exit: reparent: cleanup the usage of reparent_leader()
[firefly-linux-kernel-4.4.55.git] / net / openvswitch / actions.c
1 /*
2  * Copyright (c) 2007-2014 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/skbuff.h>
22 #include <linux/in.h>
23 #include <linux/ip.h>
24 #include <linux/openvswitch.h>
25 #include <linux/sctp.h>
26 #include <linux/tcp.h>
27 #include <linux/udp.h>
28 #include <linux/in6.h>
29 #include <linux/if_arp.h>
30 #include <linux/if_vlan.h>
31 #include <net/ip.h>
32 #include <net/ipv6.h>
33 #include <net/checksum.h>
34 #include <net/dsfield.h>
35 #include <net/sctp/checksum.h>
36
37 #include "datapath.h"
38 #include "flow.h"
39 #include "vport.h"
40
41 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
42                               struct sw_flow_key *key,
43                               const struct nlattr *attr, int len);
44
45 struct deferred_action {
46         struct sk_buff *skb;
47         const struct nlattr *actions;
48
49         /* Store pkt_key clone when creating deferred action. */
50         struct sw_flow_key pkt_key;
51 };
52
53 #define DEFERRED_ACTION_FIFO_SIZE 10
54 struct action_fifo {
55         int head;
56         int tail;
57         /* Deferred action fifo queue storage. */
58         struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
59 };
60
61 static struct action_fifo __percpu *action_fifos;
62 static DEFINE_PER_CPU(int, exec_actions_level);
63
64 static void action_fifo_init(struct action_fifo *fifo)
65 {
66         fifo->head = 0;
67         fifo->tail = 0;
68 }
69
70 static bool action_fifo_is_empty(struct action_fifo *fifo)
71 {
72         return (fifo->head == fifo->tail);
73 }
74
75 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
76 {
77         if (action_fifo_is_empty(fifo))
78                 return NULL;
79
80         return &fifo->fifo[fifo->tail++];
81 }
82
83 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
84 {
85         if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
86                 return NULL;
87
88         return &fifo->fifo[fifo->head++];
89 }
90
91 /* Return true if fifo is not full */
92 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
93                                                     struct sw_flow_key *key,
94                                                     const struct nlattr *attr)
95 {
96         struct action_fifo *fifo;
97         struct deferred_action *da;
98
99         fifo = this_cpu_ptr(action_fifos);
100         da = action_fifo_put(fifo);
101         if (da) {
102                 da->skb = skb;
103                 da->actions = attr;
104                 da->pkt_key = *key;
105         }
106
107         return da;
108 }
109
110 static int make_writable(struct sk_buff *skb, int write_len)
111 {
112         if (!pskb_may_pull(skb, write_len))
113                 return -ENOMEM;
114
115         if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
116                 return 0;
117
118         return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
119 }
120
121 /* remove VLAN header from packet and update csum accordingly. */
122 static int __pop_vlan_tci(struct sk_buff *skb, __be16 *current_tci)
123 {
124         struct vlan_hdr *vhdr;
125         int err;
126
127         err = make_writable(skb, VLAN_ETH_HLEN);
128         if (unlikely(err))
129                 return err;
130
131         if (skb->ip_summed == CHECKSUM_COMPLETE)
132                 skb->csum = csum_sub(skb->csum, csum_partial(skb->data
133                                         + (2 * ETH_ALEN), VLAN_HLEN, 0));
134
135         vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
136         *current_tci = vhdr->h_vlan_TCI;
137
138         memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
139         __skb_pull(skb, VLAN_HLEN);
140
141         vlan_set_encap_proto(skb, vhdr);
142         skb->mac_header += VLAN_HLEN;
143         if (skb_network_offset(skb) < ETH_HLEN)
144                 skb_set_network_header(skb, ETH_HLEN);
145         skb_reset_mac_len(skb);
146
147         return 0;
148 }
149
150 static int pop_vlan(struct sk_buff *skb)
151 {
152         __be16 tci;
153         int err;
154
155         if (likely(vlan_tx_tag_present(skb))) {
156                 skb->vlan_tci = 0;
157         } else {
158                 if (unlikely(skb->protocol != htons(ETH_P_8021Q) ||
159                              skb->len < VLAN_ETH_HLEN))
160                         return 0;
161
162                 err = __pop_vlan_tci(skb, &tci);
163                 if (err)
164                         return err;
165         }
