Merge remote-tracking branch 'stable/linux-3.0.y' into develop-3.0-jb
[firefly-linux-kernel-4.4.55.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37
38 #include <linux/kernel.h>
39 #include <linux/slab.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/ctype.h>
43 #include <linux/nl80211.h>
44 #include <linux/platform_device.h>
45 #include <net/cfg80211.h>
46 #include "core.h"
47 #include "reg.h"
48 #include "regdb.h"
49 #include "nl80211.h"
50
51 #ifdef CONFIG_CFG80211_REG_DEBUG
52 #define REG_DBG_PRINT(format, args...) \
53         do { \
54                 printk(KERN_DEBUG pr_fmt(format), ##args);      \
55         } while (0)
56 #else
57 #define REG_DBG_PRINT(args...)
58 #endif
59
60 static struct regulatory_request core_request_world = {
61         .initiator = NL80211_REGDOM_SET_BY_CORE,
62         .alpha2[0] = '0',
63         .alpha2[1] = '0',
64         .intersect = false,
65         .processed = true,
66         .country_ie_env = ENVIRON_ANY,
67 };
68
69 /* Receipt of information from last regulatory request */
70 static struct regulatory_request *last_request = &core_request_world;
71
72 /* To trigger userspace events */
73 static struct platform_device *reg_pdev;
74
75 static struct device_type reg_device_type = {
76         .uevent = reg_device_uevent,
77 };
78
79 /*
80  * Central wireless core regulatory domains, we only need two,
81  * the current one and a world regulatory domain in case we have no
82  * information to give us an alpha2
83  */
84 const struct ieee80211_regdomain *cfg80211_regdomain;
85
86 /*
87  * Protects static reg.c components:
88  *     - cfg80211_world_regdom
89  *     - cfg80211_regdom
90  *     - last_request
91  */
92 static DEFINE_MUTEX(reg_mutex);
93
94 static inline void assert_reg_lock(void)
95 {
96         lockdep_assert_held(&reg_mutex);
97 }
98
99 /* Used to queue up regulatory hints */
100 static LIST_HEAD(reg_requests_list);
101 static spinlock_t reg_requests_lock;
102
103 /* Used to queue up beacon hints for review */
104 static LIST_HEAD(reg_pending_beacons);
105 static spinlock_t reg_pending_beacons_lock;
106
107 /* Used to keep track of processed beacon hints */
108 static LIST_HEAD(reg_beacon_list);
109
110 struct reg_beacon {
111         struct list_head list;
112         struct ieee80211_channel chan;
113 };
114
115 static void reg_todo(struct work_struct *work);
116 static DECLARE_WORK(reg_work, reg_todo);
117
118 static void reg_timeout_work(struct work_struct *work);
119 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
120
121 /* We keep a static world regulatory domain in case of the absence of CRDA */
122 static const struct ieee80211_regdomain world_regdom = {
123         .n_reg_rules = 5,
124         .alpha2 =  "00",
125         .reg_rules = {
126                 /* IEEE 802.11b/g, channels 1..11 */
127                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
128                 /* IEEE 802.11b/g, channels 12..13. No HT40
129                  * channel fits here. */
130                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
131                         NL80211_RRF_PASSIVE_SCAN |
132                         NL80211_RRF_NO_IBSS),
133                 /* IEEE 802.11 channel 14 - Only JP enables
134                  * this and for 802.11b only */
135                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
136                         NL80211_RRF_PASSIVE_SCAN |
137                         NL80211_RRF_NO_IBSS |
138                         NL80211_RRF_NO_OFDM),
139                 /* IEEE 802.11a, channel 36..48 */
140                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
141                         NL80211_RRF_PASSIVE_SCAN |
142                         NL80211_RRF_NO_IBSS),
143
144                 /* NB: 5260 MHz - 5700 MHz requies DFS */
145
146                 /* IEEE 802.11a, channel 149..165 */
147                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
148                         NL80211_RRF_PASSIVE_SCAN |
149                         NL80211_RRF_NO_IBSS),
150         }
151 };
152
153 static const struct ieee80211_regdomain *cfg80211_world_regdom =
154         &world_regdom;
155
156 static char *ieee80211_regdom = "00";
157 static char user_alpha2[2];
158
159 module_param(ieee80211_regdom, charp, 0444);
160 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
161
162 static void reset_regdomains(bool full_reset)
163 {
164         /* avoid freeing static information or freeing something twice */
165         if (cfg80211_regdomain == cfg80211_world_regdom)
166                 cfg80211_regdomain = NULL;
167         if (cfg80211_world_regdom == &world_regdom)
168                 cfg80211_world_regdom = NULL;
169         if (cfg80211_regdomain == &world_regdom)
170                 cfg80211_regdomain = NULL;
171
172         kfree(cfg80211_regdomain);
173         kfree(cfg80211_world_regdom);
174
175         cfg80211_world_regdom = &world_regdom;
176         cfg80211_regdomain = NULL;
177
178         if (!full_reset)
179                 return;
180
181         if (last_request != &core_request_world)
182                 kfree(last_request);
183         last_request = &core_request_world;
184 }
185
186 /*
187  * Dynamic world regulatory domain requested by the wireless
188  * core upon initialization
189  */
190 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
191 {
192         BUG_ON(!last_request);
193
194         reset_regdomains(false);
195
196         cfg80211_world_regdom = rd;
197         cfg80211_regdomain = rd;
198 }
199
200 bool is_world_regdom(const char *alpha2)
201 {
202         if (!alpha2)
203                 return false;
204         if (alpha2[0] == '0' && alpha2[1] == '0')
205                 return true;
206         return false;
207 }
208
209 static bool is_alpha2_set(const char *alpha2)
210 {
211         if (!alpha2)
212                 return false;
213         if (alpha2[0] != 0 && alpha2[1] != 0)
214                 return true;
215         return false;
216 }
217
218 static bool is_unknown_alpha2(const char *alpha2)
219 {
220         if (!alpha2)
221                 return false;
222         /*
223          * Special case where regulatory domain was built by driver
224          * but a specific alpha2 cannot be determined
225          */
226         if (alpha2[0] == '9' && alpha2[1] == '9')
227                 return true;
228         return false;
229 }
230
231 static bool is_intersected_alpha2(const char *alpha2)
232 {
233         if (!alpha2)
234                 return false;
235         /*
236          * Special case where regulatory domain is the
237          * result of an intersection between two regulatory domain
238          * structures
239          */
240         if (alpha2[0] == '9' && alpha2[1] == '8')
241                 return true;
242         return false;
243 }
244
245 static bool is_an_alpha2(const char *alpha2)
246 {
247         if (!alpha2)
248                 return false;
249         if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
250                 return true;
251         return false;
252 }
253
254 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
255 {
256         if (!alpha2_x || !alpha2_y)
257                 return false;
258         if (alpha2_x[0] == alpha2_y[0] &&
259                 alpha2_x[1] == alpha2_y[1])
260                 return true;
261         return false;
262 }
263
264 static bool regdom_changes(const char *alpha2)
265 {
266         assert_cfg80211_lock();
267
268         if (!cfg80211_regdomain)
269                 return true;
270         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
271                 return false;
272         return true;
273 }
274
275 /*
276  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
277  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
278  * has ever been issued.
