Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[firefly-linux-kernel-4.4.55.git] / net / rfkill / core.c
1 /*
2  * Copyright (C) 2006 - 2007 Ivo van Doorn
3  * Copyright (C) 2007 Dmitry Torokhov
4  * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 #include <linux/workqueue.h>
24 #include <linux/capability.h>
25 #include <linux/list.h>
26 #include <linux/mutex.h>
27 #include <linux/rfkill.h>
28 #include <linux/sched.h>
29 #include <linux/spinlock.h>
30 #include <linux/device.h>
31 #include <linux/miscdevice.h>
32 #include <linux/wait.h>
33 #include <linux/poll.h>
34 #include <linux/fs.h>
35 #include <linux/slab.h>
36
37 #include "rfkill.h"
38
39 #define POLL_INTERVAL           (5 * HZ)
40
41 #define RFKILL_BLOCK_HW         BIT(0)
42 #define RFKILL_BLOCK_SW         BIT(1)
43 #define RFKILL_BLOCK_SW_PREV    BIT(2)
44 #define RFKILL_BLOCK_ANY        (RFKILL_BLOCK_HW |\
45                                  RFKILL_BLOCK_SW |\
46                                  RFKILL_BLOCK_SW_PREV)
47 #define RFKILL_BLOCK_SW_SETCALL BIT(31)
48
49 struct rfkill {
50         spinlock_t              lock;
51
52         const char              *name;
53         enum rfkill_type        type;
54
55         unsigned long           state;
56
57         u32                     idx;
58
59         bool                    registered;
60         bool                    persistent;
61
62         const struct rfkill_ops *ops;
63         void                    *data;
64
65 #ifdef CONFIG_RFKILL_LEDS
66         struct led_trigger      led_trigger;
67         const char              *ledtrigname;
68 #endif
69
70         struct device           dev;
71         struct list_head        node;
72
73         struct delayed_work     poll_work;
74         struct work_struct      uevent_work;
75         struct work_struct      sync_work;
76 };
77 #define to_rfkill(d)    container_of(d, struct rfkill, dev)
78
79 struct rfkill_int_event {
80         struct list_head        list;
81         struct rfkill_event     ev;
82 };
83
84 struct rfkill_data {
85         struct list_head        list;
86         struct list_head        events;
87         struct mutex            mtx;
88         wait_queue_head_t       read_wait;
89         bool                    input_handler;
90 };
91
92
93 MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
94 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
95 MODULE_DESCRIPTION("RF switch support");
96 MODULE_LICENSE("GPL");
97
98
99 /*
100  * The locking here should be made much smarter, we currently have
101  * a bit of a stupid situation because drivers might want to register
102  * the rfkill struct under their own lock, and take this lock during
103  * rfkill method calls -- which will cause an AB-BA deadlock situation.
104  *
105  * To fix that, we need to rework this code here to be mostly lock-free
106  * and only use the mutex for list manipulations, not to protect the
107  * various other global variables. Then we can avoid holding the mutex
108  * around driver operations, and all is happy.
109  */
110 static LIST_HEAD(rfkill_list);  /* list of registered rf switches */
111 static DEFINE_MUTEX(rfkill_global_mutex);
112 static LIST_HEAD(rfkill_fds);   /* list of open fds of /dev/rfkill */
113
114 static unsigned int rfkill_default_state = 1;
115 module_param_named(default_state, rfkill_default_state, uint, 0444);
116 MODULE_PARM_DESC(default_state,
117                  "Default initial state for all radio types, 0 = radio off");
118
119 static struct {
120         bool cur, sav;
121 } rfkill_global_states[NUM_RFKILL_TYPES];
122
123 static bool rfkill_epo_lock_active;
124
125
126 #ifdef CONFIG_RFKILL_LEDS
127 static void rfkill_led_trigger_event(struct rfkill *rfkill)
128 {
129         struct led_trigger *trigger;
130
131         if (!rfkill->registered)
132                 return;
133
134         trigger = &rfkill->led_trigger;
135
136         if (rfkill->state & RFKILL_BLOCK_ANY)
137                 led_trigger_event(trigger, LED_OFF);
138         else
139                 led_trigger_event(trigger, LED_FULL);
140 }
141
142 static void rfkill_led_trigger_activate(struct led_classdev *led)
143 {
144         struct rfkill *rfkill;
145
146         rfkill = container_of(led->trigger, struct rfkill, led_trigger);
147
148         rfkill_led_trigger_event(rfkill);
149 }
150
151 const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
152 {
153         return rfkill->led_trigger.name;
154 }
155 EXPORT_SYMBOL(rfkill_get_led_trigger_name);
156
157 void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
158 {
159         BUG_ON(!rfkill);
160
161         rfkill->ledtrigname = name;
162 }
163 EXPORT_SYMBOL(rfkill_set_led_trigger_name);
164
165 static int rfkill_led_trigger_register(struct rfkill *rfkill)
166 {
167         rfkill->led_trigger.name = rfkill->ledtrigname
168                                         ? : dev_name(&rfkill->dev);
169         rfkill->led_trigger.activate = rfkill_led_trigger_activate;
170         return led_trigger_register(&rfkill->led_trigger);
171 }
172
173 static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
174 {
175         led_trigger_unregister(&rfkill->led_trigger);
176 }
177 #else
178 static void rfkill_led_trigger_event(struct rfkill *rfkill)
179 {
180 }
181
182 static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
183 {
