here as
640                          * we're not using the stack anymore
641                          */
642                         if (r)
643                                 continue;
644                         rule_idx++;
645                 }
646         }
647
648         if (rule_idx != num_rules) {
649                 kfree(rd);
650                 return NULL;
651         }
652
653         rd->n_reg_rules = num_rules;
654         rd->alpha2[0] = '9';
655         rd->alpha2[1] = '8';
656
657         return rd;
658 }
659
660 /*
661  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
662  * want to just have the channel structure use these
663  */
664 static u32 map_regdom_flags(u32 rd_flags)
665 {
666         u32 channel_flags = 0;
667         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
668                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
669         if (rd_flags & NL80211_RRF_NO_IBSS)
670                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
671         if (rd_flags & NL80211_RRF_DFS)
672                 channel_flags |= IEEE80211_CHAN_RADAR;
673         return channel_flags;
674 }
675
676 static int freq_reg_info_regd(struct wiphy *wiphy,
677                               u32 center_freq,
678                               u32 desired_bw_khz,
679                               const struct ieee80211_reg_rule **reg_rule,
680                               const struct ieee80211_regdomain *custom_regd)
681 {
682         int i;
683         bool band_rule_found = false;
684         const struct ieee80211_regdomain *regd;
685         bool bw_fits = false;
686
687         if (!desired_bw_khz)
688                 desired_bw_khz = MHZ_TO_KHZ(20);
689
690         regd = custom_regd ? custom_regd : cfg80211_regdomain;
691
692         /*
693          * Follow the driver's regulatory domain, if present, unless a country
694          * IE has been processed or a user wants to help complaince further
695          */
696         if (!custom_regd &&
697             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
698             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
699             wiphy->regd)
700                 regd = wiphy->regd;
701
702         if (!regd)
703                 return -EINVAL;
704
705         for (i = 0; i < regd->n_reg_rules; i++) {
706                 const struct ieee80211_reg_rule *rr;
707                 const struct ieee80211_freq_range *fr = NULL;
708
709                 rr = &regd->reg_rules[i];
710                 fr = &rr->freq_range;
711
712                 /*
713                  * We only need to know if one frequency rule was
714                  * was in center_freq's band, that's enough, so lets
715                  * not overwrite it once found
716                  */
717                 if (!band_rule_found)
718                         band_rule_found = freq_in_rule_band(fr, center_freq);
719
720                 bw_fits = reg_does_bw_fit(fr,
721                                           center_freq,
722                                           desired_bw_khz);
723
724                 if (band_rule_found && bw_fits) {
725                         *reg_rule = rr;
726                         return 0;
727                 }
728         }
729
730         if (!band_rule_found)
731                 return -ERANGE;
732
733         return -EINVAL;
734 }
735
736 int freq_reg_info(struct wiphy *wiphy,
737                   u32 center_freq,
738                   u32 desired_bw_khz,
739                   const struct ieee80211_reg_rule **reg_rule)
740 {
741         assert_cfg80211_lock();
742         return freq_reg_info_regd(wiphy,
743                                   center_freq,
744                                   desired_bw_khz,
745                                   reg_rule,
746                                   NULL);
747 }
748 EXPORT_SYMBOL(freq_reg_info);
749
750 #ifdef CONFIG_CFG80211_REG_DEBUG
751 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
752 {
753         switch (initiator) {
754         case NL80211_REGDOM_SET_BY_CORE:
755                 return "Set by core";
756         case NL80211_REGDOM_SET_BY_USER:
757                 return "Set by user";
758         case NL80211_REGDOM_SET_BY_DRIVER:
759                 return "Set by driver";
760         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
761                 return "Set by country IE";
762         default:
763                 WARN_ON(1);
764                 return "Set by bug";
765         }
766 }
767
768 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
769                                     u32 desired_bw_khz,
770                                     const struct ieee80211_reg_rule *reg_rule)
771 {
772         const struct ieee80211_power_rule *power_rule;
773         const struct ieee80211_freq_range *freq_range;
774         char max_antenna_gain[32];
775
776         power_rule = &reg_rule->power_rule;
777         freq_range = &reg_rule->freq_range;
778
779         if (!power_rule->max_antenna_gain)
780                 snprintf(max_antenna_gain, 32, "N/A");
781         else
782                 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
783
784         REG_DBG_PRINT("Updating information on frequency %d MHz "
785                       "for a %d MHz width channel with regulatory rule:\n",
786                       chan->center_freq,
787                       KHZ_TO_MHZ(desired_bw_khz));
788
789         REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
790                       freq_range->start_freq_khz,
791                       freq_range->end_freq_khz,
792                       freq_range->max_bandwidth_khz,
793                       max_antenna_gain,
794                       power_rule->max_eirp);
795 }
796 #else
797 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
798                                     u32 desired_bw_khz,
799                                     const struct ieee80211_reg_rule *reg_rule)
800 {
801         return;
802 }
803 #endif
804
805 /*
806  * Note that right now we assume the desired channel bandwidth
807  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
808  * per channel, the primary and the extension channel). To support
809  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
810  * new ieee80211_channel.target_bw and re run the regulatory check
811  * on the wiphy with the target_bw specified. Then we can simply use
812  * that below for the desired_bw_khz below.
813  */
814 static void handle_channel(struct wiphy *wiphy,
815                            enum nl80211_reg_initiator initiator,
816                            enum ieee80211_band band,
817                            unsigned int chan_idx)
818 {
819         int r;
820         u32 flags, bw_flags = 0;
821         u32 desired_bw_khz = MHZ_TO_KHZ(20);
822         const struct ieee80211_reg_rule *reg_rule = NULL;
823         const struct ieee80211_power_rule *power_rule = NULL;
824         const struct ieee80211_freq_range *freq_range = NULL;
825         struct ieee80211_supported_band *sband;
826         struct ieee80211_channel *chan;
827         struct wiphy *request_wiphy = NULL;
828
829         assert_cfg80211_lock();
830
831         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
832
833         sband = wiphy->bands[band];
834         BUG_ON(chan_idx >= sband->n_channels);
835         chan = &sband->channels[chan_idx];
836
837         flags = chan->orig_flags;
838
839         r = freq_reg_info(wiphy,
840                           MHZ_TO_KHZ(chan->center_freq),
841                           desired_bw_khz,
842                           &reg_rule);
843
844         if (r) {
845                 /*
846                  * We will disable all channels that do not match our
847                  * received regulatory rule unless the hint is coming
848                  * from a Country IE and the Country IE had no information
849                  * about a band. The IEEE 802.11 spec allows for an AP
850                  * to send only a subset of the regulatory rules allowed,
851                  * so an AP in the US that only supports 2.4 GHz may only send
852                  * a country IE with information for the 2.4 GHz band
853                  * while 5 GHz is still supported.