279  */
280 static bool is_user_regdom_saved(void)
281 {
282         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
283                 return false;
284
285         /* This would indicate a mistake on the design */
286         if (WARN((!is_world_regdom(user_alpha2) &&
287                   !is_an_alpha2(user_alpha2)),
288                  "Unexpected user alpha2: %c%c\n",
289                  user_alpha2[0],
290                  user_alpha2[1]))
291                 return false;
292
293         return true;
294 }
295
296 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
297                          const struct ieee80211_regdomain *src_regd)
298 {
299         struct ieee80211_regdomain *regd;
300         int size_of_regd = 0;
301         unsigned int i;
302
303         size_of_regd = sizeof(struct ieee80211_regdomain) +
304           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
305
306         regd = kzalloc(size_of_regd, GFP_KERNEL);
307         if (!regd)
308                 return -ENOMEM;
309
310         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
311
312         for (i = 0; i < src_regd->n_reg_rules; i++)
313                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
314                         sizeof(struct ieee80211_reg_rule));
315
316         *dst_regd = regd;
317         return 0;
318 }
319
320 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
321 struct reg_regdb_search_request {
322         char alpha2[2];
323         struct list_head list;
324 };
325
326 static LIST_HEAD(reg_regdb_search_list);
327 static DEFINE_MUTEX(reg_regdb_search_mutex);
328
329 static void reg_regdb_search(struct work_struct *work)
330 {
331         struct reg_regdb_search_request *request;
332         const struct ieee80211_regdomain *curdom, *regdom;
333         int i, r;
334
335         mutex_lock(&reg_regdb_search_mutex);
336         while (!list_empty(&reg_regdb_search_list)) {
337                 request = list_first_entry(&reg_regdb_search_list,
338                                            struct reg_regdb_search_request,
339                                            list);
340                 list_del(&request->list);
341
342                 for (i=0; i<reg_regdb_size; i++) {
343                         curdom = reg_regdb[i];
344
345                         if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
346                                 r = reg_copy_regd(&regdom, curdom);
347                                 if (r)
348                                         break;
349                                 mutex_lock(&cfg80211_mutex);
350                                 set_regdom(regdom);
351                                 mutex_unlock(&cfg80211_mutex);
352                                 break;
353                         }
354                 }
355
356                 kfree(request);
357         }
358         mutex_unlock(&reg_regdb_search_mutex);
359 }
360
361 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
362
363 static void reg_regdb_query(const char *alpha2)
364 {
365         struct reg_regdb_search_request *request;
366
367         if (!alpha2)
368                 return;
369
370         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
371         if (!request)
372                 return;
373
374         memcpy(request->alpha2, alpha2, 2);
375
376         mutex_lock(&reg_regdb_search_mutex);
377         list_add_tail(&request->list, &reg_regdb_search_list);
378         mutex_unlock(&reg_regdb_search_mutex);
379
380         schedule_work(&reg_regdb_work);
381 }
382
383 /* Feel free to add any other sanity checks here */
384 static void reg_regdb_size_check(void)
385 {
386         /* We should ideally BUILD_BUG_ON() but then random builds would fail */
387         WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
388 }
389 #else
390 static inline void reg_regdb_size_check(void) {}
391 static inline void reg_regdb_query(const char *alpha2) {}
392 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
393
394 /*
395  * This lets us keep regulatory code which is updated on a regulatory
396  * basis in userspace. Country information is filled in by
397  * reg_device_uevent
398  */
399 static int call_crda(const char *alpha2)
400 {
401         if (!is_world_regdom((char *) alpha2))
402                 pr_info("Calling CRDA for country: %c%c\n",
403                         alpha2[0], alpha2[1]);
404         else
405                 pr_info("Calling CRDA to update world regulatory domain\n");
406
407         /* query internal regulatory database (if it exists) */
408         reg_regdb_query(alpha2);
409
410         return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
411 }
412
413 /* Used by nl80211 before kmalloc'ing our regulatory domain */
414 bool reg_is_valid_request(const char *alpha2)
415 {
416         assert_cfg80211_lock();
417
418         if (!last_request)
419                 return false;
420
421         return alpha2_equal(last_request->alpha2, alpha2);
422 }
423
424 /* Sanity check on a regulatory rule */
425 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
426 {
427         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
428         u32 freq_diff;
429
430         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
431                 return false;
432
433         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
434                 return false;
435
436         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
437
438         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
439                         freq_range->max_bandwidth_khz > freq_diff)
440                 return false;
441
442         return true;
443 }
444
445 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
446 {
447         const struct ieee80211_reg_rule *reg_rule = NULL;
448         unsigned int i;
449
450         if (!rd->n_reg_rules)
451                 return false;
452
453         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
454                 return false;
455
456         for (i = 0; i < rd->n_reg_rules; i++) {
457                 reg_rule = &rd->reg_rules[i];
458                 if (!is_valid_reg_rule(reg_rule))
459                         return false;
460         }
461
462         return true;
463 }
464
465 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
466                             u32 center_freq_khz,
467                             u32 bw_khz)
468 {
469         u32 start_freq_khz, end_freq_khz;
470
471         start_freq_khz = center_freq_khz - (bw_khz/2);
472         end_freq_khz = center_freq_khz + (bw_khz/2);
473
474         if (start_freq_khz >= freq_range->start_freq_khz &&
475             end_freq_khz <= freq_range->end_freq_khz)
476                 return true;
477
478         return false;
479 }
480
481 /**
482  * freq_in_rule_band - tells us if a frequency is in a frequency band
483  * @freq_range: frequency rule we want to query
484  * @freq_khz: frequency we are inquiring about
485  *
486  * This lets us know if a specific frequency rule is or is not relevant to
487  * a specific frequency's band. Bands are device specific and artificial
488  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
489  * safe for now to assume that a frequency rule should not be part of a
490  * frequency's band if the start freq or end freq are off by more than 2 GHz.
491  * This resolution can be lowered and should be considered as we add
492  * regulatory rule support for other "bands".
493  **/
494 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
495         u32 freq_khz)
496 {
497 #define ONE_GHZ_IN_KHZ  1000000
498         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
499                 return true;
500         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
501                 return true;
502         return false;
503 #undef ONE_GHZ_IN_KHZ
504 }
505
506 /*
507  * Helper for regdom_intersect(), this does the real
508  * mathematical intersection fun
509  */
510 static int reg_rules_intersect(
511         const struct ieee80211_reg_rule *rule1,
512         const struct ieee80211_reg_rule *rule2,
513         struct ieee80211_reg_rule *intersected_rule)
514 {
515         const struct ieee80211_freq_range *freq_range1, *freq_range2;
516         struct ieee80211_freq_range *freq_range;
517         const struct ieee80211_power_rule *power_rule1, *power_rule2;
518         struct ieee80211_power_rule *power_rule;
519         u32 freq_diff;
520
521         freq_range1 = &rule1->freq_range;
522         freq_range2 = &rule2->freq_range;
523         freq_range = &intersected_rule->freq_range;
524
525         power_rule1 = &rule1->power_rule;
526         power_rule2 = &rule2->power_rule;
527         power_rule = &intersected_rule->power_rule;
528
529         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
530                 freq_range2->start_freq_khz);
531         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
532                 freq_range2->end_freq_khz);
533         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
534                 freq_range2->max_bandwidth_khz);
535
536         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
537         if (freq_range->max_bandwidth_khz > freq_diff)
538                 freq_range->max_bandwidth_khz = freq_diff;
539
540         power_rule->max_eirp = min(power_rule1->max_eirp,
541                 power_rule2->max_eirp);
542         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
543                 power_rule2->max_antenna_gain);
544
545         intersected_rule->flags = (rule1->flags | rule2->flags);
546
547         if (!is_valid_reg_rule(intersected_rule))
548                 return -EINVAL;
549
550         return 0;
551 }
552
553 /**
554  * regdom_intersect - do the intersection between two regulatory domains
555  * @rd1: first regulatory domain
556  * @rd2: second regulatory domain
557  *
558  * Use this function to get the intersection between two regulatory domains.
559  * Once completed we will mark the alpha2 for the rd as intersected, "98",
560  * as no one single alpha2 can represent this regulatory domain.
561  *
562  * Returns a pointer to the regulatory domain structure which will hold the
563  * resulting intersection of rules between rd1 and rd2. We will
564  * kzalloc() this structure for you.
565  */
566 static struct ieee80211_regdomain *regdom_intersect(
567         const struct ieee80211_regdomain *rd1,
568         const struct ieee80211_regdomain *rd2)
569 {
570         int r, size_of_regd;
571         unsigned int x, y;
572         unsigned int num_rules = 0, rule_idx = 0;
573         const struct ieee80211_reg_rule *rule1, *rule2;
574         struct ieee80211_reg_rule *intersected_rule;
575         struct ieee80211_regdomain *rd;
576         /* This is just a dummy holder to help us count */
577         struct ieee80211_reg_rule irule;
578
579         /* Uses the stack temporarily for counter arithmetic */
580         intersected_rule = &irule;
581
582         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
583
584         if (!rd1 || !rd2)
585                 return NULL;
586
587         /*
588          * First we get a count of the rules we'll need, then we actually
589          * build them. This is to so we can malloc() and free() a
590          * regdomain once. The reason we use reg_rules_intersect() here
591          * is it will return -EINVAL if the rule computed makes no sense.
592          * All rules that do check out OK are valid.