184         return 0;
185 }
186
187 static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
188 {
189 }
190 #endif /* CONFIG_RFKILL_LEDS */
191
192 static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
193                               enum rfkill_operation op)
194 {
195         unsigned long flags;
196
197         ev->idx = rfkill->idx;
198         ev->type = rfkill->type;
199         ev->op = op;
200
201         spin_lock_irqsave(&rfkill->lock, flags);
202         ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
203         ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
204                                         RFKILL_BLOCK_SW_PREV));
205         spin_unlock_irqrestore(&rfkill->lock, flags);
206 }
207
208 static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
209 {
210         struct rfkill_data *data;
211         struct rfkill_int_event *ev;
212
213         list_for_each_entry(data, &rfkill_fds, list) {
214                 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
215                 if (!ev)
216                         continue;
217                 rfkill_fill_event(&ev->ev, rfkill, op);
218                 mutex_lock(&data->mtx);
219                 list_add_tail(&ev->list, &data->events);
220                 mutex_unlock(&data->mtx);
221                 wake_up_interruptible(&data->read_wait);
222         }
223 }
224
225 static void rfkill_event(struct rfkill *rfkill)
226 {
227         if (!rfkill->registered)
228                 return;
229
230         kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
231
232         /* also send event to /dev/rfkill */
233         rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
234 }
235
236 static bool __rfkill_set_hw_state(struct rfkill *rfkill,
237                                   bool blocked, bool *change)
238 {
239         unsigned long flags;
240         bool prev, any;
241
242         BUG_ON(!rfkill);
243
244         spin_lock_irqsave(&rfkill->lock, flags);
245         prev = !!(rfkill->state & RFKILL_BLOCK_HW);
246         if (blocked)
247                 rfkill->state |= RFKILL_BLOCK_HW;
248         else
249                 rfkill->state &= ~RFKILL_BLOCK_HW;
250         *change = prev != blocked;
251         any = !!(rfkill->state & RFKILL_BLOCK_ANY);
252         spin_unlock_irqrestore(&rfkill->lock, flags);
253
254         rfkill_led_trigger_event(rfkill);
255
256         return any;
257 }
258
259 /**
260  * rfkill_set_block - wrapper for set_block method
261  *
262  * @rfkill: the rfkill struct to use
263  * @blocked: the new software state
264  *
265  * Calls the set_block method (when applicable) and handles notifications
266  * etc. as well.
267  */
268 static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
269 {
270         unsigned long flags;
271         bool prev, curr;
272         int err;
273
274         if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
275                 return;
276
277         /*
278          * Some platforms (...!) generate input events which affect the
279          * _hard_ kill state -- whenever something tries to change the
280          * current software state query the hardware state too.
281          */
282         if (rfkill->ops->query)
283                 rfkill->ops->query(rfkill, rfkill->data);
284
285         spin_lock_irqsave(&rfkill->lock, flags);
286         prev = rfkill->state & RFKILL_BLOCK_SW;
287
288         if (rfkill->state & RFKILL_BLOCK_SW)
289                 rfkill->state |= RFKILL_BLOCK_SW_PREV;
290         else
291                 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
292
293         if (blocked)
294                 rfkill->state |= RFKILL_BLOCK_SW;
295         else
296                 rfkill->state &= ~RFKILL_BLOCK_SW;
297
298         rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
299         spin_unlock_irqrestore(&rfkill->lock, flags);
300
301         err = rfkill->ops->set_block(rfkill->data, blocked);
302
303         spin_lock_irqsave(&rfkill->lock, flags);
304         if (err) {
305                 /*
306                  * Failed -- reset status to _prev, this may be different
307                  * from what set set _PREV to earlier in this function
308                  * if rfkill_set_sw_state was invoked.
309                  */
310                 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
311                         rfkill->state |= RFKILL_BLOCK_SW;
312                 else
313                         rfkill->state &= ~RFKILL_BLOCK_SW;
314         }
315         rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
316         rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
317         curr = rfkill->state & RFKILL_BLOCK_SW;
318         spin_unlock_irqrestore(&rfkill->lock, flags);
319
320         rfkill_led_trigger_event(rfkill);
321
322         if (prev != curr)
323                 rfkill_event(rfkill);
324 }
325
326 #ifdef CONFIG_RFKILL_INPUT
327 static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
328
329 /**
330  * __rfkill_switch_all - Toggle state of all switches of given type
331  * @type: type of interfaces to be affected
332  * @blocked: the new state
333  *
334  * This function sets the state of all switches of given type,
335  * unless a specific switch is claimed by userspace (in which case,
336  * that switch is left alone) or suspended.
