70b171a52aeacdb686ac3a6a79c4997b85b0ec19
[firefly-linux-kernel-4.4.55.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37
38 #include <linux/kernel.h>
39 #include <linux/export.h>
40 #include <linux/slab.h>
41 #include <linux/list.h>
42 #include <linux/random.h>
43 #include <linux/ctype.h>
44 #include <linux/nl80211.h>
45 #include <linux/platform_device.h>
46 #include <linux/moduleparam.h>
47 #include <net/cfg80211.h>
48 #include "core.h"
49 #include "reg.h"
50 #include "regdb.h"
51 #include "nl80211.h"
52
53 #ifdef CONFIG_CFG80211_REG_DEBUG
54 #define REG_DBG_PRINT(format, args...)                  \
55         printk(KERN_DEBUG pr_fmt(format), ##args)
56 #else
57 #define REG_DBG_PRINT(args...)
58 #endif
59
60 static struct regulatory_request core_request_world = {
61         .initiator = NL80211_REGDOM_SET_BY_CORE,
62         .alpha2[0] = '0',
63         .alpha2[1] = '0',
64         .intersect = false,
65         .processed = true,
66         .country_ie_env = ENVIRON_ANY,
67 };
68
69 /* Receipt of information from last regulatory request */
70 static struct regulatory_request *last_request = &core_request_world;
71
72 /* To trigger userspace events */
73 static struct platform_device *reg_pdev;
74
75 static struct device_type reg_device_type = {
76         .uevent = reg_device_uevent,
77 };
78
79 /*
80  * Central wireless core regulatory domains, we only need two,
81  * the current one and a world regulatory domain in case we have no
82  * information to give us an alpha2
83  */
84 const struct ieee80211_regdomain *cfg80211_regdomain;
85
86 /*
87  * Protects static reg.c components:
88  *     - cfg80211_world_regdom
89  *     - cfg80211_regdom
90  *     - last_request
91  */
92 static DEFINE_MUTEX(reg_mutex);
93
94 static inline void assert_reg_lock(void)
95 {
96         lockdep_assert_held(&reg_mutex);
97 }
98
99 /* Used to queue up regulatory hints */
100 static LIST_HEAD(reg_requests_list);
101 static spinlock_t reg_requests_lock;
102
103 /* Used to queue up beacon hints for review */
104 static LIST_HEAD(reg_pending_beacons);
105 static spinlock_t reg_pending_beacons_lock;
106
107 /* Used to keep track of processed beacon hints */
108 static LIST_HEAD(reg_beacon_list);
109
110 struct reg_beacon {
111         struct list_head list;
112         struct ieee80211_channel chan;
113 };
114
115 static void reg_todo(struct work_struct *work);
116 static DECLARE_WORK(reg_work, reg_todo);
117
118 static void reg_timeout_work(struct work_struct *work);
119 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
120
121 /* We keep a static world regulatory domain in case of the absence of CRDA */
122 static const struct ieee80211_regdomain world_regdom = {
123         .n_reg_rules = 5,
124         .alpha2 =  "00",
125         .reg_rules = {
126                 /* IEEE 802.11b/g, channels 1..11 */
127                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
128                 /* IEEE 802.11b/g, channels 12..13. No HT40
129                  * channel fits here. */
130                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
131                         NL80211_RRF_PASSIVE_SCAN |
132                         NL80211_RRF_NO_IBSS),
133                 /* IEEE 802.11 channel 14 - Only JP enables
134                  * this and for 802.11b only */
135                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
136                         NL80211_RRF_PASSIVE_SCAN |
137                         NL80211_RRF_NO_IBSS |
138                         NL80211_RRF_NO_OFDM),
139                 /* IEEE 802.11a, channel 36..48 */
140                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
141                         NL80211_RRF_PASSIVE_SCAN |
142                         NL80211_RRF_NO_IBSS),
143
144                 /* NB: 5260 MHz - 5700 MHz requies DFS */
145
146                 /* IEEE 802.11a, channel 149..165 */
147                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
148                         NL80211_RRF_PASSIVE_SCAN |
149                         NL80211_RRF_NO_IBSS),
150         }
151 };
152
153 static const struct ieee80211_regdomain *cfg80211_world_regdom =
154         &world_regdom;
155
156 static char *ieee80211_regdom = "00";
157 static char user_alpha2[2];
158
159 module_param(ieee80211_regdom, charp, 0444);
160 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
161
162 static void reset_regdomains(bool full_reset)
163 {
164         /* avoid freeing static information or freeing something twice */
165         if (cfg80211_regdomain == cfg80211_world_regdom)
166                 cfg80211_regdomain = NULL;
167         if (cfg80211_world_regdom == &world_regdom)
168                 cfg80211_world_regdom = NULL;
169         if (cfg80211_regdomain == &world_regdom)
170                 cfg80211_regdomain = NULL;
171
172         kfree(cfg80211_regdomain);
173         kfree(cfg80211_world_regdom);
174
175         cfg80211_world_regdom = &world_regdom;
176         cfg80211_regdomain = NULL;
177
178         if (!full_reset)
179                 return;
180
181         if (last_request != &core_request_world)
182                 kfree(last_request);
183         last_request = &core_request_world;
184 }
185
186 /*
187  * Dynamic world regulatory domain requested by the wireless
188  * core upon initialization
189  */
190 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
191 {
192         BUG_ON(!last_request);
193
194         reset_regdomains(false);
195
196         cfg80211_world_regdom = rd;
197         cfg80211_regdomain = rd;
198 }
199
200 bool is_world_regdom(const char *alpha2)
201 {
202         if (!alpha2)
203                 return false;
204         if (alpha2[0] == '0' && alpha2[1] == '0')
205                 return true;
206         return false;
207 }
208
209 static bool is_alpha2_set(const char *alpha2)
210 {
211         if (!alpha2)
212                 return false;
213         if (alpha2[0] != 0 && alpha2[1] != 0)
214                 return true;
215         return false;
216 }
217
218 static bool is_unknown_alpha2(const char *alpha2)
219 {
220         if (!alpha2)
221                 return false;
222         /*
223          * Special case where regulatory domain was built by driver
224          * but a specific alpha2 cannot be determined
225          */
226         if (alpha2[0] == '9' && alpha2[1] == '9')
227                 return true;
228         return false;
229 }
230
231 static bool is_intersected_alpha2(const char *alpha2)
232 {
233         if (!alpha2)
234                 return false;
235         /*
236          * Special case where regulatory domain is the
237          * result of an intersection between two regulatory domain
238          * structures
239          */
240         if (alpha2[0] == '9' && alpha2[1] == '8')
241                 return true;
242         return false;
243 }
244
245 static bool is_an_alpha2(const char *alpha2)
246 {
247         if (!alpha2)
248                 return false;
249         if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
250                 return true;
251         return false;
252 }
253
254 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
255 {
256         if (!alpha2_x || !alpha2_y)
257                 return false;
258         if (alpha2_x[0] == alpha2_y[0] &&
259                 alpha2_x[1] == alpha2_y[1])
260                 return true;
261         return false;
262 }
263
264 static bool regdom_changes(const char *alpha2)
265 {
266         assert_cfg80211_lock();
267
268         if (!cfg80211_regdomain)
269                 return true;
270         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
271                 return false;
272         return true;
273 }
274
275 /*
276  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
277  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
278  * has ever been issued.