166         /* move next vlan tag to hw accel tag */
167         if (likely(skb->protocol != htons(ETH_P_8021Q) ||
168                    skb->len < VLAN_ETH_HLEN))
169                 return 0;
170
171         err = __pop_vlan_tci(skb, &tci);
172         if (unlikely(err))
173                 return err;
174
175         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(tci));
176         return 0;
177 }
178
179 static int push_vlan(struct sk_buff *skb, const struct ovs_action_push_vlan *vlan)
180 {
181         if (unlikely(vlan_tx_tag_present(skb))) {
182                 u16 current_tag;
183
184                 /* push down current VLAN tag */
185                 current_tag = vlan_tx_tag_get(skb);
186
187                 if (!__vlan_put_tag(skb, skb->vlan_proto, current_tag))
188                         return -ENOMEM;
189
190                 if (skb->ip_summed == CHECKSUM_COMPLETE)
191                         skb->csum = csum_add(skb->csum, csum_partial(skb->data
192                                         + (2 * ETH_ALEN), VLAN_HLEN, 0));
193
194         }
195         __vlan_hwaccel_put_tag(skb, vlan->vlan_tpid, ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
196         return 0;
197 }
198
199 static int set_eth_addr(struct sk_buff *skb,
200                         const struct ovs_key_ethernet *eth_key)
201 {
202         int err;
203         err = make_writable(skb, ETH_HLEN);
204         if (unlikely(err))
205                 return err;
206
207         skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
208
209         ether_addr_copy(eth_hdr(skb)->h_source, eth_key->eth_src);
210         ether_addr_copy(eth_hdr(skb)->h_dest, eth_key->eth_dst);
211
212         ovs_skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
213
214         return 0;
215 }
216
217 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
218                                 __be32 *addr, __be32 new_addr)
219 {
220         int transport_len = skb->len - skb_transport_offset(skb);
221
222         if (nh->protocol == IPPROTO_TCP) {
223                 if (likely(transport_len >= sizeof(struct tcphdr)))
224                         inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
225                                                  *addr, new_addr, 1);
226         } else if (nh->protocol == IPPROTO_UDP) {
227                 if (likely(transport_len >= sizeof(struct udphdr))) {
228                         struct udphdr *uh = udp_hdr(skb);
229
230                         if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
231                                 inet_proto_csum_replace4(&uh->check, skb,
232                                                          *addr, new_addr, 1);
233                                 if (!uh->check)
234                                         uh->check = CSUM_MANGLED_0;
235                         }
236                 }
237         }
238
239         csum_replace4(&nh->check, *addr, new_addr);
240         skb_clear_hash(skb);
241         *addr = new_addr;
242 }
243
244 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
245                                  __be32 addr[4], const __be32 new_addr[4])
246 {
247         int transport_len = skb->len - skb_transport_offset(skb);
248
249         if (l4_proto == NEXTHDR_TCP) {
250                 if (likely(transport_len >= sizeof(struct tcphdr)))
251                         inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
252                                                   addr, new_addr, 1);
253         } else if (l4_proto == NEXTHDR_UDP) {
254                 if (likely(transport_len >= sizeof(struct udphdr))) {
255                         struct udphdr *uh = udp_hdr(skb);
256
257                         if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
258                                 inet_proto_csum_replace16(&uh->check, skb,
259                                                           addr, new_addr, 1);
260                                 if (!uh->check)
261                                         uh->check = CSUM_MANGLED_0;
262                         }
263                 }
264         } else if (l4_proto == NEXTHDR_ICMP) {
265                 if (likely(transport_len >= sizeof(struct icmp6hdr)))
266                         inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
267                                                   skb, addr, new_addr, 1);
268         }
269 }
270
271 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
272                           __be32 addr[4], const __be32 new_addr[4],
273                           bool recalculate_csum)