337  *
338  * Caller must have acquired rfkill_global_mutex.
339  */
340 static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
341 {
342         struct rfkill *rfkill;
343
344         rfkill_global_states[type].cur = blocked;
345         list_for_each_entry(rfkill, &rfkill_list, node) {
346                 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
347                         continue;
348
349                 rfkill_set_block(rfkill, blocked);
350         }
351 }
352
353 /**
354  * rfkill_switch_all - Toggle state of all switches of given type
355  * @type: type of interfaces to be affected
356  * @blocked: the new state
357  *
358  * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
359  * Please refer to __rfkill_switch_all() for details.
360  *
361  * Does nothing if the EPO lock is active.
362  */
363 void rfkill_switch_all(enum rfkill_type type, bool blocked)
364 {
365         if (atomic_read(&rfkill_input_disabled))
366                 return;
367
368         mutex_lock(&rfkill_global_mutex);
369
370         if (!rfkill_epo_lock_active)
371                 __rfkill_switch_all(type, blocked);
372
373         mutex_unlock(&rfkill_global_mutex);
374 }
375
376 /**
377  * rfkill_epo - emergency power off all transmitters
378  *
379  * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
380  * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
381  *
382  * The global state before the EPO is saved and can be restored later
383  * using rfkill_restore_states().
384  */
385 void rfkill_epo(void)
386 {
387         struct rfkill *rfkill;
388         int i;
389
390         if (atomic_read(&rfkill_input_disabled))
391                 return;
392
393         mutex_lock(&rfkill_global_mutex);
394
395         rfkill_epo_lock_active = true;
396         list_for_each_entry(rfkill, &rfkill_list, node)
397                 rfkill_set_block(rfkill, true);
398
399         for (i = 0; i < NUM_RFKILL_TYPES; i++) {
400                 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
401                 rfkill_global_states[i].cur = true;
402         }
403
404         mutex_unlock(&rfkill_global_mutex);
405 }
406
407 /**
408  * rfkill_restore_states - restore global states
409  *
410  * Restore (and sync switches to) the global state from the
411  * states in rfkill_default_states.  This can undo the effects of
412  * a call to rfkill_epo().
413  */
414 void rfkill_restore_states(void)
415 {
416         int i;
417
418         if (atomic_read(&rfkill_input_disabled))
419                 return;
420
421         mutex_lock(&rfkill_global_mutex);
422
423         rfkill_epo_lock_active = false;
424         for (i = 0; i < NUM_RFKILL_TYPES; i++)
425                 __rfkill_switch_all(i, rfkill_global_states[i].sav);
426         mutex_unlock(&rfkill_global_mutex);
427 }
428
429 /**
430  * rfkill_remove_epo_lock - unlock state changes
431  *
432  * Used by rfkill-input manually unlock state changes, when
433  * the EPO switch is deactivated.
434  */
435 void rfkill_remove_epo_lock(void)
436 {
437         if (atomic_read(&rfkill_input_disabled))
438                 return;
439
440         mutex_lock(&rfkill_global_mutex);
441         rfkill_epo_lock_active = false;
442         mutex_unlock(&rfkill_global_mutex);
443 }
444
445 /**
446  * rfkill_is_epo_lock_active - returns true EPO is active
447  *
448  * Returns 0 (false) if there is NOT an active EPO contidion,
449  * and 1 (true) if there is an active EPO contition, which
450  * locks all radios in one of the BLOCKED states.
451  *
452  * Can be called in atomic context.
453  */
454 bool rfkill_is_epo_lock_active(void)
455 {
456         return rfkill_epo_lock_active;
457 }
458
459 /**
460  * rfkill_get_global_sw_state - returns global state for a type
461  * @type: the type to get the global state of
462  *
463  * Returns the current global state for a given wireless
464  * device type.