854                  */
855                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
856                     r == -ERANGE)
857                         return;
858
859                 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
860                 chan->flags = IEEE80211_CHAN_DISABLED;
861                 return;
862         }
863
864         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
865
866         power_rule = &reg_rule->power_rule;
867         freq_range = &reg_rule->freq_range;
868
869         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
870                 bw_flags = IEEE80211_CHAN_NO_HT40;
871
872         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
873             request_wiphy && request_wiphy == wiphy &&
874             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
875                 /*
876                  * This guarantees the driver's requested regulatory domain
877                  * will always be used as a base for further regulatory
878                  * settings
879                  */
880                 chan->flags = chan->orig_flags =
881                         map_regdom_flags(reg_rule->flags) | bw_flags;
882                 chan->max_antenna_gain = chan->orig_mag =
883                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
884                 chan->max_power = chan->orig_mpwr =
885                         (int) MBM_TO_DBM(power_rule->max_eirp);
886                 return;
887         }
888
889         chan->beacon_found = false;
890         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
891         chan->max_antenna_gain = min(chan->orig_mag,
892                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
893         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
894         chan->max_power = min(chan->max_power, chan->max_reg_power);
895 }
896
897 static void handle_band(struct wiphy *wiphy,
898                         enum ieee80211_band band,
899                         enum nl80211_reg_initiator initiator)
900 {
901         unsigned int i;
902         struct ieee80211_supported_band *sband;
903
904         BUG_ON(!wiphy->bands[band]);
905         sband = wiphy->bands[band];
906
907         for (i = 0; i < sband->n_channels; i++)
908                 handle_channel(wiphy, initiator, band, i);
909 }
910
911 static bool ignore_reg_update(struct wiphy *wiphy,
912                               enum nl80211_reg_initiator initiator)
913 {
914         if (!last_request) {
915                 REG_DBG_PRINT("Ignoring regulatory request %s since "
916                               "last_request is not set\n",
917                               reg_initiator_name(initiator));
918                 return true;
919         }
920
921         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
922             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
923                 REG_DBG_PRINT("Ignoring regulatory request %s "
924                               "since the driver uses its own custom "
925                               "regulatory domain\n",
926                               reg_initiator_name(initiator));
927                 return true;
928         }
929
930         /*
931          * wiphy->regd will be set once the device has its own
932          * desired regulatory domain set
933          */
934         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
935             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
936             !is_world_regdom(last_request->alpha2)) {
937                 REG_DBG_PRINT("Ignoring regulatory request %s "
938                               "since the driver requires its own regulatory "
939                               "domain to be set first\n",
940                               reg_initiator_name(initiator));
941                 return true;
942         }
943
944         return false;
945 }
946
947 static void handle_reg_beacon(struct wiphy *wiphy,
948                               unsigned int chan_idx,
949                               struct reg_beacon *reg_beacon)
950 {
951         struct ieee80211_supported_band *sband;
952         struct ieee80211_channel *chan;
953         bool channel_changed = false;
954         struct ieee80211_channel chan_before;
955
956         assert_cfg80211_lock();
957
958         sband = wiphy->bands[reg_beacon->chan.band];
959         chan = &sband->channels[chan_idx];
960
961         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
962                 return;
963
964         if (chan->beacon_found)
965                 return;
966
967         chan->beacon_found = true;
968
969         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
970                 return;
971
972         chan_before.center_freq = chan->center_freq;
973         chan_before.flags = chan->flags;
974
975         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
976                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
977                 channel_changed = true;
978         }
979
980         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
981                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
982                 channel_changed = true;
983         }
984
985         if (channel_changed)
986                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
987 }
988
989 /*
990  * Called when a scan on a wiphy finds a beacon on
991  * new channel
992  */
993 static void wiphy_update_new_beacon(struct wiphy *wiphy,
994                                     struct reg_beacon *reg_beacon)
995 {
996         unsigned int i;
997         struct ieee80211_supported_band *sband;
998
999         assert_cfg80211_lock();
1000
1001         if (!wiphy->bands[reg_beacon->chan.band])
1002                 return;
1003
1004         sband = wiphy->bands[reg_beacon->chan.band];
1005
1006         for (i = 0; i < sband->n_channels; i++)
1007                 handle_reg_beacon(wiphy, i, reg_beacon);
1008 }
1009
1010 /*
1011  * Called upon reg changes or a new wiphy is added
1012  */
1013 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1014 {
1015         unsigned int i;
1016         struct ieee80211_supported_band *sband;
1017         struct reg_beacon *reg_beacon;
1018
1019         assert_cfg80211_lock();
1020
1021         if (list_empty(&reg_beacon_list))
1022                 return;
1023
1024         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1025                 if (!wiphy->bands[reg_beacon->chan.band])
1026                         continue;
1027                 sband = wiphy->bands[reg_beacon->chan.band];
1028                 for (i = 0; i < sband->n_channels; i++)
1029                         handle_reg_beacon(wiphy, i, reg_beacon);
1030         }
1031 }
1032
1033 static bool reg_is_world_roaming(struct wiphy *wiphy)
1034 {
1035         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1036             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1037                 return true;
1038         if (last_request &&
1039             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1040             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1041                 return true;
1042         return false;
1043 }
1044
1045 /* Reap the advantages of previously found beacons */
1046 static void reg_process_beacons(struct wiphy *wiphy)
1047 {
1048         /*
1049          * Means we are just firing up cfg80211, so no beacons would
1050          * have been processed yet.
1051          */
1052         if (!last_request)
1053                 return;
1054         if (!reg_is_world_roaming(wiphy))
1055                 return;
1056         wiphy_update_beacon_reg(wiphy);
1057 }
1058
1059 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1060 {
1061         if (!chan)
1062                 return true;
1063         if (chan->flags & IEEE80211_CHAN_DISABLED)
1064                 return true;
1065         /* This would happen when regulatory rules disallow HT40 completely */
1066         if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1067                 return true;
1068         return false;
1069 }
1070
1071 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1072                                          enum ieee80211_band band,
1073                                          unsigned int chan_idx)
1074 {
1075         struct ieee80211_supported_band *sband;
1076         struct ieee80211_channel *channel;
1077         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1078         unsigned int i;
1079
1080         assert_cfg80211_lock();
1081
1082         sband = wiphy->bands[band];
1083         BUG_ON(chan_idx >= sband->n_channels);
1084         channel = &sband->channels[chan_idx];
1085
1086         if (is_ht40_not_allowed(channel)) {
1087                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1088                 return;
1089         }
1090
1091         /*
1092          * We need to ensure the extension channels exist to
1093          * be able to use HT40- or HT40+, this finds them (or not)
1094          */
1095         for (i = 0; i < sband->n_channels; i++) {
1096                 struct ieee80211_channel *c = &sband->channels[i];
1097                 if (c->center_freq == (channel->center_freq - 20))
1098                         channel_before = c;
1099                 if (c->center_freq == (channel->center_freq + 20))
1100                         channel_after = c;
1101         }
1102
1103         /*
1104          * Please note that this assumes target bandwidth is 20 MHz,
1105          * if that ever changes we also need to change the below logic
1106          * to include that as well.