593          */
594
595         for (x = 0; x < rd1->n_reg_rules; x++) {
596                 rule1 = &rd1->reg_rules[x];
597                 for (y = 0; y < rd2->n_reg_rules; y++) {
598                         rule2 = &rd2->reg_rules[y];
599                         if (!reg_rules_intersect(rule1, rule2,
600                                         intersected_rule))
601                                 num_rules++;
602                         memset(intersected_rule, 0,
603                                         sizeof(struct ieee80211_reg_rule));
604                 }
605         }
606
607         if (!num_rules)
608                 return NULL;
609
610         size_of_regd = sizeof(struct ieee80211_regdomain) +
611                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
612
613         rd = kzalloc(size_of_regd, GFP_KERNEL);
614         if (!rd)
615                 return NULL;
616
617         for (x = 0; x < rd1->n_reg_rules; x++) {
618                 rule1 = &rd1->reg_rules[x];
619                 for (y = 0; y < rd2->n_reg_rules; y++) {
620                         rule2 = &rd2->reg_rules[y];
621                         /*
622                          * This time around instead of using the stack lets
623                          * write to the target rule directly saving ourselves
624                          * a memcpy()
625                          */
626                         intersected_rule = &rd->reg_rules[rule_idx];
627                         r = reg_rules_intersect(rule1, rule2,
628                                 intersected_rule);
629                         /*
630                          * No need to memset here the intersected rule here as
631                          * we're not using the stack anymore
632                          */
633                         if (r)
634                                 continue;
635                         rule_idx++;
636                 }
637         }
638
639         if (rule_idx != num_rules) {
640                 kfree(rd);
641                 return NULL;
642         }
643
644         rd->n_reg_rules = num_rules;
645         rd->alpha2[0] = '9';
646         rd->alpha2[1] = '8';
647
648         return rd;
649 }
650
651 /*
652  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
653  * want to just have the channel structure use these
654  */
655 static u32 map_regdom_flags(u32 rd_flags)
656 {
657         u32 channel_flags = 0;
658         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
659                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
660         if (rd_flags & NL80211_RRF_NO_IBSS)
661                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
662         if (rd_flags & NL80211_RRF_DFS)
663                 channel_flags |= IEEE80211_CHAN_RADAR;
664         return channel_flags;
665 }
666
667 static int freq_reg_info_regd(struct wiphy *wiphy,
668                               u32 center_freq,
669                               u32 desired_bw_khz,
670                               const struct ieee80211_reg_rule **reg_rule,
671                               const struct ieee80211_regdomain *custom_regd)
672 {
673         int i;
674         bool band_rule_found = false;
675         const struct ieee80211_regdomain *regd;
676         bool bw_fits = false;
677
678         if (!desired_bw_khz)
679                 desired_bw_khz = MHZ_TO_KHZ(20);
680
681         regd = custom_regd ? custom_regd : cfg80211_regdomain;
682
683         /*
684          * Follow the driver's regulatory domain, if present, unless a country
685          * IE has been processed or a user wants to help complaince further
686          */
687         if (!custom_regd &&
688             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
689             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
690             wiphy->regd)
691                 regd = wiphy->regd;
692
693         if (!regd)
694                 return -EINVAL;
695
696         for (i = 0; i < regd->n_reg_rules; i++) {
697                 const struct ieee80211_reg_rule *rr;
698                 const struct ieee80211_freq_range *fr = NULL;
699
700                 rr = &regd->reg_rules[i];
701                 fr = &rr->freq_range;
702
703                 /*
704                  * We only need to know if one frequency rule was
705                  * was in center_freq's band, that's enough, so lets
706                  * not overwrite it once found
707                  */
708                 if (!band_rule_found)
709                         band_rule_found = freq_in_rule_band(fr, center_freq);
710
711                 bw_fits = reg_does_bw_fit(fr,
712                                           center_freq,
713                                           desired_bw_khz);
714
715                 if (band_rule_found && bw_fits) {
716                         *reg_rule = rr;
717                         return 0;
718                 }
719         }
720
721         if (!band_rule_found)
722                 return -ERANGE;
723
724         return -EINVAL;
725 }
726
727 int freq_reg_info(struct wiphy *wiphy,
728                   u32 center_freq,
729                   u32 desired_bw_khz,
730                   const struct ieee80211_reg_rule **reg_rule)
731 {
732         assert_cfg80211_lock();
733         return freq_reg_info_regd(wiphy,
734                                   center_freq,
735                                   desired_bw_khz,
736                                   reg_rule,
737                                   NULL);
738 }
739 EXPORT_SYMBOL(freq_reg_info);
740
741 #ifdef CONFIG_CFG80211_REG_DEBUG
742 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
743 {
744         switch (initiator) {
745         case NL80211_REGDOM_SET_BY_CORE:
746                 return "Set by core";
747         case NL80211_REGDOM_SET_BY_USER:
748                 return "Set by user";
749         case NL80211_REGDOM_SET_BY_DRIVER:
750                 return "Set by driver";
751         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
752                 return "Set by country IE";
753         default:
754                 WARN_ON(1);
755                 return "Set by bug";
756         }
757 }
758
759 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
760                                     u32 desired_bw_khz,
761                                     const struct ieee80211_reg_rule *reg_rule)
762 {
763         const struct ieee80211_power_rule *power_rule;
764         const struct ieee80211_freq_range *freq_range;
765         char max_antenna_gain[32];
766
767         power_rule = &reg_rule->power_rule;
768         freq_range = &reg_rule->freq_range;
769
770         if (!power_rule->max_antenna_gain)
771                 snprintf(max_antenna_gain, 32, "N/A");
772         else
773                 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
774
775         REG_DBG_PRINT("Updating information on frequency %d MHz "
776                       "for a %d MHz width channel with regulatory rule:\n",
777                       chan->center_freq,
778                       KHZ_TO_MHZ(desired_bw_khz));
779
780         REG_DBG_PRINT("%d KHz - %d KHz @  KHz), (%s mBi, %d mBm)\n",
781                       freq_range->start_freq_khz,
782                       freq_range->end_freq_khz,
783                       max_antenna_gain,
784                       power_rule->max_eirp);
785 }
786 #else
787 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
788                                     u32 desired_bw_khz,
789                                     const struct ieee80211_reg_rule *reg_rule)
790 {
791         return;
792 }
793 #endif
794
795 /*
796  * Note that right now we assume the desired channel bandwidth
797  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
798  * per channel, the primary and the extension channel). To support
799  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
800  * new ieee80211_channel.target_bw and re run the regulatory check
801  * on the wiphy with the target_bw specified. Then we can simply use
802  * that below for the desired_bw_khz below.
803  */
804 static void handle_channel(struct wiphy *wiphy,
805                            enum nl80211_reg_initiator initiator,
806                            enum ieee80211_band band,
807                            unsigned int chan_idx)
808 {
809         int r;
810         u32 flags, bw_flags = 0;
811         u32 desired_bw_khz = MHZ_TO_KHZ(20);
812         const struct ieee80211_reg_rule *reg_rule = NULL;
813         const struct ieee80211_power_rule *power_rule = NULL;
814         const struct ieee80211_freq_range *freq_range = NULL;
815         struct ieee80211_supported_band *sband;
816         struct ieee80211_channel *chan;
817         struct wiphy *request_wiphy = NULL;
818
819         assert_cfg80211_lock();
820
821         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
822
823         sband = wiphy->bands[band];
824         BUG_ON(chan_idx >= sband->n_channels);
825         chan = &sband->channels[chan_idx];
826
827         flags = chan->orig_flags;
828
829         r = freq_reg_info(wiphy,
830                           MHZ_TO_KHZ(chan->center_freq),
831                           desired_bw_khz,
832                           &reg_rule);
833
834         if (r) {
835                 /*
836                  * We will disable all channels that do not match our
837                  * received regulatory rule unless the hint is coming
838                  * from a Country IE and the Country IE had no information
839                  * about a band. The IEEE 802.11 spec allows for an AP
840                  * to send only a subset of the regulatory rules allowed,
841                  * so an AP in the US that only supports 2.4 GHz may only send
842                  * a country IE with information for the 2.4 GHz band
843                  * while 5 GHz is still supported.