465  */
466 bool rfkill_get_global_sw_state(const enum rfkill_type type)
467 {
468         return rfkill_global_states[type].cur;
469 }
470 #endif
471
472
473 bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
474 {
475         bool ret, change;
476
477         ret = __rfkill_set_hw_state(rfkill, blocked, &change);
478
479         if (!rfkill->registered)
480                 return ret;
481
482         if (change)
483                 schedule_work(&rfkill->uevent_work);
484
485         return ret;
486 }
487 EXPORT_SYMBOL(rfkill_set_hw_state);
488
489 static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
490 {
491         u32 bit = RFKILL_BLOCK_SW;
492
493         /* if in a ops->set_block right now, use other bit */
494         if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
495                 bit = RFKILL_BLOCK_SW_PREV;
496
497         if (blocked)
498                 rfkill->state |= bit;
499         else
500                 rfkill->state &= ~bit;
501 }
502
503 bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
504 {
505         unsigned long flags;
506         bool prev, hwblock;
507
508         BUG_ON(!rfkill);
509
510         spin_lock_irqsave(&rfkill->lock, flags);
511         prev = !!(rfkill->state & RFKILL_BLOCK_SW);
512         __rfkill_set_sw_state(rfkill, blocked);
513         hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
514         blocked = blocked || hwblock;
515         spin_unlock_irqrestore(&rfkill->lock, flags);
516
517         if (!rfkill->registered)
518                 return blocked;
519
520         if (prev != blocked && !hwblock)
521                 schedule_work(&rfkill->uevent_work);
522
523         rfkill_led_trigger_event(rfkill);
524
525         return blocked;
526 }
527 EXPORT_SYMBOL(rfkill_set_sw_state);
528
529 void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
530 {
531         unsigned long flags;
532
533         BUG_ON(!rfkill);
534         BUG_ON(rfkill->registered);
535
536         spin_lock_irqsave(&rfkill->lock, flags);
537         __rfkill_set_sw_state(rfkill, blocked);
538         rfkill->persistent = true;
539         spin_unlock_irqrestore(&rfkill->lock, flags);
540 }
541 EXPORT_SYMBOL(rfkill_init_sw_state);
542
543 void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
544 {
545         unsigned long flags;
546         bool swprev, hwprev;
547
548         BUG_ON(!rfkill);
549
550         spin_lock_irqsave(&rfkill->lock, flags);
551
552         /*
553          * No need to care about prev/setblock ... this is for uevent only
554          * and that will get triggered by rfkill_set_block anyway.
555          */
556         swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
557         hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
558         __rfkill_set_sw_state(rfkill, sw);
559         if (hw)
560                 rfkill->state |= RFKILL_BLOCK_HW;
561         else
562                 rfkill->state &= ~RFKILL_BLOCK_HW;
563
564         spin_unlock_irqrestore(&rfkill->lock, flags);
565
566         if (!rfkill->registered) {
567                 rfkill->persistent = true;
568         } else {
569                 if (swprev != sw || hwprev != hw)
570                         schedule_work(&rfkill->uevent_work);
571
572                 rfkill_led_trigger_event(rfkill);
573         }
574 }
575 EXPORT_SYMBOL(rfkill_set_states);
576
577 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
578                          char *buf)
579 {
580         struct rfkill *rfkill = to_rfkill(dev);
581
582         return sprintf(buf, "%s\n", rfkill->name);
583 }
584 static DEVICE_ATTR_RO(name);
585
586 static const char *rfkill_get_type_str(enum rfkill_type type)
587 {
588         BUILD_BUG_ON(NUM_RFKILL_TYPES != RFKILL_TYPE_NFC + 1);
589
590         switch (type) {
591         case RFKILL_TYPE_WLAN:
592                 return "wlan";
593         case RFKILL_TYPE_BLUETOOTH:
594                 return "bluetooth";
595         case RFKILL_TYPE_UWB:
596                 return "ultrawideband";
597         case RFKILL_TYPE_WIMAX:
598                 return "wimax";
599         case RFKILL_TYPE_WWAN:
600                 return "wwan";
601         case RFKILL_TYPE_GPS:
602                 return "gps";
603         case RFKILL_TYPE_FM:
604                 return "fm";
605         case RFKILL_TYPE_NFC:
606                 return "nfc";
607         default:
608                 BUG();
609         }
610 }
611
612 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
613                          char *buf)
614 {
615         struct rfkill *rfkill = to_rfkill(dev);
616
617         return sprintf(buf, "%s\n", rfkill_get_type_str(rfkill->type));
618 }
619 static DEVICE_ATTR_RO(type);
620
621 static ssize_t index_show(struct device *dev, struct device_attribute *attr,
622                           char *buf)
623 {
624         struct rfkill *rfkill = to_rfkill(dev);
625
626         return sprintf(buf, "%d\n", rfkill->idx);
627 }
628 static DEVICE_ATTR_RO(index);
629
630 static ssize_t persistent_show(struct device *dev,
631                                struct device_attribute *attr, char *buf)
632 {
633         struct rfkill *rfkill = to_rfkill(dev);
634
635         return sprintf(buf, "%d\n", rfkill->persistent);
636 }
637 static DEVICE_ATTR_RO(persistent);
638
