2 * net/sched/sch_netem.c Network emulator
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
9 * Many of the algorithms and ideas for this came from
10 * NIST Net which is not copyrighted.
12 * Authors: Stephen Hemminger <shemminger@osdl.org>
13 * Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/rtnetlink.h>
25 #include <linux/reciprocal_div.h>
26 #include <linux/rbtree.h>
28 #include <net/netlink.h>
29 #include <net/pkt_sched.h>
30 #include <net/inet_ecn.h>
34 /* Network Emulation Queuing algorithm.
35 ====================================
37 Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
38 Network Emulation Tool
39 [2] Luigi Rizzo, DummyNet for FreeBSD
41 ----------------------------------------------------------------
43 This started out as a simple way to delay outgoing packets to
44 test TCP but has grown to include most of the functionality
45 of a full blown network emulator like NISTnet. It can delay
46 packets and add random jitter (and correlation). The random
47 distribution can be loaded from a table as well to provide
48 normal, Pareto, or experimental curves. Packet loss,
49 duplication, and reordering can also be emulated.
51 This qdisc does not do classification that can be handled in
52 layering other disciplines. It does not need to do bandwidth
53 control either since that can be handled by using token
54 bucket or other rate control.
56 Correlated Loss Generator models
58 Added generation of correlated loss according to the
59 "Gilbert-Elliot" model, a 4-state markov model.
62 [1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
63 [2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
64 and intuitive loss model for packet networks and its implementation
65 in the Netem module in the Linux kernel", available in [1]
67 Authors: Stefano Salsano <stefano.salsano at uniroma2.it
68 Fabio Ludovici <fabio.ludovici at yahoo.it>
71 struct netem_sched_data {
72 /* internal t(ime)fifo qdisc uses t_root and sch->limit */
73 struct rb_root t_root;
75 /* optional qdisc for classful handling (NULL at netem init) */
78 struct qdisc_watchdog watchdog;
80 psched_tdiff_t latency;
81 psched_tdiff_t jitter;
94 u32 cell_size_reciprocal;
100 } delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
113 /* Correlated Loss Generation models */
115 /* state of the Markov chain */
118 /* 4-states and Gilbert-Elliot models */
119 u32 a1; /* p13 for 4-states or p for GE */
120 u32 a2; /* p31 for 4-states or r for GE */
121 u32 a3; /* p32 for 4-states or h for GE */
122 u32 a4; /* p14 for 4-states or 1-k for GE */
123 u32 a5; /* p23 used only in 4-states */
128 /* Time stamp put into socket buffer control block
129 * Only valid when skbs are in our internal t(ime)fifo queue.
131 struct netem_skb_cb {
132 psched_time_t time_to_send;
136 /* Because space in skb->cb[] is tight, netem overloads skb->next/prev/tstamp
137 * to hold a rb_node structure.
139 * If struct sk_buff layout is changed, the following checks will complain.
141 static struct rb_node *netem_rb_node(struct sk_buff *skb)
143 BUILD_BUG_ON(offsetof(struct sk_buff, next) != 0);
144 BUILD_BUG_ON(offsetof(struct sk_buff, prev) !=
145 offsetof(struct sk_buff, next) + sizeof(skb->next));
146 BUILD_BUG_ON(offsetof(struct sk_buff, tstamp) !=
147 offsetof(struct sk_buff, prev) + sizeof(skb->prev));
148 BUILD_BUG_ON(sizeof(struct rb_node) > sizeof(skb->next) +
150 sizeof(skb->tstamp));
151 return (struct rb_node *)&skb->next;
154 static struct sk_buff *netem_rb_to_skb(struct rb_node *rb)
156 return (struct sk_buff *)rb;
159 static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
161 /* we assume we can use skb next/prev/tstamp as storage for rb_node */
162 qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
163 return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
166 /* init_crandom - initialize correlated random number generator
167 * Use entropy source for initial seed.
169 static void init_crandom(struct crndstate *state, unsigned long rho)
172 state->last = net_random();
175 /* get_crandom - correlated random number generator
176 * Next number depends on last value.