844                  */
845                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
846                     r == -ERANGE)
847                         return;
848
849                 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
850                 chan->flags = IEEE80211_CHAN_DISABLED;
851                 return;
852         }
853
854         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
855
856         power_rule = &reg_rule->power_rule;
857         freq_range = &reg_rule->freq_range;
858
859         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
860                 bw_flags = IEEE80211_CHAN_NO_HT40;
861
862         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
863             request_wiphy && request_wiphy == wiphy &&
864             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
865                 /*
866                  * This guarantees the driver's requested regulatory domain
867                  * will always be used as a base for further regulatory
868                  * settings
869                  */
870                 chan->flags = chan->orig_flags =
871                         map_regdom_flags(reg_rule->flags) | bw_flags;
872                 chan->max_antenna_gain = chan->orig_mag =
873                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
874                 chan->max_power = chan->orig_mpwr =
875                         (int) MBM_TO_DBM(power_rule->max_eirp);
876                 return;
877         }
878
879         chan->beacon_found = false;
880         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
881         chan->max_antenna_gain = min(chan->orig_mag,
882                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
883         if (chan->orig_mpwr)
884                 chan->max_power = min(chan->orig_mpwr,
885                         (int) MBM_TO_DBM(power_rule->max_eirp));
886         else
887                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
888 }
889
890 static void handle_band(struct wiphy *wiphy,
891                         enum ieee80211_band band,
892                         enum nl80211_reg_initiator initiator)
893 {
894         unsigned int i;
895         struct ieee80211_supported_band *sband;
896
897         BUG_ON(!wiphy->bands[band]);
898         sband = wiphy->bands[band];
899
900         for (i = 0; i < sband->n_channels; i++)
901                 handle_channel(wiphy, initiator, band, i);
902 }
903
904 static bool ignore_reg_update(struct wiphy *wiphy,
905                               enum nl80211_reg_initiator initiator)
906 {
907         if (!last_request) {
908                 REG_DBG_PRINT("Ignoring regulatory request %s since "
909                               "last_request is not set\n",
910                               reg_initiator_name(initiator));
911                 return true;
912         }
913
914         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
915             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
916                 REG_DBG_PRINT("Ignoring regulatory request %s "
917                               "since the driver uses its own custom "
918                               "regulatory domain ",
919                               reg_initiator_name(initiator));
920                 return true;
921         }
922
923         /*
924          * wiphy->regd will be set once the device has its own
925          * desired regulatory domain set
926          */
927         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
928             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
929             !is_world_regdom(last_request->alpha2)) {
930                 REG_DBG_PRINT("Ignoring regulatory request %s "
931                               "since the driver requires its own regulaotry "
932                               "domain to be set first",
933                               reg_initiator_name(initiator));
934                 return true;
935         }
936
937         return false;
938 }
939
940 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
941 {
942         struct cfg80211_registered_device *rdev;
943
944         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
945                 wiphy_update_regulatory(&rdev->wiphy, initiator);
946 }
947
948 static void handle_reg_beacon(struct wiphy *wiphy,
949                               unsigned int chan_idx,
950                               struct reg_beacon *reg_beacon)
951 {
952         struct ieee80211_supported_band *sband;
953         struct ieee80211_channel *chan;
954         bool channel_changed = false;
955         struct ieee80211_channel chan_before;
956
957         assert_cfg80211_lock();
958
959         sband = wiphy->bands[reg_beacon->chan.band];
960         chan = &sband->channels[chan_idx];
961
962         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
963                 return;
964
965         if (chan->beacon_found)
966                 return;
967
968         chan->beacon_found = true;
969
970         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
971                 return;
972
973         chan_before.center_freq = chan->center_freq;
974         chan_before.flags = chan->flags;
975
976         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
977                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
978                 channel_changed = true;
979         }
980
981         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
982                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
983                 channel_changed = true;
984         }
985
986         if (channel_changed)
987                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
988 }
989
990 /*
991  * Called when a scan on a wiphy finds a beacon on
992  * new channel
993  */
994 static void wiphy_update_new_beacon(struct wiphy *wiphy,
995                                     struct reg_beacon *reg_beacon)
996 {
997         unsigned int i;
998         struct ieee80211_supported_band *sband;
999
1000         assert_cfg80211_lock();
1001
1002         if (!wiphy->bands[reg_beacon->chan.band])
1003                 return;
1004
1005         sband = wiphy->bands[reg_beacon->chan.band];
1006
1007         for (i = 0; i < sband->n_channels; i++)
1008                 handle_reg_beacon(wiphy, i, reg_beacon);
1009 }
1010
1011 /*
1012  * Called upon reg changes or a new wiphy is added
1013  */
1014 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1015 {
1016         unsigned int i;
1017         struct ieee80211_supported_band *sband;
1018         struct reg_beacon *reg_beacon;
1019
1020         assert_cfg80211_lock();
1021
1022         if (list_empty(&reg_beacon_list))
1023                 return;
1024
1025         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1026                 if (!wiphy->bands[reg_beacon->chan.band])
1027                         continue;
1028                 sband = wiphy->bands[reg_beacon->chan.band];
1029                 for (i = 0; i < sband->n_channels; i++)
1030                         handle_reg_beacon(wiphy, i, reg_beacon);
1031         }
1032 }
1033
1034 static bool reg_is_world_roaming(struct wiphy *wiphy)
1035 {
1036         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1037             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1038                 return true;
1039         if (last_request &&
1040             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1041             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1042                 return true;
1043         return false;
1044 }
1045
1046 /* Reap the advantages of previously found beacons */
1047 static void reg_process_beacons(struct wiphy *wiphy)
1048 {
1049         /*
1050          * Means we are just firing up cfg80211, so no beacons would
1051          * have been processed yet.
1052          */
1053         if (!last_request)
1054                 return;
1055         if (!reg_is_world_roaming(wiphy))
1056                 return;
1057         wiphy_update_beacon_reg(wiphy);
1058 }
1059
1060 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1061 {
1062         if (!chan)
1063                 return true;
1064         if (chan->flags & IEEE80211_CHAN_DISABLED)
1065                 return true;
1066         /* This would happen when regulatory rules disallow HT40 completely */
1067         if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1068                 return true;
1069         return false;
1070 }
1071
1072 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1073                                          enum ieee80211_band band,
1074                                          unsigned int chan_idx)
1075 {
1076         struct ieee80211_supported_band *sband;
1077         struct ieee80211_channel *channel;
1078         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1079         unsigned int i;
1080
1081         assert_cfg80211_lock();
1082
1083         sband = wiphy->bands[band];
1084         BUG_ON(chan_idx >= sband->n_channels);
1085         channel = &sband->channels[chan_idx];
1086
1087         if (is_ht40_not_allowed(channel)) {
1088                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1089                 return;
1090         }
1091
1092         /*
1093          * We need to ensure the extension channels exist to
1094          * be able to use HT40- or HT40+, this finds them (or not)
1095          */
1096         for (i = 0; i < sband->n_channels; i++) {
1097                 struct ieee80211_channel *c = &sband->channels[i];
1098                 if (c->center_freq == (channel->center_freq - 20))
1099                         channel_before = c;
1100                 if (c->center_freq == (channel->center_freq + 20))
1101                         channel_after = c;
1102         }
1103
1104         /*
1105          * Please note that this assumes target bandwidth is 20 MHz,
1106          * if that ever changes we also need to change the below logic
1107          * to include that as well.
1108          */
1109         if (is_ht40_not_allowed(channel_before))
1110                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1111         else
1112                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1113
1114         if (is_ht40_not_allowed(channel_after))
1115                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1116         else
1117                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1118 }
1119
1120 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1121                                       enum ieee80211_band band)
1122 {
1123         unsigned int i;
1124         struct ieee80211_supported_band *sband;
1125
1126         BUG_ON(!wiphy->bands[band]);
1127         sband = wiphy->bands[band];
1128
1129         for (i = 0; i < sband->n_channels; i++)
1130                 reg_process_ht_flags_channel(wiphy, band, i);
1131 }
1132
1133 static void reg_process_ht_flags(struct wiphy *wiphy)
1134 {
1135         enum ieee80211_band band;
1136
1137         if (!wiphy)
1138                 return;
1139
1140         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1141                 if (wiphy->bands[band])
1142                         reg_process_ht_flags_band(wiphy, band);
1143         }
1144
1145 }
1146
1147 void wiphy_update_regulatory(struct wiphy *wiphy,
1148                              enum nl80211_reg_initiator initiator)
1149 {
1150         enum ieee80211_band band;
1151
1152         if (ignore_reg_update(wiphy, initiator))
1153                 return;
1154
1155         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1156                 if (wiphy->bands[band])
1157                         handle_band(wiphy, band, initiator);
1158         }
1159
1160         reg_process_beacons(wiphy);
1161         reg_process_ht_flags(wiphy);
1162         if (wiphy->reg_notifier)
1163                 wiphy->reg_notifier(wiphy, last_request);
1164 }
1165
1166 static void handle_channel_custom(struct wiphy *wiphy,
1167                                   enum ieee80211_band band,
1168                                   unsigned int chan_idx,
1169                                   const struct ieee80211_regdomain *regd)
1170 {
1171         int r;
1172         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1173         u32 bw_flags = 0;
1174         const struct ieee80211_reg_rule *reg_rule = NULL;
1175         const struct ieee80211_power_rule *power_rule = NULL;
1176         const struct ieee80211_freq_range *freq_range = NULL;
1177         struct ieee80211_supported_band *sband;
1178         struct ieee80211_channel *chan;
1179
1180         assert_reg_lock();
1181
1182         sband = wiphy->bands[band];
1183         BUG_ON(chan_idx >= sband->n_channels);
1184         chan = &sband->channels[chan_idx];
1185
1186         r = freq_reg_info_regd(wiphy,
1187                                MHZ_TO_KHZ(chan->center_freq),
1188                                desired_bw_khz,
1189                                &reg_rule,
1190                                regd);
1191
1192         if (r) {
1193                 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1194                               "regd has no rule that fits a %d MHz "
1195                               "wide channel\n",
1196                               chan->center_freq,
1197                               KHZ_TO_MHZ(desired_bw_khz));
1198                 chan->flags = IEEE80211_CHAN_DISABLED;
1199                 return;
1200         }
1201
1202         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1203
1204         power_rule = &reg_rule->power_rule;
1205         freq_range = &reg_rule->freq_range;
1206
1207         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1208                 bw_flags = IEEE80211_CHAN_NO_HT40;
1209
1210         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1211         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1212         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1213 }
1214
1215 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1216                                const struct ieee80211_regdomain *regd)
1217 {
1218         unsigned int i;
1219         struct ieee80211_supported_band *sband;
1220
1221         BUG_ON(!wiphy->bands[band]);
1222         sband = wiphy->bands[band];
1223
1224         for (i = 0; i < sband->n_channels; i++)
1225                 handle_channel_custom(wiphy, band, i, regd);
1226 }
1227
1228 /* Used by drivers prior to wiphy registration */
1229 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1230                                    const struct ieee80211_regdomain *regd)
1231 {
1232         enum ieee80211_band band;
1233         unsigned int bands_set = 0;
1234
1235         mutex_lock(&reg_mutex);
1236         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1237                 if (!wiphy->bands[band])
1238                         continue;
1239                 handle_band_custom(wiphy, band, regd);
1240                 bands_set++;
1241         }
1242         mutex_unlock(&reg_mutex);
1243
1244         /*
1245          * no point in calling this if it won't have any effect
1246          * on your device's supportd bands.