639 static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
640                          char *buf)
641 {
642         struct rfkill *rfkill = to_rfkill(dev);
643
644         return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
645 }
646 static DEVICE_ATTR_RO(hard);
647
648 static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
649                          char *buf)
650 {
651         struct rfkill *rfkill = to_rfkill(dev);
652
653         return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
654 }
655
656 static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
657                           const char *buf, size_t count)
658 {
659         struct rfkill *rfkill = to_rfkill(dev);
660         unsigned long state;
661         int err;
662
663         if (!capable(CAP_NET_ADMIN))
664                 return -EPERM;
665
666         err = kstrtoul(buf, 0, &state);
667         if (err)
668                 return err;
669
670         if (state > 1 )
671                 return -EINVAL;
672
673         mutex_lock(&rfkill_global_mutex);
674         rfkill_set_block(rfkill, state);
675         mutex_unlock(&rfkill_global_mutex);
676
677         return count;
678 }
679 static DEVICE_ATTR_RW(soft);
680
681 static u8 user_state_from_blocked(unsigned long state)
682 {
683         if (state & RFKILL_BLOCK_HW)
684                 return RFKILL_USER_STATE_HARD_BLOCKED;
685         if (state & RFKILL_BLOCK_SW)
686                 return RFKILL_USER_STATE_SOFT_BLOCKED;
687
688         return RFKILL_USER_STATE_UNBLOCKED;
689 }
690
691 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
692                           char *buf)
693 {
694         struct rfkill *rfkill = to_rfkill(dev);
695
696         return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
697 }
698
699 static ssize_t state_store(struct device *dev, struct device_attribute *attr,
700                            const char *buf, size_t count)
701 {
702         struct rfkill *rfkill = to_rfkill(dev);
703         unsigned long state;
704         int err;
705
706         if (!capable(CAP_NET_ADMIN))
707                 return -EPERM;
708
709         err = kstrtoul(buf, 0, &state);
710         if (err)
711                 return err;
712
713         if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
714             state != RFKILL_USER_STATE_UNBLOCKED)
715                 return -EINVAL;
716
717         mutex_lock(&rfkill_global_mutex);
718         rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
719         mutex_unlock(&rfkill_global_mutex);
720
721         return count;
722 }
723 static DEVICE_ATTR_RW(state);
724
725 static ssize_t claim_show(struct device *dev, struct device_attribute *attr,
726                           char *buf)
727 {
728         return sprintf(buf, "%d\n", 0);
729 }
730 static DEVICE_ATTR_RO(claim);
731
732 static struct attribute *rfkill_dev_attrs[] = {
733         &dev_attr_name.attr,
734         &dev_attr_type.attr,
735         &dev_attr_index.attr,
736         &dev_attr_persistent.attr,
737         &dev_attr_state.attr,
738         &dev_attr_claim.attr,
739         &dev_attr_soft.attr,
740         &dev_attr_hard.attr,
741         NULL,
742 };
743 ATTRIBUTE_GROUPS(rfkill_dev);
744
745 static void rfkill_release(struct device *dev)
746 {
747         struct rfkill *rfkill = to_rfkill(dev);
748
749         kfree(rfkill);
750 }
751
752 static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
753 {
754         struct rfkill *rfkill = to_rfkill(dev);
755         unsigned long flags;
756         u32 state;
757         int error;
758
759         error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
760         if (error)
761                 return error;
762         error = add_uevent_var(env, "RFKILL_TYPE=%s",
763                                rfkill_get_type_str(rfkill->type));
764         if (error)
765                 return error;
766         spin_lock_irqsave(&rfkill->lock, flags);
767         state = rfkill->state;
768         spin_unlock_irqrestore(&rfkill->lock, flags);
769         error = add_uevent_var(env, "RFKILL_STATE=%d",
770                                user_state_from_blocked(state));
771         return error;
772 }
773
774 void rfkill_pause_polling(struct rfkill *rfkill)
775 {
776         BUG_ON(!rfkill);
777
778         if (!rfkill->ops->poll)
779                 return;
780
781         cancel_delayed_work_sync(&rfkill->poll_work);
782 }
783 EXPORT_SYMBOL(rfkill_pause_polling);
784
785 void rfkill_resume_polling(struct rfkill *rfkill)
786 {
787         BUG_ON(!rfkill);
788
789         if (!rfkill->ops->poll)
790                 return;
791
792         queue_delayed_work(system_power_efficient_wq,
793                            &rfkill->poll_work, 0);
794 }
795 EXPORT_SYMBOL(rfkill_resume_polling);
796
797 #ifdef CONFIG_PM_SLEEP
798 static int rfkill_suspend(struct device *dev)
799 {
800         struct rfkill *rfkill = to_rfkill(dev);
801
802         rfkill_pause_polling(rfkill);
803
804         return 0;
805 }
806
807 static int rfkill_resume(struct device *dev)
808 {
809         struct rfkill *rfkill = to_rfkill(dev);
810         bool cur;
811
812         if (!rfkill->persistent) {
813                 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
814                 rfkill_set_block(rfkill, cur);
815         }
816
817         rfkill_resume_polling(rfkill);