1107          */
1108         if (is_ht40_not_allowed(channel_before))
1109                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1110         else
1111                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1112
1113         if (is_ht40_not_allowed(channel_after))
1114                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1115         else
1116                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1117 }
1118
1119 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1120                                       enum ieee80211_band band)
1121 {
1122         unsigned int i;
1123         struct ieee80211_supported_band *sband;
1124
1125         BUG_ON(!wiphy->bands[band]);
1126         sband = wiphy->bands[band];
1127
1128         for (i = 0; i < sband->n_channels; i++)
1129                 reg_process_ht_flags_channel(wiphy, band, i);
1130 }
1131
1132 static void reg_process_ht_flags(struct wiphy *wiphy)
1133 {
1134         enum ieee80211_band band;
1135
1136         if (!wiphy)
1137                 return;
1138
1139         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1140                 if (wiphy->bands[band])
1141                         reg_process_ht_flags_band(wiphy, band);
1142         }
1143
1144 }
1145
1146 static void wiphy_update_regulatory(struct wiphy *wiphy,
1147                                     enum nl80211_reg_initiator initiator)
1148 {
1149         enum ieee80211_band band;
1150
1151         assert_reg_lock();
1152
1153         if (ignore_reg_update(wiphy, initiator))
1154                 return;
1155
1156         last_request->dfs_region = cfg80211_regdomain->dfs_region;
1157
1158         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1159                 if (wiphy->bands[band])
1160                         handle_band(wiphy, band, initiator);
1161         }
1162
1163         reg_process_beacons(wiphy);
1164         reg_process_ht_flags(wiphy);
1165         if (wiphy->reg_notifier)
1166                 wiphy->reg_notifier(wiphy, last_request);
1167 }
1168
1169 void regulatory_update(struct wiphy *wiphy,
1170                        enum nl80211_reg_initiator setby)
1171 {
1172         mutex_lock(&reg_mutex);
1173         wiphy_update_regulatory(wiphy, setby);
1174         mutex_unlock(&reg_mutex);
1175 }
1176
1177 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1178 {
1179         struct cfg80211_registered_device *rdev;
1180         struct wiphy *wiphy;
1181
1182         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1183                 wiphy = &rdev->wiphy;
1184                 wiphy_update_regulatory(wiphy, initiator);
1185                 /*
1186                  * Regulatory updates set by CORE are ignored for custom
1187                  * regulatory cards. Let us notify the changes to the driver,
1188                  * as some drivers used this to restore its orig_* reg domain.
1189                  */
1190                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1191                     wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1192                     wiphy->reg_notifier)
1193                         wiphy->reg_notifier(wiphy, last_request);
1194         }
1195 }
1196
1197 static void handle_channel_custom(struct wiphy *wiphy,
1198                                   enum ieee80211_band band,
1199                                   unsigned int chan_idx,
1200                                   const struct ieee80211_regdomain *regd)
1201 {
1202         int r;
1203         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1204         u32 bw_flags = 0;
1205         const struct ieee80211_reg_rule *reg_rule = NULL;
1206         const struct ieee80211_power_rule *power_rule = NULL;
1207         const struct ieee80211_freq_range *freq_range = NULL;
1208         struct ieee80211_supported_band *sband;
1209         struct ieee80211_channel *chan;
1210
1211         assert_reg_lock();
1212
1213         sband = wiphy->bands[band];
1214         BUG_ON(chan_idx >= sband->n_channels);
1215         chan = &sband->channels[chan_idx];
1216
1217         r = freq_reg_info_regd(wiphy,
1218                                MHZ_TO_KHZ(chan->center_freq),
1219                                desired_bw_khz,
1220                                &reg_rule,
1221                                regd);
1222
1223         if (r) {
1224                 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1225                               "regd has no rule that fits a %d MHz "
1226                               "wide channel\n",
1227                               chan->center_freq,
1228                               KHZ_TO_MHZ(desired_bw_khz));
1229                 chan->flags = IEEE80211_CHAN_DISABLED;
1230                 return;
1231         }
1232
1233         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1234
1235         power_rule = &reg_rule->power_rule;
1236         freq_range = &reg_rule->freq_range;
1237
1238         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1239                 bw_flags = IEEE80211_CHAN_NO_HT40;
1240
1241         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1242         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1243         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1244 }
1245
1246 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1247                                const struct ieee80211_regdomain *regd)
1248 {
1249         unsigned int i;
1250         struct ieee80211_supported_band *sband;
1251
1252         BUG_ON(!wiphy->bands[band]);
1253         sband = wiphy->bands[band];
1254
1255         for (i = 0; i < sband->n_channels; i++)
1256                 handle_channel_custom(wiphy, band, i, regd);
1257 }
1258
1259 /* Used by drivers prior to wiphy registration */
1260 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1261                                    const struct ieee80211_regdomain *regd)
1262 {
1263         enum ieee80211_band band;
1264         unsigned int bands_set = 0;
1265
1266         mutex_lock(&reg_mutex);
1267         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1268                 if (!wiphy->bands[band])
1269                         continue;
1270                 handle_band_custom(wiphy, band, regd);
1271                 bands_set++;
1272         }
1273         mutex_unlock(&reg_mutex);
1274
1275         /*
1276          * no point in calling this if it won't have any effect
1277          * on your device's supportd bands.
1278          */
1279         WARN_ON(!bands_set);
1280 }
1281 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1282
1283 /*
1284  * Return value which can be used by ignore_request() to indicate
1285  * it has been determined we should intersect two regulatory domains
1286  */
1287 #define REG_INTERSECT   1
1288
1289 /* This has the logic which determines when a new request
1290  * should be ignored. */
1291 static int ignore_request(struct wiphy *wiphy,
1292                           struct regulatory_request *pending_request)
1293 {
1294         struct wiphy *last_wiphy = NULL;
1295
1296         assert_cfg80211_lock();
1297
1298         /* All initial requests are respected */
1299         if (!last_request)
1300                 return 0;
1301
1302         switch (pending_request->initiator) {
1303         case NL80211_REGDOM_SET_BY_CORE:
1304                 return 0;
1305         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1306
1307                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1308
1309                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1310                         return -EINVAL;
1311                 if (last_request->initiator ==
1312                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1313                         if (last_wiphy != wiphy) {
1314                                 /*
1315                                  * Two cards with two APs claiming different
1316                                  * Country IE alpha2s. We could
1317                                  * intersect them, but that seems unlikely
1318                                  * to be correct. Reject second one for now.
1319                                  */
1320                                 if (regdom_changes(pending_request->alpha2))
1321                                         return -EOPNOTSUPP;
1322                                 return -EALREADY;
1323                         }
1324                         /*
1325                          * Two consecutive Country IE hints on the same wiphy.