177 * rho is scaled to avoid floating point.
179 static u32 get_crandom(struct crndstate *state)
182 unsigned long answer;
184 if (state->rho == 0) /* no correlation */
187 value = net_random();
188 rho = (u64)state->rho + 1;
189 answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
190 state->last = answer;
194 /* loss_4state - 4-state model loss generator
195 * Generates losses according to the 4-state Markov chain adopted in
196 * the GI (General and Intuitive) loss model.
198 static bool loss_4state(struct netem_sched_data *q)
200 struct clgstate *clg = &q->clg;
201 u32 rnd = net_random();
204 * Makes a comparison between rnd and the transition
205 * probabilities outgoing from the current state, then decides the
206 * next state and if the next packet has to be transmitted or lost.
207 * The four states correspond to:
208 * 1 => successfully transmitted packets within a gap period
209 * 4 => isolated losses within a gap period
210 * 3 => lost packets within a burst period
211 * 2 => successfully transmitted packets within a burst period
213 switch (clg->state) {
218 } else if (clg->a4 < rnd && rnd < clg->a1) {
221 } else if (clg->a1 < rnd)
236 else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
239 } else if (clg->a2 + clg->a3 < rnd) {
252 /* loss_gilb_ell - Gilbert-Elliot model loss generator
253 * Generates losses according to the Gilbert-Elliot loss model or
254 * its special cases (Gilbert or Simple Gilbert)
256 * Makes a comparison between random number and the transition
257 * probabilities outgoing from the current state, then decides the
258 * next state. A second random number is extracted and the comparison
259 * with the loss probability of the current state decides if the next
260 * packet will be transmitted or lost.
262 static bool loss_gilb_ell(struct netem_sched_data *q)
264 struct clgstate *clg = &q->clg;
266 switch (clg->state) {
268 if (net_random() < clg->a1)
270 if (net_random() < clg->a4)
273 if (net_random() < clg->a2)
275 if (clg->a3 > net_random())
282 static bool loss_event(struct netem_sched_data *q)
284 switch (q->loss_model) {
286 /* Random packet drop 0 => none, ~0 => all */
287 return q->loss && q->loss >= get_crandom(&q->loss_cor);
290 /* 4state loss model algorithm (used also for GI model)
291 * Extracts a value from the markov 4 state loss generator,
292 * if it is 1 drops a packet and if needed writes the event in
295 return loss_4state(q);
298 /* Gilbert-Elliot loss model algorithm
299 * Extracts a value from the Gilbert-Elliot loss generator,
300 * if it is 1 drops a packet and if needed writes the event in
303 return loss_gilb_ell(q);
306 return false; /* not reached */
310 /* tabledist - return a pseudo-randomly distributed value with mean mu and
311 * std deviation sigma. Uses table lookup to approximate the desired
312 * distribution, and a uniformly-distributed pseudo-random source.
314 static psched_tdiff_t tabledist(psched_tdiff_t mu, psched_tdiff_t sigma,
315 struct crndstate *state,
316 const struct disttable *dist)
325 rnd = get_crandom(state);
327 /* default uniform distribution */
329 return (rnd % (2*sigma)) - sigma + mu;
331 t = dist->table[rnd % dist->size];
332 x = (sigma % NETEM_DIST_SCALE) * t;
334 x += NETEM_DIST_SCALE/2;
336 x -= NETEM_DIST_SCALE/2;
338 return x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
341 static psched_time_t packet_len_2_sched_time(unsigned int len, struct netem_sched_data *q)
345 len += q->packet_overhead;
348 u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
350 if (len > cells * q->cell_size) /* extra cell needed for remainder */
352 len = cells * (q->cell_size + q->cell_overhead);
355 ticks = (u64)len * NSEC_PER_SEC;
357 do_div(ticks, q->rate);
358 return PSCHED_NS2TICKS(ticks);
361 static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
363 struct netem_sched_data *q = qdisc_priv(sch);
364 psched_time_t tnext = netem_skb_cb(nskb)->time_to_send;
365 struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
371 skb = netem_rb_to_skb(parent);
372 if (tnext >= netem_skb_cb(skb)->time_to_send)
373 p = &parent->rb_right;
375 p = &parent->rb_left;
377 rb_link_node(netem_rb_node(nskb), parent, p);
378 rb_insert_color(netem_rb_node(nskb), &q->t_root);
383 * Insert one skb into qdisc.