274 {
275         if (recalculate_csum)
276                 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
277
278         skb_clear_hash(skb);
279         memcpy(addr, new_addr, sizeof(__be32[4]));
280 }
281
282 static void set_ipv6_tc(struct ipv6hdr *nh, u8 tc)
283 {
284         nh->priority = tc >> 4;
285         nh->flow_lbl[0] = (nh->flow_lbl[0] & 0x0F) | ((tc & 0x0F) << 4);
286 }
287
288 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl)
289 {
290         nh->flow_lbl[0] = (nh->flow_lbl[0] & 0xF0) | (fl & 0x000F0000) >> 16;
291         nh->flow_lbl[1] = (fl & 0x0000FF00) >> 8;
292         nh->flow_lbl[2] = fl & 0x000000FF;
293 }
294
295 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl)
296 {
297         csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
298         nh->ttl = new_ttl;
299 }
300
301 static int set_ipv4(struct sk_buff *skb, const struct ovs_key_ipv4 *ipv4_key)
302 {
303         struct iphdr *nh;
304         int err;
305
306         err = make_writable(skb, skb_network_offset(skb) +
307                                  sizeof(struct iphdr));
308         if (unlikely(err))
309                 return err;
310
311         nh = ip_hdr(skb);
312
313         if (ipv4_key->ipv4_src != nh->saddr)
314                 set_ip_addr(skb, nh, &nh->saddr, ipv4_key->ipv4_src);
315
316         if (ipv4_key->ipv4_dst != nh->daddr)
317                 set_ip_addr(skb, nh, &nh->daddr, ipv4_key->ipv4_dst);
318
319         if (ipv4_key->ipv4_tos != nh->tos)
320                 ipv4_change_dsfield(nh, 0, ipv4_key->ipv4_tos);
321
322         if (ipv4_key->ipv4_ttl != nh->ttl)
323                 set_ip_ttl(skb, nh, ipv4_key->ipv4_ttl);
324
325         return 0;
326 }
327
328 static int set_ipv6(struct sk_buff *skb, const struct ovs_key_ipv6 *ipv6_key)
329 {
330         struct ipv6hdr *nh;
331         int err;
332         __be32 *saddr;
333         __be32 *daddr;
334
335         err = make_writable(skb, skb_network_offset(skb) +
336                             sizeof(struct ipv6hdr));
337         if (unlikely(err))
338                 return err;
339
340         nh = ipv6_hdr(skb);
341         saddr = (__be32 *)&nh->saddr;
342         daddr = (__be32 *)&nh->daddr;
343
344         if (memcmp(ipv6_key->ipv6_src, saddr, sizeof(ipv6_key->ipv6_src)))
345                 set_ipv6_addr(skb, ipv6_key->ipv6_proto, saddr,
346                               ipv6_key->ipv6_src, true);
347
348         if (memcmp(ipv6_key->ipv6_dst, daddr, sizeof(ipv6_key->ipv6_dst))) {
349                 unsigned int offset = 0;
350                 int flags = IP6_FH_F_SKIP_RH;
351                 bool recalc_csum = true;
352
353                 if (ipv6_ext_hdr(nh->nexthdr))
354                         recalc_csum = ipv6_find_hdr(skb, &offset,
355                                                     NEXTHDR_ROUTING, NULL,
356                                                     &flags) != NEXTHDR_ROUTING;
357
358                 set_ipv6_addr(skb, ipv6_key->ipv6_proto, daddr,
359                               ipv6_key->ipv6_dst, recalc_csum);
360         }
361
362         set_ipv6_tc(nh, ipv6_key->ipv6_tclass);
363         set_ipv6_fl(nh, ntohl(ipv6_key->ipv6_label));
364         nh->hop_limit = ipv6_key->ipv6_hlimit;
365
366         return 0;
367 }
368
369 /* Must follow make_writable() since that can move the skb data. */
370 static void set_tp_port(struct sk_buff *skb, __be16 *port,
371                          __be16 new_port, __sum16 *check)
372 {
373         inet_proto_csum_replace2(check, skb, *port, new_port, 0);
374         *port = new_port;
375         skb_clear_hash(skb);
376 }
377
378 static void set_udp_port(struct sk_buff *skb, __be16 *port, __be16 new_port)
379 {
380         struct udphdr *uh = udp_hdr(skb);
381
382         if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
383                 set_tp_port(skb, port, new_port, &uh->check);
384
385                 if (!uh->check)
386                         uh->check = CSUM_MANGLED_0;
387         } else {
388                 *port = new_port;
389                 skb_clear_hash(skb);
390         }
391 }
392
393 static int set_udp(struct sk_buff *skb, const struct ovs_key_udp *udp_port_key)
394 {
395         struct udphdr *uh;
396         int err;
397
398         err = make_writable(skb, skb_transport_offset(skb) +
399                                  sizeof(struct udphdr));
400         if (unlikely(err))
401                 return err;
402
403         uh = udp_hdr(skb);
404         if (udp_port_key->udp_src != uh->source)
405                 set_udp_port(skb, &uh->source, udp_port_key->udp_src);