1326                          * This should be picked up early by the driver/stack
1327                          */
1328                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1329                                 return 0;
1330                         return -EALREADY;
1331                 }
1332                 return 0;
1333         case NL80211_REGDOM_SET_BY_DRIVER:
1334                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1335                         if (regdom_changes(pending_request->alpha2))
1336                                 return 0;
1337                         return -EALREADY;
1338                 }
1339
1340                 /*
1341                  * This would happen if you unplug and plug your card
1342                  * back in or if you add a new device for which the previously
1343                  * loaded card also agrees on the regulatory domain.
1344                  */
1345                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1346                     !regdom_changes(pending_request->alpha2))
1347                         return -EALREADY;
1348
1349                 return REG_INTERSECT;
1350         case NL80211_REGDOM_SET_BY_USER:
1351                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1352                         return REG_INTERSECT;
1353                 /*
1354                  * If the user knows better the user should set the regdom
1355                  * to their country before the IE is picked up
1356                  */
1357                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1358                           last_request->intersect)
1359                         return -EOPNOTSUPP;
1360                 /*
1361                  * Process user requests only after previous user/driver/core
1362                  * requests have been processed
1363                  */
1364                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1365                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1366                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1367                         if (regdom_changes(last_request->alpha2))
1368                                 return -EAGAIN;
1369                 }
1370
1371                 if (!regdom_changes(pending_request->alpha2))
1372                         return -EALREADY;
1373
1374                 return 0;
1375         }
1376
1377         return -EINVAL;
1378 }
1379
1380 static void reg_set_request_processed(void)
1381 {
1382         bool need_more_processing = false;
1383
1384         last_request->processed = true;
1385
1386         spin_lock(&reg_requests_lock);
1387         if (!list_empty(&reg_requests_list))
1388                 need_more_processing = true;
1389         spin_unlock(&reg_requests_lock);
1390
1391         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1392                 cancel_delayed_work(&reg_timeout);
1393
1394         if (need_more_processing)
1395                 schedule_work(&reg_work);
1396 }
1397
1398 /**
1399  * __regulatory_hint - hint to the wireless core a regulatory domain
1400  * @wiphy: if the hint comes from country information from an AP, this
1401  *      is required to be set to the wiphy that received the information
1402  * @pending_request: the regulatory request currently being processed
1403  *
1404  * The Wireless subsystem can use this function to hint to the wireless core
1405  * what it believes should be the current regulatory domain.
1406  *
1407  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1408  * already been set or other standard error codes.
1409  *
1410  * Caller must hold &cfg80211_mutex and &reg_mutex
1411  */
1412 static int __regulatory_hint(struct wiphy *wiphy,
1413                              struct regulatory_request *pending_request)
1414 {
1415         bool intersect = false;
1416         int r = 0;
1417
1418         assert_cfg80211_lock();
1419
1420         r = ignore_request(wiphy, pending_request);
1421
1422         if (r == REG_INTERSECT) {
1423                 if (pending_request->initiator ==
1424                     NL80211_REGDOM_SET_BY_DRIVER) {
1425                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1426                         if (r) {
1427                                 kfree(pending_request);
1428                                 return r;
1429                         }
1430                 }
1431                 intersect = true;
1432         } else if (r) {
1433                 /*
1434                  * If the regulatory domain being requested by the
1435                  * driver has already been set just copy it to the
1436                  * wiphy
1437                  */
1438                 if (r == -EALREADY &&
1439                     pending_request->initiator ==
1440                     NL80211_REGDOM_SET_BY_DRIVER) {
1441                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1442                         if (r) {
1443                                 kfree(pending_request);
1444                                 return r;
1445                         }
1446                         r = -EALREADY;
1447                         goto new_request;
1448                 }
1449                 kfree(pending_request);
1450                 return r;
1451         }
1452
1453 new_request:
1454         if (last_request != &core_request_world)
1455                 kfree(last_request);
1456
1457         last_request = pending_request;
1458         last_request->intersect = intersect;
1459
1460         pending_request = NULL;
1461
1462         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1463                 user_alpha2[0] = last_request->alpha2[0];
1464                 user_alpha2[1] = last_request->alpha2[1];
1465         }
1466
1467         /* When r == REG_INTERSECT we do need to call CRDA */
1468         if (r < 0) {
1469                 /*
1470                  * Since CRDA will not be called in this case as we already
1471                  * have applied the requested regulatory domain before we just
1472                  * inform userspace we have processed the request
1473                  */
1474                 if (r == -EALREADY) {
1475                         nl80211_send_reg_change_event(last_request);
1476                         reg_set_request_processed();
1477                 }
1478                 return r;
1479         }
1480
1481         return call_crda(last_request->alpha2);
1482 }
1483
1484 /* This processes *all* regulatory hints */
1485 static void reg_process_hint(struct regulatory_request *reg_request,
1486                              enum nl80211_reg_initiator reg_initiator)
1487 {
1488         int r = 0;
1489         struct wiphy *wiphy = NULL;
1490
1491         BUG_ON(!reg_request->alpha2);
1492
1493         if (wiphy_idx_valid(reg_request->wiphy_idx))
1494                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1495
1496         if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1497             !wiphy) {
1498                 kfree(reg_request);
1499                 return;
1500         }
1501
1502         r = __regulatory_hint(wiphy, reg_request);
1503         /* This is required so that the orig_* parameters are saved */
1504         if (r == -EALREADY && wiphy &&
1505             wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1506                 wiphy_update_regulatory(wiphy, reg_initiator);
1507                 return;
1508         }
1509
1510         /*
1511          * We only time out user hints, given that they should be the only
1512          * source of bogus requests.
1513          */
1514         if (r != -EALREADY &&
1515             reg_initiator == NL80211_REGDOM_SET_BY_USER)
1516                 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1517 }
1518
1519 /*
1520  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1521  * Regulatory hints come on a first come first serve basis and we
1522  * must process each one atomically.
1523  */
1524 static void reg_process_pending_hints(void)
1525 {
1526         struct regulatory_request *reg_request;
1527
1528         mutex_lock(&cfg80211_mutex);
1529         mutex_lock(&reg_mutex);
1530
1531         /* When last_request->processed becomes true this will be rescheduled */
1532         if (last_request && !last_request->processed) {
1533                 REG_DBG_PRINT("Pending regulatory request, waiting "
1534                               "for it to be processed...\n");
1535                 goto out;
1536         }
1537
1538         spin_lock(&reg_requests_lock);
1539
1540         if (list_empty(&reg_requests_list)) {
1541                 spin_unlock(&reg_requests_lock);
1542                 goto out;
1543         }
1544
1545         reg_request = list_first_entry(&reg_requests_list,
1546                                        struct regulatory_request,
1547                                        list);
1548         list_del_init(&reg_request->list);
1549
1550         spin_unlock(&reg_requests_lock);
1551
1552         reg_process_hint(reg_request, reg_request->initiator);
1553
1554 out:
1555         mutex_unlock(&reg_mutex);
1556         mutex_unlock(&cfg80211_mutex);
1557 }
1558
1559 /* Processes beacon hints -- this has nothing to do with country IEs */
1560 static void reg_process_pending_beacon_hints(void)
1561 {
1562         struct cfg80211_registered_device *rdev;
1563         struct reg_beacon *pending_beacon, *tmp;
1564
1565         /*
1566          * No need to hold the reg_mutex here as we just touch wiphys
1567          * and do not read or access regulatory variables.