384 * Note: parent depends on return value to account for queue length.
385 * NET_XMIT_DROP: queue length didn't change.
386 * NET_XMIT_SUCCESS: one skb was queued.
388 static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch)
390 struct netem_sched_data *q = qdisc_priv(sch);
391 /* We don't fill cb now as skb_unshare() may invalidate it */
392 struct netem_skb_cb *cb;
393 struct sk_buff *skb2;
396 /* Random duplication */
397 if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
402 if (q->ecn && INET_ECN_set_ce(skb))
403 sch->qstats.drops++; /* mark packet */
410 return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
413 /* If a delay is expected, orphan the skb. (orphaning usually takes
414 * place at TX completion time, so _before_ the link transit delay)
415 * Ideally, this orphaning should be done after the rate limiting
416 * module, because this breaks TCP Small Queue, and other mechanisms
417 * based on socket sk_wmem_alloc.
419 if (q->latency || q->jitter)
423 * If we need to duplicate packet, then re-insert at top of the
424 * qdisc tree, since parent queuer expects that only one
425 * skb will be queued.
427 if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
428 struct Qdisc *rootq = qdisc_root(sch);
429 u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
432 qdisc_enqueue_root(skb2, rootq);
433 q->duplicate = dupsave;
437 * Randomized packet corruption.
438 * Make copy if needed since we are modifying
439 * If packet is going to be hardware checksummed, then
440 * do it now in software before we mangle it.
442 if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
443 if (!(skb = skb_unshare(skb, GFP_ATOMIC)) ||
444 (skb->ip_summed == CHECKSUM_PARTIAL &&
445 skb_checksum_help(skb)))
446 return qdisc_drop(skb, sch);
448 skb->data[net_random() % skb_headlen(skb)] ^= 1<<(net_random() % 8);
451 if (unlikely(skb_queue_len(&sch->q) >= sch->limit))
452 return qdisc_reshape_fail(skb, sch);
454 sch->qstats.backlog += qdisc_pkt_len(skb);
456 cb = netem_skb_cb(skb);
457 if (q->gap == 0 || /* not doing reordering */
458 q->counter < q->gap - 1 || /* inside last reordering gap */
459 q->reorder < get_crandom(&q->reorder_cor)) {
461 psched_tdiff_t delay;
463 delay = tabledist(q->latency, q->jitter,
464 &q->delay_cor, q->delay_dist);
466 now = psched_get_time();
469 struct sk_buff *last;
471 if (!skb_queue_empty(&sch->q))
472 last = skb_peek_tail(&sch->q);
474 last = netem_rb_to_skb(rb_last(&q->t_root));
477 * Last packet in queue is reference point (now),
478 * calculate this time bonus and subtract
481 delay -= netem_skb_cb(last)->time_to_send - now;
482 delay = max_t(psched_tdiff_t, 0, delay);
483 now = netem_skb_cb(last)->time_to_send;
486 delay += packet_len_2_sched_time(skb->len, q);
489 cb->time_to_send = now + delay;
490 cb->tstamp_save = skb->tstamp;
492 tfifo_enqueue(skb, sch);
495 * Do re-ordering by putting one out of N packets at the front
498 cb->time_to_send = psched_get_time();
501 __skb_queue_head(&sch->q, skb);
502 sch->qstats.requeues++;
505 return NET_XMIT_SUCCESS;
508 static unsigned int netem_drop(struct Qdisc *sch)
510 struct netem_sched_data *q = qdisc_priv(sch);
513 len = qdisc_queue_drop(sch);
516 struct rb_node *p = rb_first(&q->t_root);
519 struct sk_buff *skb = netem_rb_to_skb(p);
521 rb_erase(p, &q->t_root);
525 len = qdisc_pkt_len(skb);
529 if (!len && q->qdisc && q->qdisc->ops->drop)
530 len = q->qdisc->ops->drop(q->qdisc);
537 static struct sk_buff *netem_dequeue(struct Qdisc *sch)
539 struct netem_sched_data *q = qdisc_priv(sch);
543 if (qdisc_is_throttled(sch))
547 skb = __skb_dequeue(&sch->q);
550 sch->qstats.backlog -= qdisc_pkt_len(skb);
551 qdisc_unthrottled(sch);
552 qdisc_bstats_update(sch, skb);
555 p = rb_first(&q->t_root);
557 psched_time_t time_to_send;
559 skb = netem_rb_to_skb(p);
561 /* if more time remaining? */
562 time_to_send = netem_skb_cb(skb)->time_to_send;
563 if (time_to_send <= psched_get_time()) {
564 rb_erase(p, &q->t_root);
569 skb->tstamp = netem_skb_cb(skb)->tstamp_save;
571 #ifdef CONFIG_NET_CLS_ACT
573 * If it's at ingress let's pretend the delay is
574 * from the network (tstamp will be updated).