1247          */
1248         WARN_ON(!bands_set);
1249 }
1250 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1251
1252 /*
1253  * Return value which can be used by ignore_request() to indicate
1254  * it has been determined we should intersect two regulatory domains
1255  */
1256 #define REG_INTERSECT   1
1257
1258 /* This has the logic which determines when a new request
1259  * should be ignored. */
1260 static int ignore_request(struct wiphy *wiphy,
1261                           struct regulatory_request *pending_request)
1262 {
1263         struct wiphy *last_wiphy = NULL;
1264
1265         assert_cfg80211_lock();
1266
1267         /* All initial requests are respected */
1268         if (!last_request)
1269                 return 0;
1270
1271         switch (pending_request->initiator) {
1272         case NL80211_REGDOM_SET_BY_CORE:
1273                 return 0;
1274         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1275
1276                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1277
1278                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1279                         return -EINVAL;
1280                 if (last_request->initiator ==
1281                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1282                         if (last_wiphy != wiphy) {
1283                                 /*
1284                                  * Two cards with two APs claiming different
1285                                  * Country IE alpha2s. We could
1286                                  * intersect them, but that seems unlikely
1287                                  * to be correct. Reject second one for now.
1288                                  */
1289                                 if (regdom_changes(pending_request->alpha2))
1290                                         return -EOPNOTSUPP;
1291                                 return -EALREADY;
1292                         }
1293                         /*
1294                          * Two consecutive Country IE hints on the same wiphy.
1295                          * This should be picked up early by the driver/stack
1296                          */
1297                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1298                                 return 0;
1299                         return -EALREADY;
1300                 }
1301                 return 0;
1302         case NL80211_REGDOM_SET_BY_DRIVER:
1303                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1304                         if (regdom_changes(pending_request->alpha2))
1305                                 return 0;
1306                         return -EALREADY;
1307                 }
1308
1309                 /*
1310                  * This would happen if you unplug and plug your card
1311                  * back in or if you add a new device for which the previously
1312                  * loaded card also agrees on the regulatory domain.
1313                  */
1314                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1315                     !regdom_changes(pending_request->alpha2))
1316                         return -EALREADY;
1317
1318                 return REG_INTERSECT;
1319         case NL80211_REGDOM_SET_BY_USER:
1320                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1321                         return REG_INTERSECT;
1322                 /*
1323                  * If the user knows better the user should set the regdom
1324                  * to their country before the IE is picked up
1325                  */
1326                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1327                           last_request->intersect)
1328                         return -EOPNOTSUPP;
1329                 /*
1330                  * Process user requests only after previous user/driver/core
1331                  * requests have been processed
1332                  */
1333                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1334                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1335                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1336                         if (regdom_changes(last_request->alpha2))
1337                                 return -EAGAIN;
1338                 }
1339
1340                 if (!regdom_changes(pending_request->alpha2))
1341                         return -EALREADY;
1342
1343                 return 0;
1344         }
1345
1346         return -EINVAL;
1347 }
1348
1349 static void reg_set_request_processed(void)
1350 {
1351         bool need_more_processing = false;
1352
1353         last_request->processed = true;
1354
1355         spin_lock(&reg_requests_lock);
1356         if (!list_empty(&reg_requests_list))
1357                 need_more_processing = true;
1358         spin_unlock(&reg_requests_lock);
1359
1360         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1361                 cancel_delayed_work(&reg_timeout);
1362
1363         if (need_more_processing)
1364                 schedule_work(&reg_work);
1365 }
1366
1367 /**
1368  * __regulatory_hint - hint to the wireless core a regulatory domain
1369  * @wiphy: if the hint comes from country information from an AP, this
1370  *      is required to be set to the wiphy that received the information
1371  * @pending_request: the regulatory request currently being processed
1372  *
1373  * The Wireless subsystem can use this function to hint to the wireless core
1374  * what it believes should be the current regulatory domain.
1375  *
1376  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1377  * already been set or other standard error codes.
1378  *
1379  * Caller must hold &cfg80211_mutex and &reg_mutex
1380  */
1381 static int __regulatory_hint(struct wiphy *wiphy,
1382                              struct regulatory_request *pending_request)
1383 {
1384         bool intersect = false;
1385         int r = 0;
1386
1387         assert_cfg80211_lock();
1388
1389         r = ignore_request(wiphy, pending_request);
1390
1391         if (r == REG_INTERSECT) {
1392                 if (pending_request->initiator ==
1393                     NL80211_REGDOM_SET_BY_DRIVER) {
1394                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1395                         if (r) {
1396                                 kfree(pending_request);
1397                                 return r;
1398                         }
1399                 }
1400                 intersect = true;
1401         } else if (r) {
1402                 /*
1403                  * If the regulatory domain being requested by the
1404                  * driver has already been set just copy it to the
1405                  * wiphy
1406                  */
1407                 if (r == -EALREADY &&
1408                     pending_request->initiator ==
1409                     NL80211_REGDOM_SET_BY_DRIVER) {
1410                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1411                         if (r) {
1412                                 kfree(pending_request);
1413                                 return r;
1414                         }
1415                         r = -EALREADY;
1416                         goto new_request;
1417                 }
1418                 kfree(pending_request);
1419                 return r;
1420         }
1421
1422 new_request:
1423         if (last_request != &core_request_world)
1424                 kfree(last_request);
1425
1426         last_request = pending_request;
1427         last_request->intersect = intersect;
1428
1429         pending_request = NULL;
1430
1431         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1432                 user_alpha2[0] = last_request->alpha2[0];
1433                 user_alpha2[1] = last_request->alpha2[1];
1434         }
1435
1436         /* When r == REG_INTERSECT we do need to call CRDA */
1437         if (r < 0) {
1438                 /*
1439                  * Since CRDA will not be called in this case as we already
1440                  * have applied the requested regulatory domain before we just
1441                  * inform userspace we have processed the request
1442                  */
1443                 if (r == -EALREADY) {
1444                         nl80211_send_reg_change_event(last_request);
1445                         reg_set_request_processed();
1446                 }
1447                 return r;
1448         }
1449
1450         return call_crda(last_request->alpha2);
1451 }
1452
1453 /* This processes *all* regulatory hints */
1454 static void reg_process_hint(struct regulatory_request *reg_request)
1455 {
1456         int r = 0;
1457         struct wiphy *wiphy = NULL;
1458         enum nl80211_reg_initiator initiator = reg_request->initiator;
1459
1460         BUG_ON(!reg_request->alpha2);
1461
1462         if (wiphy_idx_valid(reg_request->wiphy_idx))
1463                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1464
1465         if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1466             !wiphy) {
1467                 kfree(reg_request);
1468                 return;
1469         }
1470
1471         r = __regulatory_hint(wiphy, reg_request);
1472         /* This is required so that the orig_* parameters are saved */
1473         if (r == -EALREADY && wiphy &&
1474             wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1475                 wiphy_update_regulatory(wiphy, initiator);
1476                 return;
1477         }
1478
1479         /*
1480          * We only time out user hints, given that they should be the only
1481          * source of bogus requests.
1482          */
1483         if (r != -EALREADY &&
1484             reg_request->initiator == NL80211_REGDOM_SET_BY_USER)
1485                 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1486 }
1487
1488 /*
1489  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1490  * Regulatory hints come on a first come first serve basis and we
1491  * must process each one atomically.