406
407         if (udp_port_key->udp_dst != uh->dest)
408                 set_udp_port(skb, &uh->dest, udp_port_key->udp_dst);
409
410         return 0;
411 }
412
413 static int set_tcp(struct sk_buff *skb, const struct ovs_key_tcp *tcp_port_key)
414 {
415         struct tcphdr *th;
416         int err;
417
418         err = make_writable(skb, skb_transport_offset(skb) +
419                                  sizeof(struct tcphdr));
420         if (unlikely(err))
421                 return err;
422
423         th = tcp_hdr(skb);
424         if (tcp_port_key->tcp_src != th->source)
425                 set_tp_port(skb, &th->source, tcp_port_key->tcp_src, &th->check);
426
427         if (tcp_port_key->tcp_dst != th->dest)
428                 set_tp_port(skb, &th->dest, tcp_port_key->tcp_dst, &th->check);
429
430         return 0;
431 }
432
433 static int set_sctp(struct sk_buff *skb,
434                      const struct ovs_key_sctp *sctp_port_key)
435 {
436         struct sctphdr *sh;
437         int err;
438         unsigned int sctphoff = skb_transport_offset(skb);
439
440         err = make_writable(skb, sctphoff + sizeof(struct sctphdr));
441         if (unlikely(err))
442                 return err;
443
444         sh = sctp_hdr(skb);
445         if (sctp_port_key->sctp_src != sh->source ||
446             sctp_port_key->sctp_dst != sh->dest) {
447                 __le32 old_correct_csum, new_csum, old_csum;
448
449                 old_csum = sh->checksum;
450                 old_correct_csum = sctp_compute_cksum(skb, sctphoff);
451
452                 sh->source = sctp_port_key->sctp_src;
453                 sh->dest = sctp_port_key->sctp_dst;
454
455                 new_csum = sctp_compute_cksum(skb, sctphoff);
456
457                 /* Carry any checksum errors through. */
458                 sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
459
460                 skb_clear_hash(skb);
461         }
462
463         return 0;
464 }
465
466 static int do_output(struct datapath *dp, struct sk_buff *skb, int out_port)
467 {
468         struct vport *vport;
469
470         if (unlikely(!skb))
471                 return -ENOMEM;
472
473         vport = ovs_vport_rcu(dp, out_port);
474         if (unlikely(!vport)) {
475                 kfree_skb(skb);
476                 return -ENODEV;
477         }
478
479         ovs_vport_send(vport, skb);
480         return 0;
481 }
482
483 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
484                             struct sw_flow_key *key, const struct nlattr *attr)
485 {
486         struct dp_upcall_info upcall;
487         const struct nlattr *a;
488         int rem;
489
490         upcall.cmd = OVS_PACKET_CMD_ACTION;
491         upcall.key = key;
492         upcall.userdata = NULL;
493         upcall.portid = 0;
494
495         for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
496                  a = nla_next(a, &rem)) {
497                 switch (nla_type(a)) {
498                 case OVS_USERSPACE_ATTR_USERDATA:
499                         upcall.userdata = a;
500                         break;
501
502                 case OVS_USERSPACE_ATTR_PID:
503                         upcall.portid = nla_get_u32(a);
504                         break;
505                 }
506         }
507
508         return ovs_dp_upcall(dp, skb, &upcall);
509 }
510
511 static bool last_action(const struct nlattr *a, int rem)
512 {
513         return a->nla_len == rem;
514 }
515
516 static int sample(struct datapath *dp, struct sk_buff *skb,
517                   struct sw_flow_key *key, const struct nlattr *attr)
518 {
519         const struct nlattr *acts_list = NULL;
520         const struct nlattr *a;
521         int rem;
522
523         for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
524                  a = nla_next(a, &rem)) {
525                 switch (nla_type(a)) {
526                 case OVS_SAMPLE_ATTR_PROBABILITY:
527                         if (prandom_u32() >= nla_get_u32(a))
528                                 return 0;
529                         break;
530
531                 case OVS_SAMPLE_ATTR_ACTIONS:
532                         acts_list = a;
533                         break;
534                 }
535         }
536
537         rem = nla_len(acts_list);
538         a = nla_data(acts_list);
539
540         /* Actions list is empty, do nothing */
541         if (unlikely(!rem))
542                 return 0;
543
544         /* The only known usage of sample action is having a single user-space
545          * action. Treat this usage as a special case.