576 if (G_TC_FROM(skb->tc_verd) & AT_INGRESS)
577 skb->tstamp.tv64 = 0;
581 int err = qdisc_enqueue(skb, q->qdisc);
583 if (unlikely(err != NET_XMIT_SUCCESS)) {
584 if (net_xmit_drop_count(err)) {
586 qdisc_tree_decrease_qlen(sch, 1);
595 skb = q->qdisc->ops->dequeue(q->qdisc);
599 qdisc_watchdog_schedule(&q->watchdog, time_to_send);
603 skb = q->qdisc->ops->dequeue(q->qdisc);
610 static void netem_reset(struct Qdisc *sch)
612 struct netem_sched_data *q = qdisc_priv(sch);
614 qdisc_reset_queue(sch);
616 qdisc_reset(q->qdisc);
617 qdisc_watchdog_cancel(&q->watchdog);
620 static void dist_free(struct disttable *d)
623 if (is_vmalloc_addr(d))
631 * Distribution data is a variable size payload containing
632 * signed 16 bit values.
634 static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr)
636 struct netem_sched_data *q = qdisc_priv(sch);
637 size_t n = nla_len(attr)/sizeof(__s16);
638 const __s16 *data = nla_data(attr);
639 spinlock_t *root_lock;
644 if (n > NETEM_DIST_MAX)
647 s = sizeof(struct disttable) + n * sizeof(s16);
648 d = kmalloc(s, GFP_KERNEL | __GFP_NOWARN);
655 for (i = 0; i < n; i++)
656 d->table[i] = data[i];
658 root_lock = qdisc_root_sleeping_lock(sch);
660 spin_lock_bh(root_lock);
661 swap(q->delay_dist, d);
662 spin_unlock_bh(root_lock);
668 static void get_correlation(struct Qdisc *sch, const struct nlattr *attr)
670 struct netem_sched_data *q = qdisc_priv(sch);
671 const struct tc_netem_corr *c = nla_data(attr);
673 init_crandom(&q->delay_cor, c->delay_corr);
674 init_crandom(&q->loss_cor, c->loss_corr);
675 init_crandom(&q->dup_cor, c->dup_corr);
678 static void get_reorder(struct Qdisc *sch, const struct nlattr *attr)
680 struct netem_sched_data *q = qdisc_priv(sch);
681 const struct tc_netem_reorder *r = nla_data(attr);
683 q->reorder = r->probability;
684 init_crandom(&q->reorder_cor, r->correlation);
687 static void get_corrupt(struct Qdisc *sch, const struct nlattr *attr)
689 struct netem_sched_data *q = qdisc_priv(sch);
690 const struct tc_netem_corrupt *r = nla_data(attr);
692 q->corrupt = r->probability;
693 init_crandom(&q->corrupt_cor, r->correlation);
696 static void get_rate(struct Qdisc *sch, const struct nlattr *attr)
698 struct netem_sched_data *q = qdisc_priv(sch);
699 const struct tc_netem_rate *r = nla_data(attr);
702 q->packet_overhead = r->packet_overhead;
703 q->cell_size = r->cell_size;
705 q->cell_size_reciprocal = reciprocal_value(q->cell_size);
706 q->cell_overhead = r->cell_overhead;
709 static int get_loss_clg(struct Qdisc *sch, const struct nlattr *attr)
711 struct netem_sched_data *q = qdisc_priv(sch);
712 const struct nlattr *la;
715 nla_for_each_nested(la, attr, rem) {
716 u16 type = nla_type(la);
719 case NETEM_LOSS_GI: {
720 const struct tc_netem_gimodel *gi = nla_data(la);
722 if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
723 pr_info("netem: incorrect gi model size\n");
727 q->loss_model = CLG_4_STATES;
738 case NETEM_LOSS_GE: {
739 const struct tc_netem_gemodel *ge = nla_data(la);
741 if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
742 pr_info("netem: incorrect ge model size\n");
746 q->loss_model = CLG_GILB_ELL;