1568          */
1569         mutex_lock(&cfg80211_mutex);
1570
1571         /* This goes through the _pending_ beacon list */
1572         spin_lock_bh(&reg_pending_beacons_lock);
1573
1574         if (list_empty(&reg_pending_beacons)) {
1575                 spin_unlock_bh(&reg_pending_beacons_lock);
1576                 goto out;
1577         }
1578
1579         list_for_each_entry_safe(pending_beacon, tmp,
1580                                  &reg_pending_beacons, list) {
1581
1582                 list_del_init(&pending_beacon->list);
1583
1584                 /* Applies the beacon hint to current wiphys */
1585                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1586                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1587
1588                 /* Remembers the beacon hint for new wiphys or reg changes */
1589                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1590         }
1591
1592         spin_unlock_bh(&reg_pending_beacons_lock);
1593 out:
1594         mutex_unlock(&cfg80211_mutex);
1595 }
1596
1597 static void reg_todo(struct work_struct *work)
1598 {
1599         reg_process_pending_hints();
1600         reg_process_pending_beacon_hints();
1601 }
1602
1603 static void queue_regulatory_request(struct regulatory_request *request)
1604 {
1605         if (isalpha(request->alpha2[0]))
1606                 request->alpha2[0] = toupper(request->alpha2[0]);
1607         if (isalpha(request->alpha2[1]))
1608                 request->alpha2[1] = toupper(request->alpha2[1]);
1609
1610         spin_lock(&reg_requests_lock);
1611         list_add_tail(&request->list, &reg_requests_list);
1612         spin_unlock(&reg_requests_lock);
1613
1614         schedule_work(&reg_work);
1615 }
1616
1617 /*
1618  * Core regulatory hint -- happens during cfg80211_init()
1619  * and when we restore regulatory settings.
1620  */
1621 static int regulatory_hint_core(const char *alpha2)
1622 {
1623         struct regulatory_request *request;
1624
1625         request = kzalloc(sizeof(struct regulatory_request),
1626                           GFP_KERNEL);
1627         if (!request)
1628                 return -ENOMEM;
1629
1630         request->alpha2[0] = alpha2[0];
1631         request->alpha2[1] = alpha2[1];
1632         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1633
1634         queue_regulatory_request(request);
1635
1636         return 0;
1637 }
1638
1639 /* User hints */
1640 int regulatory_hint_user(const char *alpha2)
1641 {
1642         struct regulatory_request *request;
1643
1644         BUG_ON(!alpha2);
1645
1646         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1647         if (!request)
1648                 return -ENOMEM;
1649
1650         request->wiphy_idx = WIPHY_IDX_STALE;
1651         request->alpha2[0] = alpha2[0];
1652         request->alpha2[1] = alpha2[1];
1653         request->initiator = NL80211_REGDOM_SET_BY_USER;
1654
1655         queue_regulatory_request(request);
1656
1657         return 0;
1658 }
1659
1660 /* Driver hints */
1661 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1662 {
1663         struct regulatory_request *request;
1664
1665         BUG_ON(!alpha2);
1666         BUG_ON(!wiphy);
1667
1668         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1669         if (!request)
1670                 return -ENOMEM;
1671
1672         request->wiphy_idx = get_wiphy_idx(wiphy);
1673
1674         /* Must have registered wiphy first */
1675         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1676
1677         request->alpha2[0] = alpha2[0];
1678         request->alpha2[1] = alpha2[1];
1679         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1680
1681         queue_regulatory_request(request);
1682
1683         return 0;
1684 }
1685 EXPORT_SYMBOL(regulatory_hint);
1686
1687 /*
1688  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1689  * therefore cannot iterate over the rdev list here.
1690  */
1691 void regulatory_hint_11d(struct wiphy *wiphy,
1692                          enum ieee80211_band band,
1693                          u8 *country_ie,
1694                          u8 country_ie_len)
1695 {
1696         char alpha2[2];
1697         enum environment_cap env = ENVIRON_ANY;
1698         struct regulatory_request *request;
1699
1700         mutex_lock(&reg_mutex);
1701
1702         if (unlikely(!last_request))
1703                 goto out;
1704
1705         /* IE len must be evenly divisible by 2 */
1706         if (country_ie_len & 0x01)
1707                 goto out;
1708
1709         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1710                 goto out;
1711
1712         alpha2[0] = country_ie[0];
1713         alpha2[1] = country_ie[1];
1714
1715         if (country_ie[2] == 'I')
1716                 env = ENVIRON_INDOOR;
1717         else if (country_ie[2] == 'O')
1718                 env = ENVIRON_OUTDOOR;
1719
1720         /*
1721          * We will run this only upon a successful connection on cfg80211.
1722          * We leave conflict resolution to the workqueue, where can hold
1723          * cfg80211_mutex.
1724          */
1725         if (likely(last_request->initiator ==
1726             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1727             wiphy_idx_valid(last_request->wiphy_idx)))
1728                 goto out;
1729
1730         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1731         if (!request)
1732                 goto out;
1733
1734         request->wiphy_idx = get_wiphy_idx(wiphy);
1735         request->alpha2[0] = alpha2[0];
1736         request->alpha2[1] = alpha2[1];
1737         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1738         request->country_ie_env = env;
1739
1740         mutex_unlock(&reg_mutex);
1741
1742         queue_regulatory_request(request);
1743
1744         return;
1745
1746 out:
1747         mutex_unlock(&reg_mutex);
1748 }
1749
1750 static void restore_alpha2(char *alpha2, bool reset_user)
1751 {
1752         /* indicates there is no alpha2 to consider for restoration */
1753         alpha2[0] = '9';
1754         alpha2[1] = '7';
1755
1756         /* The user setting has precedence over the module parameter */
1757         if (is_user_regdom_saved()) {
1758                 /* Unless we're asked to ignore it and reset it */
1759                 if (reset_user) {
1760                         REG_DBG_PRINT("Restoring regulatory settings "
1761                                "including user preference\n");
1762                         user_alpha2[0] = '9';
1763                         user_alpha2[1] = '7';
1764
1765                         /*
1766                          * If we're ignoring user settings, we still need to
1767                          * check the module parameter to ensure we put things
1768                          * back as they were for a full restore.