279  */
280 static bool is_user_regdom_saved(void)
281 {
282         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
283                 return false;
284
285         /* This would indicate a mistake on the design */
286         if (WARN((!is_world_regdom(user_alpha2) &&
287                   !is_an_alpha2(user_alpha2)),
288                  "Unexpected user alpha2: %c%c\n",
289                  user_alpha2[0],
290                  user_alpha2[1]))
291                 return false;
292
293         return true;
294 }
295
296 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
297                          const struct ieee80211_regdomain *src_regd)
298 {
299         struct ieee80211_regdomain *regd;
300         int size_of_regd = 0;
301         unsigned int i;
302
303         size_of_regd = sizeof(struct ieee80211_regdomain) +
304           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
305
306         regd = kzalloc(size_of_regd, GFP_KERNEL);
307         if (!regd)
308                 return -ENOMEM;
309
310         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
311
312         for (i = 0; i < src_regd->n_reg_rules; i++)
313                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
314                         sizeof(struct ieee80211_reg_rule));
315
316         *dst_regd = regd;
317         return 0;
318 }
319
320 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
321 struct reg_regdb_search_request {
322         char alpha2[2];
323         struct list_head list;
324 };
325
326 static LIST_HEAD(reg_regdb_search_list);
327 static DEFINE_MUTEX(reg_regdb_search_mutex);
328
329 static void reg_regdb_search(struct work_struct *work)
330 {
331         struct reg_regdb_search_request *request;
332         const struct ieee80211_regdomain *curdom, *regdom;
333         int i, r;
334
335         mutex_lock(&reg_regdb_search_mutex);
336         while (!list_empty(&reg_regdb_search_list)) {
337                 request = list_first_entry(&reg_regdb_search_list,
338                                            struct reg_regdb_search_request,
339                                            list);
340                 list_del(&request->list);
341
342                 for (i=0; i<reg_regdb_size; i++) {
343                         curdom = reg_regdb[i];
344
345                         if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
346                                 r = reg_copy_regd(&regdom, curdom);
347                                 if (r)
348                                         break;
349                                 mutex_lock(&cfg80211_mutex);
350                                 set_regdom(regdom);
351                                 mutex_unlock(&cfg80211_mutex);
352                                 break;
353                         }
354                 }
355
356                 kfree(request);
357         }
358         mutex_unlock(&reg_regdb_search_mutex);
359 }
360
361 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
362
363 static void reg_regdb_query(const char *alpha2)
364 {
365         struct reg_regdb_search_request *request;
366
367         if (!alpha2)
368                 return;
369
370         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
371         if (!request)
372                 return;
373
374         memcpy(request->alpha2, alpha2, 2);
375
376         mutex_lock(&reg_regdb_search_mutex);
377         list_add_tail(&request->list, &reg_regdb_search_list);
378         mutex_unlock(&reg_regdb_search_mutex);
379
380         schedule_work(&reg_regdb_work);
381 }
382 #else
383 static inline void reg_regdb_query(const char *alpha2) {}
384 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
385
386 /*
387  * This lets us keep regulatory code which is updated on a regulatory
388  * basis in userspace. Country information is filled in by
389  * reg_device_uevent
390  */
391 static int call_crda(const char *alpha2)
392 {
393         if (!is_world_regdom((char *) alpha2))
394                 pr_info("Calling CRDA for country: %c%c\n",
395                         alpha2[0], alpha2[1]);
396         else
397                 pr_info("Calling CRDA to update world regulatory domain\n");
398
399         /* query internal regulatory database (if it exists) */
400         reg_regdb_query(alpha2);
401
402         return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
403 }
404
405 /* Used by nl80211 before kmalloc'ing our regulatory domain */
406 bool reg_is_valid_request(const char *alpha2)
407 {
408         assert_cfg80211_lock();
409
410         if (!last_request)
411                 return false;
412
413         return alpha2_equal(last_request->alpha2, alpha2);
414 }
415
416 /* Sanity check on a regulatory rule */
417 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
418 {
419         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
420         u32 freq_diff;
421
422         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
423                 return false;
424
425         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
426                 return false;
427
428         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
429
430         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
431                         freq_range->max_bandwidth_khz > freq_diff)
432                 return false;
433
434         return true;
435 }
436
437 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
438 {
439         const struct ieee80211_reg_rule *reg_rule = NULL;
440         unsigned int i;
441
442         if (!rd->n_reg_rules)
443                 return false;
444
445         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
446                 return false;
447
448         for (i = 0; i < rd->n_reg_rules; i++) {
449                 reg_rule = &rd->reg_rules[i];
450                 if (!is_valid_reg_rule(reg_rule))
451                         return false;
452         }
453
454         return true;
455 }
456
457 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
458                             u32 center_freq_khz,
459                             u32 bw_khz)
460 {
461         u32 start_freq_khz, end_freq_khz;
462
463         start_freq_khz = center_freq_khz - (bw_khz/2);
464         end_freq_khz = center_freq_khz + (bw_khz/2);
465
466         if (start_freq_khz >= freq_range->start_freq_khz &&
467             end_freq_khz <= freq_range->end_freq_khz)
468                 return true;
469
470         return false;
471 }
472
473 /**
474  * freq_in_rule_band - tells us if a frequency is in a frequency band
475  * @freq_range: frequency rule we want to query
476  * @freq_khz: frequency we are inquiring about
477  *
478  * This lets us know if a specific frequency rule is or is not relevant to
479  * a specific frequency's band. Bands are device specific and artificial
480  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
481  * safe for now to assume that a frequency rule should not be part of a
482  * frequency's band if the start freq or end freq are off by more than 2 GHz.
483  * This resolution can be lowered and should be considered as we add
484  * regulatory rule support for other "bands".
485  **/
486 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
487         u32 freq_khz)
488 {
489 #define ONE_GHZ_IN_KHZ  1000000
490         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
491                 return true;
492         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
493                 return true;
494         return false;
495 #undef ONE_GHZ_IN_KHZ
496 }
497
498 /*
499  * Helper for regdom_intersect(), this does the real
500  * mathematical intersection fun
501  */
502 static int reg_rules_intersect(
503         const struct ieee80211_reg_rule *rule1,
504         const struct ieee80211_reg_rule *rule2,
505         struct ieee80211_reg_rule *intersected_rule)
506 {
507         const struct ieee80211_freq_range *freq_range1, *freq_range2;
508         struct ieee80211_freq_range *freq_range;
509         const struct ieee80211_power_rule *power_rule1, *power_rule2;
510         struct ieee80211_power_rule *power_rule;
511         u32 freq_diff;
512
513         freq_range1 = &rule1->freq_range;
514         freq_range2 = &rule2->freq_range;
515         freq_range = &intersected_rule->freq_range;
516
517         power_rule1 = &rule1->power_rule;
518         power_rule2 = &rule2->power_rule;
519         power_rule = &intersected_rule->power_rule;
520
521         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
522                 freq_range2->start_freq_khz);
523         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
524                 freq_range2->end_freq_khz);
525         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
526                 freq_range2->max_bandwidth_khz);
527
528         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
529         if (freq_range->max_bandwidth_khz > freq_diff)
530                 freq_range->max_bandwidth_khz = freq_diff;
531
532         power_rule->max_eirp = min(power_rule1->max_eirp,
533                 power_rule2->max_eirp);
534         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
535                 power_rule2->max_antenna_gain);
536
537         intersected_rule->flags = (rule1->flags | rule2->flags);
538
539         if (!is_valid_reg_rule(intersected_rule))
540                 return -EINVAL;
541
542         return 0;
543 }
544
545 /**
546  * regdom_intersect - do the intersection between two regulatory domains
547  * @rd1: first regulatory domain
548  * @rd2: second regulatory domain
549  *
550  * Use this function to get the intersection between two regulatory domains.
551  * Once completed we will mark the alpha2 for the rd as intersected, "98",
552  * as no one single alpha2 can represent this regulatory domain.
553  *
554  * Returns a pointer to the regulatory domain structure which will hold the
555  * resulting intersection of rules between rd1 and rd2. We will
556  * kzalloc() this structure for you.
557  */
558 static struct ieee80211_regdomain *regdom_intersect(
559         const struct ieee80211_regdomain *rd1,
560         const struct ieee80211_regdomain *rd2)
561 {
562         int r, size_of_regd;
563         unsigned int x, y;
564         unsigned int num_rules = 0, rule_idx = 0;
565         const struct ieee80211_reg_rule *rule1, *rule2;
566         struct ieee80211_reg_rule *intersected_rule;
567         struct ieee80211_regdomain *rd;
568         /* This is just a dummy holder to help us count */
569         struct ieee80211_reg_rule irule;
570
571         /* Uses the stack temporarily for counter arithmetic */
572         intersected_rule = &irule;
573
574         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
575
576         if (!rd1 || !rd2)
577                 return NULL;
578
579         /*
580          * First we get a count of the rules we'll need, then we actually
581          * build them. This is to so we can malloc() and free() a
582          * regdomain once. The reason we use reg_rules_intersect() here
583          * is it will return -EINVAL if the rule computed makes no sense.
584          * All rules that do check out OK are valid.