756 pr_info("netem: unknown loss type %u\n", type);
764 static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
765 [TCA_NETEM_CORR] = { .len = sizeof(struct tc_netem_corr) },
766 [TCA_NETEM_REORDER] = { .len = sizeof(struct tc_netem_reorder) },
767 [TCA_NETEM_CORRUPT] = { .len = sizeof(struct tc_netem_corrupt) },
768 [TCA_NETEM_RATE] = { .len = sizeof(struct tc_netem_rate) },
769 [TCA_NETEM_LOSS] = { .type = NLA_NESTED },
770 [TCA_NETEM_ECN] = { .type = NLA_U32 },
773 static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
774 const struct nla_policy *policy, int len)
776 int nested_len = nla_len(nla) - NLA_ALIGN(len);
778 if (nested_len < 0) {
779 pr_info("netem: invalid attributes len %d\n", nested_len);
783 if (nested_len >= nla_attr_size(0))
784 return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
787 memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
791 /* Parse netlink message to set options */
792 static int netem_change(struct Qdisc *sch, struct nlattr *opt)
794 struct netem_sched_data *q = qdisc_priv(sch);
795 struct nlattr *tb[TCA_NETEM_MAX + 1];
796 struct tc_netem_qopt *qopt;
802 qopt = nla_data(opt);
803 ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
807 sch->limit = qopt->limit;
809 q->latency = qopt->latency;
810 q->jitter = qopt->jitter;
811 q->limit = qopt->limit;
814 q->loss = qopt->loss;
815 q->duplicate = qopt->duplicate;
817 /* for compatibility with earlier versions.
818 * if gap is set, need to assume 100% probability
823 if (tb[TCA_NETEM_CORR])
824 get_correlation(sch, tb[TCA_NETEM_CORR]);
826 if (tb[TCA_NETEM_DELAY_DIST]) {
827 ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]);
832 if (tb[TCA_NETEM_REORDER])
833 get_reorder(sch, tb[TCA_NETEM_REORDER]);
835 if (tb[TCA_NETEM_CORRUPT])
836 get_corrupt(sch, tb[TCA_NETEM_CORRUPT]);
838 if (tb[TCA_NETEM_RATE])
839 get_rate(sch, tb[TCA_NETEM_RATE]);
841 if (tb[TCA_NETEM_ECN])
842 q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
844 q->loss_model = CLG_RANDOM;
845 if (tb[TCA_NETEM_LOSS])
846 ret = get_loss_clg(sch, tb[TCA_NETEM_LOSS]);
851 static int netem_init(struct Qdisc *sch, struct nlattr *opt)
853 struct netem_sched_data *q = qdisc_priv(sch);
859 qdisc_watchdog_init(&q->watchdog, sch);
861 q->loss_model = CLG_RANDOM;
862 ret = netem_change(sch, opt);
864 pr_info("netem: change failed\n");
868 static void netem_destroy(struct Qdisc *sch)
870 struct netem_sched_data *q = qdisc_priv(sch);
872 qdisc_watchdog_cancel(&q->watchdog);
874 qdisc_destroy(q->qdisc);
875 dist_free(q->delay_dist);
878 static int dump_loss_model(const struct netem_sched_data *q,
883 nest = nla_nest_start(skb, TCA_NETEM_LOSS);
885 goto nla_put_failure;
887 switch (q->loss_model) {
889 /* legacy loss model */
890 nla_nest_cancel(skb, nest);
891 return 0; /* no data */
894 struct tc_netem_gimodel gi = {
902 if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
903 goto nla_put_failure;
907 struct tc_netem_gemodel ge = {
914 if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
915 goto nla_put_failure;
920 nla_nest_end(skb, nest);
924 nla_nest_cancel(skb, nest);
928 static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