1769                          */
1770                         if (!is_world_regdom(ieee80211_regdom)) {
1771                                 REG_DBG_PRINT("Keeping preference on "
1772                                        "module parameter ieee80211_regdom: %c%c\n",
1773                                        ieee80211_regdom[0],
1774                                        ieee80211_regdom[1]);
1775                                 alpha2[0] = ieee80211_regdom[0];
1776                                 alpha2[1] = ieee80211_regdom[1];
1777                         }
1778                 } else {
1779                         REG_DBG_PRINT("Restoring regulatory settings "
1780                                "while preserving user preference for: %c%c\n",
1781                                user_alpha2[0],
1782                                user_alpha2[1]);
1783                         alpha2[0] = user_alpha2[0];
1784                         alpha2[1] = user_alpha2[1];
1785                 }
1786         } else if (!is_world_regdom(ieee80211_regdom)) {
1787                 REG_DBG_PRINT("Keeping preference on "
1788                        "module parameter ieee80211_regdom: %c%c\n",
1789                        ieee80211_regdom[0],
1790                        ieee80211_regdom[1]);
1791                 alpha2[0] = ieee80211_regdom[0];
1792                 alpha2[1] = ieee80211_regdom[1];
1793         } else
1794                 REG_DBG_PRINT("Restoring regulatory settings\n");
1795 }
1796
1797 static void restore_custom_reg_settings(struct wiphy *wiphy)
1798 {
1799         struct ieee80211_supported_band *sband;
1800         enum ieee80211_band band;
1801         struct ieee80211_channel *chan;
1802         int i;
1803
1804         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1805                 sband = wiphy->bands[band];
1806                 if (!sband)
1807                         continue;
1808                 for (i = 0; i < sband->n_channels; i++) {
1809                         chan = &sband->channels[i];
1810                         chan->flags = chan->orig_flags;
1811                         chan->max_antenna_gain = chan->orig_mag;
1812                         chan->max_power = chan->orig_mpwr;
1813                 }
1814         }
1815 }
1816
1817 /*
1818  * Restoring regulatory settings involves ingoring any
1819  * possibly stale country IE information and user regulatory
1820  * settings if so desired, this includes any beacon hints
1821  * learned as we could have traveled outside to another country
1822  * after disconnection. To restore regulatory settings we do
1823  * exactly what we did at bootup:
1824  *
1825  *   - send a core regulatory hint
1826  *   - send a user regulatory hint if applicable
1827  *
1828  * Device drivers that send a regulatory hint for a specific country
1829  * keep their own regulatory domain on wiphy->regd so that does does
1830  * not need to be remembered.
1831  */
1832 static void restore_regulatory_settings(bool reset_user)
1833 {
1834         char alpha2[2];
1835         char world_alpha2[2];
1836         struct reg_beacon *reg_beacon, *btmp;
1837         struct regulatory_request *reg_request, *tmp;
1838         LIST_HEAD(tmp_reg_req_list);
1839         struct cfg80211_registered_device *rdev;
1840
1841         mutex_lock(&cfg80211_mutex);
1842         mutex_lock(&reg_mutex);
1843
1844         reset_regdomains(true);
1845         restore_alpha2(alpha2, reset_user);
1846
1847         /*
1848          * If there's any pending requests we simply
1849          * stash them to a temporary pending queue and
1850          * add then after we've restored regulatory
1851          * settings.
1852          */
1853         spin_lock(&reg_requests_lock);
1854         if (!list_empty(&reg_requests_list)) {
1855                 list_for_each_entry_safe(reg_request, tmp,
1856                                          &reg_requests_list, list) {
1857                         if (reg_request->initiator !=
1858                             NL80211_REGDOM_SET_BY_USER)
1859                                 continue;
1860                         list_del(&reg_request->list);
1861                         list_add_tail(&reg_request->list, &tmp_reg_req_list);
1862                 }
1863         }
1864         spin_unlock(&reg_requests_lock);
1865
1866         /* Clear beacon hints */
1867         spin_lock_bh(&reg_pending_beacons_lock);
1868         if (!list_empty(&reg_pending_beacons)) {
1869                 list_for_each_entry_safe(reg_beacon, btmp,
1870                                          &reg_pending_beacons, list) {
1871                         list_del(&reg_beacon->list);
1872                         kfree(reg_beacon);
1873                 }
1874         }
1875         spin_unlock_bh(&reg_pending_beacons_lock);
1876
1877         if (!list_empty(&reg_beacon_list)) {
1878                 list_for_each_entry_safe(reg_beacon, btmp,
1879                                          &reg_beacon_list, list) {
1880                         list_del(&reg_beacon->list);
1881                         kfree(reg_beacon);
1882                 }
1883         }
1884
1885         /* First restore to the basic regulatory settings */
1886         cfg80211_regdomain = cfg80211_world_regdom;
1887         world_alpha2[0] = cfg80211_regdomain->alpha2[0];
1888         world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1889
1890         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1891                 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1892                         restore_custom_reg_settings(&rdev->wiphy);
1893         }
1894
1895         mutex_unlock(&reg_mutex);
1896         mutex_unlock(&cfg80211_mutex);
1897
1898         regulatory_hint_core(world_alpha2);
1899
1900         /*
1901          * This restores the ieee80211_regdom module parameter
1902          * preference or the last user requested regulatory
1903          * settings, user regulatory settings takes precedence.