546          * The output_userspace() should clone the skb to be sent to the
547          * user space. This skb will be consumed by its caller.
548          */
549         if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE &&
550                    last_action(a, rem)))
551                 return output_userspace(dp, skb, key, a);
552
553         skb = skb_clone(skb, GFP_ATOMIC);
554         if (!skb)
555                 /* Skip the sample action when out of memory. */
556                 return 0;
557
558         if (!add_deferred_actions(skb, key, a)) {
559                 if (net_ratelimit())
560                         pr_warn("%s: deferred actions limit reached, dropping sample action\n",
561                                 ovs_dp_name(dp));
562
563                 kfree_skb(skb);
564         }
565         return 0;
566 }
567
568 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
569                          const struct nlattr *attr)
570 {
571         struct ovs_action_hash *hash_act = nla_data(attr);
572         u32 hash = 0;
573
574         /* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */
575         hash = skb_get_hash(skb);
576         hash = jhash_1word(hash, hash_act->hash_basis);
577         if (!hash)
578                 hash = 0x1;
579
580         key->ovs_flow_hash = hash;
581 }
582
583 static int execute_set_action(struct sk_buff *skb,
584                                  const struct nlattr *nested_attr)
585 {
586         int err = 0;
587
588         switch (nla_type(nested_attr)) {
589         case OVS_KEY_ATTR_PRIORITY:
590                 skb->priority = nla_get_u32(nested_attr);
591                 break;
592
593         case OVS_KEY_ATTR_SKB_MARK:
594                 skb->mark = nla_get_u32(nested_attr);
595                 break;
596
597         case OVS_KEY_ATTR_TUNNEL_INFO:
598                 OVS_CB(skb)->egress_tun_info = nla_data(nested_attr);
599                 break;
600
601         case OVS_KEY_ATTR_ETHERNET:
602                 err = set_eth_addr(skb, nla_data(nested_attr));
603                 break;
604
605         case OVS_KEY_ATTR_IPV4:
606                 err = set_ipv4(skb, nla_data(nested_attr));
607                 break;
608
609         case OVS_KEY_ATTR_IPV6:
610                 err = set_ipv6(skb, nla_data(nested_attr));
611                 break;
612
613         case OVS_KEY_ATTR_TCP:
614                 err = set_tcp(skb, nla_data(nested_attr));
615                 break;
616
617         case OVS_KEY_ATTR_UDP:
618                 err = set_udp(skb, nla_data(nested_attr));
619                 break;
620
621         case OVS_KEY_ATTR_SCTP:
622                 err = set_sctp(skb, nla_data(nested_attr));
623                 break;
624         }
625
626         return err;
627 }
628
629 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
630                           struct sw_flow_key *key,
631                           const struct nlattr *a, int rem)
632 {
633         struct deferred_action *da;
634         int err;
635
636         err = ovs_flow_key_update(skb, key);
637         if (err)
638                 return err;
639
640         if (!last_action(a, rem)) {
641                 /* Recirc action is the not the last action
642                  * of the action list, need to clone the skb.
643                  */
644                 skb = skb_clone(skb, GFP_ATOMIC);
645
646                 /* Skip the recirc action when out of memory, but
647                  * continue on with the rest of the action list.