930 const struct netem_sched_data *q = qdisc_priv(sch);
931 struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
932 struct tc_netem_qopt qopt;
933 struct tc_netem_corr cor;
934 struct tc_netem_reorder reorder;
935 struct tc_netem_corrupt corrupt;
936 struct tc_netem_rate rate;
938 qopt.latency = q->latency;
939 qopt.jitter = q->jitter;
940 qopt.limit = q->limit;
943 qopt.duplicate = q->duplicate;
944 if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
945 goto nla_put_failure;
947 cor.delay_corr = q->delay_cor.rho;
948 cor.loss_corr = q->loss_cor.rho;
949 cor.dup_corr = q->dup_cor.rho;
950 if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
951 goto nla_put_failure;
953 reorder.probability = q->reorder;
954 reorder.correlation = q->reorder_cor.rho;
955 if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
956 goto nla_put_failure;
958 corrupt.probability = q->corrupt;
959 corrupt.correlation = q->corrupt_cor.rho;
960 if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
961 goto nla_put_failure;
964 rate.packet_overhead = q->packet_overhead;
965 rate.cell_size = q->cell_size;
966 rate.cell_overhead = q->cell_overhead;
967 if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
968 goto nla_put_failure;
970 if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
971 goto nla_put_failure;
973 if (dump_loss_model(q, skb) != 0)
974 goto nla_put_failure;
976 return nla_nest_end(skb, nla);
979 nlmsg_trim(skb, nla);
983 static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
984 struct sk_buff *skb, struct tcmsg *tcm)
986 struct netem_sched_data *q = qdisc_priv(sch);
988 if (cl != 1 || !q->qdisc) /* only one class */
991 tcm->tcm_handle |= TC_H_MIN(1);
992 tcm->tcm_info = q->qdisc->handle;
997 static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1000 struct netem_sched_data *q = qdisc_priv(sch);
1006 qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
1009 sch_tree_unlock(sch);
1014 static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1016 struct netem_sched_data *q = qdisc_priv(sch);
1020 static unsigned long netem_get(struct Qdisc *sch, u32 classid)
1025 static void netem_put(struct Qdisc *sch, unsigned long arg)
1029 static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1031 if (!walker->stop) {
1032 if (walker->count >= walker->skip)
1033 if (walker->fn(sch, 1, walker) < 0) {
1041 static const struct Qdisc_class_ops netem_class_ops = {
1042 .graft = netem_graft,
1047 .dump = netem_dump_class,
1050 static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1052 .cl_ops = &netem_class_ops,
1053 .priv_size = sizeof(struct netem_sched_data),
1054 .enqueue = netem_enqueue,
1055 .dequeue = netem_dequeue,
1056 .peek = qdisc_peek_dequeued,
1059 .reset = netem_reset,
1060 .destroy = netem_destroy,
1061 .change = netem_change,
1063 .owner = THIS_MODULE,
1067 static int __init netem_module_init(void)
1069 pr_info("netem: version " VERSION "\n");
1070 return register_qdisc(&netem_qdisc_ops);
1072 static void __exit netem_module_exit(void)
1074 unregister_qdisc(&netem_qdisc_ops);
1076 module_init(netem_module_init)
1077 module_exit(netem_module_exit)
1078 MODULE_LICENSE("GPL");