1904          */
1905         if (is_an_alpha2(alpha2))
1906                 regulatory_hint_user(user_alpha2);
1907
1908         if (list_empty(&tmp_reg_req_list))
1909                 return;
1910
1911         mutex_lock(&cfg80211_mutex);
1912         mutex_lock(&reg_mutex);
1913
1914         spin_lock(&reg_requests_lock);
1915         list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1916                 REG_DBG_PRINT("Adding request for country %c%c back "
1917                               "into the queue\n",
1918                               reg_request->alpha2[0],
1919                               reg_request->alpha2[1]);
1920                 list_del(&reg_request->list);
1921                 list_add_tail(&reg_request->list, &reg_requests_list);
1922         }
1923         spin_unlock(&reg_requests_lock);
1924
1925         mutex_unlock(&reg_mutex);
1926         mutex_unlock(&cfg80211_mutex);
1927
1928         REG_DBG_PRINT("Kicking the queue\n");
1929
1930         schedule_work(&reg_work);
1931 }
1932
1933 void regulatory_hint_disconnect(void)
1934 {
1935         REG_DBG_PRINT("All devices are disconnected, going to "
1936                       "restore regulatory settings\n");
1937         restore_regulatory_settings(false);
1938 }
1939
1940 static bool freq_is_chan_12_13_14(u16 freq)
1941 {
1942         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1943             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1944             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1945                 return true;
1946         return false;
1947 }
1948
1949 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1950                                  struct ieee80211_channel *beacon_chan,
1951                                  gfp_t gfp)
1952 {
1953         struct reg_beacon *reg_beacon;
1954
1955         if (likely((beacon_chan->beacon_found ||
1956             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1957             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1958              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1959                 return 0;
1960
1961         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1962         if (!reg_beacon)
1963                 return -ENOMEM;
1964
1965         REG_DBG_PRINT("Found new beacon on "
1966                       "frequency: %d MHz (Ch %d) on %s\n",
1967                       beacon_chan->center_freq,
1968                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
1969                       wiphy_name(wiphy));
1970
1971         memcpy(&reg_beacon->chan, beacon_chan,
1972                 sizeof(struct ieee80211_channel));
1973
1974
1975         /*
1976          * Since we can be called from BH or and non-BH context
1977          * we must use spin_lock_bh()
1978          */
1979         spin_lock_bh(&reg_pending_beacons_lock);
1980         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1981         spin_unlock_bh(&reg_pending_beacons_lock);
1982
1983         schedule_work(&reg_work);
1984
1985         return 0;
1986 }
1987
1988 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1989 {
1990         unsigned int i;
1991         const struct ieee80211_reg_rule *reg_rule = NULL;
1992         const struct ieee80211_freq_range *freq_range = NULL;
1993         const struct ieee80211_power_rule *power_rule = NULL;
1994
1995         pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1996
1997         for (i = 0; i < rd->n_reg_rules; i++) {
1998                 reg_rule = &rd->reg_rules[i];
1999                 freq_range = &reg_rule->freq_range;
2000                 power_rule = &reg_rule->power_rule;
2001
2002                 /*
2003                  * There may not be documentation for max antenna gain
2004                  * in certain regions
2005                  */
2006                 if (power_rule->max_antenna_gain)
2007                         pr_info("  (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2008                                 freq_range->start_freq_khz,
2009                                 freq_range->end_freq_khz,
2010                                 freq_range->max_bandwidth_khz,
2011                                 power_rule->max_antenna_gain,
2012                                 power_rule->max_eirp);
2013                 else
2014                         pr_info("  (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2015                                 freq_range->start_freq_khz,
2016                                 freq_range->end_freq_khz,
2017                                 freq_range->max_bandwidth_khz,
2018                                 power_rule->max_eirp);
2019         }
2020 }
2021
2022 bool reg_supported_dfs_region(u8 dfs_region)
2023 {
2024         switch (dfs_region) {
2025         case NL80211_DFS_UNSET:
2026         case NL80211_DFS_FCC:
2027         case NL80211_DFS_ETSI:
2028         case NL80211_DFS_JP:
2029                 return true;
2030         default:
2031                 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2032                               dfs_region);
2033                 return false;
2034         }
2035 }
2036
2037 static void print_dfs_region(u8 dfs_region)
2038 {
2039         if (!dfs_region)
2040                 return;
2041
2042         switch (dfs_region) {
2043         case NL80211_DFS_FCC:
2044                 pr_info(" DFS Master region FCC");
2045                 break;
2046         case NL80211_DFS_ETSI:
2047                 pr_info(" DFS Master region ETSI");
2048                 break;
2049         case NL80211_DFS_JP:
2050                 pr_info(" DFS Master region JP");
2051                 break;
2052         default:
2053                 pr_info(" DFS Master region Uknown");
2054                 break;
2055         }
2056 }
2057
2058 static void print_regdomain(const struct ieee80211_regdomain *rd)
2059 {
2060
2061         if (is_intersected_alpha2(rd->alpha2)) {
2062
2063                 if (last_request->initiator ==
2064                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2065                         struct cfg80211_registered_device *rdev;
2066                         rdev = cfg80211_rdev_by_wiphy_idx(
2067                                 last_request->wiphy_idx);
2068                         if (rdev) {
2069                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2070                                         rdev->country_ie_alpha2[0],
2071                                         rdev->country_ie_alpha2[1]);
2072                         } else
2073                                 pr_info("Current regulatory domain intersected:\n");
2074                 } else
2075                         pr_info("Current regulatory domain intersected:\n");
2076         } else if (is_world_regdom(rd->alpha2))
2077                 pr_info("World regulatory domain updated:\n");
2078         else {
2079                 if (is_unknown_alpha2(rd->alpha2))
2080                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2081                 else
2082                         pr_info("Regulatory domain changed to country: %c%c\n",
2083                                 rd->alpha2[0], rd->alpha2[1]);
2084         }
2085         print_dfs_region(rd->dfs_region);
2086         print_rd_rules(rd);
2087 }
2088
2089 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2090 {
2091         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2092         print_rd_rules(rd);
2093 }
2094
2095 /* Takes ownership of rd only if it doesn't fail */
2096 static int __set_regdom(const struct ieee80211_regdomain *rd)
2097 {
2098         const struct ieee80211_regdomain *intersected_rd = NULL;
2099         struct cfg80211_registered_device *rdev = NULL;
2100         struct wiphy *request_wiphy;
2101         /* Some basic sanity checks first */
2102
2103         if (is_world_regdom(rd->alpha2)) {
2104                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2105                         return -EINVAL;
2106                 update_world_regdomain(rd);
2107                 return 0;
2108         }
2109
2110         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2111                         !is_unknown_alpha2(rd->alpha2))
2112                 return -EINVAL;
2113
2114         if (!last_request)
2115                 return -EINVAL;
2116
2117         /*
2118          * Lets only bother proceeding on the same alpha2 if the current
2119          * rd is non static (it means CRDA was present and was used last)
2120          * and the pending request came in from a country IE
2121          */
2122         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2123                 /*
2124                  * If someone else asked us to change the rd lets only bother
2125                  * checking if the alpha2 changes if CRDA was already called
2126                  */
2127                 if (!regdom_changes(rd->alpha2))
2128                         return -EINVAL;
2129         }
2130
2131         /*
2132          * Now lets set the regulatory domain, update all driver channels
2133          * and finally inform them of what we have done, in case they want
2134          * to review or adjust their own settings based on their own
2135          * internal EEPROM data
2136          */
2137
2138         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2139                 return -EINVAL;
2140
2141         if (!is_valid_rd(rd)) {
2142                 pr_err("Invalid regulatory domain detected:\n");
2143                 print_regdomain_info(rd);
2144                 return -EINVAL;
2145         }
2146
2147         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2148         if (!request_wiphy &&
2149             (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2150              last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2151                 schedule_delayed_work(&reg_timeout, 0);
2152                 return -ENODEV;
2153         }
2154
2155         if (!last_request->intersect) {
2156                 int r;
2157
2158                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2159                         reset_regdomains(false);
2160                         cfg80211_regdomain = rd;
2161                         return 0;
2162                 }
2163
2164                 /*
2165                  * For a driver hint, lets copy the regulatory domain the
2166                  * driver wanted to the wiphy to deal with conflicts
2167                  */
2168
2169                 /*
2170                  * Userspace could have sent two replies with only
2171                  * one kernel request.
2172                  */
2173                 if (request_wiphy->regd)
2174                         return -EALREADY;
2175
2176                 r = reg_copy_regd(&request_wiphy->regd, rd);
2177                 if (r)
2178                         return r;
2179
2180                 reset_regdomains(false);
2181                 cfg80211_regdomain = rd;
2182                 return 0;
2183         }
2184
2185         /* Intersection requires a bit more work */
2186
2187         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2188
2189                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2190                 if (!intersected_rd)
2191                         return -EINVAL;
2192
2193                 /*
2194                  * We can trash what CRDA provided now.