585          */
586
587         for (x = 0; x < rd1->n_reg_rules; x++) {
588                 rule1 = &rd1->reg_rules[x];
589                 for (y = 0; y < rd2->n_reg_rules; y++) {
590                         rule2 = &rd2->reg_rules[y];
591                         if (!reg_rules_intersect(rule1, rule2,
592                                         intersected_rule))
593                                 num_rules++;
594                         memset(intersected_rule, 0,
595                                         sizeof(struct ieee80211_reg_rule));
596                 }
597         }
598
599         if (!num_rules)
600                 return NULL;
601
602         size_of_regd = sizeof(struct ieee80211_regdomain) +
603                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
604
605         rd = kzalloc(size_of_regd, GFP_KERNEL);
606         if (!rd)
607                 return NULL;
608
609         for (x = 0; x < rd1->n_reg_rules; x++) {
610                 rule1 = &rd1->reg_rules[x];
611                 for (y = 0; y < rd2->n_reg_rules; y++) {
612                         rule2 = &rd2->reg_rules[y];
613                         /*
614                          * This time around instead of using the stack lets
615                          * write to the target rule directly saving ourselves
616                          * a memcpy()
617                          */
618                         intersected_rule = &rd->reg_rules[rule_idx];
619                         r = reg_rules_intersect(rule1, rule2,
620                                 intersected_rule);
621                         /*
622                          * No need to memset here the intersected rule here as
623                          * we're not using the stack anymore
624                          */
625                         if (r)
626                                 continue;
627                         rule_idx++;
628                 }
629         }
630
631         if (rule_idx != num_rules) {
632                 kfree(rd);
633                 return NULL;
634         }
635
636         rd->n_reg_rules = num_rules;
637         rd->alpha2[0] = '9';
638         rd->alpha2[1] = '8';
639
640         return rd;
641 }
642
643 /*
644  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
645  * want to just have the channel structure use these
646  */
647 static u32 map_regdom_flags(u32 rd_flags)
648 {
649         u32 channel_flags = 0;
650         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
651                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
652         if (rd_flags & NL80211_RRF_NO_IBSS)
653                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
654         if (rd_flags & NL80211_RRF_DFS)
655                 channel_flags |= IEEE80211_CHAN_RADAR;
656         return channel_flags;
657 }
658
659 static int freq_reg_info_regd(struct wiphy *wiphy,
660                               u32 center_freq,
661                               u32 desired_bw_khz,
662                               const struct ieee80211_reg_rule **reg_rule,
663                               const struct ieee80211_regdomain *custom_regd)
664 {
665         int i;
666         bool band_rule_found = false;
667         const struct ieee80211_regdomain *regd;
668         bool bw_fits = false;
669
670         if (!desired_bw_khz)
671                 desired_bw_khz = MHZ_TO_KHZ(20);
672
673         regd = custom_regd ? custom_regd : cfg80211_regdomain;
674
675         /*
676          * Follow the driver's regulatory domain, if present, unless a country
677          * IE has been processed or a user wants to help complaince further
678          */
679         if (!custom_regd &&
680             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
681             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
682             wiphy->regd)
683                 regd = wiphy->regd;
684
685         if (!regd)
686                 return -EINVAL;
687
688         for (i = 0; i < regd->n_reg_rules; i++) {
689                 const struct ieee80211_reg_rule *rr;
690                 const struct ieee80211_freq_range *fr = NULL;
691
692                 rr = &regd->reg_rules[i];
693                 fr = &rr->freq_range;
694
695                 /*
696                  * We only need to know if one frequency rule was
697                  * was in center_freq's band, that's enough, so lets
698                  * not overwrite it once found
699                  */
700                 if (!band_rule_found)
701                         band_rule_found = freq_in_rule_band(fr, center_freq);
702
703                 bw_fits = reg_does_bw_fit(fr,
704                                           center_freq,
705                                           desired_bw_khz);
706
707                 if (band_rule_found && bw_fits) {
708                         *reg_rule = rr;
709                         return 0;
710                 }
711         }
712
713         if (!band_rule_found)
714                 return -ERANGE;
715
716         return -EINVAL;
717 }
718
719 int freq_reg_info(struct wiphy *wiphy,
720                   u32 center_freq,
721                   u32 desired_bw_khz,
722                   const struct ieee80211_reg_rule **reg_rule)
723 {
724         assert_cfg80211_lock();
725         return freq_reg_info_regd(wiphy,
726                                   center_freq,
727                                   desired_bw_khz,
728                                   reg_rule,
729                                   NULL);
730 }
731 EXPORT_SYMBOL(freq_reg_info);
732
733 #ifdef CONFIG_CFG80211_REG_DEBUG
734 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
735 {
736         switch (initiator) {
737         case NL80211_REGDOM_SET_BY_CORE:
738                 return "Set by core";
739         case NL80211_REGDOM_SET_BY_USER:
740                 return "Set by user";
741         case NL80211_REGDOM_SET_BY_DRIVER:
742                 return "Set by driver";
743         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
744                 return "Set by country IE";
745         default:
746                 WARN_ON(1);
747                 return "Set by bug";
748         }
749 }
750
751 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
752                                     u32 desired_bw_khz,
753                                     const struct ieee80211_reg_rule *reg_rule)
754 {
755         const struct ieee80211_power_rule *power_rule;
756         const struct ieee80211_freq_range *freq_range;
757         char max_antenna_gain[32];
758
759         power_rule = &reg_rule->power_rule;
760         freq_range = &reg_rule->freq_range;
761
762         if (!power_rule->max_antenna_gain)
763                 snprintf(max_antenna_gain, 32, "N/A");
764         else
765                 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
766
767         REG_DBG_PRINT("Updating information on frequency %d MHz "
768                       "for a %d MHz width channel with regulatory rule:\n",
769                       chan->center_freq,
770                       KHZ_TO_MHZ(desired_bw_khz));
771
772         REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
773                       freq_range->start_freq_khz,
774                       freq_range->end_freq_khz,
775                       freq_range->max_bandwidth_khz,
776                       max_antenna_gain,
777                       power_rule->max_eirp);
778 }
779 #else
780 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
781                                     u32 desired_bw_khz,
782                                     const struct ieee80211_reg_rule *reg_rule)
783 {
784         return;
785 }
786 #endif
787
788 /*
789  * Note that right now we assume the desired channel bandwidth
790  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
791  * per channel, the primary and the extension channel). To support
792  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
793  * new ieee80211_channel.target_bw and re run the regulatory check
794  * on the wiphy with the target_bw specified. Then we can simply use
795  * that below for the desired_bw_khz below.
796  */
797 static void handle_channel(struct wiphy *wiphy,
798                            enum nl80211_reg_initiator initiator,
799                            enum ieee80211_band band,
800                            unsigned int chan_idx)
801 {
802         int r;
803         u32 flags, bw_flags = 0;
804         u32 desired_bw_khz = MHZ_TO_KHZ(20);
805         const struct ieee80211_reg_rule *reg_rule = NULL;
806         const struct ieee80211_power_rule *power_rule = NULL;
807         const struct ieee80211_freq_range *freq_range = NULL;
808         struct ieee80211_supported_band *sband;
809         struct ieee80211_channel *chan;
810         struct wiphy *request_wiphy = NULL;
811
812         assert_cfg80211_lock();
813
814         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
815
816         sband = wiphy->bands[band];
817         BUG_ON(chan_idx >= sband->n_channels);
818         chan = &sband->channels[chan_idx];
819
820         flags = chan->orig_flags;
821
822         r = freq_reg_info(wiphy,
823                           MHZ_TO_KHZ(chan->center_freq),
824                           desired_bw_khz,
825                           &reg_rule);
826
827         if (r) {
828                 /*
829                  * We will disable all channels that do not match our
830                  * received regulatory rule unless the hint is coming
831                  * from a Country IE and the Country IE had no information
832                  * about a band. The IEEE 802.11 spec allows for an AP
833                  * to send only a subset of the regulatory rules allowed,
834                  * so an AP in the US that only supports 2.4 GHz may only send
835                  * a country IE with information for the 2.4 GHz band
836                  * while 5 GHz is still supported.