648                  */
649                 if (!skb)
650                         return 0;
651         }
652
653         da = add_deferred_actions(skb, key, NULL);
654         if (da) {
655                 da->pkt_key.recirc_id = nla_get_u32(a);
656         } else {
657                 kfree_skb(skb);
658
659                 if (net_ratelimit())
660                         pr_warn("%s: deferred action limit reached, drop recirc action\n",
661                                 ovs_dp_name(dp));
662         }
663
664         return 0;
665 }
666
667 /* Execute a list of actions against 'skb'. */
668 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
669                               struct sw_flow_key *key,
670                               const struct nlattr *attr, int len)
671 {
672         /* Every output action needs a separate clone of 'skb', but the common
673          * case is just a single output action, so that doing a clone and
674          * then freeing the original skbuff is wasteful.  So the following code
675          * is slightly obscure just to avoid that. */
676         int prev_port = -1;
677         const struct nlattr *a;
678         int rem;
679
680         for (a = attr, rem = len; rem > 0;
681              a = nla_next(a, &rem)) {
682                 int err = 0;
683
684                 if (prev_port != -1) {
685                         do_output(dp, skb_clone(skb, GFP_ATOMIC), prev_port);
686                         prev_port = -1;
687                 }
688
689                 switch (nla_type(a)) {
690                 case OVS_ACTION_ATTR_OUTPUT:
691                         prev_port = nla_get_u32(a);
692                         break;
693
694                 case OVS_ACTION_ATTR_USERSPACE:
695                         output_userspace(dp, skb, key, a);
696                         break;
697
698                 case OVS_ACTION_ATTR_HASH:
699                         execute_hash(skb, key, a);
700                         break;
701
702                 case OVS_ACTION_ATTR_PUSH_VLAN:
703                         err = push_vlan(skb, nla_data(a));
704                         if (unlikely(err)) /* skb already freed. */
705                                 return err;
706                         break;
707
708                 case OVS_ACTION_ATTR_POP_VLAN:
709                         err = pop_vlan(skb);
710                         break;
711
712                 case OVS_ACTION_ATTR_RECIRC:
713                         err = execute_recirc(dp, skb, key, a, rem);
714                         if (last_action(a, rem)) {
715                                 /* If this is the last action, the skb has
716                                  * been consumed or freed.
717                                  * Return immediately.
718                                  */
719                                 return err;
720                         }
721                         break;
722
723                 case OVS_ACTION_ATTR_SET:
724                         err = execute_set_action(skb, nla_data(a));
725                         break;
726
727                 case OVS_ACTION_ATTR_SAMPLE:
728                         err = sample(dp, skb, key, a);
729                         break;
730                 }
731
732                 if (unlikely(err)) {
733                         kfree_skb(skb);
734                         return err;
735                 }
736         }
737
738         if (prev_port != -1)
739                 do_output(dp, skb, prev_port);
740         else
741                 consume_skb(skb);
742
743         return 0;
744 }
745
746 static void process_deferred_actions(struct datapath *dp)
747 {
748         struct action_fifo *fifo = this_cpu_ptr(action_fifos);
749
750         /* Do not touch the FIFO in case there is no deferred actions. */
751         if (action_fifo_is_empty(fifo))
752                 return;
753
754         /* Finishing executing all deferred actions. */
755         do {
756                 struct deferred_action *da = action_fifo_get(fifo);
757                 struct sk_buff *skb = da->skb;
758                 struct sw_flow_key *key = &da->pkt_key;
759                 const struct nlattr *actions = da->actions;
760
761                 if (actions)
762                         do_execute_actions(dp, skb, key, actions,
763                                            nla_len(actions));
764                 else
765                         ovs_dp_process_packet(skb, key);
766         } while (!action_fifo_is_empty(fifo));
767
768         /* Reset FIFO for the next packet.  */
769         action_fifo_init(fifo);
770 }
771
772 /* Execute a list of actions against 'skb'. */
773 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
774                         struct sw_flow_key *key)
775 {
776         int level = this_cpu_read(exec_actions_level);
777         struct sw_flow_actions *acts;
778         int err;
779
780         acts = rcu_dereference(OVS_CB(skb)->flow->sf_acts);
781
782         this_cpu_inc(exec_actions_level);
783         OVS_CB(skb)->egress_tun_info = NULL;
784         err = do_execute_actions(dp, skb, key,
785                                  acts->actions, acts->actions_len);
786
787         if (!level)
788                 process_deferred_actions(dp);
789
790         this_cpu_dec(exec_actions_level);
791         return err;
792 }
793
794 int action_fifos_init(void)
795 {
796         action_fifos = alloc_percpu(struct action_fifo);
797         if (!action_fifos)
798                 return -ENOMEM;
799
800         return 0;
801 }
802
803 void action_fifos_exit(void)
804 {
805         free_percpu(action_fifos);
806 }