818
819         return 0;
820 }
821
822 static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
823 #define RFKILL_PM_OPS (&rfkill_pm_ops)
824 #else
825 #define RFKILL_PM_OPS NULL
826 #endif
827
828 static struct class rfkill_class = {
829         .name           = "rfkill",
830         .dev_release    = rfkill_release,
831         .dev_groups     = rfkill_dev_groups,
832         .dev_uevent     = rfkill_dev_uevent,
833         .pm             = RFKILL_PM_OPS,
834 };
835
836 bool rfkill_blocked(struct rfkill *rfkill)
837 {
838         unsigned long flags;
839         u32 state;
840
841         spin_lock_irqsave(&rfkill->lock, flags);
842         state = rfkill->state;
843         spin_unlock_irqrestore(&rfkill->lock, flags);
844
845         return !!(state & RFKILL_BLOCK_ANY);
846 }
847 EXPORT_SYMBOL(rfkill_blocked);
848
849
850 struct rfkill * __must_check rfkill_alloc(const char *name,
851                                           struct device *parent,
852                                           const enum rfkill_type type,
853                                           const struct rfkill_ops *ops,
854                                           void *ops_data)
855 {
856         struct rfkill *rfkill;
857         struct device *dev;
858
859         if (WARN_ON(!ops))
860                 return NULL;
861
862         if (WARN_ON(!ops->set_block))
863                 return NULL;
864
865         if (WARN_ON(!name))
866                 return NULL;
867
868         if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
869                 return NULL;
870
871         rfkill = kzalloc(sizeof(*rfkill), GFP_KERNEL);
872         if (!rfkill)
873                 return NULL;
874
875         spin_lock_init(&rfkill->lock);
876         INIT_LIST_HEAD(&rfkill->node);
877         rfkill->type = type;
878         rfkill->name = name;
879         rfkill->ops = ops;
880         rfkill->data = ops_data;
881
882         dev = &rfkill->dev;
883         dev->class = &rfkill_class;
884         dev->parent = parent;
885         device_initialize(dev);
886
887         return rfkill;
888 }
889 EXPORT_SYMBOL(rfkill_alloc);
890
891 static void rfkill_poll(struct work_struct *work)
892 {
893         struct rfkill *rfkill;
894
895         rfkill = container_of(work, struct rfkill, poll_work.work);
896
897         /*
898          * Poll hardware state -- driver will use one of the
899          * rfkill_set{,_hw,_sw}_state functions and use its
900          * return value to update the current status.
901          */
902         rfkill->ops->poll(rfkill, rfkill->data);
903
904         queue_delayed_work(system_power_efficient_wq,
905                 &rfkill->poll_work,
906                 round_jiffies_relative(POLL_INTERVAL));
907 }
908
909 static void rfkill_uevent_work(struct work_struct *work)
910 {
911         struct rfkill *rfkill;
912
913         rfkill = container_of(work, struct rfkill, uevent_work);
914
915         mutex_lock(&rfkill_global_mutex);
916         rfkill_event(rfkill);
917         mutex_unlock(&rfkill_global_mutex);
918 }
919
920 static void rfkill_sync_work(struct work_struct *work)
921 {
922         struct rfkill *rfkill;
923         bool cur;
924
925         rfkill = container_of(work, struct rfkill, sync_work);
926
927         mutex_lock(&rfkill_global_mutex);
928         cur = rfkill_global_states[rfkill->type].cur;
929         rfkill_set_block(rfkill, cur);
930         mutex_unlock(&rfkill_global_mutex);
931 }
932
933 int __must_check rfkill_register(struct rfkill *rfkill)
934 {
935         static unsigned long rfkill_no;
936         struct device *dev = &rfkill->dev;
937         int error;
938
939         BUG_ON(!rfkill);
940
941         mutex_lock(&rfkill_global_mutex);
942
943         if (rfkill->registered) {
944                 error = -EALREADY;
945                 goto unlock;
946         }
947
948         rfkill->idx = rfkill_no;
949         dev_set_name(dev, "rfkill%lu", rfkill_no);
950         rfkill_no++;
951
952         list_add_tail(&rfkill->node, &rfkill_list);
953
954         error = device_add(dev);
955         if (error)
956                 goto remove;
957
958         error = rfkill_led_trigger_register(rfkill);
959         if (error)
960                 goto devdel;
961
962         rfkill->registered = true;
963
964         INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
965         INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
966         INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
967
968         if (rfkill->ops->poll)
969                 queue_delayed_work(system_power_efficient_wq,
970                         &rfkill->poll_work,
971                         round_jiffies_relative(POLL_INTERVAL));
972
973         if (!rfkill->persistent || rfkill_epo_lock_active) {
974                 schedule_work(&rfkill->sync_work);
975         } else {
976 #ifdef CONFIG_RFKILL_INPUT
977                 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
978
979                 if (!atomic_read(&rfkill_input_disabled))
980                         __rfkill_switch_all(rfkill->type, soft_blocked);
981 #endif
982         }
983
984         rfkill_send_events(rfkill, RFKILL_OP_ADD);
985
986         mutex_unlock(&rfkill_global_mutex);
987         return 0;
988
989  devdel:
990         device_del(&rfkill->dev);
991  remove:
992         list_del_init(&rfkill->node);
993  unlock:
994         mutex_unlock(&rfkill_global_mutex);
995         return error;
996 }
997 EXPORT_SYMBOL(rfkill_register);
998
999 void rfkill_unregister(struct rfkill *rfkill)
1000 {
1001         BUG_ON(!rfkill);
1002
1003         if (rfkill->ops->poll)
1004                 cancel_delayed_work_sync(&rfkill->poll_work);
1005
1006         cancel_work_sync(&rfkill->uevent_work);
1007         cancel_work_sync(&rfkill->sync_work);
1008
1009         rfkill->registered = false;
1010
1011         device_del(&rfkill->dev);
1012
1013         mutex_lock(&rfkill_global_mutex);
1014         rfkill_send_events(rfkill, RFKILL_OP_DEL);
1015         list_del_init(&rfkill->node);
1016         mutex_unlock(&rfkill_global_mutex);
1017
1018         rfkill_led_trigger_unregister(rfkill);
1019 }
1020 EXPORT_SYMBOL(rfkill_unregister);
1021
1022 void rfkill_destroy(struct rfkill *rfkill)
1023 {
1024         if (rfkill)
1025                 put_device(&rfkill->dev);
1026 }
1027 EXPORT_SYMBOL(rfkill_destroy);
1028
1029 static int rfkill_fop_open(struct inode *inode, struct file *file)
1030 {
1031         struct rfkill_data *data;
1032         struct rfkill *rfkill;
1033         struct rfkill_int_event *ev, *tmp;
1034
1035         data = kzalloc(sizeof(*data), GFP_KERNEL);
1036         if (!data)
1037                 return -ENOMEM;
1038
1039         INIT_LIST_HEAD(&data->events);
1040         mutex_init(&data->mtx);
1041         init_waitqueue_head(&data->read_wait);
1042
1043         mutex_lock(&rfkill_global_mutex);
1044         mutex_lock(&data->mtx);
1045         /*
1046          * start getting events from elsewhere but hold mtx to get
1047          * startup events added first
1048          */
1049
1050         list_for_each_entry(rfkill, &rfkill_list, node) {
1051                 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1052                 if (!ev)
1053                         goto free;
1054                 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1055                 list_add_tail(&ev->list, &data->events);
1056         }
1057         list_add(&data->list, &rfkill_fds);
1058         mutex_unlock(&data->mtx);
1059         mutex_unlock(&rfkill_global_mutex);
1060
1061         file->private_data = data;
1062
1063         return nonseekable_open(inode, file);
1064
1065  free:
1066         mutex_unlock(&data->mtx);
1067         mutex_unlock(&rfkill_global_mutex);
1068         mutex_destroy(&data->mtx);
1069         list_for_each_entry_safe(ev, tmp, &data->events, list)
1070                 kfree(ev);
1071         kfree(data);
1072         return -ENOMEM;
1073 }
1074
1075 static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait)
1076 {
1077         struct rfkill_data *data = file->private_data;
1078         unsigned int res = POLLOUT | POLLWRNORM;
1079
1080         poll_wait(file, &data->read_wait, wait);
1081
1082         mutex_lock(&data->mtx);
1083         if (!list_empty(&data->events))
1084                 res = POLLIN | POLLRDNORM;
1085         mutex_unlock(&data->mtx);
1086
1087         return res;
1088 }
1089
1090 static bool rfkill_readable(struct rfkill_data *data)
1091 {
1092         bool r;
1093
1094         mutex_lock(&data->mtx);
1095         r = !list_empty(&data->events);
1096         mutex_unlock(&data->mtx);
1097
1098         return r;
1099 }
1100
1101 static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1102                                size_t count, loff_t *pos)
1103 {
1104         struct rfkill_data *data = file->private_data;
1105         struct rfkill_int_event *ev;
1106         unsigned long sz;
1107         int ret;
1108
1109         mutex_lock(&data->mtx);
1110
1111         while (list_empty(&data->events)) {
1112                 if (file->f_flags & O_NONBLOCK) {
1113                         ret = -EAGAIN;
1114                         goto out;
1115                 }
1116                 mutex_unlock(&data->mtx);
1117                 ret = wait_event_interruptible(data->read_wait,
1118                                                rfkill_readable(data));
1119                 mutex_lock(&data->mtx);
1120
1121                 if (ret)
1122                         goto out;
1123         }
1124
1125         ev = list_first_entry(&data->events, struct rfkill_int_event,
1126                                 list);
1127
1128         sz = min_t(unsigned long, sizeof(ev->ev), count);
1129         ret = sz;
1130         if (copy_to_user(buf, &ev->ev, sz))
1131                 ret = -EFAULT;
1132
1133         list_del(&ev->list);
1134         kfree(ev);
1135  out:
1136         mutex_unlock(&data->mtx);
1137         return ret;
1138 }
1139
1140 static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1141                                 size_t count, loff_t *pos)
1142 {
1143         struct rfkill *rfkill;
1144         struct rfkill_event ev;
1145
1146         /* we don't need the 'hard' variable but accept it */
1147         if (count < RFKILL_EVENT_SIZE_V1 - 1)
1148                 return -EINVAL;
1149
1150         /*
1151          * Copy as much data as we can accept into our 'ev' buffer,
1152          * but tell userspace how much we've copied so it can determine
1153          * our API version even in a write() call, if it cares.