837                  */
838                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
839                     r == -ERANGE)
840                         return;
841
842                 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
843                 chan->flags = IEEE80211_CHAN_DISABLED;
844                 return;
845         }
846
847         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
848
849         power_rule = &reg_rule->power_rule;
850         freq_range = &reg_rule->freq_range;
851
852         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
853                 bw_flags = IEEE80211_CHAN_NO_HT40;
854
855         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
856             request_wiphy && request_wiphy == wiphy &&
857             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
858                 /*
859                  * This guarantees the driver's requested regulatory domain
860                  * will always be used as a base for further regulatory
861                  * settings
862                  */
863                 chan->flags = chan->orig_flags =
864                         map_regdom_flags(reg_rule->flags) | bw_flags;
865                 chan->max_antenna_gain = chan->orig_mag =
866                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
867                 chan->max_power = chan->orig_mpwr =
868                         (int) MBM_TO_DBM(power_rule->max_eirp);
869                 return;
870         }
871
872         chan->beacon_found = false;
873         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
874         chan->max_antenna_gain = min(chan->orig_mag,
875                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
876         if (chan->orig_mpwr)
877                 chan->max_power = min(chan->orig_mpwr,
878                         (int) MBM_TO_DBM(power_rule->max_eirp));
879         else
880                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
881 }
882
883 static void handle_band(struct wiphy *wiphy,
884                         enum ieee80211_band band,
885                         enum nl80211_reg_initiator initiator)
886 {
887         unsigned int i;
888         struct ieee80211_supported_band *sband;
889
890         BUG_ON(!wiphy->bands[band]);
891         sband = wiphy->bands[band];
892
893         for (i = 0; i < sband->n_channels; i++)
894                 handle_channel(wiphy, initiator, band, i);
895 }
896
897 static bool ignore_reg_update(struct wiphy *wiphy,
898                               enum nl80211_reg_initiator initiator)
899 {
900         if (!last_request) {
901                 REG_DBG_PRINT("Ignoring regulatory request %s since "
902                               "last_request is not set\n",
903                               reg_initiator_name(initiator));
904                 return true;
905         }
906
907         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
908             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
909                 REG_DBG_PRINT("Ignoring regulatory request %s "
910                               "since the driver uses its own custom "
911                               "regulatory domain\n",
912                               reg_initiator_name(initiator));
913                 return true;
914         }
915
916         /*
917          * wiphy->regd will be set once the device has its own
918          * desired regulatory domain set
919          */
920         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
921             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
922             !is_world_regdom(last_request->alpha2)) {
923                 REG_DBG_PRINT("Ignoring regulatory request %s "
924                               "since the driver requires its own regulatory "
925                               "domain to be set first\n",
926                               reg_initiator_name(initiator));
927                 return true;
928         }
929
930         return false;
931 }
932
933 static void handle_reg_beacon(struct wiphy *wiphy,
934                               unsigned int chan_idx,
935                               struct reg_beacon *reg_beacon)
936 {
937         struct ieee80211_supported_band *sband;
938         struct ieee80211_channel *chan;
939         bool channel_changed = false;
940         struct ieee80211_channel chan_before;
941
942         assert_cfg80211_lock();
943
944         sband = wiphy->bands[reg_beacon->chan.band];
945         chan = &sband->channels[chan_idx];
946
947         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
948                 return;
949
950         if (chan->beacon_found)
951                 return;
952
953         chan->beacon_found = true;
954
955         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
956                 return;
957
958         chan_before.center_freq = chan->center_freq;
959         chan_before.flags = chan->flags;
960
961         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
962                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
963                 channel_changed = true;
964         }
965
966         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
967                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
968                 channel_changed = true;
969         }
970
971         if (channel_changed)
972                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
973 }
974
975 /*
976  * Called when a scan on a wiphy finds a beacon on
977  * new channel
978  */
979 static void wiphy_update_new_beacon(struct wiphy *wiphy,
980                                     struct reg_beacon *reg_beacon)
981 {
982         unsigned int i;
983         struct ieee80211_supported_band *sband;
984
985         assert_cfg80211_lock();
986
987         if (!wiphy->bands[reg_beacon->chan.band])
988                 return;
989
990         sband = wiphy->bands[reg_beacon->chan.band];
991
992         for (i = 0; i < sband->n_channels; i++)
993                 handle_reg_beacon(wiphy, i, reg_beacon);
994 }
995
996 /*
997  * Called upon reg changes or a new wiphy is added
998  */
999 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1000 {
1001         unsigned int i;
1002         struct ieee80211_supported_band *sband;
1003         struct reg_beacon *reg_beacon;
1004
1005         assert_cfg80211_lock();
1006
1007         if (list_empty(&reg_beacon_list))
1008                 return;
1009
1010         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1011                 if (!wiphy->bands[reg_beacon->chan.band])
1012                         continue;
1013                 sband = wiphy->bands[reg_beacon->chan.band];
1014                 for (i = 0; i < sband->n_channels; i++)
1015                         handle_reg_beacon(wiphy, i, reg_beacon);
1016         }
1017 }
1018
1019 static bool reg_is_world_roaming(struct wiphy *wiphy)
1020 {
1021         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1022             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1023                 return true;
1024         if (last_request &&
1025             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1026             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1027                 return true;
1028         return false;
1029 }
1030
1031 /* Reap the advantages of previously found beacons */
1032 static void reg_process_beacons(struct wiphy *wiphy)
1033 {
1034         /*
1035          * Means we are just firing up cfg80211, so no beacons would
1036          * have been processed yet.
1037          */
1038         if (!last_request)
1039                 return;
1040         if (!reg_is_world_roaming(wiphy))
1041                 return;
1042         wiphy_update_beacon_reg(wiphy);
1043 }
1044
1045 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1046 {
1047         if (!chan)
1048                 return true;
1049         if (chan->flags & IEEE80211_CHAN_DISABLED)
1050                 return true;
1051         /* This would happen when regulatory rules disallow HT40 completely */
1052         if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1053                 return true;
1054         return false;
1055 }
1056
1057 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1058                                          enum ieee80211_band band,
1059                                          unsigned int chan_idx)
1060 {
1061         struct ieee80211_supported_band *sband;
1062         struct ieee80211_channel *channel;
1063         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1064         unsigned int i;
1065
1066         assert_cfg80211_lock();
1067
1068         sband = wiphy->bands[band];
1069         BUG_ON(chan_idx >= sband->n_channels);
1070         channel = &sband->channels[chan_idx];
1071
1072         if (is_ht40_not_allowed(channel)) {
1073                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1074                 return;
1075         }
1076
1077         /*
1078          * We need to ensure the extension channels exist to
1079          * be able to use HT40- or HT40+, this finds them (or not)
1080          */
1081         for (i = 0; i < sband->n_channels; i++) {
1082                 struct ieee80211_channel *c = &sband->channels[i];
1083                 if (c->center_freq == (channel->center_freq - 20))
1084                         channel_before = c;
1085                 if (c->center_freq == (channel->center_freq + 20))
1086                         channel_after = c;
1087         }
1088
1089         /*
1090          * Please note that this assumes target bandwidth is 20 MHz,
1091          * if that ever changes we also need to change the below logic
1092          * to include that as well.
1093          */
1094         if (is_ht40_not_allowed(channel_before))
1095                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1096         else
1097                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1098
1099         if (is_ht40_not_allowed(channel_after))
1100                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1101         else
1102                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1103 }
1104
1105 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1106                                       enum ieee80211_band band)
1107 {
1108         unsigned int i;
1109         struct ieee80211_supported_band *sband;
1110
1111         BUG_ON(!wiphy->bands[band]);
1112         sband = wiphy->bands[band];
1113
1114         for (i = 0; i < sband->n_channels; i++)
1115                 reg_process_ht_flags_channel(wiphy, band, i);
1116 }
1117
1118 static void reg_process_ht_flags(struct wiphy *wiphy)
1119 {
1120         enum ieee80211_band band;
1121
1122         if (!wiphy)
1123                 return;
1124
1125         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1126                 if (wiphy->bands[band])
1127                         reg_process_ht_flags_band(wiphy, band);
1128         }
1129
1130 }
1131
1132 static void wiphy_update_regulatory(struct wiphy *wiphy,
1133                                     enum nl80211_reg_initiator initiator)
1134 {
1135         enum ieee80211_band band;
1136
1137         assert_reg_lock();
1138
1139         if (ignore_reg_update(wiphy, initiator))
1140                 return;
1141
1142         last_request->dfs_region = cfg80211_regdomain->dfs_region;
1143
1144         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1145                 if (wiphy->bands[band])
1146                         handle_band(wiphy, band, initiator);
1147         }
1148
1149         reg_process_beacons(wiphy);
1150         reg_process_ht_flags(wiphy);
1151         if (wiphy->reg_notifier)
1152                 wiphy->reg_notifier(wiphy, last_request);
1153 }
1154
1155 void regulatory_update(struct wiphy *wiphy,
1156                        enum nl80211_reg_initiator setby)
1157 {
1158         mutex_lock(&reg_mutex);
1159         wiphy_update_regulatory(wiphy, setby);
1160         mutex_unlock(&reg_mutex);
1161 }
1162
1163 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1164 {
1165         struct cfg80211_registered_device *rdev;
1166
1167         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1168                 wiphy_update_regulatory(&rdev->wiphy, initiator);
1169 }
1170
1171 static void handle_channel_custom(struct wiphy *wiphy,
1172                                   enum ieee80211_band band,
1173                                   unsigned int chan_idx,
1174                                   const struct ieee80211_regdomain *regd)
1175 {
1176         int r;
1177         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1178         u32 bw_flags = 0;
1179         const struct ieee80211_reg_rule *reg_rule = NULL;
1180         const struct ieee80211_power_rule *power_rule = NULL;
1181         const struct ieee80211_freq_range *freq_range = NULL;
1182         struct ieee80211_supported_band *sband;
1183         struct ieee80211_channel *chan;
1184
1185         assert_reg_lock();
1186
1187         sband = wiphy->bands[band];
1188         BUG_ON(chan_idx >= sband->n_channels);
1189         chan = &sband->channels[chan_idx];
1190
1191         r = freq_reg_info_regd(wiphy,
1192                                MHZ_TO_KHZ(chan->center_freq),
1193                                desired_bw_khz,
1194                                &reg_rule,
1195                                regd);
1196
1197         if (r) {
1198                 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1199                               "regd has no rule that fits a %d MHz "
1200                               "wide channel\n",
1201                               chan->center_freq,
1202                               KHZ_TO_MHZ(desired_bw_khz));
1203                 chan->flags = IEEE80211_CHAN_DISABLED;
1204                 return;
1205         }
1206
1207         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1208
1209         power_rule = &reg_rule->power_rule;
1210         freq_range = &reg_rule->freq_range;
1211
1212         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1213                 bw_flags = IEEE80211_CHAN_NO_HT40;
1214
1215         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1216         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1217         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1218 }
1219
1220 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1221                                const struct ieee80211_regdomain *regd)
1222 {
1223         unsigned int i;
1224         struct ieee80211_supported_band *sband;
1225
1226         BUG_ON(!wiphy->bands[band]);
1227         sband = wiphy->bands[band];
1228
1229         for (i = 0; i < sband->n_channels; i++)
1230                 handle_channel_custom(wiphy, band, i, regd);
1231 }
1232
1233 /* Used by drivers prior to wiphy registration */
1234 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1235                                    const struct ieee80211_regdomain *regd)
1236 {
1237         enum ieee80211_band band;
1238         unsigned int bands_set = 0;
1239
1240         mutex_lock(&reg_mutex);
1241         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1242                 if (!wiphy->bands[band])
1243                         continue;
1244                 handle_band_custom(wiphy, band, regd);
1245                 bands_set++;
1246         }
1247         mutex_unlock(&reg_mutex);
1248
1249         /*
1250          * no point in calling this if it won't have any effect
1251          * on your device's supportd bands.