2195                  * However if a driver requested this specific regulatory
2196                  * domain we keep it for its private use
2197                  */
2198                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2199                         request_wiphy->regd = rd;
2200                 else
2201                         kfree(rd);
2202
2203                 rd = NULL;
2204
2205                 reset_regdomains(false);
2206                 cfg80211_regdomain = intersected_rd;
2207
2208                 return 0;
2209         }
2210
2211         if (!intersected_rd)
2212                 return -EINVAL;
2213
2214         rdev = wiphy_to_dev(request_wiphy);
2215
2216         rdev->country_ie_alpha2[0] = rd->alpha2[0];
2217         rdev->country_ie_alpha2[1] = rd->alpha2[1];
2218         rdev->env = last_request->country_ie_env;
2219
2220         BUG_ON(intersected_rd == rd);
2221
2222         kfree(rd);
2223         rd = NULL;
2224
2225         reset_regdomains(false);
2226         cfg80211_regdomain = intersected_rd;
2227
2228         return 0;
2229 }
2230
2231
2232 /*
2233  * Use this call to set the current regulatory domain. Conflicts with
2234  * multiple drivers can be ironed out later. Caller must've already
2235  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2236  */
2237 int set_regdom(const struct ieee80211_regdomain *rd)
2238 {
2239         int r;
2240
2241         assert_cfg80211_lock();
2242
2243         mutex_lock(&reg_mutex);
2244
2245         /* Note that this doesn't update the wiphys, this is done below */
2246         r = __set_regdom(rd);
2247         if (r) {
2248                 kfree(rd);
2249                 mutex_unlock(&reg_mutex);
2250                 return r;
2251         }
2252
2253         /* This would make this whole thing pointless */
2254         if (!last_request->intersect)
2255                 BUG_ON(rd != cfg80211_regdomain);
2256
2257         /* update all wiphys now with the new established regulatory domain */
2258         update_all_wiphy_regulatory(last_request->initiator);
2259
2260         print_regdomain(cfg80211_regdomain);
2261
2262         nl80211_send_reg_change_event(last_request);
2263
2264         reg_set_request_processed();
2265
2266         mutex_unlock(&reg_mutex);
2267
2268         return r;
2269 }
2270
2271 #ifdef CONFIG_HOTPLUG
2272 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2273 {
2274         if (last_request && !last_request->processed) {
2275                 if (add_uevent_var(env, "COUNTRY=%c%c",
2276                                    last_request->alpha2[0],
2277                                    last_request->alpha2[1]))
2278                         return -ENOMEM;
2279         }
2280
2281         return 0;
2282 }
2283 #else
2284 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2285 {
2286         return -ENODEV;
2287 }
2288 #endif /* CONFIG_HOTPLUG */
2289
2290 /* Caller must hold cfg80211_mutex */
2291 void reg_device_remove(struct wiphy *wiphy)
2292 {
2293         struct wiphy *request_wiphy = NULL;
2294
2295         assert_cfg80211_lock();
2296
2297         mutex_lock(&reg_mutex);
2298
2299         kfree(wiphy->regd);
2300
2301         if (last_request)
2302                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2303
2304         if (!request_wiphy || request_wiphy != wiphy)
2305                 goto out;
2306
2307         last_request->wiphy_idx = WIPHY_IDX_STALE;
2308         last_request->country_ie_env = ENVIRON_ANY;
2309 out:
2310         mutex_unlock(&reg_mutex);
2311 }
2312
2313 static void reg_timeout_work(struct work_struct *work)
2314 {
2315         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2316                       "restoring regulatory settings\n");
2317         restore_regulatory_settings(true);
2318 }
2319
2320 int __init regulatory_init(void)
2321 {
2322         int err = 0;
2323
2324         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2325         if (IS_ERR(reg_pdev))
2326                 return PTR_ERR(reg_pdev);
2327
2328         reg_pdev->dev.type = &reg_device_type;
2329
2330         spin_lock_init(&reg_requests_lock);
2331         spin_lock_init(&reg_pending_beacons_lock);
2332
2333         reg_regdb_size_check();
2334
2335         cfg80211_regdomain = cfg80211_world_regdom;
2336
2337         user_alpha2[0] = '9';
2338         user_alpha2[1] = '7';
2339
2340         /* We always try to get an update for the static regdomain */
2341         err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2342         if (err) {
2343                 if (err == -ENOMEM)
2344                         return err;
2345                 /*
2346                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2347                  * memory which is handled and propagated appropriately above
2348                  * but it can also fail during a netlink_broadcast() or during
2349                  * early boot for call_usermodehelper(). For now treat these
2350                  * errors as non-fatal.
2351                  */
2352                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2353 #ifdef CONFIG_CFG80211_REG_DEBUG
2354                 /* We want to find out exactly why when debugging */
2355                 WARN_ON(err);
2356 #endif
2357         }
2358
2359         /*
2360          * Finally, if the user set the module parameter treat it
2361          * as a user hint.
2362          */
2363         if (!is_world_regdom(ieee80211_regdom))
2364                 regulatory_hint_user(ieee80211_regdom);
2365
2366         return 0;
2367 }
2368
2369 void /* __init_or_exit */ regulatory_exit(void)
2370 {
2371         struct regulatory_request *reg_request, *tmp;
2372         struct reg_beacon *reg_beacon, *btmp;
2373
2374         cancel_work_sync(&reg_work);
2375         cancel_delayed_work_sync(&reg_timeout);
2376
2377         mutex_lock(&cfg80211_mutex);
2378         mutex_lock(&reg_mutex);
2379
2380         reset_regdomains(true);
2381
2382         dev_set_uevent_suppress(&reg_pdev->dev, true);
2383
2384         platform_device_unregister(reg_pdev);
2385
2386         spin_lock_bh(&reg_pending_beacons_lock);
2387         if (!list_empty(&reg_pending_beacons)) {
2388                 list_for_each_entry_safe(reg_beacon, btmp,
2389                                          &reg_pending_beacons, list) {
2390                         list_del(&reg_beacon->list);
2391                         kfree(reg_beacon);
2392                 }
2393         }
2394         spin_unlock_bh(&reg_pending_beacons_lock);
2395
2396         if (!list_empty(&reg_beacon_list)) {
2397                 list_for_each_entry_safe(reg_beacon, btmp,
2398                                          &reg_beacon_list, list) {
2399                         list_del(&reg_beacon->list);
2400                         kfree(reg_beacon);
2401                 }
2402         }
2403
2404         spin_lock(&reg_requests_lock);
2405         if (!list_empty(&reg_requests_list)) {
2406                 list_for_each_entry_safe(reg_request, tmp,
2407                                          &reg_requests_list, list) {
2408                         list_del(&reg_request->list);
2409                         kfree(reg_request);
2410                 }
2411         }
2412         spin_unlock(&reg_requests_lock);
2413
2414         mutex_unlock(&reg_mutex);
2415         mutex_unlock(&cfg80211_mutex);
2416 }