1492  */
1493 static void reg_process_pending_hints(void)
1494 {
1495         struct regulatory_request *reg_request;
1496
1497         mutex_lock(&cfg80211_mutex);
1498         mutex_lock(&reg_mutex);
1499
1500         /* When last_request->processed becomes true this will be rescheduled */
1501         if (last_request && !last_request->processed) {
1502                 REG_DBG_PRINT("Pending regulatory request, waiting "
1503                               "for it to be processed...");
1504                 goto out;
1505         }
1506
1507         spin_lock(&reg_requests_lock);
1508
1509         if (list_empty(&reg_requests_list)) {
1510                 spin_unlock(&reg_requests_lock);
1511                 goto out;
1512         }
1513
1514         reg_request = list_first_entry(&reg_requests_list,
1515                                        struct regulatory_request,
1516                                        list);
1517         list_del_init(&reg_request->list);
1518
1519         spin_unlock(&reg_requests_lock);
1520
1521         reg_process_hint(reg_request);
1522
1523 out:
1524         mutex_unlock(&reg_mutex);
1525         mutex_unlock(&cfg80211_mutex);
1526 }
1527
1528 /* Processes beacon hints -- this has nothing to do with country IEs */
1529 static void reg_process_pending_beacon_hints(void)
1530 {
1531         struct cfg80211_registered_device *rdev;
1532         struct reg_beacon *pending_beacon, *tmp;
1533
1534         /*
1535          * No need to hold the reg_mutex here as we just touch wiphys
1536          * and do not read or access regulatory variables.
1537          */
1538         mutex_lock(&cfg80211_mutex);
1539
1540         /* This goes through the _pending_ beacon list */
1541         spin_lock_bh(&reg_pending_beacons_lock);
1542
1543         if (list_empty(&reg_pending_beacons)) {
1544                 spin_unlock_bh(&reg_pending_beacons_lock);
1545                 goto out;
1546         }
1547
1548         list_for_each_entry_safe(pending_beacon, tmp,
1549                                  &reg_pending_beacons, list) {
1550
1551                 list_del_init(&pending_beacon->list);
1552
1553                 /* Applies the beacon hint to current wiphys */
1554                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1555                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1556
1557                 /* Remembers the beacon hint for new wiphys or reg changes */
1558                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1559         }
1560
1561         spin_unlock_bh(&reg_pending_beacons_lock);
1562 out:
1563         mutex_unlock(&cfg80211_mutex);
1564 }
1565
1566 static void reg_todo(struct work_struct *work)
1567 {
1568         reg_process_pending_hints();
1569         reg_process_pending_beacon_hints();
1570 }
1571
1572 static void queue_regulatory_request(struct regulatory_request *request)
1573 {
1574         if (isalpha(request->alpha2[0]))
1575                 request->alpha2[0] = toupper(request->alpha2[0]);
1576         if (isalpha(request->alpha2[1]))
1577                 request->alpha2[1] = toupper(request->alpha2[1]);
1578
1579         spin_lock(&reg_requests_lock);
1580         list_add_tail(&request->list, &reg_requests_list);
1581         spin_unlock(&reg_requests_lock);
1582
1583         schedule_work(&reg_work);
1584 }
1585
1586 /*
1587  * Core regulatory hint -- happens during cfg80211_init()
1588  * and when we restore regulatory settings.
1589  */
1590 static int regulatory_hint_core(const char *alpha2)
1591 {
1592         struct regulatory_request *request;
1593
1594         request = kzalloc(sizeof(struct regulatory_request),
1595                           GFP_KERNEL);
1596         if (!request)
1597                 return -ENOMEM;
1598
1599         request->alpha2[0] = alpha2[0];
1600         request->alpha2[1] = alpha2[1];
1601         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1602
1603         queue_regulatory_request(request);
1604
1605         return 0;
1606 }
1607
1608 /* User hints */
1609 int regulatory_hint_user(const char *alpha2)
1610 {
1611         struct regulatory_request *request;
1612
1613         BUG_ON(!alpha2);
1614
1615         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1616         if (!request)
1617                 return -ENOMEM;
1618
1619         request->wiphy_idx = WIPHY_IDX_STALE;
1620         request->alpha2[0] = alpha2[0];
1621         request->alpha2[1] = alpha2[1];
1622         request->initiator = NL80211_REGDOM_SET_BY_USER;
1623
1624         queue_regulatory_request(request);
1625
1626         return 0;
1627 }
1628
1629 /* Driver hints */
1630 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1631 {
1632         struct regulatory_request *request;
1633
1634         BUG_ON(!alpha2);
1635         BUG_ON(!wiphy);
1636
1637         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1638         if (!request)
1639                 return -ENOMEM;
1640
1641         request->wiphy_idx = get_wiphy_idx(wiphy);
1642
1643         /* Must have registered wiphy first */
1644         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1645
1646         request->alpha2[0] = alpha2[0];
1647         request->alpha2[1] = alpha2[1];
1648         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1649
1650         queue_regulatory_request(request);
1651
1652         return 0;
1653 }
1654 EXPORT_SYMBOL(regulatory_hint);
1655
1656 /*
1657  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1658  * therefore cannot iterate over the rdev list here.
1659  */
1660 void regulatory_hint_11d(struct wiphy *wiphy,
1661                          enum ieee80211_band band,
1662                          u8 *country_ie,
1663                          u8 country_ie_len)
1664 {
1665         char alpha2[2];
1666         enum environment_cap env = ENVIRON_ANY;
1667         struct regulatory_request *request;
1668
1669         mutex_lock(&reg_mutex);
1670
1671         if (unlikely(!last_request))
1672                 goto out;
1673
1674         /* IE len must be evenly divisible by 2 */
1675         if (country_ie_len & 0x01)
1676                 goto out;
1677
1678         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1679                 goto out;
1680
1681         alpha2[0] = country_ie[0];
1682         alpha2[1] = country_ie[1];
1683
1684         if (country_ie[2] == 'I')
1685                 env = ENVIRON_INDOOR;
1686         else if (country_ie[2] == 'O')
1687                 env = ENVIRON_OUTDOOR;
1688
1689         /*
1690          * We will run this only upon a successful connection on cfg80211.
1691          * We leave conflict resolution to the workqueue, where can hold
1692          * cfg80211_mutex.
1693          */
1694         if (likely(last_request->initiator ==
1695             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1696             wiphy_idx_valid(last_request->wiphy_idx)))
1697                 goto out;
1698
1699         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1700         if (!request)
1701                 goto out;
1702
1703         request->wiphy_idx = get_wiphy_idx(wiphy);
1704         request->alpha2[0] = alpha2[0];
1705         request->alpha2[1] = alpha2[1];
1706         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1707         request->country_ie_env = env;
1708
1709         mutex_unlock(&reg_mutex);
1710
1711         queue_regulatory_request(request);
1712
1713         return;
1714
1715 out:
1716         mutex_unlock(&reg_mutex);
1717 }
1718
1719 static void restore_alpha2(char *alpha2, bool reset_user)
1720 {
1721         /* indicates there is no alpha2 to consider for restoration */
1722         alpha2[0] = '9';
1723         alpha2[1] = '7';
1724
1725         /* The user setting has precedence over the module parameter */
1726         if (is_user_regdom_saved()) {
1727                 /* Unless we're asked to ignore it and reset it */
1728                 if (reset_user) {
1729                         REG_DBG_PRINT("Restoring regulatory settings "
1730                                "including user preference\n");
1731                         user_alpha2[0] = '9';
1732                         user_alpha2[1] = '7';
1733
1734                         /*
1735                          * If we're ignoring user settings, we still need to
1736                          * check the module parameter to ensure we put things
1737                          * back as they were for a full restore.
1738                          */
1739                         if (!is_world_regdom(ieee80211_regdom)) {
1740                                 REG_DBG_PRINT("Keeping preference on "
1741                                        "module parameter ieee80211_regdom: %c%c\n",
1742                                        ieee80211_regdom[0],
1743                                        ieee80211_regdom[1]);
1744                                 alpha2[0] = ieee80211_regdom[0];
1745                                 alpha2[1] = ieee80211_regdom[1];
1746                         }
1747                 } else {
1748                         REG_DBG_PRINT("Restoring regulatory settings "
1749                                "while preserving user preference for: %c%c\n",
1750                                user_alpha2[0],
1751                                user_alpha2[1]);
1752                         alpha2[0] = user_alpha2[0];
1753                         alpha2[1] = user_alpha2[1];
1754                 }
1755         } else if (!is_world_regdom(ieee80211_regdom)) {
1756                 REG_DBG_PRINT("Keeping preference on "
1757                        "module parameter ieee80211_regdom: %c%c\n",
1758                        ieee80211_regdom[0],
1759                        ieee80211_regdom[1]);
1760                 alpha2[0] = ieee80211_regdom[0];
1761                 alpha2[1] = ieee80211_regdom[1];
1762         } else
1763                 REG_DBG_PRINT("Restoring regulatory settings\n");
1764 }
1765
1766 /*
1767  * Restoring regulatory settings involves ingoring any
1768  * possibly stale country IE information and user regulatory
1769  * settings if so desired, this includes any beacon hints
1770  * learned as we could have traveled outside to another country
1771  * after disconnection. To restore regulatory settings we do
1772  * exactly what we did at bootup:
1773  *
1774  *   - send a core regulatory hint
1775  *   - send a user regulatory hint if applicable
1776  *
1777  * Device drivers that send a regulatory hint for a specific country
1778  * keep their own regulatory domain on wiphy->regd so that does does
1779  * not need to be remembered.