1252          */
1253         WARN_ON(!bands_set);
1254 }
1255 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1256
1257 /*
1258  * Return value which can be used by ignore_request() to indicate
1259  * it has been determined we should intersect two regulatory domains
1260  */
1261 #define REG_INTERSECT   1
1262
1263 /* This has the logic which determines when a new request
1264  * should be ignored. */
1265 static int ignore_request(struct wiphy *wiphy,
1266                           struct regulatory_request *pending_request)
1267 {
1268         struct wiphy *last_wiphy = NULL;
1269
1270         assert_cfg80211_lock();
1271
1272         /* All initial requests are respected */
1273         if (!last_request)
1274                 return 0;
1275
1276         switch (pending_request->initiator) {
1277         case NL80211_REGDOM_SET_BY_CORE:
1278                 return 0;
1279         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1280
1281                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1282
1283                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1284                         return -EINVAL;
1285                 if (last_request->initiator ==
1286                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1287                         if (last_wiphy != wiphy) {
1288                                 /*
1289                                  * Two cards with two APs claiming different
1290                                  * Country IE alpha2s. We could
1291                                  * intersect them, but that seems unlikely
1292                                  * to be correct. Reject second one for now.
1293                                  */
1294                                 if (regdom_changes(pending_request->alpha2))
1295                                         return -EOPNOTSUPP;
1296                                 return -EALREADY;
1297                         }
1298                         /*
1299                          * Two consecutive Country IE hints on the same wiphy.
1300                          * This should be picked up early by the driver/stack
1301                          */
1302                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1303                                 return 0;
1304                         return -EALREADY;
1305                 }
1306                 return 0;
1307         case NL80211_REGDOM_SET_BY_DRIVER:
1308                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1309                         if (regdom_changes(pending_request->alpha2))
1310                                 return 0;
1311                         return -EALREADY;
1312                 }
1313
1314                 /*
1315                  * This would happen if you unplug and plug your card
1316                  * back in or if you add a new device for which the previously
1317                  * loaded card also agrees on the regulatory domain.
1318                  */
1319                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1320                     !regdom_changes(pending_request->alpha2))
1321                         return -EALREADY;
1322
1323                 return REG_INTERSECT;
1324         case NL80211_REGDOM_SET_BY_USER:
1325                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1326                         return REG_INTERSECT;
1327                 /*
1328                  * If the user knows better the user should set the regdom
1329                  * to their country before the IE is picked up
1330                  */
1331                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1332                           last_request->intersect)
1333                         return -EOPNOTSUPP;
1334                 /*
1335                  * Process user requests only after previous user/driver/core
1336                  * requests have been processed
1337                  */
1338                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1339                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1340                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1341                         if (regdom_changes(last_request->alpha2))
1342                                 return -EAGAIN;
1343                 }
1344
1345                 if (!regdom_changes(pending_request->alpha2))
1346                         return -EALREADY;
1347
1348                 return 0;
1349         }
1350
1351         return -EINVAL;
1352 }
1353
1354 static void reg_set_request_processed(void)
1355 {
1356         bool need_more_processing = false;
1357
1358         last_request->processed = true;
1359
1360         spin_lock(&reg_requests_lock);
1361         if (!list_empty(&reg_requests_list))
1362                 need_more_processing = true;
1363         spin_unlock(&reg_requests_lock);
1364
1365         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1366                 cancel_delayed_work_sync(&reg_timeout);
1367
1368         if (need_more_processing)
1369                 schedule_work(&reg_work);
1370 }
1371
1372 /**
1373  * __regulatory_hint - hint to the wireless core a regulatory domain
1374  * @wiphy: if the hint comes from country information from an AP, this
1375  *      is required to be set to the wiphy that received the information
1376  * @pending_request: the regulatory request currently being processed
1377  *
1378  * The Wireless subsystem can use this function to hint to the wireless core
1379  * what it believes should be the current regulatory domain.
1380  *
1381  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1382  * already been set or other standard error codes.
1383  *
1384  * Caller must hold &cfg80211_mutex and &reg_mutex
1385  */
1386 static int __regulatory_hint(struct wiphy *wiphy,
1387                              struct regulatory_request *pending_request)
1388 {
1389         bool intersect = false;
1390         int r = 0;
1391
1392         assert_cfg80211_lock();
1393
1394         r = ignore_request(wiphy, pending_request);
1395
1396         if (r == REG_INTERSECT) {
1397                 if (pending_request->initiator ==
1398                     NL80211_REGDOM_SET_BY_DRIVER) {
1399                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1400                         if (r) {
1401                                 kfree(pending_request);
1402                                 return r;
1403                         }
1404                 }
1405                 intersect = true;
1406         } else if (r) {
1407                 /*
1408                  * If the regulatory domain being requested by the
1409                  * driver has already been set just copy it to the
1410                  * wiphy
1411                  */
1412                 if (r == -EALREADY &&
1413                     pending_request->initiator ==
1414                     NL80211_REGDOM_SET_BY_DRIVER) {
1415                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1416                         if (r) {
1417                                 kfree(pending_request);
1418                                 return r;
1419                         }
1420                         r = -EALREADY;
1421                         goto new_request;
1422                 }
1423                 kfree(pending_request);
1424                 return r;
1425         }
1426
1427 new_request:
1428         if (last_request != &core_request_world)
1429                 kfree(last_request);
1430
1431         last_request = pending_request;
1432         last_request->intersect = intersect;
1433
1434         pending_request = NULL;
1435
1436         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1437                 user_alpha2[0] = last_request->alpha2[0];
1438                 user_alpha2[1] = last_request->alpha2[1];
1439         }
1440
1441         /* When r == REG_INTERSECT we do need to call CRDA */
1442         if (r < 0) {
1443                 /*
1444                  * Since CRDA will not be called in this case as we already
1445                  * have applied the requested regulatory domain before we just
1446                  * inform userspace we have processed the request
1447                  */
1448                 if (r == -EALREADY) {
1449                         nl80211_send_reg_change_event(last_request);
1450                         reg_set_request_processed();
1451                 }
1452                 return r;
1453         }
1454
1455         return call_crda(last_request->alpha2);
1456 }
1457
1458 /* This processes *all* regulatory hints */
1459 static void reg_process_hint(struct regulatory_request *reg_request)
1460 {
1461         int r = 0;
1462         struct wiphy *wiphy = NULL;
1463         enum nl80211_reg_initiator initiator = reg_request->initiator;
1464
1465         BUG_ON(!reg_request->alpha2);
1466
1467         if (wiphy_idx_valid(reg_request->wiphy_idx))
1468                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1469
1470         if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1471             !wiphy) {
1472                 kfree(reg_request);
1473                 return;
1474         }
1475
1476         r = __regulatory_hint(wiphy, reg_request);
1477         /* This is required so that the orig_* parameters are saved */
1478         if (r == -EALREADY && wiphy &&
1479             wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1480                 wiphy_update_regulatory(wiphy, initiator);
1481                 return;
1482         }
1483
1484         /*
1485          * We only time out user hints, given that they should be the only
1486          * source of bogus requests.
1487          */
1488         if (r != -EALREADY &&
1489             reg_request->initiator == NL80211_REGDOM_SET_BY_USER)
1490                 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1491 }
1492
1493 /*
1494  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1495  * Regulatory hints come on a first come first serve basis and we
1496  * must process each one atomically.
1497  */
1498 static void reg_process_pending_hints(void)
1499 {
1500         struct regulatory_request *reg_request;
1501
1502         mutex_lock(&cfg80211_mutex);
1503         mutex_lock(&reg_mutex);
1504
1505         /* When last_request->processed becomes true this will be rescheduled */
1506         if (last_request && !last_request->processed) {
1507                 REG_DBG_PRINT("Pending regulatory request, waiting "
1508                               "for it to be processed...\n");
1509                 goto out;
1510         }
1511
1512         spin_lock(&reg_requests_lock);
1513
1514         if (list_empty(&reg_requests_list)) {
1515                 spin_unlock(&reg_requests_lock);
1516                 goto out;
1517         }
1518
1519         reg_request = list_first_entry(&reg_requests_list,
1520                                        struct regulatory_request,
1521                                        list);
1522         list_del_init(&reg_request->list);
1523
1524         spin_unlock(&reg_requests_lock);
1525
1526         reg_process_hint(reg_request);
1527
1528 out:
1529         mutex_unlock(&reg_mutex);
1530         mutex_unlock(&cfg80211_mutex);
1531 }
1532
1533 /* Processes beacon hints -- this has nothing to do with country IEs */
1534 static void reg_process_pending_beacon_hints(void)
1535 {
1536         struct cfg80211_registered_device *rdev;
1537         struct reg_beacon *pending_beacon, *tmp;
1538
1539         /*
1540          * No need to hold the reg_mutex here as we just touch wiphys
1541          * and do not read or access regulatory variables.