1154          */
1155         count = min(count, sizeof(ev));
1156         if (copy_from_user(&ev, buf, count))
1157                 return -EFAULT;
1158
1159         if (ev.op != RFKILL_OP_CHANGE && ev.op != RFKILL_OP_CHANGE_ALL)
1160                 return -EINVAL;
1161
1162         if (ev.type >= NUM_RFKILL_TYPES)
1163                 return -EINVAL;
1164
1165         mutex_lock(&rfkill_global_mutex);
1166
1167         if (ev.op == RFKILL_OP_CHANGE_ALL) {
1168                 if (ev.type == RFKILL_TYPE_ALL) {
1169                         enum rfkill_type i;
1170                         for (i = 0; i < NUM_RFKILL_TYPES; i++)
1171                                 rfkill_global_states[i].cur = ev.soft;
1172                 } else {
1173                         rfkill_global_states[ev.type].cur = ev.soft;
1174                 }
1175         }
1176
1177         list_for_each_entry(rfkill, &rfkill_list, node) {
1178                 if (rfkill->idx != ev.idx && ev.op != RFKILL_OP_CHANGE_ALL)
1179                         continue;
1180
1181                 if (rfkill->type != ev.type && ev.type != RFKILL_TYPE_ALL)
1182                         continue;
1183
1184                 rfkill_set_block(rfkill, ev.soft);
1185         }
1186         mutex_unlock(&rfkill_global_mutex);
1187
1188         return count;
1189 }
1190
1191 static int rfkill_fop_release(struct inode *inode, struct file *file)
1192 {
1193         struct rfkill_data *data = file->private_data;
1194         struct rfkill_int_event *ev, *tmp;
1195
1196         mutex_lock(&rfkill_global_mutex);
1197         list_del(&data->list);
1198         mutex_unlock(&rfkill_global_mutex);
1199
1200         mutex_destroy(&data->mtx);
1201         list_for_each_entry_safe(ev, tmp, &data->events, list)
1202                 kfree(ev);
1203
1204 #ifdef CONFIG_RFKILL_INPUT
1205         if (data->input_handler)
1206                 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1207                         printk(KERN_DEBUG "rfkill: input handler enabled\n");
1208 #endif
1209
1210         kfree(data);
1211
1212         return 0;
1213 }
1214
1215 #ifdef CONFIG_RFKILL_INPUT
1216 static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1217                              unsigned long arg)
1218 {
1219         struct rfkill_data *data = file->private_data;
1220
1221         if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1222                 return -ENOSYS;
1223
1224         if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1225                 return -ENOSYS;
1226
1227         mutex_lock(&data->mtx);
1228
1229         if (!data->input_handler) {
1230                 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1231                         printk(KERN_DEBUG "rfkill: input handler disabled\n");
1232                 data->input_handler = true;
1233         }
1234
1235         mutex_unlock(&data->mtx);
1236
1237         return 0;
1238 }
1239 #endif
1240
1241 static const struct file_operations rfkill_fops = {
1242         .owner          = THIS_MODULE,
1243         .open           = rfkill_fop_open,
1244         .read           = rfkill_fop_read,
1245         .write          = rfkill_fop_write,
1246         .poll           = rfkill_fop_poll,
1247         .release        = rfkill_fop_release,
1248 #ifdef CONFIG_RFKILL_INPUT
1249         .unlocked_ioctl = rfkill_fop_ioctl,
1250         .compat_ioctl   = rfkill_fop_ioctl,
1251 #endif
1252         .llseek         = no_llseek,
1253 };
1254
1255 static struct miscdevice rfkill_miscdev = {
1256         .name   = "rfkill",
1257         .fops   = &rfkill_fops,
1258         .minor  = MISC_DYNAMIC_MINOR,
1259 };
1260
1261 static int __init rfkill_init(void)
1262 {
1263         int error;
1264         int i;
1265
1266         for (i = 0; i < NUM_RFKILL_TYPES; i++)
1267                 rfkill_global_states[i].cur = !rfkill_default_state;
1268
1269         error = class_register(&rfkill_class);
1270         if (error)
1271                 goto out;
1272
1273         error = misc_register(&rfkill_miscdev);
1274         if (error) {
1275                 class_unregister(&rfkill_class);
1276                 goto out;
1277         }
1278
1279 #ifdef CONFIG_RFKILL_INPUT
1280         error = rfkill_handler_init();
1281         if (error) {
1282                 misc_deregister(&rfkill_miscdev);
1283                 class_unregister(&rfkill_class);
1284                 goto out;
1285         }
1286 #endif
1287
1288  out:
1289         return error;
1290 }
1291 subsys_initcall(rfkill_init);
1292
1293 static void __exit rfkill_exit(void)
1294 {
1295 #ifdef CONFIG_RFKILL_INPUT
1296         rfkill_handler_exit();
1297 #endif
1298         misc_deregister(&rfkill_miscdev);
1299         class_unregister(&rfkill_class);
1300 }
1301 module_exit(rfkill_exit);