1780  */
1781 static void restore_regulatory_settings(bool reset_user)
1782 {
1783         char alpha2[2];
1784         char world_alpha2[2];
1785         struct reg_beacon *reg_beacon, *btmp;
1786         struct regulatory_request *reg_request, *tmp;
1787         LIST_HEAD(tmp_reg_req_list);
1788
1789         mutex_lock(&cfg80211_mutex);
1790         mutex_lock(&reg_mutex);
1791
1792         reset_regdomains(true);
1793         restore_alpha2(alpha2, reset_user);
1794
1795         /*
1796          * If there's any pending requests we simply
1797          * stash them to a temporary pending queue and
1798          * add then after we've restored regulatory
1799          * settings.
1800          */
1801         spin_lock(&reg_requests_lock);
1802         if (!list_empty(&reg_requests_list)) {
1803                 list_for_each_entry_safe(reg_request, tmp,
1804                                          &reg_requests_list, list) {
1805                         if (reg_request->initiator !=
1806                             NL80211_REGDOM_SET_BY_USER)
1807                                 continue;
1808                         list_del(&reg_request->list);
1809                         list_add_tail(&reg_request->list, &tmp_reg_req_list);
1810                 }
1811         }
1812         spin_unlock(&reg_requests_lock);
1813
1814         /* Clear beacon hints */
1815         spin_lock_bh(&reg_pending_beacons_lock);
1816         if (!list_empty(&reg_pending_beacons)) {
1817                 list_for_each_entry_safe(reg_beacon, btmp,
1818                                          &reg_pending_beacons, list) {
1819                         list_del(&reg_beacon->list);
1820                         kfree(reg_beacon);
1821                 }
1822         }
1823         spin_unlock_bh(&reg_pending_beacons_lock);
1824
1825         if (!list_empty(&reg_beacon_list)) {
1826                 list_for_each_entry_safe(reg_beacon, btmp,
1827                                          &reg_beacon_list, list) {
1828                         list_del(&reg_beacon->list);
1829                         kfree(reg_beacon);
1830                 }
1831         }
1832
1833         /* First restore to the basic regulatory settings */
1834         cfg80211_regdomain = cfg80211_world_regdom;
1835         world_alpha2[0] = cfg80211_regdomain->alpha2[0];
1836         world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1837
1838         mutex_unlock(&reg_mutex);
1839         mutex_unlock(&cfg80211_mutex);
1840
1841         regulatory_hint_core(world_alpha2);
1842
1843         /*
1844          * This restores the ieee80211_regdom module parameter
1845          * preference or the last user requested regulatory
1846          * settings, user regulatory settings takes precedence.
1847          */
1848         if (is_an_alpha2(alpha2))
1849                 regulatory_hint_user(user_alpha2);
1850
1851         if (list_empty(&tmp_reg_req_list))
1852                 return;
1853
1854         mutex_lock(&cfg80211_mutex);
1855         mutex_lock(&reg_mutex);
1856
1857         spin_lock(&reg_requests_lock);
1858         list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1859                 REG_DBG_PRINT("Adding request for country %c%c back "
1860                               "into the queue\n",
1861                               reg_request->alpha2[0],
1862                               reg_request->alpha2[1]);
1863                 list_del(&reg_request->list);
1864                 list_add_tail(&reg_request->list, &reg_requests_list);
1865         }
1866         spin_unlock(&reg_requests_lock);
1867
1868         mutex_unlock(&reg_mutex);
1869         mutex_unlock(&cfg80211_mutex);
1870
1871         REG_DBG_PRINT("Kicking the queue\n");
1872
1873         schedule_work(&reg_work);
1874 }
1875
1876 void regulatory_hint_disconnect(void)
1877 {
1878         REG_DBG_PRINT("All devices are disconnected, going to "
1879                       "restore regulatory settings\n");
1880         restore_regulatory_settings(false);
1881 }
1882
1883 static bool freq_is_chan_12_13_14(u16 freq)
1884 {
1885         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1886             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1887             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1888                 return true;
1889         return false;
1890 }
1891
1892 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1893                                  struct ieee80211_channel *beacon_chan,
1894                                  gfp_t gfp)
1895 {
1896         struct reg_beacon *reg_beacon;
1897
1898         if (likely((beacon_chan->beacon_found ||
1899             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1900             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1901              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1902                 return 0;
1903
1904         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1905         if (!reg_beacon)
1906                 return -ENOMEM;
1907
1908         REG_DBG_PRINT("Found new beacon on "
1909                       "frequency: %d MHz (Ch %d) on %s\n",
1910                       beacon_chan->center_freq,
1911                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
1912                       wiphy_name(wiphy));
1913
1914         memcpy(&reg_beacon->chan, beacon_chan,
1915                 sizeof(struct ieee80211_channel));
1916
1917
1918         /*
1919          * Since we can be called from BH or and non-BH context
1920          * we must use spin_lock_bh()
1921          */
1922         spin_lock_bh(&reg_pending_beacons_lock);
1923         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1924         spin_unlock_bh(&reg_pending_beacons_lock);
1925
1926         schedule_work(&reg_work);
1927
1928         return 0;
1929 }
1930
1931 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1932 {
1933         unsigned int i;
1934         const struct ieee80211_reg_rule *reg_rule = NULL;
1935         const struct ieee80211_freq_range *freq_range = NULL;
1936         const struct ieee80211_power_rule *power_rule = NULL;
1937
1938         pr_info("    (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1939
1940         for (i = 0; i < rd->n_reg_rules; i++) {
1941                 reg_rule = &rd->reg_rules[i];
1942                 freq_range = &reg_rule->freq_range;
1943                 power_rule = &reg_rule->power_rule;
1944
1945                 /*
1946                  * There may not be documentation for max antenna gain
1947                  * in certain regions
1948                  */
1949                 if (power_rule->max_antenna_gain)
1950                         pr_info("    (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1951                                 freq_range->start_freq_khz,
1952                                 freq_range->end_freq_khz,
1953                                 freq_range->max_bandwidth_khz,
1954                                 power_rule->max_antenna_gain,
1955                                 power_rule->max_eirp);
1956                 else
1957                         pr_info("    (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1958                                 freq_range->start_freq_khz,
1959                                 freq_range->end_freq_khz,
1960                                 freq_range->max_bandwidth_khz,
1961                                 power_rule->max_eirp);
1962         }
1963 }
1964
1965 static void print_regdomain(const struct ieee80211_regdomain *rd)
1966 {
1967
1968         if (is_intersected_alpha2(rd->alpha2)) {
1969
1970                 if (last_request->initiator ==
1971                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1972                         struct cfg80211_registered_device *rdev;
1973                         rdev = cfg80211_rdev_by_wiphy_idx(
1974                                 last_request->wiphy_idx);
1975                         if (rdev) {
1976                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
1977                                         rdev->country_ie_alpha2[0],
1978                                         rdev->country_ie_alpha2[1]);
1979                         } else
1980                                 pr_info("Current regulatory domain intersected:\n");
1981                 } else
1982                         pr_info("Current regulatory domain intersected:\n");
1983         } else if (is_world_regdom(rd->alpha2))
1984                 pr_info("World regulatory domain updated:\n");
1985         else {
1986                 if (is_unknown_alpha2(rd->alpha2))
1987                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
1988                 else
1989                         pr_info("Regulatory domain changed to country: %c%c\n",
1990                                 rd->alpha2[0], rd->alpha2[1]);
1991         }
1992         print_rd_rules(rd);
1993 }
1994
1995 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1996 {
1997         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
1998         print_rd_rules(rd);
1999 }
2000
2001 /* Takes ownership of rd only if it doesn't fail */
2002 static int __set_regdom(const struct ieee80211_regdomain *rd)
2003 {
2004         const struct ieee80211_regdomain *intersected_rd = NULL;
2005         struct cfg80211_registered_device *rdev = NULL;
2006         struct wiphy *request_wiphy;
2007         /* Some basic sanity checks first */
2008
2009         if (is_world_regdom(rd->alpha2)) {
2010                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2011                         return -EINVAL;
2012                 update_world_regdomain(rd);
2013                 return 0;
2014         }
2015
2016         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2017                         !is_unknown_alpha2(rd->alpha2))
2018                 return -EINVAL;
2019
2020         if (!last_request)
2021                 return -EINVAL;
2022
2023         /*
2024          * Lets only bother proceeding on the same alpha2 if the current
2025          * rd is non static (it means CRDA was present and was used last)
2026          * and the pending request came in from a country IE
2027          */
2028         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2029                 /*
2030                  * If someone else asked us to change the rd lets only bother
2031                  * checking if the alpha2 changes if CRDA was already called
2032                  */
2033                 if (!regdom_changes(rd->alpha2))
2034                         return -EINVAL;
2035         }
2036
2037         /*
2038          * Now lets set the regulatory domain, update all driver channels
2039          * and finally inform them of what we have done, in case they want
2040          * to review or adjust their own settings based on their own
2041          * internal EEPROM data
2042          */
2043
2044         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2045                 return -EINVAL;
2046
2047         if (!is_valid_rd(rd)) {
2048                 pr_err("Invalid regulatory domain detected:\n");
2049                 print_regdomain_info(rd);
2050                 return -EINVAL;
2051         }
2052
2053         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2054         if (!request_wiphy &&
2055             (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2056              last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2057                 schedule_delayed_work(&reg_timeout, 0);
2058                 return -ENODEV;
2059         }
2060
2061         if (!last_request->intersect) {
2062                 int r;
2063
2064                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2065                         reset_regdomains(false);
2066                         cfg80211_regdomain = rd;
2067                         return 0;
2068                 }
2069
2070                 /*
2071                  * For a driver hint, lets copy the regulatory domain the
2072                  * driver wanted to the wiphy to deal with conflicts
2073                  */
2074
2075                 /*
2076                  * Userspace could have sent two replies with only
2077                  * one kernel request.