1542          */
1543         mutex_lock(&cfg80211_mutex);
1544
1545         /* This goes through the _pending_ beacon list */
1546         spin_lock_bh(&reg_pending_beacons_lock);
1547
1548         if (list_empty(&reg_pending_beacons)) {
1549                 spin_unlock_bh(&reg_pending_beacons_lock);
1550                 goto out;
1551         }
1552
1553         list_for_each_entry_safe(pending_beacon, tmp,
1554                                  &reg_pending_beacons, list) {
1555
1556                 list_del_init(&pending_beacon->list);
1557
1558                 /* Applies the beacon hint to current wiphys */
1559                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1560                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1561
1562                 /* Remembers the beacon hint for new wiphys or reg changes */
1563                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1564         }
1565
1566         spin_unlock_bh(&reg_pending_beacons_lock);
1567 out:
1568         mutex_unlock(&cfg80211_mutex);
1569 }
1570
1571 static void reg_todo(struct work_struct *work)
1572 {
1573         reg_process_pending_hints();
1574         reg_process_pending_beacon_hints();
1575 }
1576
1577 static void queue_regulatory_request(struct regulatory_request *request)
1578 {
1579         if (isalpha(request->alpha2[0]))
1580                 request->alpha2[0] = toupper(request->alpha2[0]);
1581         if (isalpha(request->alpha2[1]))
1582                 request->alpha2[1] = toupper(request->alpha2[1]);
1583
1584         spin_lock(&reg_requests_lock);
1585         list_add_tail(&request->list, &reg_requests_list);
1586         spin_unlock(&reg_requests_lock);
1587
1588         schedule_work(&reg_work);
1589 }
1590
1591 /*
1592  * Core regulatory hint -- happens during cfg80211_init()
1593  * and when we restore regulatory settings.
1594  */
1595 static int regulatory_hint_core(const char *alpha2)
1596 {
1597         struct regulatory_request *request;
1598
1599         request = kzalloc(sizeof(struct regulatory_request),
1600                           GFP_KERNEL);
1601         if (!request)
1602                 return -ENOMEM;
1603
1604         request->alpha2[0] = alpha2[0];
1605         request->alpha2[1] = alpha2[1];
1606         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1607
1608         queue_regulatory_request(request);
1609
1610         return 0;
1611 }
1612
1613 /* User hints */
1614 int regulatory_hint_user(const char *alpha2)
1615 {
1616         struct regulatory_request *request;
1617
1618         BUG_ON(!alpha2);
1619
1620         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1621         if (!request)
1622                 return -ENOMEM;
1623
1624         request->wiphy_idx = WIPHY_IDX_STALE;
1625         request->alpha2[0] = alpha2[0];
1626         request->alpha2[1] = alpha2[1];
1627         request->initiator = NL80211_REGDOM_SET_BY_USER;
1628
1629         queue_regulatory_request(request);
1630
1631         return 0;
1632 }
1633
1634 /* Driver hints */
1635 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1636 {
1637         struct regulatory_request *request;
1638
1639         BUG_ON(!alpha2);
1640         BUG_ON(!wiphy);
1641
1642         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1643         if (!request)
1644                 return -ENOMEM;
1645
1646         request->wiphy_idx = get_wiphy_idx(wiphy);
1647
1648         /* Must have registered wiphy first */
1649         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1650
1651         request->alpha2[0] = alpha2[0];
1652         request->alpha2[1] = alpha2[1];
1653         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1654
1655         queue_regulatory_request(request);
1656
1657         return 0;
1658 }
1659 EXPORT_SYMBOL(regulatory_hint);
1660
1661 /*
1662  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1663  * therefore cannot iterate over the rdev list here.
1664  */
1665 void regulatory_hint_11d(struct wiphy *wiphy,
1666                          enum ieee80211_band band,
1667                          u8 *country_ie,
1668                          u8 country_ie_len)
1669 {
1670         char alpha2[2];
1671         enum environment_cap env = ENVIRON_ANY;
1672         struct regulatory_request *request;
1673
1674         mutex_lock(&reg_mutex);
1675
1676         if (unlikely(!last_request))
1677                 goto out;
1678
1679         /* IE len must be evenly divisible by 2 */
1680         if (country_ie_len & 0x01)
1681                 goto out;
1682
1683         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1684                 goto out;
1685
1686         alpha2[0] = country_ie[0];
1687         alpha2[1] = country_ie[1];
1688
1689         if (country_ie[2] == 'I')
1690                 env = ENVIRON_INDOOR;
1691         else if (country_ie[2] == 'O')
1692                 env = ENVIRON_OUTDOOR;
1693
1694         /*
1695          * We will run this only upon a successful connection on cfg80211.
1696          * We leave conflict resolution to the workqueue, where can hold
1697          * cfg80211_mutex.
1698          */
1699         if (likely(last_request->initiator ==
1700             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1701             wiphy_idx_valid(last_request->wiphy_idx)))
1702                 goto out;
1703
1704         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1705         if (!request)
1706                 goto out;
1707
1708         request->wiphy_idx = get_wiphy_idx(wiphy);
1709         request->alpha2[0] = alpha2[0];
1710         request->alpha2[1] = alpha2[1];
1711         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1712         request->country_ie_env = env;
1713
1714         mutex_unlock(&reg_mutex);
1715
1716         queue_regulatory_request(request);
1717
1718         return;
1719
1720 out:
1721         mutex_unlock(&reg_mutex);
1722 }
1723
1724 static void restore_alpha2(char *alpha2, bool reset_user)
1725 {
1726         /* indicates there is no alpha2 to consider for restoration */
1727         alpha2[0] = '9';
1728         alpha2[1] = '7';
1729
1730         /* The user setting has precedence over the module parameter */
1731         if (is_user_regdom_saved()) {
1732                 /* Unless we're asked to ignore it and reset it */
1733                 if (reset_user) {
1734                         REG_DBG_PRINT("Restoring regulatory settings "
1735                                "including user preference\n");
1736                         user_alpha2[0] = '9';
1737                         user_alpha2[1] = '7';
1738
1739                         /*
1740                          * If we're ignoring user settings, we still need to
1741                          * check the module parameter to ensure we put things
1742                          * back as they were for a full restore.
1743                          */
1744                         if (!is_world_regdom(ieee80211_regdom)) {
1745                                 REG_DBG_PRINT("Keeping preference on "
1746                                        "module parameter ieee80211_regdom: %c%c\n",
1747                                        ieee80211_regdom[0],
1748                                        ieee80211_regdom[1]);
1749                                 alpha2[0] = ieee80211_regdom[0];
1750                                 alpha2[1] = ieee80211_regdom[1];
1751                         }
1752                 } else {
1753                         REG_DBG_PRINT("Restoring regulatory settings "
1754                                "while preserving user preference for: %c%c\n",
1755                                user_alpha2[0],
1756                                user_alpha2[1]);
1757                         alpha2[0] = user_alpha2[0];
1758                         alpha2[1] = user_alpha2[1];
1759                 }
1760         } else if (!is_world_regdom(ieee80211_regdom)) {
1761                 REG_DBG_PRINT("Keeping preference on "
1762                        "module parameter ieee80211_regdom: %c%c\n",
1763                        ieee80211_regdom[0],
1764                        ieee80211_regdom[1]);
1765                 alpha2[0] = ieee80211_regdom[0];
1766                 alpha2[1] = ieee80211_regdom[1];
1767         } else
1768                 REG_DBG_PRINT("Restoring regulatory settings\n");
1769 }
1770
1771 /*
1772  * Restoring regulatory settings involves ingoring any
1773  * possibly stale country IE information and user regulatory
1774  * settings if so desired, this includes any beacon hints
1775  * learned as we could have traveled outside to another country
1776  * after disconnection. To restore regulatory settings we do
1777  * exactly what we did at bootup:
1778  *
1779  *   - send a core regulatory hint
1780  *   - send a user regulatory hint if applicable
1781  *
1782  * Device drivers that send a regulatory hint for a specific country
1783  * keep their own regulatory domain on wiphy->regd so that does does
1784  * not need to be remembered.
1785  */
1786 static void restore_regulatory_settings(bool reset_user)
1787 {
1788         char alpha2[2];
1789         struct reg_beacon *reg_beacon, *btmp;
1790         struct regulatory_request *reg_request, *tmp;
1791         LIST_HEAD(tmp_reg_req_list);
1792
1793         mutex_lock(&cfg80211_mutex);
1794         mutex_lock(&reg_mutex);
1795
1796         reset_regdomains(true);
1797         restore_alpha2(alpha2, reset_user);
1798
1799         /*
1800          * If there's any pending requests we simply
1801          * stash them to a temporary pending queue and
1802          * add then after we've restored regulatory
1803          * settings.
1804          */
1805         spin_lock(&reg_requests_lock);
1806         if (!list_empty(&reg_requests_list)) {
1807                 list_for_each_entry_safe(reg_request, tmp,
1808                                          &reg_requests_list, list) {
1809                         if (reg_request->initiator !=
1810                             NL80211_REGDOM_SET_BY_USER)
1811                                 continue;
1812                         list_del(&reg_request->list);
1813                         list_add_tail(&reg_request->list, &tmp_reg_req_list);
1814                 }
1815         }
1816         spin_unlock(&reg_requests_lock);
1817
1818         /* Clear beacon hints */
1819         spin_lock_bh(&reg_pending_beacons_lock);
1820         if (!list_empty(&reg_pending_beacons)) {
1821                 list_for_each_entry_safe(reg_beacon, btmp,
1822                                          &reg_pending_beacons, list) {
1823                         list_del(&reg_beacon->list);
1824                         kfree(reg_beacon);
1825                 }
1826         }
1827         spin_unlock_bh(&reg_pending_beacons_lock);
1828
1829         if (!list_empty(&reg_beacon_list)) {
1830                 list_for_each_entry_safe(reg_beacon, btmp,
1831                                          &reg_beacon_list, list) {
1832                         list_del(&reg_beacon->list);
1833                         kfree(reg_beacon);
1834                 }
1835         }
1836
1837         /* First restore to the basic regulatory settings */
1838         cfg80211_regdomain = cfg80211_world_regdom;
1839
1840         mutex_unlock(&reg_mutex);
1841         mutex_unlock(&cfg80211_mutex);
1842
1843         regulatory_hint_core(cfg80211_regdomain->alpha2);
1844
1845         /*
1846          * This restores the ieee80211_regdom module parameter
1847          * preference or the last user requested regulatory
1848          * settings, user regulatory settings takes precedence.
1849          */
1850         if (is_an_alpha2(alpha2))
1851                 regulatory_hint_user(user_alpha2);
1852
1853         if (list_empty(&tmp_reg_req_list))
1854                 return;
1855
1856         mutex_lock(&cfg80211_mutex);
1857         mutex_lock(&reg_mutex);
1858
1859         spin_lock(&reg_requests_lock);
1860         list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1861                 REG_DBG_PRINT("Adding request for country %c%c back "
1862                               "into the queue\n",
1863                               reg_request->alpha2[0],
1864                               reg_request->alpha2[1]);
1865                 list_del(&reg_request->list);
1866                 list_add_tail(&reg_request->list, &reg_requests_list);
1867         }
1868         spin_unlock(&reg_requests_lock);
1869
1870         mutex_unlock(&reg_mutex);
1871         mutex_unlock(&cfg80211_mutex);
1872
1873         REG_DBG_PRINT("Kicking the queue\n");
1874
1875         schedule_work(&reg_work);
1876 }
1877
1878 void regulatory_hint_disconnect(void)
1879 {
1880         REG_DBG_PRINT("All devices are disconnected, going to "
1881                       "restore regulatory settings\n");
1882         restore_regulatory_settings(false);
1883 }
1884
1885 static bool freq_is_chan_12_13_14(u16 freq)
1886 {
1887         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1888             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1889             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1890                 return true;
1891         return false;
1892 }
1893
1894 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1895                                  struct ieee80211_channel *beacon_chan,
1896                                  gfp_t gfp)
1897 {
1898         struct reg_beacon *reg_beacon;
1899
1900         if (likely((beacon_chan->beacon_found ||
1901             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1902             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1903              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1904                 return 0;
1905
1906         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1907         if (!reg_beacon)
1908                 return -ENOMEM;
1909
1910         REG_DBG_PRINT("Found new beacon on "
1911                       "frequency: %d MHz (Ch %d) on %s\n",
1912                       beacon_chan->center_freq,
1913                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
1914                       wiphy_name(wiphy));
1915
1916         memcpy(&reg_beacon->chan, beacon_chan,
1917                 sizeof(struct ieee80211_channel));
1918
1919
1920         /*
1921          * Since we can be called from BH or and non-BH context
1922          * we must use spin_lock_bh()
1923          */
1924         spin_lock_bh(&reg_pending_beacons_lock);
1925         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1926         spin_unlock_bh(&reg_pending_beacons_lock);
1927
1928         schedule_work(&reg_work);
1929
1930         return 0;
1931 }
1932
1933 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1934 {
1935         unsigned int i;
1936         const struct ieee80211_reg_rule *reg_rule = NULL;
1937         const struct ieee80211_freq_range *freq_range = NULL;
1938         const struct ieee80211_power_rule *power_rule = NULL;
1939
1940         pr_info("    (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1941
1942         for (i = 0; i < rd->n_reg_rules; i++) {
1943                 reg_rule = &rd->reg_rules[i];
1944                 freq_range = &reg_rule->freq_range;
1945                 power_rule = &reg_rule->power_rule;
1946
1947                 /*
1948                  * There may not be documentation for max antenna gain
1949                  * in certain regions
1950                  */
1951                 if (power_rule->max_antenna_gain)
1952                         pr_info("    (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1953                                 freq_range->start_freq_khz,
1954                                 freq_range->end_freq_khz,
1955                                 freq_range->max_bandwidth_khz,
1956                                 power_rule->max_antenna_gain,
1957                                 power_rule->max_eirp);
1958                 else
1959                         pr_info("    (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1960                                 freq_range->start_freq_khz,
1961                                 freq_range->end_freq_khz,
1962                                 freq_range->max_bandwidth_khz,
1963                                 power_rule->max_eirp);
1964         }
1965 }
1966
1967 bool reg_supported_dfs_region(u8 dfs_region)
1968 {
1969         switch (dfs_region) {
1970         case NL80211_DFS_UNSET:
1971         case NL80211_DFS_FCC:
1972         case NL80211_DFS_ETSI:
1973         case NL80211_DFS_JP:
1974                 return true;
1975         default:
1976                 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
1977                               dfs_region);
1978                 return false;
1979         }
1980 }
1981
1982 static void print_dfs_region(u8 dfs_region)
1983 {
1984         if (!dfs_region)
1985                 return;
1986
1987         switch (dfs_region) {
1988         case NL80211_DFS_FCC:
1989                 pr_info(" DFS Master region FCC");
1990                 break;
1991         case NL80211_DFS_ETSI:
1992                 pr_info(" DFS Master region ETSI");
1993                 break;
1994         case NL80211_DFS_JP:
1995                 pr_info(" DFS Master region JP");
1996                 break;
1997         default:
1998                 pr_info(" DFS Master region Uknown");
1999                 break;
2000         }
2001 }
2002
2003 static void print_regdomain(const struct ieee80211_regdomain *rd)
2004 {
2005
2006         if (is_intersected_alpha2(rd->alpha2)) {
2007
2008                 if (last_request->initiator ==
2009                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2010                         struct cfg80211_registered_device *rdev;
2011                         rdev = cfg80211_rdev_by_wiphy_idx(
2012                                 last_request->wiphy_idx);
2013                         if (rdev) {
2014                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2015                                         rdev->country_ie_alpha2[0],
2016                                         rdev->country_ie_alpha2[1]);
2017                         } else
2018                                 pr_info("Current regulatory domain intersected:\n");
2019                 } else
2020                         pr_info("Current regulatory domain intersected:\n");
2021         } else if (is_world_regdom(rd->alpha2))
2022                 pr_info("World regulatory domain updated:\n");
2023         else {
2024                 if (is_unknown_alpha2(rd->alpha2))
2025                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2026                 else
2027                         pr_info("Regulatory domain changed to country: %c%c\n",
2028                                 rd->alpha2[0], rd->alpha2[1]);
2029         }
2030         print_dfs_region(rd->dfs_region);
2031         print_rd_rules(rd);
2032 }
2033
2034 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2035 {
2036         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2037         print_rd_rules(rd);
2038 }
2039
2040 /* Takes ownership of rd only if it doesn't fail */
2041 static int __set_regdom(const struct ieee80211_regdomain *rd)
2042 {
2043         const struct ieee80211_regdomain *intersected_rd = NULL;
2044         struct cfg80211_registered_device *rdev = NULL;
2045         struct wiphy *request_wiphy;
2046         /* Some basic sanity checks first */
2047
2048         if (is_world_regdom(rd->alpha2)) {
2049                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2050                         return -EINVAL;
2051                 update_world_regdomain(rd);
2052                 return 0;
2053         }
2054
2055         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2056                         !is_unknown_alpha2(rd->alpha2))
2057                 return -EINVAL;
2058
2059         if (!last_request)
2060                 return -EINVAL;
2061
2062         /*
2063          * Lets only bother proceeding on the same alpha2 if the current
2064          * rd is non static (it means CRDA was present and was used last)
2065          * and the pending request came in from a country IE
2066          */
2067         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2068                 /*
2069                  * If someone else asked us to change the rd lets only bother
2070                  * checking if the alpha2 changes if CRDA was already called
2071                  */
2072                 if (!regdom_changes(rd->alpha2))
2073                         return -EINVAL;
2074         }
2075
2076         /*
2077          * Now lets set the regulatory domain, update all driver channels
2078          * and finally inform them of what we have done, in case they want
2079          * to review or adjust their own settings based on their own
2080          * internal EEPROM data
2081          */
2082
2083         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2084                 return -EINVAL;
2085
2086         if (!is_valid_rd(rd)) {
2087                 pr_err("Invalid regulatory domain detected:\n");
2088                 print_regdomain_info(rd);
2089                 return -EINVAL;
2090         }
2091
2092         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2093         if (!request_wiphy &&
2094             (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2095              last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2096                 schedule_delayed_work(&reg_timeout, 0);
2097                 return -ENODEV;
2098         }
2099
2100         if (!last_request->intersect) {
2101                 int r;
2102
2103                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2104                         reset_regdomains(false);
2105                         cfg80211_regdomain = rd;
2106                         return 0;
2107                 }
2108
2109                 /*
2110                  * For a driver hint, lets copy the regulatory domain the
2111                  * driver wanted to the wiphy to deal with conflicts
2112                  */
2113
2114                 /*
2115                  * Userspace could have sent two replies with only
2116                  * one kernel request.