2078                  */
2079                 if (request_wiphy->regd)
2080                         return -EALREADY;
2081
2082                 r = reg_copy_regd(&request_wiphy->regd, rd);
2083                 if (r)
2084                         return r;
2085
2086                 reset_regdomains(false);
2087                 cfg80211_regdomain = rd;
2088                 return 0;
2089         }
2090
2091         /* Intersection requires a bit more work */
2092
2093         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2094
2095                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2096                 if (!intersected_rd)
2097                         return -EINVAL;
2098
2099                 /*
2100                  * We can trash what CRDA provided now.
2101                  * However if a driver requested this specific regulatory
2102                  * domain we keep it for its private use
2103                  */
2104                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2105                         request_wiphy->regd = rd;
2106                 else
2107                         kfree(rd);
2108
2109                 rd = NULL;
2110
2111                 reset_regdomains(false);
2112                 cfg80211_regdomain = intersected_rd;
2113
2114                 return 0;
2115         }
2116
2117         if (!intersected_rd)
2118                 return -EINVAL;
2119
2120         rdev = wiphy_to_dev(request_wiphy);
2121
2122         rdev->country_ie_alpha2[0] = rd->alpha2[0];
2123         rdev->country_ie_alpha2[1] = rd->alpha2[1];
2124         rdev->env = last_request->country_ie_env;
2125
2126         BUG_ON(intersected_rd == rd);
2127
2128         kfree(rd);
2129         rd = NULL;
2130
2131         reset_regdomains(false);
2132         cfg80211_regdomain = intersected_rd;
2133
2134         return 0;
2135 }
2136
2137
2138 /*
2139  * Use this call to set the current regulatory domain. Conflicts with
2140  * multiple drivers can be ironed out later. Caller must've already
2141  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2142  */
2143 int set_regdom(const struct ieee80211_regdomain *rd)
2144 {
2145         int r;
2146
2147         assert_cfg80211_lock();
2148
2149         mutex_lock(&reg_mutex);
2150
2151         /* Note that this doesn't update the wiphys, this is done below */
2152         r = __set_regdom(rd);
2153         if (r) {
2154                 kfree(rd);
2155                 mutex_unlock(&reg_mutex);
2156                 return r;
2157         }
2158
2159         /* This would make this whole thing pointless */
2160         if (!last_request->intersect)
2161                 BUG_ON(rd != cfg80211_regdomain);
2162
2163         /* update all wiphys now with the new established regulatory domain */
2164         update_all_wiphy_regulatory(last_request->initiator);
2165
2166         print_regdomain(cfg80211_regdomain);
2167
2168         nl80211_send_reg_change_event(last_request);
2169
2170         reg_set_request_processed();
2171
2172         mutex_unlock(&reg_mutex);
2173
2174         return r;
2175 }
2176
2177 #ifdef CONFIG_HOTPLUG
2178 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2179 {
2180         if (last_request && !last_request->processed) {
2181                 if (add_uevent_var(env, "COUNTRY=%c%c",
2182                                    last_request->alpha2[0],
2183                                    last_request->alpha2[1]))
2184                         return -ENOMEM;
2185         }
2186
2187         return 0;
2188 }
2189 #else
2190 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2191 {
2192         return -ENODEV;
2193 }
2194 #endif /* CONFIG_HOTPLUG */
2195
2196 /* Caller must hold cfg80211_mutex */
2197 void reg_device_remove(struct wiphy *wiphy)
2198 {
2199         struct wiphy *request_wiphy = NULL;
2200
2201         assert_cfg80211_lock();
2202
2203         mutex_lock(&reg_mutex);
2204
2205         kfree(wiphy->regd);
2206
2207         if (last_request)
2208                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2209
2210         if (!request_wiphy || request_wiphy != wiphy)
2211                 goto out;
2212
2213         last_request->wiphy_idx = WIPHY_IDX_STALE;
2214         last_request->country_ie_env = ENVIRON_ANY;
2215 out:
2216         mutex_unlock(&reg_mutex);
2217 }
2218
2219 static void reg_timeout_work(struct work_struct *work)
2220 {
2221         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2222                       "restoring regulatory settings");
2223         restore_regulatory_settings(true);
2224 }
2225
2226 int __init regulatory_init(void)
2227 {
2228         int err = 0;
2229
2230         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2231         if (IS_ERR(reg_pdev))
2232                 return PTR_ERR(reg_pdev);
2233
2234         reg_pdev->dev.type = &reg_device_type;
2235
2236         spin_lock_init(&reg_requests_lock);
2237         spin_lock_init(&reg_pending_beacons_lock);
2238
2239         reg_regdb_size_check();
2240
2241         cfg80211_regdomain = cfg80211_world_regdom;
2242
2243         user_alpha2[0] = '9';
2244         user_alpha2[1] = '7';
2245
2246         /* We always try to get an update for the static regdomain */
2247         err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2248         if (err) {
2249                 if (err == -ENOMEM)
2250                         return err;
2251                 /*
2252                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2253                  * memory which is handled and propagated appropriately above
2254                  * but it can also fail during a netlink_broadcast() or during
2255                  * early boot for call_usermodehelper(). For now treat these
2256                  * errors as non-fatal.
2257                  */
2258                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2259 #ifdef CONFIG_CFG80211_REG_DEBUG
2260                 /* We want to find out exactly why when debugging */
2261                 WARN_ON(err);
2262 #endif
2263         }
2264
2265         /*
2266          * Finally, if the user set the module parameter treat it
2267          * as a user hint.
2268          */
2269         if (!is_world_regdom(ieee80211_regdom))
2270                 regulatory_hint_user(ieee80211_regdom);
2271
2272         return 0;
2273 }
2274
2275 void /* __init_or_exit */ regulatory_exit(void)
2276 {
2277         struct regulatory_request *reg_request, *tmp;
2278         struct reg_beacon *reg_beacon, *btmp;
2279
2280         cancel_work_sync(&reg_work);
2281         cancel_delayed_work_sync(&reg_timeout);
2282
2283         mutex_lock(&cfg80211_mutex);
2284         mutex_lock(&reg_mutex);
2285
2286         reset_regdomains(true);
2287
2288         dev_set_uevent_suppress(&reg_pdev->dev, true);
2289
2290         platform_device_unregister(reg_pdev);
2291
2292         spin_lock_bh(&reg_pending_beacons_lock);
2293         if (!list_empty(&reg_pending_beacons)) {
2294                 list_for_each_entry_safe(reg_beacon, btmp,
2295                                          &reg_pending_beacons, list) {
2296                         list_del(&reg_beacon->list);
2297                         kfree(reg_beacon);
2298                 }
2299         }
2300         spin_unlock_bh(&reg_pending_beacons_lock);
2301
2302         if (!list_empty(&reg_beacon_list)) {
2303                 list_for_each_entry_safe(reg_beacon, btmp,
2304                                          &reg_beacon_list, list) {
2305                         list_del(&reg_beacon->list);
2306                         kfree(reg_beacon);
2307                 }
2308         }
2309
2310         spin_lock(&reg_requests_lock);
2311         if (!list_empty(&reg_requests_list)) {
2312                 list_for_each_entry_safe(reg_request, tmp,
2313                                          &reg_requests_list, list) {
2314                         list_del(&reg_request->list);
2315                         kfree(reg_request);
2316                 }
2317         }
2318         spin_unlock(&reg_requests_lock);
2319
2320         mutex_unlock(&reg_mutex);
2321         mutex_unlock(&cfg80211_mutex);
2322 }