2117                  */
2118                 if (request_wiphy->regd)
2119                         return -EALREADY;
2120
2121                 r = reg_copy_regd(&request_wiphy->regd, rd);
2122                 if (r)
2123                         return r;
2124
2125                 reset_regdomains(false);
2126                 cfg80211_regdomain = rd;
2127                 return 0;
2128         }
2129
2130         /* Intersection requires a bit more work */
2131
2132         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2133
2134                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2135                 if (!intersected_rd)
2136                         return -EINVAL;
2137
2138                 /*
2139                  * We can trash what CRDA provided now.
2140                  * However if a driver requested this specific regulatory
2141                  * domain we keep it for its private use
2142                  */
2143                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2144                         request_wiphy->regd = rd;
2145                 else
2146                         kfree(rd);
2147
2148                 rd = NULL;
2149
2150                 reset_regdomains(false);
2151                 cfg80211_regdomain = intersected_rd;
2152
2153                 return 0;
2154         }
2155
2156         if (!intersected_rd)
2157                 return -EINVAL;
2158
2159         rdev = wiphy_to_dev(request_wiphy);
2160
2161         rdev->country_ie_alpha2[0] = rd->alpha2[0];
2162         rdev->country_ie_alpha2[1] = rd->alpha2[1];
2163         rdev->env = last_request->country_ie_env;
2164
2165         BUG_ON(intersected_rd == rd);
2166
2167         kfree(rd);
2168         rd = NULL;
2169
2170         reset_regdomains(false);
2171         cfg80211_regdomain = intersected_rd;
2172
2173         return 0;
2174 }
2175
2176
2177 /*
2178  * Use this call to set the current regulatory domain. Conflicts with
2179  * multiple drivers can be ironed out later. Caller must've already
2180  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2181  */
2182 int set_regdom(const struct ieee80211_regdomain *rd)
2183 {
2184         int r;
2185
2186         assert_cfg80211_lock();
2187
2188         mutex_lock(&reg_mutex);
2189
2190         /* Note that this doesn't update the wiphys, this is done below */
2191         r = __set_regdom(rd);
2192         if (r) {
2193                 kfree(rd);
2194                 mutex_unlock(&reg_mutex);
2195                 return r;
2196         }
2197
2198         /* This would make this whole thing pointless */
2199         if (!last_request->intersect)
2200                 BUG_ON(rd != cfg80211_regdomain);
2201
2202         /* update all wiphys now with the new established regulatory domain */
2203         update_all_wiphy_regulatory(last_request->initiator);
2204
2205         print_regdomain(cfg80211_regdomain);
2206
2207         nl80211_send_reg_change_event(last_request);
2208
2209         reg_set_request_processed();
2210
2211         mutex_unlock(&reg_mutex);
2212
2213         return r;
2214 }
2215
2216 #ifdef CONFIG_HOTPLUG
2217 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2218 {
2219         if (last_request && !last_request->processed) {
2220                 if (add_uevent_var(env, "COUNTRY=%c%c",
2221                                    last_request->alpha2[0],
2222                                    last_request->alpha2[1]))
2223                         return -ENOMEM;
2224         }
2225
2226         return 0;
2227 }
2228 #else
2229 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2230 {
2231         return -ENODEV;
2232 }
2233 #endif /* CONFIG_HOTPLUG */
2234
2235 /* Caller must hold cfg80211_mutex */
2236 void reg_device_remove(struct wiphy *wiphy)
2237 {
2238         struct wiphy *request_wiphy = NULL;
2239
2240         assert_cfg80211_lock();
2241
2242         mutex_lock(&reg_mutex);
2243
2244         kfree(wiphy->regd);
2245
2246         if (last_request)
2247                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2248
2249         if (!request_wiphy || request_wiphy != wiphy)
2250                 goto out;
2251
2252         last_request->wiphy_idx = WIPHY_IDX_STALE;
2253         last_request->country_ie_env = ENVIRON_ANY;
2254 out:
2255         mutex_unlock(&reg_mutex);
2256 }
2257
2258 static void reg_timeout_work(struct work_struct *work)
2259 {
2260         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2261                       "restoring regulatory settings\n");
2262         restore_regulatory_settings(true);
2263 }
2264
2265 int __init regulatory_init(void)
2266 {
2267         int err = 0;
2268
2269         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2270         if (IS_ERR(reg_pdev))
2271                 return PTR_ERR(reg_pdev);
2272
2273         reg_pdev->dev.type = &reg_device_type;
2274
2275         spin_lock_init(&reg_requests_lock);
2276         spin_lock_init(&reg_pending_beacons_lock);
2277
2278         cfg80211_regdomain = cfg80211_world_regdom;
2279
2280         user_alpha2[0] = '9';
2281         user_alpha2[1] = '7';
2282
2283         /* We always try to get an update for the static regdomain */
2284         err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2285         if (err) {
2286                 if (err == -ENOMEM)
2287                         return err;
2288                 /*
2289                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2290                  * memory which is handled and propagated appropriately above
2291                  * but it can also fail during a netlink_broadcast() or during
2292                  * early boot for call_usermodehelper(). For now treat these
2293                  * errors as non-fatal.
2294                  */
2295                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2296 #ifdef CONFIG_CFG80211_REG_DEBUG
2297                 /* We want to find out exactly why when debugging */
2298                 WARN_ON(err);
2299 #endif
2300         }
2301
2302         /*
2303          * Finally, if the user set the module parameter treat it
2304          * as a user hint.
2305          */
2306         if (!is_world_regdom(ieee80211_regdom))
2307                 regulatory_hint_user(ieee80211_regdom);
2308
2309         return 0;
2310 }
2311
2312 void /* __init_or_exit */ regulatory_exit(void)
2313 {
2314         struct regulatory_request *reg_request, *tmp;
2315         struct reg_beacon *reg_beacon, *btmp;
2316
2317         cancel_work_sync(&reg_work);
2318         cancel_delayed_work_sync(&reg_timeout);
2319
2320         mutex_lock(&cfg80211_mutex);
2321         mutex_lock(&reg_mutex);
2322
2323         reset_regdomains(true);
2324
2325         dev_set_uevent_suppress(&reg_pdev->dev, true);
2326
2327         platform_device_unregister(reg_pdev);
2328
2329         spin_lock_bh(&reg_pending_beacons_lock);
2330         if (!list_empty(&reg_pending_beacons)) {
2331                 list_for_each_entry_safe(reg_beacon, btmp,
2332                                          &reg_pending_beacons, list) {
2333                         list_del(&reg_beacon->list);
2334                         kfree(reg_beacon);
2335                 }
2336         }
2337         spin_unlock_bh(&reg_pending_beacons_lock);
2338
2339         if (!list_empty(&reg_beacon_list)) {
2340                 list_for_each_entry_safe(reg_beacon, btmp,
2341                                          &reg_beacon_list, list) {
2342                         list_del(&reg_beacon->list);
2343                         kfree(reg_beacon);
2344                 }
2345         }
2346
2347         spin_lock(&reg_requests_lock);
2348         if (!list_empty(&reg_requests_list)) {
2349                 list_for_each_entry_safe(reg_request, tmp,
2350                                          &reg_requests_list, list) {
2351                         list_del(&reg_request->list);
2352                         kfree(reg_request);
2353                 }
2354         }
2355         spin_unlock(&reg_requests_lock);
2356
2357         mutex_unlock(&reg_mutex);
2358         mutex_unlock(&cfg80211_mutex);
2359 }